A
| I|||:
NN

W
‘Q&\\\

Bergische Universitat
Wuppertal

Selfverifying Solversfor Dense Systemsof Linear Equations
Realized in C-XSC

Carlos Holbig and Walter Kramer

Preprint 2003/1

Wissenschaftliches Rechnen/
Softwaretechnologie

Wr»
swt

This work was supported in part by DLR international bureau (BMBF,
Germany), FAPERGS (Brazil) and LabTeC/Dell/ll-UFRGS Project (Brazil).



| mpressum

Herausgeber: Prof. Dr. W. lémer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich 7 (Mathematik)
Bergische Universat' Wuppertal
Gaul3str. 20
D-42097 Wuppertal

| nternet-Zugriff

Die Berichte sind in elektronischer Form aftich tber die World Wide Web Seiten

http://ww. mat h. uni -wuppertal .de/wswt/Iliteratur.htm

Autoren-Kontaktadresse

Walter Kramer

Bergische Univers#t'Wuppertal
Gaulf3str. 20

D-42097 Wuppertal

E-mail: kr aenmer @mat h. uni - wuppertal . de
Carlos Hlbig
PPGC at UFRGS and Universidade de Passo Fundo

Av. Bento Gonalves 9500 - Campus do Vale - Bloco IV - Bairro Agronomia
CEP 91501-970 Porto Alegre - Brazil

E-mail: hol bi g@ nf . uf rgs. br



Selfverifying Solvers for Dense Systems of Linear
Equations Realized in C-XSC

Carlos Hblbig, Walter Kiamer
Department of Mathematics, University of Wuppertal
holbig@inf.ufrgs.br, kraemer@math.uni-wuppertal.de

February 2003

Abstract

In this note selfverifying solvers for systems of linear equatidins = b with dense
square and non squanex m coefficient matricesi are described. In the over-determined
case(m > n) a vectorr € IR" is sought whose residuuin— Az has minimal Euclidian
norm whereas in the under-determined c@se< m) a solutionz € IR" is sought which
has minimal norm. C-XSC implementations of all algorithms are given. The source code
of the routines is freely available. The presented description of the algorithms is taken from
[14], Chapter 2 (see also [17]). Only some minor modifications have been introduced in
view of the realization of the algorithms using the C++ class library C-XSC [7].

Acknowledgements

We would like to thank the students Bernardo Fredereamér’ Alcalde and Pauloegjio
Morandi dinior from the Mathematic of Computation and High Performance Computing Group
at UFRGS (supervisor: Prof. Dr. T. Diverio) for their help in implementing and testing the C-
XSC routines.

This work was supported in part by DLR international bureau (BMBF, Germany), FAPERGS
(Brazil) and LabTeC/Dell/ll-UFRGS Project (Brazil).

1 Introduction

One of the most frequent tasks in numerical analysis is the solution of systems of linear equa-
tions

Arz =D (1)

with ann x n matrix A and a right hand side € R". Many different numerical algorithms
contain this task as a subproblem.

As a generalization to this problem with a square mattjxwe often encounteover- or
under-determined systems, i.e. systems whe#eis not a square, but rather am x n matrix



1 INTRODUCTION 4

with m > n in the over- andn < n in the under-determined case. In the over-determined
case a vector € IR" is sought whose residuutn— Ax has minimal Euclidian norm. In the
under-determined case, a solutior [R" of (1) is sought which has minimal norm.

The inversion of the matrid is also a problem of this type. Here, the right hand side of (1)
has to be replaced by thex n identity matrix/ and the solutionX, which is a matrix now, is
the inversed—! of A. In the over- or under-determined case this makfiis the Moore-Penrose
pseudo inverselt of A (if A has full rank).

There are numerous methods and algorithms computing approximations to the soiation
floating-point arithmetic. However, usually it is not clear how good these approximations are, or
if there exists a unique solution at all. In general, itis not possible to answer these questions with
mathematical rigour if only floating-point approximations are used. These problems become
especially difficult if the matrix4 is ill conditioned.

We present some algorithms which answer the questions about existence and accuracy au-
tomatically once their execution is completed successfully. Even very ill conditioned problems
can be solved with these algorithms. Most of the algorithms presented here can be found in [24].
All algorithms work for all four basic numerical C-XSC data typesal, interval, complex, and
complex interval.

We assume the coefficient matrkin (1) to be dense, i.e. in a C-XSC program, we use a
square matrix of typematrix, imatrix, cmatrix or cimatrixto storeA and we do not consider
any special structure of the elements/bfln an additional paper we treat systems with banded
coefficient matrices [8].

Our goal is to write a C-XSC program tharifies the existence of a solution anatomputes
an enclosure for this solution for each of the following types of problems:

() compute an enclosure for the solution of system (1) fequare n x n matrix A.

(o) compute an enclosure for the solution of system (1) inatree-determined case, i.e. for
anm x n matrix A wherem > n.

(u) compute an enclosure for the solution of system (1) irutider-determined case, i.e. for
anm x n matrix A wherem < n.

(S) compute an enclosure of tihaverse A~! of A.

(O) compute an enclosure of tipseudo inverse A* of A in the over-determined case, i.e. for
anm x n matrix A wherem > n.

(U) compute an enclosure of tipseudo inverse A+ of A in the under-determined case, i.e.
for anm x n matrix A wherem < n.

We also want these six problems to be solved for all four basic numerical C-XSC data types:
real, interval, complex, andcomplex interval. In the following Section 2, we will briefly outline
the solution methods. The corresponding algorithmic description can be found in Section 3.
The C-XSC program code for real input data will be presented in Section 5. (C++ templates
and the C++ exception handling [9] are not used in the actual implementation.)



2 THEORETICAL BACKGROUND 5

2 Theoretical Background

In this section, we give a brief summary of the theory of the enclosure methods for our six
problems. A more detailed presentation can be found in [24].

Starting with problem (s), we first assume that we have an approximate sotudiod an
approximate inversé& of the square matrixd. Rather than computing an enclosure for the
solution directly, we will try to enclose the error of the approximate solution, yielding a much
higher accuracy. The errgr= x — z of the true solution: satisfies the equation

Ay =b— Az, 2)
which can be multiplied by? and rewritten in the form
y=R(b— Az)+ (I — RA)y. (3)
Let f(y) := R(b— AZ) + (I — RA)y. Then Equation (3) has the form

y=rf(y) (4)

of a fixed point equation for the errgr If R is a sufficiently good approximation ef !, then
an iteration based on (4) can be expected to converge since theRA will have a small
spectral radius.
Therefore, we derive the following iteration from (4), where we use interval arithmetic and
intervals|y|,. for y:
Wlesr = RO(b— AZ) + O(I — RA)[yls (5)

or
Wl = F(yle), (6)

whereF' is the interval extension of.

