
Bergische Universität
Wuppertal

Selfverifying Solvers for Dense Systems of Linear Equations

Realized in C-XSC

Carlos Hölbig and Walter Krämer
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Abstract

In this note selfverifying solvers for systems of linear equationsAx = b with dense
square and non squaren × m coefficient matricesA are described. In the over-determined
case(m > n) a vectorx ∈ IRn is sought whose residuumb − Ax has minimal Euclidian
norm whereas in the under-determined case(n < m) a solutionx ∈ IRn is sought which
has minimal norm. C-XSC implementations of all algorithms are given. The source code
of the routines is freely available. The presented description of the algorithms is taken from
[14], Chapter 2 (see also [17]). Only some minor modifications have been introduced in
view of the realization of the algorithms using the C++ class library C-XSC [7].
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1 Introduction

One of the most frequent tasks in numerical analysis is the solution of systems of linear equa-
tions

Ax = b (1)

with an n × n matrix A and a right hand sideb ∈ IRn. Many different numerical algorithms
contain this task as a subproblem.

As a generalization to this problem with a square matrixA, we often encounterover- or
under-determined systems, i.e. systems whereA is not a square, but rather anm × n matrix
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with m > n in the over- andm < n in the under-determined case. In the over-determined
case a vectorx ∈ IRn is sought whose residuumb − Ax has minimal Euclidian norm. In the
under-determined case, a solutionx ∈ IRn of (1) is sought which has minimal norm.

The inversion of the matrixA is also a problem of this type. Here, the right hand side of (1)
has to be replaced by then × n identity matrixI and the solutionX, which is a matrix now, is
the inverseA−1 of A. In the over- or under-determined case this matrixX is the Moore-Penrose
pseudo inverseA+ of A (if A has full rank).

There are numerous methods and algorithms computing approximations to the solutionx in
floating-point arithmetic. However, usually it is not clear how good these approximations are, or
if there exists a unique solution at all. In general, it is not possible to answer these questions with
mathematical rigour if only floating-point approximations are used. These problems become
especially difficult if the matrixA is ill conditioned.

We present some algorithms which answer the questions about existence and accuracy au-
tomatically once their execution is completed successfully. Even very ill conditioned problems
can be solved with these algorithms. Most of the algorithms presented here can be found in [24].
All algorithms work for all four basic numerical C-XSC data types:real, interval, complex, and
complex interval.

We assume the coefficient matrixA in (1) to be dense, i.e. in a C-XSC program, we use a
square matrix of typermatrix, imatrix, cmatrix, or cimatrix to storeA and we do not consider
any special structure of the elements ofA. In an additional paper we treat systems with banded
coefficient matrices [8].

Our goal is to write a C-XSC program thatverifies the existence of a solution andcomputes
an enclosure for this solution for each of the following types of problems:

(s) compute an enclosure for the solution of system (1) for asquare n × n matrixA.

(o) compute an enclosure for the solution of system (1) in theover-determined case, i.e. for
anm × n matrixA wherem > n.

(u) compute an enclosure for the solution of system (1) in theunder-determined case, i.e. for
anm × n matrixA wherem < n.

(S) compute an enclosure of theinverse A−1 of A.

(O) compute an enclosure of thepseudo inverse A+ of A in theover-determined case, i.e. for
anm × n matrixA wherem > n.

(U) compute an enclosure of thepseudo inverse A+ of A in the under-determined case, i.e.
for anm × n matrixA wherem < n.

We also want these six problems to be solved for all four basic numerical C-XSC data types:
real, interval, complex, andcomplex interval. In the following Section 2, we will briefly outline
the solution methods. The corresponding algorithmic description can be found in Section 3.
The C-XSC program code for real input data will be presented in Section 5. (C++ templates
and the C++ exception handling [9] are not used in the actual implementation.)
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2 Theoretical Background

In this section, we give a brief summary of the theory of the enclosure methods for our six
problems. A more detailed presentation can be found in [24].

Starting with problem (s), we first assume that we have an approximate solutionx̃ and an
approximate inverseR of the square matrixA. Rather than computing an enclosure for the
solution directly, we will try to enclose the error of the approximate solution, yielding a much
higher accuracy. The errory = x − x̃ of the true solutionx satisfies the equation

Ay = b − Ax̃, (2)

which can be multiplied byR and rewritten in the form

y = R(b − Ax̃) + (I − RA)y. (3)

Let f(y) := R(b − Ax̃) + (I − RA)y. Then Equation (3) has the form

y = f(y) (4)

of a fixed point equation for the errory. If R is a sufficiently good approximation ofA−1, then
an iteration based on (4) can be expected to converge since thenI − RA will have a small
spectral radius.

Therefore, we derive the following iteration from (4), where we use interval arithmetic and
intervals[y]k for y:

[y]k+1 = R✸(b − Ax̃) + ✸(I − RA)[y]k (5)

or
[y]k+1 = F ([y]k), (6)

whereF is the interval extension off .
Here✸ means that the succeeding operations have to be executed exactly and the result is

rounded to an enclosing interval (-vector or -matrix). Since in the computation of the defectb−
Ax̃ and of the iteration matrixI −RA, serious cancellations of leading digits must be expected.
Hence, these should be computed using the exact scalar product. Each component is computed
exactly and then rounded to a machine interval. For this purpose, the scalar product expressions
of XSC-languages are used extensively in the implementations. Withz := R✸(b − Ax̃) and
C := ✸(I − RA), Equation (5) can be written as:

[y]k+1 = z + C[y]k .

In order to prove the existence of a solution of (2) and thus of (1), we use Brouwer’s fixed
point theorem, which applies as soon as we have at some iteration indexk + 1 an inclusion of
the form

[y]k+1 = F ([y]k) ⊂ [y]◦k, (7)

where[y]◦k means the interior of[y]k. If this inclusion test (7) holds, then the iteration function
f maps[y]k into itself. From Brouwer’s fixed point theorem, it follows thatf has a fixed point
y∗ which is contained in[y]k and in[y]k+1. The requirement that[y]k is mapped into its interior



2 THEORETICAL BACKGROUND 6

ensures that this fixed point is also unique, i.e. (2) has an unique solutiony ∗, and thus (1) also
has a unique solutionx∗ = x̃ + y∗.

Remark: According to [24], if the inclusion test (7) is satisfied, the spectral radius ofC (and
even that of|C|, which is the matrix of absolute values ofC) is less then 1, ensuring the con-
vergence of the iteration (also in the interval case). Furthermore, this implies also the nonsin-
gularity ofR and ofA and thus the uniqueness of the fixed point.

A problem which still remains is that we do not know whether we can succeed in achieving
condition (7). For example, in the trivial case ofn = 1 with a11 = 0.1, b = 0, andx̃ = 1, the
iteration converges to the unique solutionx∗ = 0. However, the convergence is monotonically
decreasing, and (7) is never satisfied.

To force (7), we therefore introduce the concept ofε-inflation, which blows up the intervals
somewhat, in order to ”catch” a nearby fixed point. For a real interval[w], we denoteε-inflation
with the functional notationblow([w], ε), where

blow([w], ε) :=

{
(1 + ε)[w] − ε[w] , if diam([w]) > 0,
[pred(w), succ(w)] , if diam([w]) = 0,

(8)

respectively, wherediam([w]) is the diameter of the interval (diam([w]) = w − w) and in the
casediam([w]) = 0, [w] = w is assumed to be a floating point number, andpred(w) and
succ(w) are its predecessor and successor in the floating point screen. Similarly, we use the
ε-inflationblow(·) also for interval vectors and matrices, where it is applied componentwise.

It can be shown, e.g. [26] that (7) will always be satisfied after a finite number of iteration
steps, whenever the absolute value|C| of iteration matrixC has spectral radius less than 1.

We have not yet said how we compute our approximate solutionx̃ and the approximate
inverseR. In principle, there is no special requirement about these quantities, we could even
just guess them. However, the results of the enclosure algorithm will of course depend on the
quality of the approximations.

We now sketch the method we use in our C-XSC program for the computation ofR andx̃.
To begin with, we do not use a special algorithm for the computation of the approximate

solution, since we must compute an approximate inverseR ≈ A−1 anyway. Thus, we also have
immediately an approximate solutioñx := Rb. However, the quality of this approximation is
often not sufficient for the interval iteration to converge fast. Therefore, we first improve this
approximation by use of an iterated defect correction:

x̃k+1 = x̃k + R(b − Ax̃k) (9)

using floating point arithmetic only and the exact scalar product for the defectb−Ax̃k. Improv-
ing the approximation in floating point arithmetic first is much cheaper than computing many
interval iterations later.

