
Bergische Universität
Wuppertal

Parametric Fixed-Point Iteration Implemented in C-XSC

Evgenija D. Popova and Walter Krämer

Preprint 2003/3

Wissenschaftliches Rechnen/
Softwaretechnologie

This work was partially supported by DFG and the Bulgarian National
Science Fund under grants No I-903/99 and MM-1301/2003.

Impressum

Herausgeber: Prof. Dr. W. Krämer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich 7 (Mathematik)
Bergische Universiẗat Wuppertal
Gaußstr. 20
D-42097 Wuppertal

Internet-Zugriff

Die Berichte sind in elektronischer Form erhältlich über die World Wide Web Seiten

http://www.math.uni-wuppertal.de/wrswt/literatur.html

Autoren-Kontaktadresse

Evgenija D. Popova
Institute of Mathematics & Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev str., block 8
BG-1113 Sofia, Bulgaria

E-mail: epopova@bio.bas.bg

Walter Kr̈amer
Bergische Universiẗat Wuppertal
Gaußstr. 20
D-42097 Wuppertal

E-mail: kraemer@math.uni-wuppertal.de

Parametric Fixed-Point Iteration Implemented in
C-XSC

Evgenija Popova, Walter Krämer

Abstract. Consider linear systems whose matrix and right-hand side vector depend affine-
linearly on parameters varying within prescribed intervals. We present a C-XSC [9] implemen-
tation of a parametric fixed-point iteration method for the verified enclosure of the parametric
solution set. Input data for the system have an entirely numerical representation by dense two-
dimensional matrices. Some specific features of the corresponding algorithm concerning sharp
enclosure of the contracting matrix, epsilon inflation, and inner approximation of the solution
enclosure are discussed. Numerical examples illustrate the application of the presented software
and the discussed specific features of the algorithm.

Our software seems to be the first open source software delivering verified results in the field
of parametric linear systems (inner and outer estimations for the hull of the solution set). The
source code is available athttp://www.math.uni-wuppertal.de/wrswt/xsc/cxsc−software.html. The
software will be developed further.

Keywords: parametric linear systems, validated interval software, C-XSC, inner estimation,
open source.

MSC (2000): 65F10, 65G20, 65Y15

1 Introduction

Solving parametric linear systems involving uncertainties in the parameters is an important
part of the solution to many scientific and engineering problems. In most engineering design
problems, models in operation research, linear prediction problems, etc. usually there are com-
plicated dependencies between coefficients [2], [17]. The main reason for this dependency is
that the errors in several different coefficients may be caused by the same factor.

Consider the linear system
A(p) · x = b(p) (1)

whereA(p) ∈ IRn×n andb(p) ∈ IRn depend affine-linearly on a parameter vectorp ∈ IRk.
Whenp varies within a range[p] ∈ IIRk, the set of solutions to allA(p) · x = b(p), p ∈ [p],
called parametric solution set, is

Σp = Σ (A(p), b(p), [p]) := {x ∈ IRn | A(p) · x = b(p) for somep ∈ [p]} . (2)

1 INTRODUCTION 4

Since the solution set has a complicated structure which is difficult to find, one looks for the
interval hull 3(Σ) wheneverΣ is a nonempty bounded subset ofIRn. For Σ ⊆ IRn, define
3 : PIRn → IIRn by

3(Σ) := [inf Σ, sup Σ] = ∩{[x] ∈ IIRn | Σ ⊆ [x]}.

The calculation of3(Σ) is also quite expensive, so a more realistic task is to find a tight interval
enclosure of it. Here we discuss the computation of[y] ∈ IIRn such that[y] ⊇ 3(Σp) ⊇ Σp.

A general iteration method for verified enclosure ofΣp, that accounts for arbitrary affine-
linear dependencies in the matrix and the right hand side vector, is proposed by S. Rump in
[21] and generalized in [15]. At present the parametric fixed-point iteration and the parametric
Gauss-Seidel iteration [14] are the only general purpose methods for verified enclosure of the
parametric solution set. The parametric fixed-point iteration possesses excellent performance
whenever the parameters vary within relatively small tolerances [14], [21]. This method is also
an indispensable tool for proving monotonicity properties of the parametric solution set [16] and
for the parametric Gauss-Seidel iteration in finding an initial approximation of the parametric
solution set.

Despite of the many attempts (mainly from an application point of view) to treat the para-
metric problem, there is a lack of a suitable software basis for comparison of different methods
and studying their efficiency. The parametric fixed-point iteration has only a few applications
[14], [17] and aMathematicaimplementation [16]. The application scientists neither apply,
nor compare their own methods to the parametric fixed-point solver. Remarkably, the method
was recently reinvented in slightly different notations [2]. Since various practical problems in-
volve solution of parameter dependent linear systems, there is an increasing interest in rigorous
efficient methods and software tools for solving such systems.

The goal of this work is to provide a free, open-source software for the verified enclosure
of the parametric solution set in the environment of C-XSC [8], [9]. The software tool, we
describe here, implements a fixed-point iteration method for parametric linear systems, and has
our expertise and experience built in. In Section 2 we recall Rump’s parametric method and its
generalization. In Section 3 we present an algorithm which uses a two-dimensional numerical
representation of the parametric system. Some specific features of the corresponding C-XSC
implementation concerning a sharp enclosure of the iteration matrix, epsilon inflation, and inner
approximation of the outer enclosure are discussed. Numerical examples, given in Section 4,
illustrate the application of the presented software and the discussed specific features.

Because it is free and open-source, this software could be used as a benchmark for the next
methodology and performance investigations related to parametric interval linear systems.

We use the following notations.IRn, IRn×m denote the set of real vectors withn components
and the set of realn × m matrices, respectively. By normal (proper) interval we mean a real
compact interval

[a] := [a−, a+] := {a ∈ IR | a− ≤ a ≤ a+}.
By I IRn, I IRn×m we denote intervaln-vectors and intervaln × m matrices. The end-point

functionals(·)−, (·)+, the mid-point function mid(·), where mid([a−, a+]) :=
a− + a+

2
, and the

diameter function diam(·), where diam([a−, a+]) := a+ − a−, are applied to interval vectors
and matrices componentwise.%(A) is the spectral radius of a matrixA.

2 THEORETICAL BACKGROUND 5

Denote by

A([p]) := 3{A(p) ∈ IRn×n | p ∈ [p]}, b([p]) := 3{b(p) ∈ IRn | p ∈ [p]}
the non-parametric interval matrix, resp. vector, that correspond and are obtained from the para-
metric ones. Hence,A([p]) · x = b([p]) is the non-parametric system corresponding to the
parametric one, and

Σg = Σ (A([p]), b([p])) := {x ∈ IRn | A · x = b for someA ∈ A([p]), b ∈ b([p])}
is the non-parametric solution set corresponding to the parametric one. The parametric solution
set is a subset of the corresponding non-parametric solution set and has much smaller volume
than the latter.

2 Theoretical Background

In this section we give a brief summary of the theory of the enclosure methods for our problem.
A more detailed presentation can be found in [21] and [15].