Here & means that the succeeding operations have to be executed exactly and the result is
rounded to an enclosing interval (-vector or -matrix). Since in the computation of the tefect
Az and of the iteration matriX — RA, serious cancellations of leading digits must be expected.
Hence, these should be computed using the exact scalar product. Each component is computed
exactly and then rounded to a machine interval. For this purpose, the scalar product expressions
of XSC-languages are used extensively in the implementations. Aith RO (b — Az) and
C :=<O(I — RA), Equation (5) can be written as:

Wlkt1 =2+ Clylx .

In order to prove the existence of a solution of (2) and thus of (1), we use Brouwer’s fixed
point theorem, which applies as soon as we have at some iterationkndéxan inclusion of
the form

Y1 = F([ylk) C [ylr (7)

where[y|; means the interior dfy|. If this inclusion test (7) holds, then the iteration function
f maps[y|, into itself. From Brouwer’s fixed point theorem, it follows thé&has a fixed point
y* which is contained iy, and in[y],.1. The requirement thay|, is mapped into its interior



2 THEORETICAL BACKGROUND 6

ensures that this fixed point is also unique, i.e. (2) has an unique soluti@amd thus (1) also
has a unique solution* = 7 + y*.

Remark: According to [24], if the inclusion test (7) is satisfied, the spectral radius ¢(dnd

even that of C'|, which is the matrix of absolute values 6 is less then 1, ensuring the con-
vergence of the iteration (also in the interval case). Furthermore, this implies also the nonsin-
gularity of R and of A and thus the uniqueness of the fixed point.

A problem which still remains is that we do not know whether we can succeed in achieving
condition (7). For example, in the trivial casewof= 1 with ay; = 0.1,b = 0, andz = 1, the
iteration converges to the unique solutioh= 0. However, the convergence is monotonically
decreasing, and (7) is never satisfied.

To force (7), we therefore introduce the concept-ofiflation, which blows up the intervals
somewhat, in order to "catch” a nearby fixed point. For a real intémjalwe denote-inflation
with the functional notatioblow ([w], €), where

] A +e)w] —€ew] ,if diam([w]) > 0,
blow(w], ) = { [pred(w), succ(w)] , if diam([w]) = 0, (8)

respectively, wherdiam([w]) is the diameter of the intervadliam ([w]) = w — w) and in the
casediam([w]) = 0, [w] = w is assumed to be a floating point number, ameld(w) and
succ(w) are its predecessor and successor in the floating point screen. Similarly, we use the
e-inflation blow (-) also for interval vectors and matrices, where it is applied componentwise.

It can be shown, e.g. [26] that (7) will always be satisfied after a finite number of iteration
steps, whenever the absolute valae of iteration matrixC' has spectral radius less than 1.

We have not yet said how we compute our approximate solutiand the approximate
inverseR. In principle, there is no special requirement about these quantities, we could even
just guess them. However, the results of the enclosure algorithm will of course depend on the
quality of the approximations.

We now sketch the method we use in our C-XSC program for the computati®antlz.

To begin with, we do not use a special algorithm for the computation of the approximate
solution, since we must compute an approximate inv&rse A~! anyway. Thus, we also have
immediately an approximate solutian:= Rb. However, the quality of this approximation is
often not sufficient for the interval iteration to converge fast. Therefore, we first improve this
approximation by use of an iterated defect correction:

Frpr = ik + R(b— Afy) (9)

using floating point arithmetic only and the exact scalar product for the defedtr,. Improv-
ing the approximation in floating point arithmetic first is much cheaper than computing many
interval iterations later.

For the computation of the approximate inverdewe use the well-known Gauss-Jordan
algorithm with column pivoting [28]. We do not repeat the algorithm here since it is well-
known and it is listed as C-XSC code in Section 5 anyway. However, we explain a minor
change in the algorithm which was included in order to make the algorithm more robust in
the case of almost singular matrices. This modification concerns the elimination steps of the
Gauss-Jordan algorithm which may produce exact zeros on the computer because of rounding



2 THEORETICAL BACKGROUND 7

errors. Later in the computation, when a pivot element is to be searched for, it could be the case
that no pivot can be found since all candidates are exact zeros on the machine, thus causing a
breakdown of the Gauss-Jordan algorithm, even when the true values of some pivot candidates
are not zero. Therefore, we replace any exact zero value which was produced in an elimination
step by a nonzero value in the order of magnitude of the roundoff error, i.e. we replace the
result ofa — a = 0 by ea wheree is the relative machine precision. This modification forces
the Gauss-Jordan algorithm to execute completely for any nonsingular matrix (and also many
singular matrices). Now the failure to find a pivot element also means that the zeros have been
already in the input matrix, which therefore is surely singular.

In very ill conditioned cases, the quality &f computed this way will not be sufficient, i.e.
the spectral radius df”| will not be less then 1, and the inclusion test will never be satisfied.
In this case, we stop the interval iterations after a specified number of iterations (10, say) and
recompute the approximate inverse in higher precision. The method we use is due to Rump,
[23], so we call it Rump’s device.

Assume we have an approximate invefg¢as we do from the Gauss-Jordan algorithm),
then even ifA is very ill conditioned, the matri? A is usually very much better conditioned
thanA is. Now the simple relation

A" = (RA)'R (10)

suggests that we compute another approximate inverdeR A and take the product &f and
R as a better approximation ¢f . Since we can compute this product exactly with the aid of
the exact scalar product in the long accumulator, it is also easy to approximate it by the sum of
two matricesR; andRs.

Summarizing, we can compute an approximate invése R, of double length (stored in
two real floating point matriceB;andR,) by the following steps:

1. compute an approximate invergeof A with Gauss-Jordan, modified to replace zero
valueslatex Isscxsc.

2. computeRA.
3. compute an approximate inverSef RA with Gauss-Jordan.

4. computeSR in the long accumulator, and store it as sum of two floating point matrices
R, andRs.

Now that we have an approximate inverse= R+ R, of double length, we can execute the
algorithm described above with thisby using the exact scalar product whenekter R; + R;
is used in the algorithm.

The overall strategy of our method finally is:

e Compute an approximate invergeof single length and execute the enclosure algorithm.
If this fails then

e improve the approximate inverse by Rump’s device and execute the enclosure algorithm
with the double length approximate inverBe= R + R».



2 THEORETICAL BACKGROUND 8

Now that we have treated the case of one linear equation with one right harid wieléurn
to the inversion of a matrixl. The inverseX = A~! is the solution of the matrix-equation
AX = I with then x n identity matrix on the right hand side. This equation can of course be
solved column wise, thus obtaining the columnstof= A~! successively.

For then individual matrix-vector equations which have to be solved, we use the algorithm
just presented. In order to keep the computational overhead small, we use some simple ob-
servations to avoid the recomputation of intermediate quantities in the algorithm: Since all
equations have the same coefficient mattixit would be a big waste of computation time to
recompute the approximate inverBeand the iteration matrix’' = (1 — RA) for each of the
n matrix-vector equations. Rather, we will implement the algorithm for the square case (S) in
such a way that the approximate inverg¢or R,andR; if a double length inverse was needed)
as well as its residual matriX = &(1 — RA) (or C = <&(I — Ry A — Ry A)) are saved after the
first computation and are reused in the solution of the following equations.