For the computation of the approximate inverseR, we use the well-known Gauss-Jordan
algorithm with column pivoting [28]. We do not repeat the algorithm here since it is well-
known and it is listed as C-XSC code in Section 5 anyway. However, we explain a minor
change in the algorithm which was included in order to make the algorithm more robust in
the case of almost singular matrices. This modification concerns the elimination steps of the
Gauss-Jordan algorithm which may produce exact zeros on the computer because of rounding
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errors. Later in the computation, when a pivot element is to be searched for, it could be the case
that no pivot can be found since all candidates are exact zeros on the machine, thus causing a
breakdown of the Gauss-Jordan algorithm, even when the true values of some pivot candidates
are not zero. Therefore, we replace any exact zero value which was produced in an elimination
step by a nonzero value in the order of magnitude of the roundoff error, i.e. we replace the
result ofa − a = 0 by εa whereε is the relative machine precision. This modification forces
the Gauss-Jordan algorithm to execute completely for any nonsingular matrix (and also many
singular matrices). Now the failure to find a pivot element also means that the zeros have been
already in the input matrix, which therefore is surely singular.

In very ill conditioned cases, the quality ofR computed this way will not be sufficient, i.e.
the spectral radius of|C| will not be less then 1, and the inclusion test will never be satisfied.
In this case, we stop the interval iterations after a specified number of iterations (10, say) and
recompute the approximate inverse in higher precision. The method we use is due to Rump,
[23], so we call it Rump’s device.

Assume we have an approximate inverseR (as we do from the Gauss-Jordan algorithm),
then even ifA is very ill conditioned, the matrixRA is usually very much better conditioned
thanA is. Now the simple relation

A−1 = (RA)−1R (10)

suggests that we compute another approximate inverseS of RA and take the product ofS and
R as a better approximation ofA−1. Since we can compute this product exactly with the aid of
the exact scalar product in the long accumulator, it is also easy to approximate it by the sum of
two matricesR1 andR2.

Summarizing, we can compute an approximate inverseR1 + R2 of double length (stored in
two real floating point matricesR1andR2) by the following steps:

1. compute an approximate inverseR of A with Gauss-Jordan, modified to replace zero
valueslatex lsscxsc.

2. computeRA.

3. compute an approximate inverseS of RA with Gauss-Jordan.

4. computeSR in the long accumulator, and store it as sum of two floating point matrices
R1 andR2.

Now that we have an approximate inverseR := R1+R2 of double length, we can execute the
algorithm described above with thisR by using the exact scalar product wheneverR = R1 +R2

is used in the algorithm.
The overall strategy of our method finally is:

• Compute an approximate inverseR of single length and execute the enclosure algorithm.
If this fails then

• improve the approximate inverse by Rump’s device and execute the enclosure algorithm
with the double length approximate inverseR = R1 + R2.
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Now that we have treated the case of one linear equation with one right hand sideb, we turn
to the inversion of a matrixA. The inverseX = A−1 is the solution of the matrix-equation
AX = I with then × n identity matrix on the right hand side. This equation can of course be
solved column wise, thus obtaining the columns ofX = A−1 successively.

For then individual matrix-vector equations which have to be solved, we use the algorithm
just presented. In order to keep the computational overhead small, we use some simple ob-
servations to avoid the recomputation of intermediate quantities in the algorithm: Since alln
equations have the same coefficient matrixA, it would be a big waste of computation time to
recompute the approximate inverseR and the iteration matrixC = ✸(I − RA) for each of the
n matrix-vector equations. Rather, we will implement the algorithm for the square case (s) in
such a way that the approximate inverseR (or R1andR2 if a double length inverse was needed)
as well as its residual matrixC = ✸(I −RA) (or C = ✸(I −R1A−R2A)) are saved after the
first computation and are reused in the solution of the following equations.

In the C-XSC code, the function that computes solutions of the square matrix-vector equa-
tion (i.e. the local functionLSS) must communicate with its calling functions for matrix-
equations which quantities of the algorithm have already been computed (R, R1, R2, ✸(I −
RA), and✸(I −R1A−R2A)) and can be reused in a future call. For this communication a flag
(namedFLAGS) is used in the C-XSC program code in Section 5 to avoid these unnecessary
recomputations.

Next, we consider the cases of over- and of under-determined systems. (For more details on
the theory see, e.g. [28].) In both cases, we assume them × n-matrix A to have full rank, i.e.
in the over-determined case (case (o),m ≥ n), A has rankn, and in the under-determined case
(case (u),m ≤ n), A has rankm. Herex is ann-vector, andb is anm-vector.

In case(o) the system (1) has no solution in general. Therefore, we are rather interested in a
vectorx which minimizes the Euclidian norm of the residual vectorr = b−Ax, or, equivalently,
the square of this norm. That is, we seek the solution of the linear least squares problem:

‖Ax − b‖2
2 = min .

It is well known (e.g. [28], [27]) that such anx is uniquely determined (ifA has full rank), and
that it is the solution of the system ofnormal equations

AHAx = AHb, (11)

whereAH is the Hermitian matrix ofA, i.e. the transposed matrix in the real case.
We could now proceed to computeAHA andAHb and to solve the resulting squaren × n

system using the previously presented method. However, as is well known,AHA usually has a
very bad condition. Moreover, on the computerAHA can only be obtained with roundoff errors
or as an interval matrix, which makes the solution of this system difficult.

Instead, we follow the suggestion of [24] and rewrite (11) as a larger square(n+m)× (n+
m)-system, which can be solved by the previous method to very high accuracy (but also with
much higher computational effort ifm >> n). Introducing a newm-vectory = Ax − b, we
immediately obtainAHy = 0 from (11). We write these two equations in block form

(
A −I
0 AH

)
·
(

x
y

)
=

(
b
0

)
, (12)
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a square(n + m) × (n + m) system (I is them × m identity matrix here). This system has
much better condition than the original normal equations.

Now it is straightforward to solve (12) by the method for square systems. Thex-part of the
resulting enclosure then is an enclosure for the solutionx of the normal equations (11).

In a very similar way, we also proceed in the case of under-determined systems. Here, the
system (1) usually has infinitely many solutions, and we are interested in the vectory among
these solutionsx which has minimal Euclidian norm. This vector can be determined asy =
AHx, wherex is the solution ofAAHx = b. Again we write these two equations in block form

(
AH −I
0 A

)
·
(

x
y

)
=

(
0
b

)
, (13)

again a square(n + m)× (n + m) system (hereI is then×n identity matrix). Again, we solve
this system (13) by use of the method for square systems. They-part of the resulting enclosure
then yields an enclosure for the solution of our problem.

Finally, we treat the two cases (O) and (U), i.e. the computation of the Moore-Penrose
pseudo inverseA+ of A in the over- and under-determined cases (here we also assumeA to
have full rank).

In case (O), then × m-matrixA+ ( m ≥ n ) is given by (see e.g. [28], [27]).

A+ = (AHA)−1AH (14)

or, equivalently, by the solutionY = A+ of the matrix equationAHAY = AH . Introducing the
m × m-matrixX = AY − I, we see thatAHX = 0 and, as previously, we can write these two
equations in block form: (

A −I
0 AH

)
·
(

Y
X

)
=

(
I
0

)
, (15)

where both identity matrices arem × m.
Solving this equation column-wise with the algorithm for square matrices we get an enclo-

sure for the pseudo inverseA+ by extracting theY -block from the computed enclosure.
Since the pseudo inverse has the property(A+)H = (AH)+, it follows from (14) that in case

(U) (m ≤ n), we have
A+ = AH(AAH)−1

or, equivalently,A+ is the solutionY = A+ of Y AAH = AH . For then×n-matrixX = Y A−I,
we see thatXAH = 0. Taking the Hermitian of the two latter equations, we can again write
these in a block form: (

AH −I
0 A

)
·
(

Y H

XH

)
=

(
I
0

)
, (16)

with the identity matrices beingn × n.
Solving this equation column-wise with the algorithm for square matrices, we get an enclo-

sure for the pseudo inverseA+ by extracting theY H -block from the computed enclosure and
taking its Hermitian matrix as the result.

Remark: We should stress that the algorithms which were presented here for the cases (o), (u),
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(O), and (U) generally deliver very narrow bounds for the solution, but that they are computa-
tionally very expensive, at least in the case where|m − n| is large since the solution is always
computed by use of a system of dimensionn + m. There are other methods which can enclose
the solution more efficiently (though perhaps less accurately), see Section 7. The reasons for
the presentation of our methods are their high accuracy and that they are straightforward and
can be implemented in C-XSC in some 10-20 lines of code.

According to a remark in [24], the number of operations can be reduced substantially in our
algorithms for the cases (o), (u), (O), and (U) if we carefully observe the special structure of
the block coefficient matricesB and compute only those elements of the approximate inverse
R and its residual matrixI − RB which are actually needed.

3 Algorithms

Following the theoretical discussion in Section 2, we can outline the following algorithms in a
pseudo Pascal notation.