Consider the parametric linear system (1).A(p) ∈ IRn×n andb(p) ∈ IRn depend affine-
linearly on a parameter vectorp ∈ IRk+1, which first component is equal to one, means that,
with the notations of Rump in [21], there are vectors

w(i, j) ∈ IRk+1 for 0 ≤ i ≤ n, 1 ≤ j ≤ n with
{A(p)}ij = w(i, j)> · p and {b(p)}j = w(0, j)> · p. (3)

This wayA(p) can be represented as a three dimensional matrix



w(1, 1) · · · w(1, n)
· · ·

w(n, 1) · · · w(n, n)


 ∈ IRn×n×(k+1).

In order to avoid the three dimensional numeric representation of the parametric matrix we
shall use another equivalent representation which will facilitate the algorithmic formulation.
Each individual component ofA(p), b(p) is an affine-linear combination of thek parameters

aij(p) := a
(0)
ij +

k∑
ν=1

pνa
(ν)
ij , bi(p) := b

(0)
i +

k∑
ν=1

pνb
(ν)
i . (4)

Denote thek + 1 numerical matrices

A(0) :=
(
a

(0)
ij

)
, A(1) :=

(
a

(1)
ij

)
, . . . , A(k) :=

(
a

(k)
ij

)
∈ IRn×n

and the corresponding numerical vectorsb(0) := (b
(0)
i), b(1) := (b

(1)
i), . . . , b(k) := (b

(k)
i) ∈ IRn.

Hence, the parametric matrix and the right-hand side vector can be represented by

A(p) = A(0) +
k∑

ν=1

pνA
(ν), b(p) = b(0) +

k∑
ν=1

pνb
(ν). (5)

2 THEORETICAL BACKGROUND 6

and the parametric system (1) can be rewritten in the following form

(
A(0) +

k∑
ν=1

pνA
(ν)

)
x = b(0) +

k∑
ν=1

pνb
(ν), (6)

where the parameter vectorp varies within the range[p] ∈ IIRk.

2.1 Existence and Uniqueness of the Solution

Rather than computing an enclosure for the parametric solution directly, we will try to enclose
the differenceY := X− x̃ w.r.t. an approximate solutioñx. For an arbitrary nonsingular matrix
R ∈ IRn×n and arbitrarỹx ∈ IRn, (1) is equivalent to the fixed-point equation

Y = R (b(p)− A(p) · x̃) + (I −R · A(p)) · Y,

whereI ∈ IRn×n denotes the identity matrix. Rump’s parametric fixed-point method for en-
closing the solution of (1) is contained in the following theorem.

Theorem 1 ([21]) Let A(p) · x = b(p) with A(p) ∈ IRn×n, b(p) ∈ IRn, p ∈ IRk+1 with
p ∈ [p] ∈ I IRk+1 be a parametrised linear system, whereA(p), b(p) are given by (3). Let
R ∈ IRn×n, [Y] ∈ IIRn, x̃ ∈ IRn and define[Z] ∈ IIRn, [C] ∈ IIRn×n by

[Z]i := (
n∑

j,ν=1

{Rij (w(0, j)− x̃νw(j, ν))}>) · [p], (7)

[C] := I −R · A([p]). (8)

Define[V] ∈ IIRn by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : Vi := {[Z] + [C] · [U]}i, [U] := (V1, ..., Vi−1, Yi, ..., Yn)>. (9)

If [V] $ [Y], thenR and every matrixA(p), p ∈ [p] are regular, and for everyp ∈ [p] the
unique solution̂x = A−1(p)b(p) of (1) satisfieŝx ∈ x̃ + [V].

With [D] := [C] · [V] ∈ I IRn and the solution setΣp, defined by (2), the following inner
estimation holds true

[
x̃ + [Z]− + [D]+, x̃ + [Z]+ + [D]−

] ⊆ [inf(Σp), sup(Σp)] . (10)

The first part of Theorem 1 establishes existence and uniqueness of the solution. The
existence follows from Brower’s fixed-point theorem forg(p, x) := x − R · f(p, x), where
f(p, x) := A(p)x− b(p) has the expansionf(p, x) = f(p, x̃) + A(p) · (x− x̃). The important
point in obtaining an enclosure of theparametricsolution set is to obtain sharp bounds for

Z := −R · f(p, x̃; [p]) := 3 (R · {b(p)− A(p) · x̃ | p ∈ [p]})

2 THEORETICAL BACKGROUND 7

because a straightforward evaluationR · (b([p])− A([p])x̃) causes overestimation.[Z], defined
in (7), provides a sharp estimation. Next, with the notations (5), we give another equivalent
representation of (7)

[Z] := 3 {R (b(p)− A(p)x̃) | p ∈ [p]}

= 3

{
R

(
b(0) +

k∑
ν=1

pνb
(ν) −

(
A(0) +

k∑
ν=1

pνA
(ν)

)
x̃

)
| p ∈ [p]

}

= 3

{
R(b(0) − A(0)x̃) +

k∑
ν=1

(
pν(Rb(ν) −RA(ν)x̃)

) | p ∈ [p]

}

= R · (b(0) − A(0)x̃) +
k∑

ν=1

[pν](R · b(ν) −R · A(ν) · x̃).

As it is proven in [21], the inclusion[V] $ [Y] together with (7)–(9) implies% (|[C]|) < 1,
consequently non-singularity ofR and everyA(p), p ∈ [p], thus the uniqueness of the solution
of (1). However, it is shown in [15] that for some parametric matrices verifying% (|[C]|) < 1
fails, while R and everyA(p), p ∈ [p], are regular. It is proven therein that to have a better
sufficient condition for the regularity of everyA(p), p ∈ [p], one has to compute instead of (8)

[C(p)] := 3{I −R · A(p) | p ∈ [p]}

= I −R · A(0) −
k∑

ν=1

[pν](R · A(ν)).

This way, the following theorem expands the scope of applicability of the parametric fixed-point
iteration.

Theorem 2 ([15]) Let A(p) · x = b(p) with A(p) ∈ IRn×n, b(p) ∈ IRn, p ∈ IRk be a
parametrised linear system, whereA(p), b(p) are given by (5). LetR ∈ IRn×n, [Y] ∈ I IRn,
x̃ ∈ IRn and define[Z] ∈ IIRn, [C(p)] ∈ IIRn×n by

[Z] := R · (b(0) − A(0)x̃) +
k∑

ν=1

[pν](R · b(ν) −R · A(ν) · x̃), (11)

[C(p)] := I −R · A(0) −
k∑

ν=1

[pν](R · A(ν)). (12)

Define[V] ∈ IIRn by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : Vi := {[Z] + [C(p)] · [U]}i, [U] := (V1, ..., Vi−1, Yi, ..., Yn)>.

If [V] $ [Y], thenR and every matrixA(p), p ∈ [p] are regular, and for everyp ∈ [p] the
unique solution̂x = A−1(p)b(p) of (1) satisfieŝx ∈ x̃ + [V].