In the C-XSC code, the function that computes solutions of the square matrix-vector equa-
tion (i.e. the local function.SS) must communicate with its calling functions for matrix-
equations which quantities of the algorithm have already been comphtefl( Ry, (1 —
RA),and{ (1 — Ry A— Ry A)) and can be reused in a future call. For this communication a flag
(namedFLAGS) is used in the C-XSC program code in Section 5 to avoid these unnecessary
recomputations.

Next, we consider the cases of over- and of under-determined systems. (For more details on
the theory see, e.g. [28].) In both cases, we assumetlen-matrix A to have full rank, i.e.
in the over-determined case (case (0)> n), A has rank:, and in the under-determined case
(case (Uu)m < n), A has rankn. Herex is ann-vector, and is anm-vector.

In case(0) the system (1) has no solution in general. Therefore, we are rather interested in a
vectorz which minimizes the Euclidian norm of the residual veates b— Ax, or, equivalently,
the square of this norm. That is, we seek the solution of the linear least squares problem:

| Az — b||3 = min .

It is well known (e.g. [28], [27]) that such anis uniquely determined (il has full rank), and
that it is the solution of the system pbrmal equations

Af Az = AHD, (11)

whereA" is the Hermitian matrix of4, i.e. the transposed matrix in the real case.

We could now proceed to compute’ A and A”b and to solve the resulting squatex n
system using the previously presented method. However, as is well kat¥ usually has a
very bad condition. Moreover, on the comput€f A can only be obtained with roundoff errors
or as an interval matrix, which makes the solution of this system difficult.

Instead, we follow the suggestion of [24] and rewrite (11) as a larger squaren) x (n +
m)-system, which can be solved by the previous method to very high accuracy (but also with
much higher computational effort i >> n). Introducing a newn-vectory = Ax — b, we
immediately obtaind’y = 0 from (11). We write these two equations in block form

(5 ) (0)=(5), @2



2 THEORETICAL BACKGROUND 9

a squargn + m) x (n + m) system ( is them x m identity matrix here). This system has
much better condition than the original normal equations.

Now it is straightforward to solve (12) by the method for square systemsz-aat of the
resulting enclosure then is an enclosure for the solutiohthe normal equations (11).

In a very similar way, we also proceed in the case of under-determined systems. Here, the
system (1) usually has infinitely many solutions, and we are interested in the yemtoong
these solutions which has minimal Euclidian norm. This vector can be determineg as
Af x, wherex is the solution ofAA” z = b. Again we write these two equations in block form

A T x 0
(o 3)(0)-()
again a square: +m) x (n+m) system (herd is then x n identity matrix). Again, we solve
this system (13) by use of the method for square systemsy-faet of the resulting enclosure
then yields an enclosure for the solution of our problem.
Finally, we treat the two cases (O) and (U), i.e. the computation of the Moore-Penrose
pseudo inversel™ of A in the over- and under-determined cases (here we also asdéume

have full rank).
In case (O), thes x m-matrix At (m > n) is given by (see e.g. [28], [27]).

At = (AF A1 AT (14)

or, equivalently, by the solutioni = A" of the matrix equatiom” AY = A¥ . Introducing the
m x m-matrix X = AY — I, we see thati”? X = 0 and, as previously, we can write these two

equations in block form:
A -1 Y I
(0w ) (%)-(0) &

where both identity matrices are x m.
Solving this equation column-wise with the algorithm for square matrices we get an enclo-
sure for the pseudo inverse" by extracting th& -block from the computed enclosure.
Since the pseudo inverse has the prope#ty)? = (A7)*, it follows from (14) thatin case
(V) (m < n), we have
A+ — AH(AAH)fl

or, equivalentlyA™* is the solutiort” = A+ of Y AAY = AH, Forthenxn-matrixX =Y A1,
we see that{ A = (. Taking the Hermitian of the two latter equations, we can again write

these in a block form: o u
A7 T Y I
(0 3 ) (e )= (6); ao

with the identity matrices being x n.

Solving this equation column-wise with the algorithm for square matrices, we get an enclo-
sure for the pseudo inverse" by extracting ther”# -block from the computed enclosure and
taking its Hermitian matrix as the result.

Remark: We should stress that the algorithms which were presented here for the cases (0), (u),



3 ALGORITHMS 10

(O), and (U) generally deliver very narrow bounds for the solution, but that they are computa-
tionally very expensive, at least in the case whete- n| is large since the solution is always
computed by use of a system of dimensio# m. There are other methods which can enclose

the solution more efficiently (though perhaps less accurately), see Section 7. The reasons for
the presentation of our methods are their high accuracy and that they are straightforward and
can be implemented in C-XSC in some 10-20 lines of code.

According to a remark in [24], the number of operations can be reduced substantially in our
algorithms for the cases (0), (u), (O), and (U) if we carefully observe the special structure of
the block coefficient matrice® and compute only those elements of the approximate inverse
R and its residual matrix — RB which are actually needed.

3 Algorithms

Following the theoretical discussion in Section 2, we can outline the following algorithms in a
pseudo Pascal notation.

Algorithm 3.1: Solution of problem (s): {proceduré
{Compute an enclosure for the solution of the square linear sydterm b}

Part| (approximate inverse of single length)
.1 compute an approximate invergeof A (e.g. using a Gauss-Jordan algorithm)

.2 compute an approximation:= Rb of x

improvezx by an iterated defect correction :

repeat

T:=7+ R(b— AZ)

until £ accurate enough or maximum iteration count exceeded
1.3 compute enclosures for the residuum:

Z = RO(b— Ax)

and for the iteration matrix:

C = O(I — RA)
[.4 interval iteration

Y =7

repeat

Y4 := blow(Y, €) {e - inflation }
Y =7Z+4+C-Yy
until Y C int(Y4) or maximum iteration count exceeded

1.5 if Y Cint(Y,) then
a unique solution: exists andr € 7 + Y
else
if in Part Ithen
Part | failed, goto Part Il withR, := R
else
algorithm failed, the matrix is ill conditioned or singular



3 ALGORITHMS 11

Part Il (approximate inverse of double length)
[I.1 (compute an approximate inverge:= R; + R, of A:)

S = Rl A

compute an approximate inverSefor S (e.g. asin l.1)
S =5 R

Ry :=8S5,-R —S

R, =S

[1.2 goto step I.2 of Part I.
Algorithm 3.2: Solution of problem (0): {procedurg
{Compute an enclosure for the solution of the over-determined linear systemb}
0 Af
b n—+m
Bbig = 0 € R
z n—+m
)/big = ( y ) e lR +

2. solveA;; Y, = By Using Algorithm 3.1
3. vectorz from the vectory;,, is the desired enclosure.