Algorithm 3.1: Solution of problem (s): {procedure}
{Compute an enclosure for the solution of the square linear systemAx = b}

Part I (approximate inverse of single length)

I.1 compute an approximate inverseR of A (e.g. using a Gauss-Jordan algorithm)

I.2 compute an approximatioñx := Rb of x
improvex̃ by an iterated defect correction :
repeat

x̃ := x̃ + R(b − Ax̃)
until x̃ accurate enough or maximum iteration count exceeded

I.3 compute enclosures for the residuum:
Z := R✸(b − Ax̃)
and for the iteration matrix:
C := ✸(I − RA)

I.4 interval iteration
Y := Z
repeat

YA := blow(Y, ε) {ε - inflation}
Y := Z + C · YA

until Y ⊂ int(YA) or maximum iteration count exceeded

I.5 if Y ⊂ int(YA) then
a unique solutionx exists andx ∈ x̃ + Y

else
if in Part Ithen

Part I failed, goto Part II withR1 := R
else

algorithm failed, the matrixA is ill conditioned or singular
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Part II (approximate inverse of double length)

II.1 (compute an approximate inverseR := R1 + R2 of A:)
S := R1 · A
compute an approximate inverseS1 for S (e.g. as in I.1)
S := S1 · R1

R2 := S1 · R1 − S
R1 := S

II.2 goto step I.2 of Part I.

Algorithm 3.2: Solution of problem (o): {procedure}
{Compute an enclosure for the solution of the over-determined linear systemAx = b}

1. Abig :=

(
A −I
0 AH

)
∈ IR(n+m)×(n+m)

Bbig :=

(
b
0

)
∈ IRn+m

Ybig :=

(
x
y

)
∈ IRn+m

2. solveAbigYbig = Bbig using Algorithm 3.1

3. vectorx from the vectorYbig is the desired enclosure.

Algorithm 3.3: Solution of problem (u): {procedure}
{Compute an enclosure for the solution of the under-determined linear systemAx = b}

1. Abig :=

(
AH −I
0 A

)
∈ IR(n+m)×(n+m)

Bbig :=

(
0
b

)
∈ IRn+m

Ybig :=

(
x
y

)
∈ IRn+m

2. solveAbigYbig = Bbig using Algorithm 3.1

3. vectorx from the vectorYbig is the desired enclosure.

Algorithm 3.4: Solution of problem (S): {procedure}
{Compute an enclosure for the inverse of the square matrixA}

1. (solveAX = I column-wise)
for i := 1 to n do
begin

bi := ei (= i-th unit vector)
solveAxi = bi using Algorithm 3.1

end

2. X = (x1, . . . , xn) is the desired enclosure.
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Algorithm 3.5: Solution of problem (O): {procedure}
{Compute an enclosure for the pseudo inverse of them × n matrixA, m > n}

1. Abig :=

(
A −I
0 AH

)
∈ IR(n+m)×(n+m), I ∈ IRm×m

Bbig :=

(
I
0

)
∈ IRn+m×m, I ∈ IRm×m, 0 ∈ IRn×m

Ybig :=

(
X
Y

)
∈ IRn+m×m, X ∈ IRm×m, Y ∈ IRn×m

2. solveAbigYbig = Bbig using Algorithm 3.4

3. blockX from the matrixYbig is the desired enclosure.

Algorithm 3.6: Solution of problem (U): {procedure}
{Compute an enclosure for the pseudo inverse of them × n matrixA, m < n}

1. Abig :=

(
AH −I
0 A

)
∈ IR(n+m)×(n+m), I ∈ IRm×m

Bbig :=

(
I
0

)
∈ IRn+m×n, I ∈ IRn×n, 0 ∈ IRm×n

Ybig :=

(
Y H

XH

)
∈ IRn+m×n, X ∈ IRn×n, Y ∈ IRn×m

2. solveAbigYbig = Bbig using Algorithm 3.4

3. blockX from the matrixYbig is the desired enclosure.

4 Applicability of the Algorithms

The algorithms presented in Section 3 can be applied to any system of linear equations which
can be stored in the floating point system on the computer. They will, in general, succeed in
finding and enclosing a solution or, if they do not succeed, will tell the user so. In the latter
case, the user will know that the problem is very ill conditioned or that the matrixA is singular.

In the following implementation in C-XSC, there is the chance that if the input data contains
large numbers or if the inverse ofA or the solution itself contain large numbers, an overflow
may occur, in which case the algorithms may crash. In practical applications, this has never
been observed, however. This could also be avoided by including the floating point exception
handling which C-XSC offers for IEEE floating point arithmetic.

If the problem contains interval data in the matrixA or in the right hand sideb, then the
algorithms can be applied. However, the exact solution set is usually overestimated by the
enclosure which is computed by the algorithm. Usually this overestimation becomes larger as
the diameter of the input interval increases. For certain classes of matrices for which the optimal
interval hull of the solution set can be computed (e.g. interval M-matrices), this algorithm will
usually overestimate the solution set. This overestimation can be estimated by use of certain
quantities appearing in the algorithm. We will not discuss this here, however. For details see
e.g. [25] and [6].



5 C-XSC PROGRAM CODE 13

5 C-XSC Program Code

The C-XSC program which is given here is written for the case of real input data, i.e.A is of
type rmatrix andb is of typervector. However, because of the clear structure of C-XSC, it is
easy to transform this program code to make use of the other data typesinterval, complex, and
complex interval. The changes in the program are mainly changes of the data type of certain
variables and functions. We will indicate the necessary changes at the end of this section. (In a
future implementation the data type should be a template parameter.)

The following modulelss_aprx contains the functionMINV which computes an approx-
imate inverse of the input matrixA of typermatrix using the Gauss-Jordan algorithm (see e.g.
[28]). The parameterA is for input and output. The second parametererr indicates whether an
approximate inverse could be computed (error=0) or if the computation failed (error=1).

There is, however, one trick included in this algorithm: in order to be able to complete the
algorithm even for ill conditioned matrices, we avoid computing matrix elements which are
exactly zero in the elimination step. For ill conditioned matrices, these elements could appear
later as pivot elements, thus forcing the computations to break down. If the elimination step
would yield an elementa[l][k] which is rounded to an exact zero, we rather replace it by
eps*a[l][k] with the old value ofa[l][k] and aneps close to the relative machine
precision. If we then still find a zero pivot element, then it must have been in the input matrix.
Hence, the input matrix was actually singular. (This is, however, only almost true, since we did
not consider the possibility of underflow in the multiplicationeps*a[l][k]).

The reason why the array index computations look somewhat complicated is that we do not
assume that the matrixA has the same index ranges in both dimensions, it only has to be square.
E.g. if A is 10 × 10 the first index might run from0 to 9, whereas the second index could run
from −5 to 4.

//------------------------------------------------------------------------

// File: lss_aprx (header)
// Purpose: Compute an approximate inverse of the square matrix A
// Global functions:
// MINV(): Computes the approximate inverse of a square matrix A using
// the Gauss-Jordan algorithm.
//------------------------------------------------------------------------

#ifndef __LSS_APRX_HPP
#define __LSS_APRX_HPP

#include <l_rmatrix.hpp> // Long Real matrix/vector arithmetic
#include <intvecto.hpp> // Integer vector type

using namespace cxsc;
using namespace std;

extern void MINV ( rmatrix&, int& );

#endif

//------------------------------------------------------------------------

// File: lss_aprx (implementation)
// Purpose: Compute an approximate inverse of the square matrix A
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// Global functions:
// MINV(): Computes the approximate inverse of a square matrix A
// using the Gauss-Jordan algorithm.
//------------------------------------------------------------------------

#include <lss_aprx.hpp>

using namespace cxsc;
using namespace std;

const real eps = 1e-15;

//------------------------------------------------------------------------

// MINV computes approximate inverse of the matrix A by use of the
// Gauss-Jordan algorithm.
// A : input matrix and outpout of approximate inverse
// err : Error indicator = 0 everything ok, = 1 matrix singular
//------------------------------------------------------------------------

void MINV( rmatrix& A, int& error )
{

int i, j, k, au1, au2, ao1, ao2;
bool ok;
real h;
rvector aux( Lb(A,ROW),Ub(A,ROW) );
intvector v( Lb(A,ROW),Ub(A,ROW) );
int l;

au1 = Lb(A,ROW); ao1 = Ub(A,ROW);
au2 = Lb(A,COL); ao2 = Ub(A,COL);

ok = ((ao1 - au1) == (ao2 - au2))? true : false; // square matrix ?