With [D] := [C(p)] · [V] ∈ IIRn and the solution setΣp, defined by (2), the following inner
estimation holds true

[
x̃ + [Z]− + [D]+, x̃ + [Z]+ + [D]−

] ⊆ [inf(Σp), sup(Σp)] .

2 THEORETICAL BACKGROUND 8

In the implementation of Theorem 2, resp. Theorem 1 we chooseR ≈ A−1(pm) andx̃ ≈
A−1(pm) · b(pm), wherepm = mid([p]). To force [V] $ [Y], the concept ofε-inflation is
introduced. Epsilon inflation blows up the intervals somewhat in order to “catch” a nearby fixed-
point. For a real interval[w], we denoteε-inflation with the functional notation blow([w], ε),
where

blow([w], ε) =

{
[w] + diam([w])[−ε, ε], if diam([w]) > 0

[pred(w), succ(w)], if diam([w]) = 0,

where pred(w), succ(w) are the predecessor and successor of a floating-point numberw in
the floating-point screen. Theε-inflation is applied to interval vectors componentwise. It is a
numerical experience that the method of “trial and error” yields to[V] $ [Y] in the algorithm
after a few iterations only, providedε is chosen appropriately. Usually,ε = 0.1 or ε = 0.2 are
reasonable values. For interval linear systems one may vary the value ofε in order to get tighter
solution enclosures (see the examples in Section 4).

2.2 Inner Approximation of the Hull of the Solution Set

For linear systems with parameters varying within certain tolerances there is a whole set of so-
lutions (2) and we compute an outer enclosure, i.e. an interval vector which is verified to contain
the exact hull of the parametric solution set, by the first part of Theorem 2, resp. Theorem 1.
However, it is important to know how much this inclusion overestimates the exact hull of the
parametric solution set, in other words: what is the quality of the outer enclosure. The amount
of overestimation can be estimated by an inner inclusion which is a componentwise inner es-
timation of the exact hull [20].[x] ∈ I IRn is called componentwise inner approximation for
some setΣ ∈ IRn if

inf
σ∈Σ

σi ≤ x−i and x+
i ≤ sup

σ∈Σ
σi, for every1 ≤ i ≤ n.

It should be noted that[x] ⊆ [inf(Σ), sup(Σ)] but [x] 6⊆ Σ. The second part of Theorem 1,
resp. Theorem 2, establishes how to compute the componentwise inner estimation. In order to
have a guaranteed inner inclusion all the computations should be done in computer arithmetic
with directed roundings.

Let IF ⊂ IR denote the set of floating-point numbers on a computer (floating-point screen).
Denote by5,4 : IR −→ IF the floating-point directed roundings toward−∞, resp.+∞,
defined by the IEEE floating-point standard [1], [11]. For intervals[a] = [a−, a+] ∈ I IR,
outward(3) and inward(©) roundings3,© : IIR −→ IIF are defined as

3([a]) := [5(a−), 4(a+)] ⊇ [a], ©[a] := [4(a−), 5(a+)] ⊆ [a]. (13)

If ◦ ∈ {+,−,×, /} is an arithmetic operation and[a], [b] ∈ IIF , the corresponding computer
operations♦◦ ,©◦ : IIF × IIF −→ IIF are defined by

[a] ♦◦ [b] := 3([a] ◦ [b]) = [5(([a] ◦ [b])−), 4(([a] ◦ [b])+)] ⊇ [a] ◦ [b], (14)

[a] ©◦ [b] := ©([a] ◦ [b]) = [4 (([a] ◦ [b])−), 5(([a] ◦ [b])+)] ⊆ [a] ◦ [b]. (15)

The next theorem follows from a Theorem by S. Rump [20] and specifies the computation of
guaranteed outer and inner estimations for the hull of a parametric solution set on the computer.

2 THEORETICAL BACKGROUND 9

Theorem 3 Let a parametric linear system (1) be given withp ∈ [p] ∈ IIF k. LetR ∈ IF n×n,
[Y] ∈ I IF n, x̃ ∈ IF n. [Z] ∈ I IRn, [C(p)] ∈ I IRn×n are defined by (11), resp. (12). Let
©([Z]), 3([Z]) ∈ IIF n be the corresponding inward and outward inclusions of[Z],©([Z]) ⊆
[Z] ⊆ 3([Z]), and3([C(p)]) ∈ IIF n×n be an outward inclusion of[C(p)]. Define[V] ∈ IIF n

by1

1 ≤ i ≤ n : Vi := {3([Z]) 3+ 3([C(p)]) 3· [U]}i, [U] := (V1, ..., Vi−1, Yi, ..., Yn)>.

If [V] $ [Y], thenR and every matrixA(p), p ∈ [p] are regular, and the solution set (2)
satisfies[inf(Σp), sup(Σp)] ⊆ x̃ 3+ [V].

With [D] := 3([C(p)]) 3· [V] ∈ IIF n the following inner estimation holds true

[
x̃ 4+ (©[Z])− 4+ ([D])+, x̃ 5+ (©[Z])+ 5+ ([D])−

] ⊆ [inf(Σp), sup(Σp)] . (16)

Obtaining inner approximations on a computer in conventional interval arithmetic is possi-
ble only if the four interval arithmetic operations are implemented with inward rounding©◦ in
addition to the four♦◦ operations. The overloading concepts of some programming environ-
ments do not allow the operators to be distinguished by their result type, which imposes the
implementation of inwardly rounded interval operations as functions or subroutines. Most of
the wide-spread interval packages do not support inwardly rounded interval arithmetic.

Unfortunately, C-XSC also does not provide the necessary tools to compute©([Z]). If we
denote

[z(ν)] := © (
R(b(ν) − A(ν)x̃)

)
, ν = 0, 1, . . . , k,

then
©([Z]) = [z(0)] ©+ [p1] ©× [z(1)] ©+ . . . ©+ [pk] ©× [z(k)].

This expression is of type interval scalar product expression and can be computed without over-
estimation by using an interval dotproduct accumulator applying only one final rounding. How-
ever, C-XSC does not support neither inward rounding of the interval dotproduct accumulators
nor interval operations with inward rounding. Below we give an alternative computational tech-
nique based on the properties of an algebraic extension of the conventional interval arithmetic.
Componentwise inner estimation of3(Σp) in terms of the arithmetic of proper and improper
intervals was first discussed in [14]. Here, we present a detailed implementation scheme based
on the properties of the arithmetic on proper and improper intervals.

The set of proper intervalsIIR is extended in [10] by the set{[a−, a+] | a−, a+ ∈ IR, a− ≥
a+} of improper intervals obtaining thus the setI IR∗ = {[a−, a+] | a−, a+ ∈ IR} of all
ordered couples of real numbers called here generalised intervals. Normal (proper) intervals are
a special case of generalised intervals and the conventional interval arithmetic can be considered
as a projection of generalised interval arithmetic onI IR. The conventional (arithmetic and
lattice) operations, order relations and other functions are isomorphically extended onto the
whole set of proper and improper intervals [10]. The same is done for the inward and outward
roundings so that formulae (13)–(15) are valid for generalised intervals, too. Here we present
only those basic facts from generalised interval arithmetic which are necessary to use it as an
intermediate computational tool for handling proper interval problems. For more details on

1 3· denotes a dot product computed with outward rounding.