1. Abig = ( A =1 ) c R(n-}—m)x(n-‘rm)

Algorithm 3.3: Solution of problem (u): {procedur
{Compute an enclosure for the solution of the under-determined linear sylsteav}

AR ]
.: (n+m)x (n+m)
( " )m

Bbig = < 2 ) e IRvtm

x n—T+m
}/l-)ig = ( y ) € R +
2. solveAy;,Yy, = By, using Algorithm 3.1
3. vectorz from the vectory,,, is the desired enclosure.

Algorithm 3.4: Solution of problem (S): {procedurg
{Compute an enclosure for the inverse of the square matrix

1. (solveAX = I column-wise)
for : ;== 1tondo
begin
b; := e; (= i-th unit vector)
solve Ax; = b; using Algorithm 3.1
end

2. X = (xy,...,x,) isthe desired enclosure.



4 APPLICABILITY OF THE ALGORITHMS 12

Algorithm 3.5: Solution of problem (O): {procedurg
{Compute an enclosure for the pseudo inverse ofithe n matrix A, m > n}

1. Ay = ( 61 2[ ) € Rtmx(ntm) T g Rmm

Bbig — < I ) c Rn—l—me’ I c Rme’O c RnXm
X
YE)ig — ( Y ) c Rn+m><m’X c Rmxm’y c Rnxm
2. solveAy;; Y, = By, using Algorithm 3.4
3. blockX from the matrixY},, is the desired enclosure.

Algorithm 3.6: Solution of problem (U): {proceduré
{Compute an enclosure for the pseudo inverse ofithe n matrix A, m < n}

H
1. Abig = < AO AI ) c R(n-{—m)x(n—i—m)’ [ € [Rm*xm
Bbig ([) c BnerXn’ ] c Rnxn)o c Rmxn

H
YVbig e ( ;;H ) c BnerXn’X c R"X"7Y c anm

2. solveA;; Yy, = By, using Algorithm 3.4
3. blockX from the matrixY,,, is the desired enclosure.

4 Applicability of the Algorithms

The algorithms presented in Section 3 can be applied to any system of linear equations which
can be stored in the floating point system on the computer. They will, in general, succeed in
finding and enclosing a solution or, if they do not succeed, will tell the user so. In the latter
case, the user will know that the problem is very ill conditioned or that the mati®singular.

In the following implementation in C-XSC, there is the chance that if the input data contains
large numbers or if the inverse of or the solution itself contain large numbers, an overflow
may occur, in which case the algorithms may crash. In practical applications, this has never
been observed, however. This could also be avoided by including the floating point exception
handling which C-XSC offers for IEEE floating point arithmetic.

If the problem contains interval data in the matexor in the right hand sidé, then the
algorithms can be applied. However, the exact solution set is usually overestimated by the
enclosure which is computed by the algorithm. Usually this overestimation becomes larger as
the diameter of the inputinterval increases. For certain classes of matrices for which the optimal
interval hull of the solution set can be computed (e.g. interval M-matrices), this algorithm will
usually overestimate the solution set. This overestimation can be estimated by use of certain
guantities appearing in the algorithm. We will not discuss this here, however. For details see
e.g. [25] and [6].



5 C-XSC PROGRAM CODE 13

5 C-XSC Program Code

The C-XSC program which is given here is written for the case of real input data} iseof

type rmatrix andb is of type rvector However, because of the clear structure of C-XSC, it is
easy to transform this program code to make use of the other dataitygesl, complexand
complex interval The changes in the program are mainly changes of the data type of certain
variables and functions. We will indicate the necessary changes at the end of this section. (In a
future implementation the data type should be a template parameter.)

The following moduld ss_apr x contains the functiomM NV which computes an approx-
imate inverse of the input matrik of type rmatrix using the Gauss-Jordan algorithm (see e.g.
[28]). The parameteiis for input and output. The second parameter indicates whether an
approximate inverse could be computed  or =0) or if the computation failedgr r or =1).

There is, however, one trick included in this algorithm: in order to be able to complete the
algorithm even for ill conditioned matrices, we avoid computing matrix elements which are
exactly zero in the elimination step. For ill conditioned matrices, these elements could appear
later as pivot elements, thus forcing the computations to break down. If the elimination step
would yield an elemen&[ | ] [ k] which is rounded to an exact zero, we rather replace it by
eps*a[l ][ k] with the old value ofa[ | ] [ k] and aneps close to the relative machine
precision. If we then still find a zero pivot element, then it must have been in the input matrix.
Hence, the input matrix was actually singular. (This is, however, only almost true, since we did
not consider the possibility of underflow in the multiplicateps*a[ | ] [ k] ).

The reason why the array index computations look somewhat complicated is that we do not
assume that the matr&xhas the same index ranges in both dimensions, it only has to be square.
E.g. if Ais 10 x 10 the first index might run frond to 9, whereas the second index could run
from —5 to 4.

/ File: Iss_aprx (header)

/ Purpose: Compute an approximate inverse of the square matrix A

/ dobal functions:

/ M NV(): Computes the approximate inverse of a square matrix A using
/ t he Gauss-Jordan al gorithm

#i fndef __ LSS APRX_HPP
#define _ LSS APRX_HPP

#include <l _rmatri x. hpp> /1l Long Real matrix/vector arithnetic
#i ncl ude <i ntvecto. hpp> /1 Integer vector type

usi ng namespace CXsc
usi ng namespace std;

extern void MNV ( rmatrix& int&);

#endi f

/1l File: Iss_aprx (inplenentation)
/1 Purpose: Conpute an approxinmate inverse of the square matrix A



5 C-XSC PROGRAM CODE 14

/1 d obal functions:

/1 M NV(): Conputes the approximate inverse of a square matrix A

/1 usi ng the Gauss-Jordan al gorithm

e e

#i ncl ude <l ss_aprx. hpp>

usi ng namespace CXSc;
usi ng namespace std;

const real eps = le-15;

e e L
/1 M NV conputes approximate inverse of the matrix A by use of the

/'l Gauss-Jordan al gorithm

/1A : input matrix and out pout of approxi mate inverse

[l err : Error indicator = 0 everything ok, = 1 matrix singul ar

e e e L

void MNV( rmatrix& A, int& error )
{

i nt i, j, k, aul, au2, aol, aoZ?;
bool ok;
r eal h;

rvector ahx( Lb( A ROW, Ub( A, RON );
i ntvector v( Lb(A ROW, Ub(A RON );

i nt l;

aul = Lb(A RON; aol = Ub(A ROW;

au2 = Lb(A COL); ao2 = Un(A COL);

ok = ((aol - aul) == (ao2 - au2))? true : false; // square matrix ?