// Vector that will control what’s happening with the column
for(i = au1; i <= ao1; i++) v[i] = i;

i = au1-1; // Row index
j = au2-1; // Column index

while ( (j < ao2) && ok )
{
i++; j++; // i and j run simultaniously

// pivot search
if ( j < ao2)
{

l = i;
for( k = i+1; k <= ao1; k++)

if( abs(A[k][j] ) > abs( A[l][j] ) )
l = k;

// row interchange
if(i != l)
{

aux = A[l]; A[l] = A[i]; A[i] = aux;
k = v[l]; v[l] = v[i]; v[i] = k;

}
}

// transformation
if( A[i][j] == 0 ) ok = false;
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else
{

h = 1.0 / A[i][j];
Col(A,j) = h * rvector( Col(A,j) );
A[i][j] = h;
for( k = au2; k <= ao2; k++)
if( k != j)
{

for( l = au1; l <= ao1; l++)
if( l != i )
{

h = A[l][k] - A[l][j] * A[i][k];
if( h == 0.0) A[l][k] *= eps;

else A[l][k] = h;
}

A[i][k] *= -A[i][j]; // A[i][k] = -A[i][k] * A[i][j]
}

}
}

// column interchange
if(ok)
for( k = au1; k <= ao1; k++)
{

l = au2 + k - au1;
while( v[k] != k )
{

i = v[k]; v[k] = v[i]; v[i] = i;
j = au2 + i - au1;
aux = rvector( Col(A,j) ); Col(A,j) = Col(A,l); Col(A,l) = aux;

}
}

error = !ok;

} // end MINV

The following modulelss.cpp contains the functions which solve the problems (s), (o),
(u), (S), (O), and (U) stated in Section 1 for a coefficient matrix of typermatrixand a right hand
side of typervector.

There are only two global functions contained inlss –LSS andINV – which can be called
from modules other thanlss. LSS accepts linear systems of the form (1) with any matrix,
checks the dimensions of the coefficient matrixA, and calls other functions which handle the
square or rectangular cases. Similarly,INV checks its parameterA and calls other routines for
the square or rectangular cases.

The functions have the following meanings (in order of their static appearance):

REL:
Computes the maximum relative error of the components of the two parameter vectorsA

andB. It is used in the stopping criterion of the real defect iteration for an improvement of the
real approximations in the partsUSE_SINGLE_R andUSE_DOUBLE_R (both local to the first
functionLSS).

TOO_BAD:
Checks the accuracy of the parameterA. If at least one component is larger than[−1020, 1020]

then the function yieldsTRUE elseFALSE. It is used to abort the interval iteration if it seems
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to diverge (again inUSE_SINGLE_R andUSE_DOUBLE_R).

GUESS_ZEROES:
Tries to guess whether a component of the solution is equal to zero. This is assumed to be

the case if this component (i) has changed sign in the last two successive iterations or if (ii)
it has decreased by more than a factor of10−6 from the previous iterate to the current iterate
and if it is less in magnitude than10−6 times the maximum magnitude of all other components
of the current iterate. Replacing such components by zero often improves the enclosures by
many orders of magnitudes. On the other hand, if the guess was wrong, then zero is still a good
approximation such that the enclosures will stay good.

LSS:
It implements the algorithm for a square systemAx = b by first trying an iteration with an

approximate inverse of single length (USE_SINGLE_R). In case we are not successful, com-
pute an approximate inverse of double length (USE_DOUBLE_R). This function is the central
function of the module. Input parameters areA andb. Output parameters areY anderrcode.
The other parameters are for input as well as for output. SinceLSS is called by the functions
for matrix inversion several times, the computation of the approximate inverses (R1,R2) and
the iteration matrixC is controlled by the parameterFLAGS which indicates in successive calls
to LSS which of the matricesR1, R2, C have already been computed in order to avoid un-
necessary and costly recomputation of these quantities. For details, see the comment at the
beginning ofLSS.

USE_SINGLE_R: (local toLSS)
This part implements the algorithm by using an approximate inverseR1 of single length

which is computed by the functionMINV.
After the computation ofR1, we compute an approximate solutionx1 = R1*b and ex-

ecute a defect iteration in floating point arithmetic to improve this approximationx1. It is
essential to use scalar product expressions since the computation of the residuumb - A*x0
must necessarily suffer from severe cancellation. This iteration is stopped if (i) the maximal
relative errorp is less thandelta (= 10−15) or if the relative error decreases very slowly only,
such thatp becomes larger thanbound, which is multiplied by a factor of≈ √

0.1 in each iter-
ation starting after the 5th iteration. This means roughly that after the 5th iteration, we expect
the approximation to gain at least one decimal digit each two iterations, otherwise we stop the
iteration process.

Subsequent to this floating point iteration, we try to guess whether some of the solution
components are exactly zero by calling functionGUESS_ZEROES.

Next, we compute an enclosure of the residualb - A*x1 in double length (real vectory0
plus interval vectorY1) in order to get still high accuracy for the product withR1. Here the
repeated computation ofA*x1 inside the#-expressions could be avoided if these expressions
were computed component-wise by use of a variable of typedotprecision. However, since these
computations are cheap relative to the rest of the algorithm, we prefer this version which is
much easier to read.

If the residual is exactly the zero vector,x1 is an exact solution of the system. Thus we can
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stop the algorithm at this point and need not continue with the costly interval iteration However,
stopping here means that we have an exact solution, but that we do not know if it is unique. If
we need uniqueness we have to continue with the interval iteration.

Finally the iteration matrixC is computed (again with scalar product expression because of
cancellations), and the interval iteration for the defectY1 of the approximationx1 is executed.
Beginning with the 5th iteration, the inflation parametereps is multiplied by 5 in each iteration
in order to accelerate convergence or divergence. This iteration is stopped (i) if it was successful,
i.e. if an iterateY1 is contained in its predecessorYA, (ii) after a maximum iteration count of
10, or (iii) if the accuracy becomes too bad (indicating divergence).

In the case of a successful interval iteration, the resulting enclosurex1+Y1 of the solution
is returned inY, and the error code is set to zero.

USE_DOUBLE_R: (local toLSS)
This part implements the algorithm by using an approximate inverseR1+R2 of double

length (i.e.R1 andR2 are of typermatrix), which is computed by the use of Rump’s device
as explained in Section 2.

The following steps are completely analogous to those inUSE_SINGLE_R except that
wherever the approximate inverse appears, the double length representation has to be used.
Note that in the floating point defect iteration, the iterates are computed in double length also
(x1+x0) but subsequently only the most significant partx1 is used. Also, note thaty0 is
an auxiliary variable in the floating point iteration. Here again we make use of a repeated
computation ofA*x1 only to make the program easier to read.

SQUARE_LSS:
This function treats the case of a square coefficient matrix. The trivial case of a1×1 matrix

is solved explicitly. Forn > 1, the storage forR1, R2, C, andFLAGS is allocated for a call
of the functionLSS described above.

OVER_LSS, UNDER_LSS:
These functions handle over- and under-determined linear systems, respectively. Both func-

tions allocate variablesBIG_A,BIG_B, andBIG_Y for the augmented problems and initialize
BIG_A andBIG_B appropriately according to Section 2. Then this augmented square system
is solved by a call to functionSQUARE_LSS. Finally, those components of the big solution
vector needed for the solution of the original problem are extracted.

LSS:
This function is the only global entry for the solution of linear systems in this modulelss. It

first checks the parameter for consistent dimensions, then decides which case (s), (o), or (u) has
to be treated, and calls the appropriate functionSQUARE_LSS, OVER_LSS, orUNDER_LSS.

SQUARE_INV, OVER_INV, UNDER_INV, INV:
These functions compute enclosures for the inverse matrices (or the pseudo inverse) and are

completely analogous to those for linear systems. As mentioned above,INV is the only global
function for this purpose and calls the other ones appropriately. The only difference from the
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corresponding-LSS functions is that they compute the inverse column-wise and therefore have
to call the local linear system solving functionLSS several times. Therefore, the matrices
R1, R2, andC are defined locally in these functions and their computation is controlled by the
variableFLAG as discussed previously (see function localLSS). In functionSQUARE_INV,
the resulting columns of the inverse matrixY are first written into the rows of the result matrix.
Therefore,Y has to be transposed at the end of the function.