2 THEORETICAL BACKGROUND 10

the theory, implementation and applications of generalised interval arithmetic consult [3], [10],
[18], [22].

“Dual” is an important monadic operator that reverses the end-points of the intervals and
expresses an element-to-element symmetry between proper and improper intervals inI IR∗.
For [a] = [a−, a+] ∈ I IR∗, its dual is defined byDual([a]) = [a+, a−]. Dual is applied
componentwise to vectors and matrices. For[a], [b] ∈ IIR∗ and◦ ∈ {+,−,×, /},

Dual(Dual([a])) = [a], (17)

Dual([a] ◦ [b]) = Dual([a]) ◦Dual([b]). (18)

The following properties of the rounded generalised interval arithmetic are of major importance
for obtaining inner numerical approximations at no additional cost and show that the latter can
be obtained only by means of outward directed rounding and theDual operator inIIF ∗ [3].

For [a] ∈ IIR∗, ©([a]) = Dual(3(Dual([a]))). (19)

For [a], [b] ∈ IIF ∗, ◦ ∈ {+,−,×, /}, [a] ©◦ [b] = Dual(Dual([a]) ♦◦ Dual([b])). (20)

We will apply the above properties to obtain inner estimations of proper interval problems in a
computing environment not supporting generalised interval arithmetic.

For a point interval[a] = [a, a] ∈ IIR

[4(a), 5(a)] = ©([a]) ⊆ [a] ⊆ 3([a]) = [5(a), 4(a)].

If a 6∈ IF ,©([a]) ∈ IIF ∗ is an improper interval since4(a) > 5(a). The following inclusion
relation holds true inIIR∗

©([a]) ⊆ [a] ⊆ 3([a]).

It can be easily verified that

for [a] = [a, a], ©([a]) = Dual (3([a])) . (21)

Now, we consider the computation of©([Z]). With the notations of Theorem 2, let

z(ν) := R(b(ν) − A(ν)x̃), ν = 0, 1, . . . , k.

Then[Z] = z(0) +
∑k

ν=1[pν]z
(ν). Using the well-known inclusion properties of interval arith-

metic we obtain

[Z] = z(0) +
k∑

ν=1

[pν]z
(ν) ⊆ 3

(
3(z(0)) +

k∑
ν=1

[pν]×3(z(ν))

)
,

and

©
(
©(z(0)) +

k∑
ν=1

[pν]×©(z(ν))

)
⊆ [Z].

Applying properties (19) and (18) to the last inclusion inIIR∗n, we get

Dual(3

(
Dual(©(z(0))) +

k∑
ν=1

Dual([pν])×Dual(©(z(ν)))

)
) ⊆ [Z]. (22)

2 THEORETICAL BACKGROUND 11

For fixedν = 0, 1, . . . , k, let d(ν) ∈ IF n be a floating-point approximation ofb(ν) − A(ν)x̃

d(ν) ≈ b(ν) − A(ν)x̃.

The errore(ν) of this approximation ise(ν) = b(ν) − A(ν)x̃− d(ν).
Hence,©(e(ν)) := © (

b(ν) − A(ν)x̃− d(ν)
)

is an inner approximation of the error, while
3(e(ν)) := 3

(
b(ν) − A(ν)x̃− d(ν)

)
is an outer one

©(e(ν)) ⊆ b(ν) − A(ν)x̃− d(ν) ⊆ 3(e(ν)).

Multiplying both sides above byR and applying the inclusion properties of interval operations,
we get

©(z(ν)) := © (
R · ©(e(ν)) + R · d(ν)

) ⊆ z(ν) ⊆ 3
(
R ·3(e(ν)) + R · d(ν)

)
=: 3(z(ν)).

(23)
If computed by a real dotproduct accumulator,©(e(ν)) = Dual

(
3(e(ν))

)
due to (21), and thus

left-hand side inclusion in (23) is equivalent to

© (
R ·Dual(3(e(ν))) + R · d(ν)

) ⊆ z(ν).

Applying (19) and (18) we get

Dual
(
3

(
R ·3(e(ν)) + R · d(ν)

)) ⊆ z(ν),

that is
©(z(ν)) = Dual

(
3

(
R ·3(e(ν)) + R · d(ν)

))
= Dual(3(z(ν))).

Substituting the last expression into (22) and applying (17), we obtain for©([Z])

©([Z]) = Dual(3

(
3(z(0)) +

k∑
ν=1

Dual([pν])×3(z(ν))

)
).

This way we represented the inward approximation of[Z] only by outwardly rounded interval
operations between proper and improper intervals. The only thing that remains to be considered
is the productDual([pν])×3(z(ν)) for ν = 0, 1, . . . , k, where3(z(ν)) is a proper interval vector
andDual([pν]) is an improper interval. Although interval data types in C-XSC allow storing of
improper intervals, the conventional multiplication operation cannot be applied to the product
Dual([pν]) × 3(z(ν)) [13]. Table 1 defines the product of a proper and an improper interval.
The latter is a special case of the multiplication of generalised intervals considered in [10].

In environments not supporting generalised interval arithmetic the left and the right end-
points of (16) can be computed in two real dotproduct accumulators with the corresponding
roundings.

Above we have proven the following

Theorem 4 Let A(p)x = b(p) be a parametric linear system withA(p) ∈ IRn×n, b(p) ∈ IRn

given by (5) and a parameter vectorp ∈ IRk varying within given intervalsp ∈ [p] ∈ IIF k. Let
R ∈ IF n×n, [Y] ∈ IIF n andx̃ ∈ IF n. For ν = 0, 1, . . . , k, defined(ν) :≈ b(ν)−A(ν)x̃, 3(e(ν)) :=

2 THEORETICAL BACKGROUND 12

Dual([a])× [b] b− ≥ 0 b+ ≤ 0 b− < 0 < b+

a− ≥ 0 [a+b−, a−b+] [a−b−, a+b+] [a−b−, a−b+]

a+ ≤ 0 [a+b+, a−b−] [a−b+, a+b−] [a+b+, a+b−]

a− < 0 < a+ [a+b−, a−b−] [a−b+, a+b+] [0, 0]

Table 1: MultiplicationDual([a−, a+])× [b−, b+] for [a], [b] ∈ IIR.

3
(
b(ν) − A(ν)x̃− d(ν)

)
and 3(z(ν)) := 3

(
R ·3(e(ν)) + R · d(ν)

)
. Define3([Z]) ∈ I IF n,

[C(p)] ∈ IIF n×n by

3([Z]) := 3

(
3(z(0)) +

k∑
ν=1

[pν]×3(z(ν))

)
,

[C(p)] := 3

(
I −R · A(0) −

k∑
ν=1

[pν]× (R · A(ν))

)
.

Define[V] ∈ IIF n by

1 ≤ i ≤ n : Vi := {3([Z]) 3+ [C(p)] 3· [U]}i, [U] := (V1, ..., Vi−1, Yi, ..., Yn)>.