/1 Vector that will control what’s happening with the colum
for(i = aul; i <= aol; i++) v[i] =1i;

[
j
\{Nhile( (j < ao2) && ok )

aul-1; // Row index
au2-1; // Colum i ndex

i++; j++; [/ i and j run sinmultaniously
/1 pivot search
if (] < ao2)
{I _
=1,
for( k = i+1; k <= aol; k++)
ifl( ng_A[k][j] ) >abs( ALII[]] ) )
/'l row interchange
if(i '=1)
aux = A[l]; AllI] = Ai]l; Ali] = aux;
k = v[I]; vl =v[i]; v[i] =Kk;

}

[/ transfornmation
if( Alil[j] == 0) ok = fal se;



5 C-XSC PROGRAM CODE 15

el se

{h 1.0/ AilLil;
Col (A/j) = h * rvector( Col (Aj) );
AT = hy

J ]
k = au2; k <= a02; k++)

[
( k!=1])

for( I = aul; | <= aol; |++)
if(Cl '=i)
h =AIT[k] - ALI'I[j] * ALTT[K];
if( h==0.0) AI[K *= eps;
else AII'][k] = h;

}
} ATk == -ALTL]s /1 ALPTTK] = -ALTT[K] = AL ]

}

/1 colum interchange
i f(ok)
for( k = aul; k <= aol; k++)

| = au2 + k - aul;
while( v[k] !'= k)
{

= v[Kk]; v[k] = v[i]; v[i] =1i;
= au2 + i - aul;
aux = rvector( Col (A/j) ); Col(Aj) = Col (A1); Col (A ) = aux;

[SS—

}
error = !ok;

} /1 end M NV

The following moduld ss. cpp contains the functions which solve the problems (s), (0),
(u), (S), (O), and (U) stated in Section 1 for a coefficient matrix of typatrixand a right hand
side of typervector

There are only two global functions contained &s — LSS andl NV —which can be called
from modules other thahss. LSS accepts linear systems of the form (1) with any matrix,
checks the dimensions of the coefficient ma#kixand calls other functions which handle the
square or rectangular cases. SimilarlV checks its parametéyand calls other routines for
the square or rectangular cases.

The functions have the following meanings (in order of their static appearance):

REL :

Computes the maximum relative error of the components of the two parameter &ctors
andB. It is used in the stopping criterion of the real defect iteration for an improvement of the
real approximations in the pattiSE_SI NGLE_RandUSE_DOUBLE_R (both local to the first
functionLSS).

TOO BAD:
Checks the accuracy of the parametelf at least one componentis larger tHar 0%°, 10%]
then the function yield3RUE elseFALSE. It is used to abort the interval iteration if it seems



5 C-XSC PROGRAM CODE 16

to diverge (again iUSE_SI NGLE_RandUSE_DOUBLE_R).

GUESS_ZERCES:

Tries to guess whether a component of the solution is equal to zero. This is assumed to be
the case if this component (i) has changed sign in the last two successive iterations or if (ii)
it has decreased by more than a factod@f® from the previous iterate to the current iterate
and if it is less in magnitude thal® —°¢ times the maximum magnitude of all other components
of the current iterate. Replacing such components by zero often improves the enclosures by
many orders of magnitudes. On the other hand, if the guess was wrong, then zero is still a good
approximation such that the enclosures will stay good.

LSS:

It implements the algorithm for a square systdm = b by first trying an iteration with an
approximate inverse of single lengtdSE_SI NGLE_R). In case we are not successful, com-
pute an approximate inverse of double lengtSE_DOUBLE_R). This function is the central
function of the module. Input parameters &andb. Output parameters akkander r code.
The other parameters are for input as well as for output. SiuSSis called by the functions
for matrix inversion several times, the computation of the approximate inveRie$p) and
the iteration matrixCis controlled by the paramet&t. AGS which indicates in successive calls
to LSS which of the matriceRl, R2, Chave already been computed in order to avoid un-
necessary and costly recomputation of these quantities. For details, see the comment at the
beginning ofLSS.

USE_SI NGLE_R: (local toLSS)

This part implements the algorithm by using an approximate invietsef single length
which is computed by the functiddd NV.

After the computation oR1, we compute an approximate solutirt = R1*b and ex-
ecute a defect iteration in floating point arithmetic to improve this approximation It is
essential to use scalar product expressions since the computation of the rekBiduuAt x0
must necessarily suffer from severe cancellation. This iteration is stopped if (i) the maximal
relative erromp is less thamlel t a (= 107'°) or if the relative error decreases very slowly only,
such thap becomes larger thasound, which is multiplied by a factor o /0.1 in each iter-
ation starting after the 5th iteration. This means roughly that after the 5th iteration, we expect
the approximation to gain at least one decimal digit each two iterations, otherwise we stop the
iteration process.

Subsequent to this floating point iteration, we try to guess whether some of the solution
components are exactly zero by calling funct®UESS ZERCES.

Next, we compute an enclosure of the residual A*x1 in double length (real vectgrO
plus interval vectoiYl) in order to get still high accuracy for the product wih. Here the
repeated computation @ x1 inside the#-expressions could be avoided if these expressions
were computed component-wise by use of a variable of tigiprecisionHowever, since these
computations are cheap relative to the rest of the algorithm, we prefer this version which is
much easier to read.

If the residual is exactly the zero vectal] is an exact solution of the system. Thus we can



5 C-XSC PROGRAM CODE 17

stop the algorithm at this point and need not continue with the costly interval iteration However,
stopping here means that we have an exact solution, but that we do not know if it is unique. If
we need uniqueness we have to continue with the interval iteration.

Finally the iteration matrixC is computed (again with scalar product expression because of
cancellations), and the interval iteration for the deféttof the approximatiorx 1 is executed.
Beginning with the 5th iteration, the inflation paramedess is multiplied by 5 in each iteration
in order to accelerate convergence or divergence. This iteration is stopped (i) if it was successful,
i.e. if an iterateY1 is contained in its predecess¥éA, (ii) after a maximum iteration count of
10, or (iii) if the accuracy becomes too bad (indicating divergence).

In the case of a successful interval iteration, the resulting enclosiir®&1 of the solution
is returned inY, and the error code is set to zero.

USE_DOUBLE_R: (local toLSS)

This part implements the algorithm by using an approximate invRiseR2 of double
length (i.e.R1 andR2 are of typermatrix), which is computed by the use of Rump’s device
as explained in Section 2.

The following steps are completely analogous to thos&/S&E_SI NGLE_R except that
wherever the approximate inverse appears, the double length representation has to be used.
Note that in the floating point defect iteration, the iterates are computed in double length also
(x1+x0) but subsequently only the most significant pait is used. Also, note thatO is
an auxiliary variable in the floating point iteration. Here again we make use of a repeated
computation ofA* x1 only to make the program easier to read.

SQUARE_LSS:

This function treats the case of a square coefficient matrix. The trivial casexoflanatrix
is solved explicitly. Fom > 1, the storage foR1, R2, C, andFLAGSIs allocated for a call
of the functionL SS described above.