//------------------------------------------------------------------------

// File: lss (header)
// Purpose: Compute approximations to the solution x of Ax = b and an
// approximations of the inverse of A. In both case the system (m x n)
// can be square (m = n), over-determined (m > n) and under-determined
// (m < n).
// Global functions:
// LSS(): General entry for linear system solver.
// INV(): General entry for matrix inversion.
//------------------------------------------------------------------------

#ifndef _LSS_HPP
#define _LSS_HPP

#include <imatrix.hpp> // Include real and interval types
// for Vector/Matrix

#include <mvi_util.hpp> // Include real and interval utilities
// for Vector/Matrix

#include <lss_aprx.hpp> // Include library for matrix inversion
#include <iostream>
#include <iomanip> // for I/O manipulation

using namespace cxsc;
using namespace std;

extern void LSS( rmatrix&, rvector&, ivector&, int& );
extern void INV( rmatrix&, imatrix&, int& );

#endif

//------------------------------------------------------------------------

// File: lss (implementation)
// Purpose: Compute approximations to the solution x of Ax = b and an
// approximations of the inverse of A. In both case the system (m x n)
// can be square (m = n), over-determined (m > n) and under-determined
// (m < n).
// Global functions:
// LSS(): General entry for linear system solver.
// INV(): General entry for matrix inversion.
//------------------------------------------------------------------------

#include <lss.hpp>

using namespace cxsc;
using namespace std;

const real zerotest = 1e6;
const real delta = 1e-15;
const real eps1 = 1e-15;
const real sqrt_01 = 0.31622777;
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const real limit = 1e20;

static int m, n, dim;

static ivector null(ivector A)
{

return (A = 0);
}

//------------------------------------------------------------------------

// REL computes componentwise the maximum relative error of A w.r.t B.
// if A[i] and B[i] do not have the same sign or if B[i] = 0, then
// rel. error = 0 for this component.
// A is always the new value of an iteration, B the old one.
//------------------------------------------------------------------------

real REL( rvector A, rvector B)
{

int i;
real p,r,ai,bi;

p=0;
for(i=Lb(A);i<=Ub(A);i++) // A,B must have same index range
{
ai = A[i];
bi = B[i];
if( ai*bi <= 0.0 || zerotest*abs(ai) < abs(bi) ) r = 0.0;

else r = abs( (ai-bi)/bi );
if (r>p) p = r;

}
return p;

} // end REL

//------------------------------------------------------------------------

// TOO_BAD = accuracy of A is far too bad
// note: 0 for false, 1 for true;
//------------------------------------------------------------------------

bool TOO_BAD( ivector &A )
{

int i;
bool bad;

bad = false;
for(i=Lb(A);i<=Ub(A);i++)
{
bad = bad || Inf(A[i]) < -limit && Sup(A[i]) > limit;

}
return bad;

} // end TOO_BAD

//------------------------------------------------------------------------

// x1 is the new, x0 the old value of an iteration. If a component of x1
// has decreased by more than a factor of zerotest, then this component
// is set to 0. The same is done if the sign of a component has changed.
//------------------------------------------------------------------------



5 C-XSC PROGRAM CODE 20

void GUESS_ZEROES(rvector& x0, rvector& x1)
{

int i;
real MAXX;

MAXX = 0.0;
for(i=Lb(x1);i<=Ub(x1);i++)
if(abs(x1[i])>MAXX)

for(i=Lb(x1);i<=Ub(x1);i++)
if( x0[i]*x1[i] < 0.0 || zerotest*abs(x1[i]) < abs(x0[i])

&& MAXX > zerotest*abs(x1[i]) )
x1[i] = 0.0;

} // end GUESS_ZEROES

//------------------------------------------------------------------------

// The result of Y is an enclosure of the solution
// errcode = 0: Y is enclosure of the solution
// errcode = 1: no enclosure obtained, bad condition (?)
// errcode = 2: no enclosure obtained, matrix A singular (?)
//
// FLAGS = 0: R1,R2,C have not yet been computed
// FLAGS = 1: only R1 has been computed
// FLAGS = 2: R1 and corresponding C have been computed
// FLAGS = 3: R1 and R2 are computedbut not the corresponding C
// FLAGS = 4: R1, R2 and the corresponding C have been computed
//------------------------------------------------------------------------

void LSS(rmatrix& A, rvector& b, ivector& Y, int& errcode, rmatrix& R1,
rmatrix& R2, imatrix& C, int& FLAGS)

{
rmatrix D( Lb(A,1),Ub(A,1),Lb(A,2),Ub(A,2) ),

R2temp( Lb(A,1),Ub(A,1),Lb(A,2),Ub(A,2) );
rvector x0( Lb(A,1),Ub(A,1) ), x1( Lb(A,1),Ub(A,1) ),

y0( Lb(A,1),Ub(A,1) ), x1temp( Lb(A,1),Ub(A,1) );
ivector Y1( Lb(A,1),Ub(A,1) ), YA( Lb(A,1),Ub(A,1) ),

Z( Lb(A,1),Ub(A,1) ),Y1temp( Lb(A,1),Ub(A,1) );
int i,j,k,err;
bool ready;
real p,bound,eps1;
dotprecision accu;
idotprecision iaccu;

ready = false;

// begin USE_SINGLE_R - compute approximate inverse of A
if (FLAGS<3)
{
err = 0;
if (FLAGS<1)
{

R1 = A;
MINV( R1, err );
if (err==0) FLAGS = 1;

}
if (err==0)

// floating point defect iteration: result is x1
{

bound = 100.0*sqrt_01;
x1 = R1*b;
k = 0;
do



5 C-XSC PROGRAM CODE 21

// iterate x = x + R*(b-Ax)
{

k = k + 1;
x0 = x1;

// x1 := #*(b - A*x0)
for (i=Lb(x0);i<=Ub(x0);i++)
{
accu = b[i];
accumulate(accu,-A[Row(i)],x0);
x1[i] = rnd(accu);

}

// x1 := #*(x0 + R1*x1)
for (i=Lb(x1);i<=Ub(x1);i++)
{
accu = x0[i];
accumulate(accu,R1[Row(i)],x1);
x1temp[i] = rnd(accu);

}
x1 = x1temp;

p = REL(x1,x0);
if(k>5) bound = bound*sqrt_01;

} while ((p<bound || k<=5) && p>=delta);

GUESS_ZEROES(x1,x0);

// Compute enclosure y0+y1 of the residuum b-A*x1 of the aproximation x1
// and initialize Y1:=Z:= R1*(b-A*x1), C:= I-R1*A

// y0 := #*(b-A*x1)
for (i=Lb(x1);i<=Ub(x1);i++)
{

accu = b[i];
accumulate(accu,-A[Row(i)],x1);
y0[i] = rnd(accu);

}

// Y1 := ##(b-A*x1-y0)
for (i=Lb(x1);i<=Ub(x1);i++)
{

accu = b[i];
accumulate(accu,-A[Row(i)],x1);
accu = accu - y0[i];
rnd(accu,Y1[i]);

}

// Y1 := ##( R1*y0 + R1*Y1 );
for (i=Lb(R1,1);i<=Ub(R1,1);i++)
{

iaccu = 0.0;
accumulate(iaccu,R1[Row(i)],y0);
accumulate(iaccu,R1[Row(i)],Y1);
rnd(iaccu,Y1temp[i]);

}
Y1 = Y1temp;
Z = Y1;

if (Z==null(Z))
{

Y = x1; // exact solution! (however, not necessarily unique!)
errcode = 0;
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ready = true;
}

else
{
if (FLAGS<2)
{

// C := ##( ID(A) - R1*A );
for (i=Lb(A,1);i<=Ub(A,1);i++)
for (j=Lb(A,2);j<=Ub(A,2);j++)
{

accu = ( i == j) ? 1.0 : 0.0;
accumulate(accu,-R1[i],A[Col(j)]);
rnd(accu,C[i][j]);

}

FLAGS = 2;
}

// interval iteration until inclusion is obtained
// (or max. iteration count)

k = 0;
eps1 = 0.1;
do
{

if (k>=5) eps1 = 5*eps1;
k = k+1;
YA = Blow(Y1,eps1);
Y1 = Z + C*YA;
ready = in(Y1,YA);

} while ( !ready && k<10 && !TOO_BAD(Y1) );

// output of the result
if (ready)
{

Y = x1 + Y1;
errcode = 0;

}
}

}
else ready = false;

} // end USE_SINGLE_R

// if no success: try again with approximate inverse
// R = R1+R2 of double length
// USE_DOUBLE_R to try again with approximate inverse
// R = R1+R2 of double length

if (!ready)
{
err = 0;
if (FLAGS<3)
{

R2 = R1*A;
MINV(R2,err);
if (err==0)
{

FLAGS = 3;
D = R2*R1;

// R2 := #* (R2*R1 - D);
for (i=Lb(R1,1);i<=Ub(R1,1);i++)
for (j=Lb(R1,2);j<=Ub(R1,2);j++)
{

accu = -D[i][j];
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accumulate(accu,R2[i],R1[Col(j)]);
R2temp[i][j] = rnd(accu);

}
R2 = R2temp;
R1 = D;

}
}

if (err==0)
// floating point defect iteration: result is x1+x0
{

bound = 100.0*sqrt_01;

// x1 := #*( R1*b + R2*b );
for (i=Lb(R1,1);i<=Ub(R1,1);i++)
{

accu = 0.0;
accumulate(accu,R1[Row(i)],b);
accumulate(accu,R2[Row(i)],b);
x1[i] = rnd(accu);