If [V] $ [Y], thenR and every matrixA(p), p ∈ [p] are regular, and the solution set (2)
satisfies[inf(Σp), sup(Σp)] ⊆ x̃ 3+ [V].

With©([Z]) := Dual(3
(
3(z(0)) +

∑k
ν=1 Dual([pν])×3(z(ν))

)
) and[D] := [C(p)]3· [V]

the following inner estimation holds true

Dual(x̃ 3+ 3

(
3(z(0)) +

k∑
ν=1

Dual([pν])×3(z(ν))

)
3+ [D]) ⊆ [inf(Σp), sup(Σp)] , (24)

where the intervals and the operations are considered as generalised.

The second part of the above theorem specifies how to compute a verified inner estimation
for the hull of the parametric solution set by intermediate computations with proper and im-
proper intervals. The results of the application of this theorem, that is the inner estimation (24)
should be interpreted in terms of conventional interval arithmetic (proper intervals). Compo-
nents of the inner estimations (24) may be improper intervals which are considered as empty in
conventional interval arithmetic. In this case no inner estimation for these components of the
hull of the solution set can be given [14].

3 ALGORITHMS AND IMPLEMENTATION 13

3 Algorithms and Implementation

Based on the above theoretical considerations, in this section we present an algorithm for solv-
ing parametric linear systems that is intended to work with entirely numeric representation of
the data for the parametric system. Let us consider the parametric linear system (1) in a repre-
sentation (6) factorized by the parameters

(
A(0) +

k∑
ν=1

pνA
(ν)

)
x =

(
b(0) +

k∑
ν=1

pνb
(ν)

)
,

wherepν ∈ [pν] ∈ IIR, ν = 1, . . . , k. We shall assume that:

1. The interval vector[ip] ∈ I IF k+1 contains the interval values for thek parameters in-
volved in the system (1), resp. (6) and that the first component of this vector is the point
interval [1, 1], that is

[ip] = ([1], [p1], . . . , [pk])
> .

2. The parametric matrix of the system (1) is represented by a two-dimensional numerical
matrixAp ∈ IF (nk+n)×n having the following block structure




A(0)

A(1)

...
A(k)


 , (25)

whereA(ν) ∈ IF n×n, ν = 0, 1, . . . , k, are the numerical matrices (5) from the factorized
representation (6). Each numerical matrixA(ν), ν = 0, 1, . . . , k, corresponds to a com-
ponent of the interval vector[ip] and involves the numerical coefficients in front of the
corresponding parameter inA(p).

3. The parametric right-hand side vectorb(p) is represented by a numerical matrixbp ∈
IF n×(k+1) having the following block structure:

bp =
(
b(0), b(1), . . . , b(k)

)
,

where each vector-columnb(ν) ∈ IRn×1, ν = 0, 1, . . . , k, corresponds to a component of
the interval vector[ip].

The algorithm for solving square parametric linear systems, presented below, is an extension
of the well-known fixed-point iteration algorithm for non-parametric linear systems, which is
presented in more details in [19] and [5]. In what follows we shall use the notations from [5]
and some of the algorithms presented therein.

The procedure for solving a parametric interval linear system (1), resp. (6) has two principal
steps: First step, compute an approximate solutionx̃ to the mid-point systemA(p̌) · x = b(p̌),
wherep̌ = mid([ip]). Second, try to find an interval enclosure for the error of this approxima-
tion. The first step involves initialization of the mid-point vectors and the matrix; computation

3 ALGORITHMS AND IMPLEMENTATION 14

of an approximate mid-point solution; and real residual iteration for the approximate solution.
An algorithm for computing the approximate inverse of a point matrix and its implementation
as a C-XSC functionMatInv() is precisely presented in [5], Chapter 10. The CToolbox func-
tionsCheckForZeros() andAccurate() are used as they are defined in [5], Chapter 10,
in order to facilitate obtaining a good approximation of the mid-point solution.

Second step, try to find an interval enclosure for the error of the mid-point approximation.
An enclosure of the parametric solution set is provided by accounting for the data dependencies.
To this end and to prepare the verification step, a (rough or sharp) enclosure of the iteration
matrix [C] and a sharp enclosure of[Z] are to be computed by using the exact scalar product
tools of C-XSC. The following notations are used in the algorithms:

2(expr) – for real scalar product expressions rounded to the nearest;
3(expr) – for real scalar product expressions, or for interval scalar product

expressions with outward rounding to the enclosing interval;
5(expr) – for real scalar product expressions rounded toward−∞;
4(expr) – for real scalar product expressions rounded toward+∞.

The following algorithm extends the classicalVerificationStep() for nonparametric
linear systems by an Einzelschrittferfahren which accelerates the iterations.

Algorithm: VerificationStep ([x], [z], [C], Epsilon, IsVerified)

1. {Initialization}
pmax := 10; p = 0; [x] := [z];

2. {Verification}
repeat

[x] := [x] ./ Epsilon; {ε-Inflation}
[y] := [x];
for i = 1 to n do {Einzelschrittferfahren}

[xi] := 3 ([zi] + [Ci] · [x]);
IsV erified := ([x] $ [y]);
p := p + 1;

until IsV erified or (p ≥ pmax);

3. {Return enclosure[x] and flagIsV erified}
return [x], IsV erified;

In order to get solution set enclosures with better quality for large interval tolerances, the
user is given the opportunity to specify the epsilon-inflation constant. Instead of the relation
$ between[x] and [y], the current implementation uses the built-in function “inclusion in the
interior”.

The local functionDual() reverses the end-points of intervals. If the verification step
is successful, an inner estimation of the outer enclosure could be computed. Except for the
multiplication between proper and improper interval vectors, which is simulated, the inner esti-
mation is obtained efficiently and at no additional cost since it uses the intermediate quantities
necessary for computing the outer enclosure.

3 ALGORITHMS AND IMPLEMENTATION 15

Below we give the complete algorithm for computing a verified enclosure of the solution set
of a parametric linear system of equations as well as an inner estimation of this enclosure.

Algorithm: ParLinSolve (Ap, bp, [ip], SharpC, Epsilon, Inner, [x], [y], Err)

1. {Initialization}
Compute the parametric mid-point vectorp̌, the corresponding
mid-point right-hand side and the mid-point matrix

p̌ := mid([ip]); b̌ := bp · p̌; Ǎ :=
k+1∑
ν=1

(
p̌ν ∗ Ap(ν)

)
.

2. {Computation of an approximate mid-point solution}
MatInv(Ǎ, R,Err);
if (Err 6= “No error”) then

return Err := “Matrix is probably singular!”