OVER_LSS, UNDER_LSS:

These functions handle over- and under-determined linear systems, respectively. Both func-
tions allocate variableBl G_A, Bl G_B, andBI G _Y for the augmented problems and initialize
Bl G_A andBI G_B appropriately according to Section 2. Then this augmented square system
is solved by a call to functio®QUARE_LSS. Finally, those components of the big solution
vector needed for the solution of the original problem are extracted.

LSS:

This function is the only global entry for the solution of linear systems in this mddsge It
first checks the parameter for consistent dimensions, then decides which case (s), (0), or (u) has
to be treated, and calls the appropriate funcBQRARE LSS, OVER LSS, or UNDER LSS.

SQUARE_| NV, OVER | NV, UNDER _| NV, I NV:

These functions compute enclosures for the inverse matrices (or the pseudo inverse) and are
completely analogous to those for linear systems. As mentioned abidVvas the only global
function for this purpose and calls the other ones appropriately. The only difference from the



5 C-XSC PROGRAM CODE 18

corresponding LSS functions is that they compute the inverse column-wise and therefore have
to call the local linear system solving functitu§S several times. Therefore, the matrices
R1, R2,andCare defined locally in these functions and their computation is controlled by the
variableFLAG as discussed previously (see function loc&8S). In function SQUARE | NV,

the resulting columns of the inverse matybare first written into the rows of the result matrix.
Therefore,Y has to be transposed at the end of the function.

e R T T
/1 File: |ss (header)

/1 Purpose: Conpute approximtions to the solution x of Ax = b and an

/1 approxi mations of the inverse of A In both case the system (mx n)
/1 can be square (m=n), over-determned (m> n) and under-deterni ned
/1 (m< n).

/1 d obal functions:

/1 LSS(): Ceneral entry for linear system sol ver

/1 INV(): Ceneral entry for matrix inversion
e e L

#i fndef _LSS_HPP
#define _LSS HPP
#i ncl ude <imatri x. hpp> /1l Include real and interval types
/1 for Vector/Matrix
#include <nvi _util.hpp> // Include real and interval utilities
/'l for Vector/Matrix
#i ncl ude <l ss_aprx. hpp> // Include library for matrix inversion
#i ncl ude <i ostreanr
#i ncl ude <i omani p> /1 for 1/0O manipulation

usi ng namespace CxXsc
usi ng namespace std;

extern void LSS( rmatrix& rvector&, ivector& int&);
extern void INV( rmatrix& imtrix& int&);

#endi f

/1 File: Iss (inplenmentation)

/1 Purpose: Conpute approximtions to the solution x of Ax = b and an

/1 approxi mations of the inverse of A. In both case the system (m x n)
/1 can be square (m= n), over-determned (m > n) and under-detern ned
/1 (m<mn).
/1

/1

/1

/

o

G obal functions:
LSS(): Ceneral entry for linear system solver.
INV(): Ceneral entry for matrix inversion

#i ncl ude <l ss. hpp>

usi ng nanespace cxsc
usi ng nanespace std;

const real zerotest = le6;

const real delta = le-15;
const real epsl = le- 15;
const real sqrt_01 = 0.31622777,



5 C-XSC PROGRAM CODE 19

const real limt = 1e20;
static int m n, dim
static ivector null (ivector A

return (A = 0);

}
e e LR R
/1 REL conputes conponentw se the maximumrel ative error of Awr.t B

/1 if Ali] and B[i] do not have the sane sign or if B[i] = 0, then

/1l rel. error = 0 for this conponent.

/1 Ais always the new value of an iteration, B the old one.
e i R

real REL( rvector A, rvector B)

int i;
real p,r,ai,bi;

p=0;
for(i=Lb(A);i<=Ub(A);i++) // A B nust have sane index range
{

bi ;

if( ai*bi <= 0.0 || zerotest*abs(ai) < abs(bi) ) r = 0.0;
else r = abs( (ai-bi)/bi );

if (r>p) p =r;

return p;
} // end REL

I e i
/1 TOO BAD = accuracy of Ais far too bad

// note: O for false, 1 for true;

I e e

bool TOO BAD( ivector &A)
{

int i;
bool bad;

bad = fal se;
for(i=Lb(A);i<=Un(A);i++)

bad = bad || Inf(Ali]) <-limt &% Sup(Ali]) > limt;

return bad;
} // end TOO BAD

1is the new, x0 the old value of an iteration. If a conponent of x1
as decreased by nore than a factor of zerotest, then this conponent
s set to 0. The sanme is done if the sign of a conponent has changed.

— > X



5 C-XSC PROGRAM CODE 20

voi d GQUESS ZERCES(rvector& x0, rvector& x1)

int i;
real MAXX;
MAXX = 0. 0;

for(i=Lb(x1);i<=Ub(x1);i++)
i f(abs(x1[i])>MAXX)
for(i—Lb(xl) i <=Ub(x1);i++)
if( xO[i]* x1[|] < 0.0 || zerotest*abs(x1[i]) < abs(xO[i])
&& I\/AXX> zerotest*abs(x1[i]) )
x1[i] = 0.0;
} /1 end GUESS_ZERCES

The result of Y is an enclosure of the solution
errcode = 0: Y is enclosure of the solution
errcode = 1: no enclosure obtained, bad condition (?)

/1

/1

/1

/'l errcode 2: no enclosure obtained, matrix A singular (?)

/1

/1 FLAGS = 0: R1, R2,C have not yet been conputed

/1 FLAGS = 1. only Rl has been conputed

/1 FLAGS = 2: Rl and correspondi ng C have been conputed

/1 FLAGS = 3: Rl and R2 are conputedbut not the corresponding C
/1 FLAGS = 4. Rl, R2 and the correspondi ng C have been conputed
/1

void LSS(rrmatrix& A, rvector& b, ivector& Y, int& errcode, rmatri x& R1,
rmatrix& R2, imatrix& C, int& FLAGS)

{
rmatrix D( Lb(A 1),Ub(A 1),Lb(A 2),Ub(A 2) ),
R2t enp( Lb(A 1), Ub(A 1), Lb(A 2),U(A 2) );
rvector x0( Lb(A 1), U(A 1) ), x1( Lb(A 1),Ub(A L) ),
yO( Lb(A 1), Uo(A 1) ), xltenmp( Lb(A 1),Ub(A 1) );
i vect or Y1( Lb(A 1),Uo(A 1) ), YA( Lb(A 1),Ub(A 1) ),
Z( Lb(A 1), Ub(A 1) ), Yltenp( Lb(A, 1) Ub(A 1) );
i nt i,j,k,err;
bool ready,
r eal p, bound, eps1;

dot preci sion accu;
i dot preci sion iaccu;

ready = fal se;

/1 begin USE_SINGLE R - conpute approximte inverse of A
i f (FLAGS<3)
{

err = 0;
i f (FLAGS<1)