}

// x0 = #*( R1*b + R2*b - x1):
for (i=Lb(R1,1);i<=Ub(R1,1);i++)
{

accu = -x1[i];
accumulate(accu,R1[Row(i)],b);
accumulate(accu,R2[Row(i)],b);
x0[i] = rnd(accu);

}

k = 0;
do
// iteration x = x + (R1+R2)*(b-Ax), x = x1 + x0)
{

k = k+1;

// y0 = #*(b - A*x1 - A*x0)
for (i=Lb(A,1);i<=Ub(A,1);i++)
{
accu = b[i];
accumulate(accu,-A[Row(i)],x1);
accumulate(accu,-A[Row(i)],x0);
y0[i] = rnd(accu);

}

// y0 := #*(x0 + R1*y0 + R2*y0);
for (i=Lb(R1,1);i<=Ub(R1,1);i++)
{
accu = x0[i];
accumulate(accu,R1[Row(i)],y0);
accumulate(accu,R2[Row(i)],y0);
x1temp[i] = rnd(accu);

}
y0 = x1temp;

p = REL (x1+y0,x1+x0);
y0 = x1 + y0;

// x0 := #*(x1 + x0 - y0)
for (i=Lb(x1);i<=Lb(x1);i++)
{
accu = x1[i] + x0[i] - y0[i];
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x0[i] = rnd(accu);
}
x1 = y0;

if (k>5) bound = bound * sqrt_01;
} while ( (p<bound || k<=5) && p>=delta );

// compute enclosure y0+Y1 of the residuum b-A*x1 of the approximation
// x1 and initialize Y1:= Z:= (R1+R2)*(b-A*x1), C:= I-(R1+R2)*A

// y0 := #*(b-A*x1)
for (i=Lb(x1);i<=Ub(x1);i++)
{

accu = b[i];
accumulate(accu,-A[Row(i)],x1);
y0[i] = rnd(accu);

}

// Y1 := ##(b-A*x1-y0)
for (i=Lb(x1);i<=Ub(x1);i++)
{

accu = b[i];
accumulate(accu,-A[Row(i)],x1);
accu = accu - y0[i];
rnd(accu,Y1[i]);

}

// Y1 := ##(R1*y0 + R2*y0 + R1*Y1 + R2*Y1 );
for (i=Lb(R1,1);i<=Ub(R1,1);i++)
{

accu = 0.0;
accumulate(accu,R1[Row(i)],y0);
accumulate(accu,R2[Row(i)],y0);
iaccu = accu;
accumulate(iaccu,R1[Row(i)],Y1);
accumulate(iaccu,R2[Row(i)],Y1);
rnd(iaccu,Y1temp[i]);

}
Y1 = Y1temp;
Z = Y1;

if (Z==null(Z))
{

Y = x1; // exact solution! (however, not necessarily unique!)
errcode = 0;
ready = true;

}
else
{
if (FLAGS<4)
{

// C:= ## (ID(A) - R1*A - R2*A);
for (i=Lb(A,1);i<=Ub(A,1);i++)
for (j=Lb(A,2);j<=Ub(A,2);j++)
{

accu = ( i == j) ? 1.0 : 0.0;
accumulate(accu,-R1[i],A[Col(j)]);
accumulate(accu,-R2[i],A[Col(j)]);
rnd(accu,C[i][j]);

}

FLAGS = 4;
}
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// interval iteration until inclusion is obtained
// (or max. iteration count)

k = 0;
eps1 = 0.1;
do
{

if (k>=5) eps1 = 5*eps1;
k = k+1;
YA = Blow( Y1, eps1);
Y1 = Z + C*YA;
ready = in(Y1,YA);

} while ( !ready && k<10 && !TOO_BAD(Y1) );

// output of the result
if (ready)
{

Y = x1 + Y1;
errcode = 0;

}
else errcode = 1;

}
}

else errcode = 2;
} // end USE_DOUBLE_R

} // end LSS

//------------------------------------------------------------------------

// Linear system: square matrix
// The result y is an enclosure of the solution of Ax = b
//------------------------------------------------------------------------

void SQUARE_LSS( rmatrix& A, rvector& b, ivector& y, int& errcode)
{

rmatrix R1(Lb(A,ROW),Ub(A,ROW),Lb(A,ROW),Ub(A,ROW)),
R2(Lb(A,ROW),Ub(A,ROW),Lb(A,ROW),Ub(A,ROW));

imatrix C(Lb(A,ROW),Ub(A,ROW),Lb(A,ROW),Ub(A,ROW));
idotprecision Accu;
int FLAGS;

if( dim == 1 ) // Treat trivial case separately
if( A[Lb(A,ROW)][Lb(A,COL)] == 0.0 ) errcode = 2;

else
{

y[Lb(y)] = interval( b[Lb(b)] ) / A[Lb(A,ROW)][Lb(A,COL)];
errcode = 0;

}
else
{

FLAGS = 0;
LSS( A, b, y, errcode, R1, R2, C, FLAGS );

}
} // end SQUARE_LSS

//------------------------------------------------------------------------

// Linear system: over-determined case
// The result Y is an enclosure of the solution x of AH*A*x = AH*b,
// i.e. x is least squares solution of Ax = b.
// | A -I | |x| |b|



5 C-XSC PROGRAM CODE 26

// From Ax = b we generate the (n+m)x(n+m)-system | | | | = | |
// | 0 AH | |y| |0|
//
// Here, AH is the hermitian of A (transpose in the real case)
//------------------------------------------------------------------------

void OVER_LSS( rmatrix& A, rvector& b, ivector& y, int& errcode)
{

rmatrix BIG_A(1,dim,1,dim);
rvector BIG_b(1,dim);
ivector BIG_y(1,dim);
int i, j;

BIG_A( 1,m, 1,n ) = A;

// BIG_A( 1,m, n+1,n+m ) = -Id(m);
for( i = 1; i <= m; i++)
for( j = n+1; j <= n+m; j++)

(j == i+2)? BIG_A[i][j]=-1 : BIG_A[i][j] = 0;

BIG_A( m+1,m+n, 1,n ) = 0.0;
BIG_A( m+1,m+n, n+1,n+m ) = transp(A);
BIG_b( 1,m ) = b;
BIG_b( m+1,m+n ) = 0.0;

SQUARE_LSS( BIG_A, BIG_b, BIG_y, errcode );

y = BIG_y( 1,n );
} // end OVER_LSS

//------------------------------------------------------------------------

// Linear system: under-determined case
// The result Y is an enclosure of Y = AH*x with A*AH*x = b,
// i.e. y is solution of Ay = b with minimal Euklidian norm.
// |AH -I | |x| |0|
// From Ax = b we generate the (n+m)x(n+m)-system | | | | = | |
// | 0 A | |y| |b|
//
// Here, AH is the hermitian of A (transpose in the real case)
//------------------------------------------------------------------------

void UNDER_LSS( rmatrix& A, rvector& b, ivector& y, int& errcode)
{

rmatrix BIG_A(1,dim,1,dim);
rvector BIG_b(1,dim);
ivector BIG_y(1,dim);
int i, j;

BIG_A( 1,n, 1,m ) = transp(A);

//BIG_A( 1,n, m+1,m+n ) = -Id(m);
for( i = 1; i <= n; i++)
for( j = m+1; j <= n+m; j++)

(j == i+2)? BIG_A[i][j]=-1 : BIG_A[i][j] = 0;

BIG_A( n+1,n+m, 1,m ) = 0.0;
BIG_A( n+1,n+m, m+1,m+n ) = A;
BIG_b( 1,n ) = 0.0;
BIG_b( n+1,n+m ) = b;

SQUARE_LSS( BIG_A, BIG_b, BIG_y, errcode );
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y = BIG_y( m+1,m+n );
} // end UNDER_LSS