3. {Real residual iteration for an approximate solution}
kmax := 10; k := 0; x̃(0) := R · b̌;
repeat

d := 2(b̌− Ǎ · x̃(k));
x̃(k+1) := 2(x̃(k) + R · d);
CheckForZeros(x̃(k), x̃(k+1));
Success := Accurate(x̃(k), x̃(k+1));
k := k + 1;

until Success or (k ≥ kmax);
x̃ := x̃(k);

4. {Computation of an enclosure[C] for the set{I −R · A(p) | p ∈ [ip]}}
if (SharpC) then {sharp enclosure}

for i = 1 to n do
for j = 1 to n do

[T1] := 3
(
Iij −Ri · (Ap(0))>j

)
;

[Tν] := 3
(−Ri · (Ap(ν))>j

)
; (ν = 2, . . . , k + 1)

[Cij] := 3 ([T] · [ip]);

else {rough enclosure}
[AA] := 3

(
k+1∑
ν=1

[ipν] ∗ Ap(ν)

)
;

[C] := 3 (I −R · [AA]);

5. {Computation of an enclosure[z] for the set{R · (b(p)− A(p) · x̃) | p ∈ [ip]}}
for ν = 1 to k + 1 do

d := 2
(
b(ν) − A(ν) · x̃)

;
[e] := 3

(
b(ν) − A(ν) · x̃− d

)
;

[T>
k] := 3 (R · d + R · [e]));

[z] := 3 ([T] · [ip]);

3 ALGORITHMS AND IMPLEMENTATION 16

6. {Verification step and Inner estimation}
VerificationStep([x], [z], [C], Epsilon, IsV erified);
if (not IsV erified) then

Err := “Verification failed, the system is probably ill-conditioned”;
return Err;

else
if (Inner) then

for i = 1 to n do
Adjust element by element the end-points of[ip] and thei-th row of [T], [Ti],
according to Table 1, so that the product of the left (right) vector end-points
gives the result left (right) end-point;
inf([zi]) = 5 (inf([ip]) · inf([Ti]));
sup([zi]) = 4 (sup([ip]) · sup([Ti]));
[yi] = 3 (x̃i + [zi] + [Ci] · [x]);

[y] :=Dual([y]);
[x] := x̃ + [x]; { Mid-point approximation plus enclosing interval}

7. {Return outer enclosure[x], inner estimation[y] and error codeErr}
return [x], [y], Err;

Implementation:
The distribution of the C-XSC moduleparlinsys, which is intended to extend the C++ Nu-

merical Toolbox [5] with tools for solving parametric interval linear systems, involves the fol-
lowing files:

• a header fileparlinsys.hpp,

• the source code of the moduleparlinsys.cpp,

• a sampleMakefile,

• the source code of a sample programparlinsys−ex.cppfor console data,

• the source code of a sample programparlinsys−exf.cppfor file data,

• a fileREADME.txt.

The header file of the moduleparlinsysprovides interfaces of the functionsParLinSolve()
andParLinSolveErrMsg() . The functionParLinSolveErrMsg() can be used to get
an explicit error message for the integer error code returned by the functionParLinSolve() .
The functionParLinSolve() is an implementation of the above AlgorithmParLinSolve (Ap,
bp, [ip], SharpC, Epsilon, Inner, [x], [y], Err).

The current distribution of the moduleparlinsyscan be obtained from

http://www.math.uni-wuppertal.de/wrswt/xsc/cxsc −software.html

4 EXAMPLES 17

Since our implementation is intended also for education and experimentation purposes, the
function involves arguments for: switching on/off the sharp enclosure of the iteration matrix,
specifying a value for the constant of epsilon inflation, and switching on/off the computation of
an inner approximation for the outer enclosure.

4 Examples

Here, we demonstrate how to use the modules defined in the previous section. A sample pro-
gram contained in the distribution fileparlinsys −ex.cpp reads input data from the con-
sole. It is suitable for interactive solution of small parametric problems. Another sample pro-
gram from the distribution fileparlinsys −exf.cpp is presented below. It reads input data
from a file which should have the following structure:

‘n’ – integer> 0 specifying the dimension of the system;
‘k’ – integer> 0 specifying the number of the parameters;
‘SharpC ’ – 0 or 1; 1 for computing sharp enclosure of the contracting matrixC;

0 – otherwise;
‘Eps’ – constant for the epsilon inflation;
‘Inner’ – 0 or 1; 1 for computing inner estimation;
Ap – matrix of the system in factorized representation (25);
bp – right-hand side of the system in a factorized matrix representation

bp = (b(0), b(1), . . . , b(k));
p – vector of the interval values for thek parameters.

The dynamic arrays needed to store the numerical input data, and of the solution set, are allo-
cated dynamically depending onn, k andInner.

A local functionSharpness([x], [y]) is involved to compute a measure for the qual-
ity of a solution enclosure[x] ⊇ 3(Σp) based on an inner estimation[y] ⊆ 3(Σp).

Sharpness([x], [y]) :=





1 if diam([x]) = 0,

−100 if [y] 6⊆ [x],

0 if [y] = ∅,
diam([y])/diam([x]) otherwise.

After reading all input data, the program tries to enclose the solution by callingParLin
Solve() . If the algorithm succeeds, the enclosure of the solution goes to the output, and if an
inner estimation has been required the program sends the latter to the output, and also computes
the sharpness of the enclosure by calling the functionSharpness() . If the algorithm is
not successful, the program sends a corresponding error message to the output by calling the
functionParLinSolveErrMsg() .

#include <iostream>
#include <parlinsys.hpp> // Parametric Linear System Solver
#include <ivector.hpp> // Interval vector arithmetic

using namespace std;

4 EXAMPLES 18

using namespace cxsc;

static real Sharpness(interval& xx, interval& yy)
{ real sh;

if (diam(xx) == 0.0) sh = 1.0;
else if (Inf(yy) > Sup(yy)) sh = 0.0;

else
if (!(Inf(xx) <= Inf(yy) && Sup(yy) <= Sup(xx)))

sh = -100;
else sh = diam(yy)/diam(xx);

return sh;
}

int main()
{ int n, k, i, j, Err, SharpC, Inner;

real Eps;

cout << SetPrecision(10, 12) << Scientific << endl; //Output format
cin >> n;
cin >> k;
cin >> SharpC;
cin >> Eps;
cin >> Inner;

rmatrix Ap(n*(k+1), n), bp(n, k+1), A(n, n);
ivector p(k+1), xx, yy;

for(i = 1, j = 0; i <= k+1; ++i,j = n*(i-1))
{ cin >> A;

Ap(j+1, i*n, 1, n) = A;
}
cin >> bp;
p[1] = interval(1);
for(i = 2; i <= k+1; i++) cin >> p[i];

cout << "n = " << n << " ";
if (SharpC) cout << "Sharp eps = " << Eps << endl;

else cout << "Rough eps = " << Eps << endl;

ParLinSolve(Ap, bp, p, SharpC, Eps, Inner, xx, yy, Err);

if(!Err)
{ cout << "Verified solution enclosure found in:"

<< endl << xx << endl;
if (Inner)
{ rvector sharpness(n);

cout << "Verified Inner Estimation:" << endl;

4 EXAMPLES 19

for (i=1; i<=n; i++)
if (Inf(yy[i]) > Sup(yy[i]))
{ cout << "In[" << i << "] = Empty" << endl;

sharpness[i] = Sharpness(xx[i], yy[i]);
}
else

{ cout << yy[i] << endl;
sharpness[i] = Sharpness(xx[i], yy[i]);