RL = A
MNV( R1, err );
if (err==0) FLAGS = 1,

if (err==0)
/1 floating point defect iteration: result is x1

—~———

bound = 100.0*sqrt_01;
x1 = Rl*b;

k = 0;

do



5 C-XSC PROGRAM CODE

/1
/1

/[l iterate x = x + R*(b-Ax)
{

k = k + 1;

x0 = x1;

[l x1 := #*(b - A*x0)
for (i=Lb(x0);i<=Ub(x0);i++)
{

accu = b[i];
accunul ate(accu, - Al Rowmi )], x0);
x1[i] = rnd(accu);

[l x1 := #*(x0 + R1*x1)

for (i=Lb(x1);i<=Ub(x1);i++)

{
accu = x0[i];
accurul ate(accu, RI[ Rowmi )], x1);
x1ltenp[i] = rnd(accu);

X1 = x1ltenp;

p = REL(x1, x0);
i f(k>5) bound = bound*sqrt_01;

} while ((p<bound || k<=5) && p>=delta);

GUESS_ZERCES( x1, x0) ;

21

Comput e encl osure y0+yl of the residuum b-A*x1 of the aproximation x1
and initialize Y1:=Z:= Rl*(b-A*x1), C=1-Rl*A

[l y0 := #*(b- A*x1)
for (i=Lb(x1);i<=Ub(x1);i++)
{

accu = b[i];
accunul ate(accu, - AlRowi )], x1);
yO[i] = rnd(accu);

11 Y1 = ##(b- A*x1-y0)
for (i=Lb(x1);i<=Up(x1);i++)
{

accu = b[i];
accunul ate(accu, -Al Rowmi)], x1);
accu = accu - yO[i];
rnd(accu, Y1[i]);
}

/1 Y1 := ##( R1*y0 + RI*Y1 );
for (i=Lb(RL,1);i<=Upb(RL,1);i++)
{

iaccu = 0.0;

accurul ate(i accu, RL{Rowi )], y0);
accunul ate(i accu, RI{ Row(i )], Y1);
rnd(i accu, Yltenp[i]);

}
Y1l = Yltenp;
Z = Y1,

if (Z==null (2))

{
Y = x1; // exact solution! (however,
errcode = 0;

not

necessarily uni que!)



5 C-XSC PROGRAM CODE 22

ready = true;
el se
i f (FLAGS<2)

/1 C:= ##( ID(A) - RI*A);

for (i=Lb(A 1);i<=Ub(A, 1);i++)
for (j=Lb(A 2);j<=Ub(A 2);]++)
{

accu = (i ==j) ?2 1.0 : 0.0;
accumul ate(accu, -R1[i],A[ Col (j)]);
rnd(accu, Jil[j]);

FLAGS = 2;
}

// interval iteration until inclusion is obtained
/1 (or max. iteration count)

k = 0;

epsl = 0. 1;

do

if (k>=5) epsl = 5*epsl;
k = k+1;
YA = Bl om Y1, epsl);
Y1l = Z + C'YA
ready = in(Yl, YA ;
} while ( !ready && k<10 && ! TOO BAD( Y1) );

/1l output of the result

if (ready)
{
Y = x1 + Y1,
errcode = O;
}

}

el se ready = fal se;
} // end USE_SINGE R

if no success: try again with approximte inverse
R = R1+R2 of double I ength
USE_DOUBLE R to try again with approxi mate inverse
R = R1+R2 of double I ength

err = 0;
i f (FLAGS<3)

R2 = R1*A;

M NV(R2, err);
if (err==0)
{

FLAGS = 3;

D = R2*RIL;

/I R := #* (R2*RL - D);

for (i=Lb(RL,1);i<=Uo(RL,1);i++)
for (j=Lb(RL,2);j<=Ub(RL,2);]j++)
{

accu = -D[i][j];



5 C-XSC PROGRAM CODE

i
/
{

f
/

accunulatF(?CEU,RZ[i],Rl[Col(J)])?

Rtemp[i][] rnd(accu);
}
R2 = R2tenp;
Rl = D
}
(err==0)
floating point defect iteration: result is x1+x0

bound = 100. 0*sqrt _01;

Il x1 := #( RL*b + R2*b );
for (i=Lb(RL, 1);i<=Ub(RL,1);i++)
{

accu = 0.0;

accunul ate(accu, RI[ Rowmi )], b);
accunul ate(accu, R2Z[Rowi )], b);
x1[i] = rnd(accu);

}

/1 X0 = #*( Rl*b + R*b - x1):
for (i=Lb(RL,1);i<=Uo(RL,1);i++)
{

accu = -x1[i];

accunul ate(accu, RI{Row(i )], b);
accunul ate(accu, R2[Rowi )], b);
x0[i] = rnd(accu);

}

k = 0;
do

/] iteration x = x + (RL+R2) *(b- Ax),

{
k = k+1;

/1 yo = #*(b - A*x1 - A*x0)
for (i =Lb(A, 1);i<=Ub(A, 1);i ++)
{

accu = b[i];
accumul at e(accu, - Al Rowmi )], x1);
accurul ate(accu, - Al Rowmi )], x0);
yO[i] = rnd(accu);

}

[l y0 := #*(x0 + RL*y0 + R2*yO0);
for (i=Lb(R1,1);i<=Ub(RL,1);i++)
{

accu = x0[i];
accunul ate(accu, RI{ Rowmi )], y0);
accurul ate(accu, R2[ Rowmi )], y0);
x1ltenmp[i] = rnd(accu);

}

y0 = x1ltenp;

p = REL (x1+y0, x1+x0);
y0 = x1 + yO0;

Il x0 := #*(x1 + x0 - y0)
for (i=Lb(x1);i<=Lb(x1);i++)
{

accu = x1[i] + xO[i] - yO[i];

X = x1 + x0)

23



5 C-XSC PROGRAM CODE 24

x0[i] = rnd(accu);
1(1 = y0;

if (k>5) bound = bound * sqgrt_01;
} while ( (p<bound || k<=b) && p>=delta );

/1 compute enclosure y0+Y1l of the residuum b-A*x1 of the approxination
/1 x1 and initialize Yl1.= Z:= (R1+R2) *(b- A*x1), C = |-(R1+R2)*A

[l y0 := #*(b- A*x1)
for (i=Lb(x1);i<=Ub(x1);i++)

accu = b[i];
accunul at e(accu, - Al Row(i)], x1);
yO[i] = rnd(accu);

1 Y1 = ##(b- A*x1-y0)
for (i=Lb(x1);i<=Up(x1);i++)
{

accu = b[i];
accunul ate(accu, -Al Rowmi)], x1);
accu = accu - yO[i];
rnd(accu, Y1[i]);
}