//------------------------------------------------------------------------

// General entry for linear system solver: decides which case to treat
//------------------------------------------------------------------------

void LSS( rmatrix& A, rvector& b, ivector& y, int& errcode )
{

errcode = 0;
m = Ub(A,ROW) - Lb(A,ROW) + 1;
n = Ub(A,COL) - Lb(A,COL) + 1;

dim = m+n;

if( m != Ub(b) - Lb(b) + 1 ) errcode = 3; // b : wrong dimension
if( n != Ub(y) - Lb(y) + 1 ) errcode = 4; // y : wrong dimension

if( errcode == 0 )
if( m > n ) OVER_LSS( A, b, y, errcode ); // over-determined system

else // under-determined system
if( m < n ) UNDER_LSS( A, b, y, errcode );
else
{

dim = n;
SQUARE_LSS( A, b, y, errcode ); // square system

}
} // end LSS

//------------------------------------------------------------------------

// Inverse matrix: square case
// The result Y is an enclosure of the solution of AY = I
//------------------------------------------------------------------------

void SQUARE_INV( rmatrix& A, imatrix& Y, int& errcode)
{

rmatrix R1(Lb(A,ROW),Ub(A,ROW),Lb(A,ROW),Ub(A,ROW)),
R2(Lb(A,ROW),Ub(A,ROW),Lb(A,ROW),Ub(A,ROW));

imatrix C(Lb(A,ROW),Ub(A,ROW),Lb(A,ROW),Ub(A,ROW));
imatrix temp(Lb(A,ROW),Ub(A,ROW),Lb(A,ROW),Ub(A,ROW));
rvector b(Lb(A,ROW),Ub(A,ROW));
ivector xTemp(Lb(A,ROW),Ub(A,ROW));
int i, err, FLAGS;

if( dim == 1 ) // Treat trivial case separately
if( A[Lb(A,ROW)][Lb(A,COL)] == 0.0 ) errcode = 2;

else
{

Y[Lb(Y,ROW)][Lb(Y,COL)] = interval(1.0) / A[Lb(A,ROW)][Lb(A,COL)];
errcode = 0;

}
else
{

FLAGS = 0;
err = 0;
b = 0.0;
for(i = Lb(A,ROW); i <= Ub(A,COL); i++)
{
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b[i] = 1.0;
LSS( A,b,xTemp,errcode,R1,R2,C,FLAGS );
Y[Lb(Y,ROW)+i-Lb(A,ROW)] = xTemp;
if( errcode > err ) err = errcode;
b[i] = 0.0;

}
errcode = err;

//Computing: Y = transp(Y);
for( i = Lb(Y,ROW); i <= Ub(Y,COL); i++)

Row(temp,i) = Col(Y,i);
Y = temp;

}
} // end SQUARE_INV

//------------------------------------------------------------------------

// Inverse matrix: over-determined case
// The result Y is an enclosure of the pseudo inverse A+ of A.
// -1
// If m > n then Y = A+ = (AH*A) * AH is solution of:
//
// | A -I | |Y| |I| ( A: mxn )
// | | | | = | | ( X = AY - I: mxm )
// | 0 AH | |X| |0| ( Y = A+ : nxm )
// ( right hand side: )
// ( I : mxm, 0 : nxm )
//------------------------------------------------------------------------

void OVER_INV( rmatrix& A, imatrix& Y, int& errcode)
{

rmatrix R1(1,dim,1,dim), R2(1,dim,1,dim), BIG_A(1,dim,1,dim);
imatrix C(1,dim,1,dim);
rvector BIG_b(1,dim);
ivector BIG_Y(1,dim);
int i, j, err, FLAGS;

BIG_A( 1,m, 1,n ) = A;

// BIG_A( 1,m, n+1,n+m ) = -Id(m);
for( i = 1; i <= m; i++)
for( j = n+1; j <= n+m; j++ )

(j == i+2)? BIG_A[i][j]=-1 : BIG_A[i][j] = 0;

BIG_A( m+1,m+n, 1,n ) = 0.0;
BIG_A( m+1,m+n, n+1,n+m ) = transp(A);
BIG_b = 0.0;
FLAGS = 0;
err = 0;
for( j = 1; j <= m; j++ )
{
BIG_b[j] = 1.0;
LSS( BIG_A,BIG_b,BIG_Y,errcode,R1,R2,C,FLAGS );
if( errcode > err ) err = errcode;
BIG_b[j] = 0.0;
Col(Y,Lb(Y,COL)+j-1) = BIG_Y(1,n);

}
errcode = err;

} // end OVER_INV

//------------------------------------------------------------------------
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// Inverse matrix: under-determined case
// The result Y is an enclosure of the pseudo inverse A+ of A.
// -1
// If m < n then Y = A+ = AH*(A*AH) is solution of:
//
// |AH -I | |YH| |I| ( A: mxn )
// | | | | = | | ( X = AY - I: nxn )
// | 0 A | |XH| |0| ( Y = A+ : nxm )
// ( right hand side: )
// ( I : nxn, 0 : mxn )
//------------------------------------------------------------------------

void UNDER_INV( rmatrix& A, imatrix& Y, int& errcode)
{

rmatrix R1(1,dim,1,dim), R2(1,dim,1,dim), BIG_A(1,dim,1,dim);
imatrix C(1,dim,1,dim);
rvector BIG_b(1,dim);
ivector BIG_Y(1,dim);
int i, j, err, FLAGS;

BIG_A( 1,n, 1,m ) = transp(A);

//BIG_A( 1,n, m+1,m+n ) = -Id(m);
for( i = 1; i <= n; i++)
for( j = m+1; j <= n+m; j++)

(j == i+2)? BIG_A[i][j]=-1 : BIG_A[i][j] = 0;

BIG_A( n+1,n+m, 1,m ) = 0.0;
BIG_A( n+1,n+m, m+1,m+n ) = A;
BIG_b = 0.0;
FLAGS = 0;
err = 0;
for( i = 1; i <= n; i++ )
{
BIG_b[i] = 1.0;
LSS( BIG_A,BIG_b,BIG_Y,errcode,R1,R2,C,FLAGS );
if( errcode > err ) err = errcode;
BIG_b[i] = 0.0;
Y[Lb(Y,ROW)+i-1] = BIG_Y(1,m);

}
errcode = err;

} // end UNDER_INV

//------------------------------------------------------------------------

// General entry for matrix inversion: decides which case to treat
//------------------------------------------------------------------------

void INV( rmatrix& A, imatrix& Y, int& errcode )
{

errcode = 0;
m = Ub(A,ROW) - Lb(A,ROW) + 1;
n = Ub(A,COL) - Lb(A,COL) + 1;
dim = m+n;

if(n!= Ub(Y,ROW)-Lb(Y,ROW)+1 ) errcode = 3;
// Y : wrong number of rows
if(m!= Ub(Y,COL)-Lb(Y,COL)+1 ) errcode = 4;
// Y : wrong number of columns

if( errcode == 0 )
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if( m > n ) OVER_INV( A, Y, errcode ); // over-determined system
else

if( m < n ) UNDER_INV( A, Y, errcode ); // under-determined system
else
{

dim = n;
SQUARE_INV( A, Y, errcode ); // square system

}
} // end INV

To conclude this section, we want to indicate changes required in the preceding C-XSC
program code to yield programs that treat the cases ofinterval, complex, andcomplex interval
input data.

First we consider the case of interval data, i.e. the input matrixA is an interval matrix, and
the right hand sideb is an interval vector.

We construct a new file headerilss.hpp from the file headerlss.hpp by applying the
following changes:

• Change the statements
#ifndef _LSS_HPP and#define _LSS_HPP by
#ifndef _ILSS_HPP and#define _ILSS_HPP.

• Change the statements
extern void LSS( rmatrix&, rvector&, ivector&, int& ); and
extern void INV( rmatrix&, imatrix&, int& ); by
extern void LSS( imatrix&, ivector&, ivector&, int& ); and
extern void INV( imatrix&, imatrix&,int& );.

We construct a new moduleilss from the modulelss by applying the changes which we
describe now.

These are the changes in the first (local) functionLSS:

• In the head of the function makeA animatrix andb anivector.

• In the declaration part, add variablesAM of typermatrix andbm of typervector
which will be used to hold the midpoints ofA andb and the variableiaccu of type
idotprecision.

• In this function, replace the variableaccu by iaccu in all statements that need to use
interval variables of typeimatrix andivector.

• At the beginning of the function body, add the statements
AM = mid(A); andbm = mid(b);.

• In the partUSE_SINGLE_R, replace the variablesA by AM andb by bm in each of the
four statements:
R1 = A;
x1 = R1*b;
accu = b[i]; and
accumulate(accu,-A[Row(i)],x0);
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• Also in USE_SINGLE_R, replace (the variableitemp is of typeinterval)
y0[i]=rnd(accu); by rnd(iaccu,itemp); y0[i] = mid(itemp);

• In the partUSE_DOUBLE_R, replace the variablesA by AM andb by bm in each of the
six statements:
R2 = R1*A; accumulate(accu,R1[Row(i)],b);
accumulate(accu,R2[Row(i)],b); accu = b[i];
accumulate(accu,-A[Row(i)],x1); and
accumulate(accu,-A[Row(i)],x0);

• Also in USE_DOUBLE_R, replace (the variableitemp is of typeinterval)
y0[i]=rnd(accu); by rnd(iaccu, itemp); y0[i] = mid(itemp);

The other functions in the module must be modified as follows:

• MakeA animatrix andb anivector in the heads of the functions:
SQUARE_LSS, OVER_LSS, UNDER_LSS, LSS, SQUARE_INV, OVER_INV, INV
andUNDER_INV.