};
cout << endl << "Componentwise sharpness of the outer enclosure:"
<< endl << SetPrecision(5, 2) << sharpness << endl;

} // end Inner
}
else

cout << ParLinSolveErrMsg(Err) << endl;

cout << endl;
return 0;

}

Example 4.1 As a first sample parametric problem we use the system
(

1 p1

p1 p2

)
x =

(
2 + p2

2 + p2

)
, p1 ∈ [0.4, 0.6], p2 ∈ [−2.2,−1.8]. (26)

A corresponding data file containing numerical input for the programparlinsys −exf.cpp
is

2
2
0
0.1
1
1 0 0 0
0 1 1 0
0 0 0 1
2 0 1
2 0 1
[0.4, 0.6]
[-2.2, -1.8]

Our sample program leads to the following output:

n = 2 Rough eps = 0.1 MaxIter = 2

Verified solution enclosure found in:
[-2.382280164610E-001,2.382280164610E-001]
[-6.314253461363E-002,6.314253461363E-002]

4 EXAMPLES 20

Verified Inner Estimation:
[-2.085092616858E-001,2.085092616858E-001]
[-2.684069542245E-002,2.684069542245E-002]

Componentwise sharpness of the solution enclosure:
8.75E-001
4.25E-001

For this problem, sharp and rough estimations of the iteration matrix give same results [15].

-0.2 -0.1 0.1 0.2
x1

-0.15

-0.1

-0.05

0.05

0.1

0.15

x2

-0.2 -0.1 0.1 0.2
x1

-0.15

-0.1

-0.05

0.05

0.1

0.15

x2

Figure 1: The parametric and the corresponding non-parametric solution sets for the problem
(26).

-0.2 -0.1 0.1 0.2
x1

-0.15

-0.1

-0.05

0.05

0.1

0.15

x2

Figure 2: The parametric solution set for problem (26), its hull and the corresponding inner and
outer estimations.

We can vary the epsilon constant to get a slightly better inner and outer enclosures. The two
limit values for epsilon are6 ∗ 10−10 and0.2:

4 EXAMPLES 21

n = 2 Rough eps = 6.00E-010 MaxIter = 10

Verified solution enclosure found in:
[-2.356979405085E-001,2.356979405085E-001]
[-6.178489702601E-002,6.178489702601E-002]

Verified Inner Estimation:
[-2.087465039408E-001,2.087465039408E-001]
[-2.710399186341E-002,2.710399186341E-002]

Componentwise sharpness of the solution enclosure:
8.86E-001
4.39E-001

n = 2 Rough eps = 2.00E-001 MaxIter = 1

Verified solution enclosure found in:
[-2.374320987655E-001,2.374320987655E-001]
[-6.191056241427E-002,6.191056241427E-002]

Verified Inner Estimation:
[-2.086912117056E-001,2.086912117056E-001]
[-2.701295534218E-002,2.701295534218E-002]

Componentwise sharpness of the solution enclosure:
8.79E-001
4.36E-001

Large intervals for the parameters usually result in empty inner estimations.

Example 4.2 Consider a very ill-conditioned point linear system
(

64919121 −159018721
41869520.5 −102558961

)
x =

(
1
0

)
.

The functionParLinSolve() can solve point linear systems, too, but the input data should
involve at least one dummy parameter, e.g. as in the following data file:

2
1
0
0.05
1
64919121 -159018721 41869520.5 -102558961
0 0 0 0
1 0

4 EXAMPLES 22

0 0
[1, 1]

The output of our sample program is

n = 2 Rough eps = 5.0000E-002 MaxIter = 1

Verified solution enclosure found in:
[2.0511792200000000E+008,2.0511792200000000E+008]
[8.3739041000000000E+007,8.3739041000000000E+007]

Verified Inner Estimation:
[2.0511792200000000E+008,2.0511792200000000E+008]
[8.3739041000000000E+007,8.3739041000000000E+007]

Componentwise sharpness of the outer enclosure:
1.00E+000
1.00E+000

Although the system is very ill-conditioned, the program has found the exact solution. This is
because the exact scalar product is used in the intermediate computations which results in an
exact mid-point solution. Since the vector[Z] is zero, and the iteration matrix[C] = 0 for this
case, the verification step succeeds. The parametric solver fails on this example in environments
that do not support exact scalar product [16].

Example 4.3 Consider the parametricn× n linear systemsQ(2, p)x = b(p), where fori, j =
1, . . . , n, [15]

qij(2, p) :=





pj if i 5 j,

0 if i = j + 2,

1 otherwise,

b(p) = (p1, . . . , pn)>, pi ∈ [(i + 1)± 10%].

Below we present some results in casen = 4.

4
4
1
0.1
1
0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0
0 0 1 0 0

4 EXAMPLES 23

0 0 0 1 0
0 0 0 0 1
1.8 2.2
2.7 3.3
3.6 4.4
4.5 5.5

For any epsilon andSharpC set to0, the program fails to find a solution because%(|[C]|) >
1. However, if we require a sharp enclosure of the iteration matrix[C(p)] (see (12)), then we
get the following results:

n = 4 Sharp eps = 1.0E-001 MaxIter = 2

Verified solution enclosure found in:
[-1.908320000001E+000,-9.167999999999E-002]
[-9.551360000001E-001,9.551360000001E-001]
[-1.840792533334E+000,5.074592000001E-001]
[9.119170488888E-001,1.754749617778E+000]

Verified Inner Estimation:
[-1.518336000000E+000,-4.816640000000E-001]
[-4.658976000000E-001,4.658976000000E-001]
[-1.227083306667E+000,-1.062500266666E-001]
[1.193057767111E+000,1.473608899556E+000]

Componentwise sharpness of the outer enclosure:
5.71E-001
4.88E-001
4.77E-001
3.33E-001

For epsilon= 1.0 ∗ 10−7 we get a better solution enclosure in ten iterations:

n = 4 Sharp eps = 1.0E-007 MaxIter = 10

Verified solution enclosure found in:
[-1.875000025830E+000,-1.249999741700E-001]
[-9.264706180111E-001,9.264706180111E-001]
[-1.808257953782E+000,4.749246204479E-001]
[9.222389700692E-001,1.744427696598E+000]

Verified Inner Estimation:
[-1.524999994835E+000,-4.750000051659E-001]
[-4.735294047154E-001,4.735294047154E-001]
[-1.236186517124E+000,-9.714681620992E-002]
[1.188872133934E+000,1.477794532732E+000]

4 EXAMPLES 24

Componentwise sharpness of the outer enclosure:
6.00E-001
5.11E-001
4.99E-001
3.51E-001

Example 4.4 Consider a parametric linear systemA(p)x = b(p) of dimensionn = 50 with
Milness matrix [4], where fori, j = 1, . . . , n

aij(p) =

{
pj if i > j,

1 otherwise,
b(p) = (p1, . . . , pn)>, pi ∈ [1/(i + 1)± 5%].