• In SQUARE_LSS and inSQUARE_INV delete the conversion functioninterval in the
special casedim = 1 and in both functions replace the test
A[Lb(A,ROW)][Lb(A,COL)] == 0.0 by the test
in(0.0,A[Lb(A,ROW)][Lb(A,COL)]).

• In the functionsOVER_LSS, UNDER_LSS, OVER_INV andUNDER_INV change the
types of the variablesBIG_A andBIG_b to the typesimatrix andivector.

• In functionSQUARE_INV, change the type of the local variableb from rvector to
ivector.

Next, we turn to the case of a complex input matrixA and a complex input vectorb. In
this case, we also have to modify the functionMINVto compute an approximate inverse of a
complex matrix.

We construct a new header fileclssaprx.hpp from the header filelss_aprx.hpp by
applying the following changes:

• Change the statements
#ifndef _LSS_HPP, and#define _LSS_HPP to
#ifndef _CLSS_HPP, and#define _CLSS_HPP.

• Deleteall statements#include and include the following statements:
#include <cimatrix.hpp>,
#include <intvector.hpp>,
#include <ci_util.hpp>, and
#include <iostream>.

• Change the statement
extern void MINV(rmatrix&, int& ); to
extern void MINV( cmatrix&, int& );.
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Now we write a new moduleclssaprx by copyinglss_aprx with the following modi-
fications:

• The types of the parameterA of MINV and the local variablesaux andhmust be replaced
by their equivalent complex typescmatrix, cvector, andcomplex.

• The two occurrences of the conversion functionrvector in the body ofMINV must be
replaced by the conversion functioncvector.

We construct a new header fileclss.hpp from the header filelss.hpp by applying the
following changes:

• Change the statements
#ifndef _LSS_HPP, and#define _LSS_HPP to
#ifndef _CLSS_HPP, and#define _CLSS_HPP.

• Deleteall statements#include and include the following statements:
#include <clssaprx.hpp>, and
#include <iomanip.hpp>.

• Change the statements
extern void LSS( rmatrix&, rvector&, ivector&, int& ); and
extern void INV( rmatrix&, imatrix&, int& ); to
extern void LSS( cmatrix&, cvector&, civector&, int& ); and
extern void INV( cmatrix&, cimatrix&, int& );.

A moduleclss will now be constructed as a copy of the modulelss by applying the
following changes:

• Replaceall occurrences ofrmatrix bycmatrix,rvector bycvector,imatrix
by cimatrix, andivector by civector throughout the module.

• In functionREL, change the type ofai, bi fromreal tocomplex and delete the test
ai*bi <= 0.0 without replacement.

• In functionTOO_BAD, replace statement
bad = bad || Inf(A[i]) < -limit && Sup(A[i]) > limit;
by
bad = bad || InfRe(A[i]) < -limit && SupRe(A[i]) > limit

|| InfIm(A[i]) < -limit && SupIm(A[i]) > limit;

• In functionGUESS_ZEROES, delete the testx0[i]*x1[i]<0.0without replacement.

• In the functionsOVER_LSS, UNDER_LSS, OVER_INV, andUNDER_INV we must re-
place all function calls to the functionTRANSP by calls to the functionHERM. This func-
tion must be included in the moduleclss. The code of the functionHERM is as follows:
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cmatrix Herm( cmatrix &A )
{
int i;
cmatrix herm(Lb(A,COL),Ub(A,COL),Lb(A,ROW),Ub(A,ROW));
for(i=Lb(A,ROW);i<=Ub(A,ROW);i++)
{

Col(herm,i) = Row(A,i);
}
return SetIm(herm, -1*Im(herm) );

}

• Additionally, inUNDER_INV, the statementY[Lb(Y,ROW)+i-1] = BIG_Y(1,m);
must be replaced byY[Lb(Y,ROW)+i-1] = conj( BIG_Y(1,m) );.

Finally, a new modulecilss can be constructed from the moduleilss by applying ex-
actly the same changes as for the conversion fromlss to clss.

6 Test Results

A very well known set of ill conditioned test matrices for linear system solvers are then × n

Hilbert matricesHn with entries(Hn)i,j := 1
i + j − 1 . As a test problem, we report the results

of our program for the linear systemsHnx = e1, wheree1 is the first canonical unit vector. Thus
the solutionx is the first column of the inverseH−1

n of the Hilbert matrixHn. We give results
for the casesn = 10 andn = 20. Since the elements of these matrices are rational numbers
which can not be stored exactly in floating point, we do not solve the given problems directly
but rather we multiply the system by the least common multiplelcmn of all denominators in
Hn. Then the matrices will have integer entries which makes the problem exactly storable in
IEEE floating point arithmetic. Forn = 10, we havelcm10 = 232792560 and forn = 20, we
havelcm20 = 5342931457063200.

For the system(lcm10H10)x = (lcm10e1), the program computes the result

x1 1.000000000000000E+002
x2 -4.950000000000000E+003
x3 7.920000000000000E+004
x4 -6.006000000000000E+005
x5 2.522520000000000E+006
x6 -6.306300000000000E+006
x7 9.609600000000000E+006
x8 -8.751600000000000E+006
x9 4.375800000000000E+006
x10 -9.237800000000000E+005

which is the exact solution of this ill conditioned system.
For the system(lcm20H20)x = (lcm20e1), the program computes the enclosures (here an

obvious short notation for intervals is used)
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x1
4.000000000000001
3.999999999999999E + 002

x2 −7.979999999999998
80000000000002E + 004

x3 5.266800000000001
799999999999E + 006

x4 −1.716098999999999
9000000001E + 008

x5 3.294910080000001
79999999E + 009

x6 −4.118637599999999
600000001E + 010

x7 3.569485920000001
19999999E + 011

x8 −2.237302781999999
2000001E + 012

x9 1.044074631600001
599999E + 013

x10 −3.700664527559999
60001E + 013

x11 1.009272143880001
79999E + 014

x12 −2.133234304109999
10001E + 014

x13 3.500692191360001
59999E + 014

x14 −4.443186242879999
80001E + 014

x15 4.316238064512001
1999E + 014

x16 −3.147256922039999
40001E + 014

x17 1.666194841080001
79999E + 014

x18 −6.044040109799999
800001E + 013

x19 1.343120024400001
399999E + 013

x20 −1.378465288199999
200001E + 012

which is an extremely accurate enclosure for the exact solution. (The exact solution components
are the integers within the computed intervals).

7 Notes and References

In the program the casen = 2 should of course be computed separately, as it is done forn = 1.
This concerns the functionsSQUARE_LSS andSQUARE_INV in modulelss as well asMINV
in lss_aprx. We have omitted these cases to keep the procedures somewhat shorter. Even
n = 3 might be profitably programmed directly.

The form of the result of iterated defect correction in the algorithm

x ∈ x̃ + [y]

is a special case of a staggered correction format [14], which has the more general form

x ∈
k∑

i=1

xi + [y],

where the sum of thexi is an approximation ofx, and [y] is an enclosure of its error. Such
a representation can easily be obtained by a modification of our algorithm in such a way that
several iterated defect correction steps are performed.

If the algorithm is modified in the way that it produces output in staggered correction format,
it is almost trivial to make a further modification to allow input of the coefficient matrixA and
the right hand sideb in staggered form. Then we have a verifying multi-precision linear system
solver.
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Such a linear system solver in staggered format can be applied to solve the least squares
problem and compute the pseudo inverse in a different and cheaper way from the method in our
program. For the least squares problem, we proceed as follows (see [27]): In the casem ≥ n
we computeB := AHA andd := AHb in double length (i.e.B andd have staggered format)
and solveBx = d with the staggered linear system solver. In the casem ≤ n, we compute
B := AAH in double length and solveBx = b with the staggered linear system solver. Then,
finally, y = AHx is the desired solution (which must be computed in double length).

The methods presented in this section were originally developed by Rump [23], [24], some
ideas go back to Wilkinson [32]. Some newer methods exist usingLU-Factorization with back-
ward error estimation for the solution of full triangular systems [11]. These algorithms can be
adapted to the condition of the system and use less computing time than ours in the case of well
conditioned problems.

Special methods for symmetric matrices also exist. Such special methods give better results
especially in the case of an interval matrixA and have somewhat less overhead.

For symmetric and positive definite matrices, a variant of the Cholesky method has been
investigated in [5].

Similarly, different methods exist for M-matrices and H-matrices. For example, the interval
Gauss elimination can be applied in these cases. See [3], [4], or [21].

Another popular class of methods are iterative methods not directly based on defect correc-
tion. See also [18], [19], or [20].

Finally, we note that our algorithm is not well suited for large systems which are sparse or
which have banded structure since the approximate inverseR will be in general a full matrix.
A special C-XSC implementation for these cases is discussed in [8] (see also [14], or [17]).
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