For epsilon= 0.2 and using the rough enclosure of the iteration matrix[C] we get the
following results

n = 50 Rough eps = 2.00E-001 MaxIter = 2

Verified solution enclosure found in:
[2.258433333333E-001,4.408233333334E-001]
[6.808432812499E-002,1.819156718751E-001]
[2.489202677469E-002,1.084413065587E-001]
[7.235818895880E-003,7.609751443746E-002]
[-1.509469390293E-003,5.865232653315E-002]
[-6.370772402539E-003,4.803743906921E-002]
[-9.290461104292E-003,4.103649285033E-002]
[-1.114390216537E-002,3.614390216537E-002]
[-1.237017267304E-002,3.257219287506E-002]
..............
[-1.537057586849E-002,1.617089599654E-002]
[-2.900281024112E-001,-1.703640544515E-001]

Verified Inner Estimation:
[2.387078333333E-001,4.279588333334E-001]
[8.760964179687E-002,1.623903582032E-001]
[4.594738497042E-002,8.738594836292E-002]
[2.905462108855E-002,5.427871224479E-002]
[2.082070111216E-002,3.632215603070E-002]
[1.635178013702E-002,2.531488652964E-002]
[1.375548469914E-002,1.799054704689E-002]
[1.217999247961E-002,1.282000752039E-002]
In[9] = Empty
...............
In[49] = Empty
[-2.692842805157E-001,-1.911078763471E-001]

REFERENCES 25

Componentwise sharpness of the outer enclosure:
8.80E-001
6.57E-001
4.96E-001
3.66E-001
2.58E-001
1.65E-001
8.42E-002
1.35E-002
0.00E+000
................
0.00E+000
6.53E-001

With a sharp enclosure of the iteration matrix and the same value for the epsilon constant, we get
the solution enclosure in one iteration, better nonempty inner estimation and correspondingly
much better quality of the solution sharpness.

Componentwise sharpness of the outer enclosure:
0.885, 0.941, 0.961, 0.970, 0.976, 0.98, 0.983, 0.985, 0.987,
0.988, 0.989, 0.99, 0.991, 0.991, 0.992, 0.993, 0.993, 0.993,
0.994, 0.994, 0.994, 0.995,, 0.997, 0.998, 0.998, 0.711

References

[1] American National Standards Institute/Institute of Electrical and Electronics Engineers:
“IEEE Standard for Binary Floating-Point Arithmetic”; ANSI/IEEE Std 754–1985, New
York (1985).

[2] O. Dessombz et al., Analysis of mechanical systems using interval computations applied
to finite element methods, Journal of Sound and Vibration 239 (2001) 5, 949-968.

[3] Gardẽnes, E., Trepat, A.: Fundamentals of SIGLA, an Interval Computing System over
the Completed Set of Intervals,Computing24 (1980), pp. 161–179.

[4] Gregory, R. T., Karney, D. L., A Collection of Matrices for Testing Computational Algo-
rithms. Wiley-Interscience, N.Y., 1969.

[5] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D., C++ Toolbox for Verified Computing:
Basic Numerical Problems. Springer-Verlag, Berlin / Heidelberg / New York, 1995.

[6] Herzberger, J. (Ed), Topics in Validated Computations. Proceedings of IMACS-GAMM
International Workshop on Validated Numerics, Oldenburg, 1993. North Holland, 1994.

[7] Hölbig, C.; Kr̈amer, W., Selfverifying Solvers for Dense Systems of Linear Equations
Realized in C-XSC. Preprint 2003/1, Universität Wuppertal, 2003.

REFERENCES 26

[8] Hofschuster, W.; Kr̈amer, W.; Wedner, S.; Wiethoff, A., C-XSC 2.0 – A C++ Class Li-
brary for Extended Scientific Computing. Preprint 2001/1, Wissenschaftliches Rechnen /
Softwaretechnologie, Universität Wuppertal, 2001.
(http://www.math.uni-wuppertal.de/wrswt/preprints/prep−01−1.pdf)

[9] Hofschuster, W.; Kr̈amer, W., C-XSC 2.0 – A C++ Class Library for Extended Scien-
tific Computing. In: Numerical Software with Result Verification, R. Alt, A. Frommer,
B. Kearfott, W. Luther (eds), Springer Lecture Notes in Computer Science2991, 2004,
pp. 15–35.

[10] Kaucher, E.: Interval Analysis in the Extended Interval SpaceIR, Computing Suppl. 2
(1980), pp. 33–49.

[11] Klatte, R.; Kulisch, U.; Lawo, C.; Rauch, M.; Wiethoff, A.: C-XSC, A C++ Class Library
for Extended Scientific Computing. Springer - Verlag, Berlin / Hiedelberg / New York,
1993.

[12] Krämer, W., Kulisch, U.,Lohner, R.:Numerical Toolbox for Verified Computing
II – Advanced Numerical Problems. Universiẗat Karlsruhe, 1994,http://www.uni-
karlsruhe.de/̃Rudolf.Lohner/papers/tb2.ps.gz

[13] E. D. Popova: Extended Interval Arithmetic in IEEE Floating-Point Environment. Interval
Computations, No. 4, 1994, pp. 100-129.

[14] E. D. Popova, On the solution of parametrised linear systems, in: Scientific Computing,
Validated Numerics, Interval Methods, eds. W. Kraemer and J. Wolff von Gudenberg,
Kluwer Acad. Pub., 2001, pp. 127-138.

[15] E. D. Popova, Improved Parametric Fixed-Point Iteration, Preprint Inst. of Mathematics &
Informatics, BAS, Sofia, 2003.

[16] E. D. Popova, Parametric Interval Linear Solver, to appear in Numerical Algorithms, spe-
cial issue Proceedings of SCAN 2002.

[17] E. D. Popova; M. Datcheva; R. Iankov; T. Schanz, Mechanical Models with Interval Pa-
rameters. In K. G̈urlebeck L. Hempel C. K̈onke (Eds.) IKM2003: Digital Proceedings of
16th International Conference on the Applications of Computer Science and Mathematics
in Architecture and Civil Engineering, ISSN 1611-4086, Weimar, 2003.
(http://euklid.bauing.uni-weimar.de/papers/36/M−36.pdf)

[18] Popova, E., Ullrich, C.:Directed Interval Arithmetic in Mathematica: Implementation
and Applications.TR 96-3, U. Basel, 1996, pp. 1–56.
(http://www.math.bas.bg/˜epopova/papers/tr96-3.ps)

[19] S. Rump, Solving algebraic problems with high accuracy, in: A New Approach in Scien-
tific Computation, eds. U. Kulisch and W. Miranker, Academic Press, 1983, pp. 51-120.

[20] S. Rump, Rigorous sensitivity analysis for systems of linear and nonlinear equations,
Mathematics of Computation 54 (1990) 190, 721-736.

REFERENCES 27

[21] S. Rump, Verification methods for dense and sparse systems of equations, in [6], 1994,
pp. 63-135.

[22] SIGLA/X: Modal Intervals, in Vehi, J., Sainz M. (eds.):Applications of Interval Analysis
to Systems & Control, Proc. MISC’99, Univ. de Girona, Spain (1999), pp. 139–207.