/1 Y1 := ##(R1*y0 + R2*y0 + RL*Y1l + R2*Y1 );
for (i=Lb(RL,1);i<=Uo(Rl,1);i++)
{

accu = 0.0;

accunul ate(accu, RI[ Rowmi )], y0);
accunul ate(accu, R2Z[Rowmi )], y0);
iaccu = accu;

accurul ate(i accu, RL{Rowmi )], Y1);
accunul ate(i accu, RR2[ Row(i)], Y1);
rnd(iaccu, Yltenp[i]);

}
Y1l = Yltenp;
Z = Y1,

if (Z==null(2))
{

Y = x1; // exact solution! (however, not necessarily unique!)
errcode = 0;
ready = true;

}

el se
i f (FLAGS<4)
{

[l C=## (ID(A - RI*A - R2*A);

for (i=Lb(A 1);i<=Ub(A 1):i++)
for (j=Lb(A 2);j<=Ub(A 2);]j++)
{

accu = (i ==1j) ?2 1.0 : 0.0;
accunul ate(accu, -R1[i], A Col (j)1);
accunul ate(accu, -R2[i],A[Col (j)]);
rnd(accu, Qi][j]);

}

FLAGS = 4,



5 C-XSC PROGRAM CODE 25

/1 interval iteration until inclusion is obtained
/1 (or max. iteration count)
k = 0;
epsl = 0. 1;
do
U
if (k>=5) epsl = 5*epsli;
k = k+1;
YA = Blowm Y1, epsl);
Y1l = Z + CYA
ready = in(Yl, YA ;
} while ( !ready && k<10 && ! TOO BAD( Y1) );

/1 output of the result
if (ready)
{

Y = x1 + Y1,
errcode = O;

el se errcode = 1;

}

el se errcode = 2;
} /1 end USE_DOUBLE_R
} // end LSS

e i e
/1 Linear system square nmatrix

/1 The result y is an enclosure of the solution of Ax = b

e e

void SQUARE LSS( rnatrix& A, rvector& b, ivector& y, int& errcode)

rmatrix R1(Lb( A ROW, Ub(A ROW, Lb(A ROW, Ub(A ROW),
R2(Lb( A ROW , Ub( A, ROW, Lb(A ROW , Un( A ROW ) ;
imatrix C(Lb(A ROW , Ub(A ROW, Lb(A ROW, Ub( A ROW) ;
i dot preci sion Accu;
i nt FLAGS;
if( dim==1) /1l Treat trivial case separately
if( AlILb(A, RON][Lb(A CO)] == 0.0 ) errcode = 2;
el se

t y[Lb(y)] = interval ( b[Lb(b)] ) / Al Lb(A RON][Lb(A CO)];
errcode = O;

}

el se

FLAGS = 0;
LSS( A b, y, errcode, Rl, R2, C, FLAGS );

}
} /1 end SQUARE_LSS

i near system over-determ ned case
he result Y is an enclosure of the solution x of AH*A*x = AH*D,
e. X is least squares solution of Ax = b.

-4

/1
/1
/1
/1 | A -1 | |x] | b]



5 C-XSC PROGRAM CODE

/ From Ax = b we generate the (n+m)x(n+n)-system | | 1 |
; | 0 AH| |y]
/ Here, AHis the hermitian of A (transpose in the real case)

void OVER LSS( rmatrix& A, rvector& b, ivector&y, int& errcode)
{

rmatrix BIG A(1l,dim1,dim;

rvector BIG b(1,dim;

ivector BIGy(1,dim;

i nt i, j;

BIGA( 1,m 1,n) = A

/[l BIGA( 1,m n+l,n+m) = -1d(m;
for( i =1; 1 <= m i++)
for( j = n+l; | <= n+tm | ++)
(j ==1+2)? BIGA[i][j]l=1: BIGAI][jl = 0;

BIGA( mtl,mn, 1,n ) =
Bl G A( mtl, mtn, n+1, n+m
BIGb( 1,m) = b;

BIG b( mtl,mn ) = 0.0;

0. 0;
) = transp(A);

SQUARE_LSS( BIG A, BIGb, BIGy, errcode );

y =BIGy( 1,n);
} 1/ end OVER LSS

26

e e
/1 Linear system under-determ ned case

/1l The result Y is an enclosure of Y = AH*Xx with A*AH*Xx = b,

/[l i.e. yis solution of Ay = b with minimal Euklidian norm

/1 [AH -1 | |x]|

/1 FromAx = b we generate the (n+m)x(n+m-system | | | |

H | 0 Al |yl

/1 Here, AHis the hernmitian of A (transpose in the real case)

I e i

void UNDER LSS( rmatrix& A, rvector& b, ivector& y, int& errcode)
{

rmatrix BIG A(Ll,dim1,dim;

rvector BIG b(1,dim;

ivector BIGy(1l,dim;

i nt i, J;

BIGA( 1,n, 1, m) = transp(A);

/[IBIGA( 1,n, ml, mn ) = -1d(m;
for( i =1; i <=n; i++)
for( j = ml, j <= n+m j++)
(] ==i1+2)? BIGA[i][j]l=1: BIGAI][j]l = 0;

BIGA( ntl,ntm 1, m) = 0.0;
BIG A( n+tl, ntm nmtl, mn ) = A
BIGb( 1,n ) = 0.0;

BIG b( n+tl,ntm) = b;

SQUARE LSS( BIG A, BIGDb, BIGy, errcode );



5 C-XSC PROGRAM CODE 27

y = BIGy( mtl, mtn );
} /1 end UNDER_ LSS

/| General entry for |inear system solver: decides which case to treat

void LSS( rmatri x& A, rvector& b, ivector& y, int& errcode )

{

errcode = O;
m = Ub(A RON - Lb(A RON + 1;

n = Ub(A COL) - Lb(A CO) + 1;
di m = men;
if( m!= Ubo(b) - Lb(b) + 1) errcode =3; // b : wong dinension
if( n!'=Ub(y) - Lb(y) + 1) errcode =4; // y : wong dinension
if( errcode ==

if( m>n) OVERLSS( A b, y, errcode ); // over-determ ned system

el se /1 under-deterni ned system
if( m<n) UNDER LSS( A b, y, errcode );
el se
dim= n;

SQUARE LSS( A b, y, errcode ); // square system
}
} // end LSS

A T I i
/1 Inverse matrix: square case

// The result Y is an enclosure of the solution of AY = |

I i I R

voi d SQUARE_INV( rmatrix& A, imatrix& Y, inté& errcode)

rmatrix RL(Lb(A, ROW, Ub( A ROWN, Lb(A ROW, Ub(A ROW),
R2(Lb( A ROW , Ub( A, ROW, Lb( A, ROWN , Ub( A ROW ) ;

imatrix C(Lb(A ROW, Ub(A ROW, Lb(A ROWN, Ub(A ROW);

imatrix temp(Lb(A RON, Ub(A RON, Lb( A ROW, Ub( A, RCW)

rvector b(Lb(A ROW, Ub(A ROW);

ivector xTenp(Lb(A, RO/\) Ub( A, RO/\))

i nt i, err, FLAGS

if( dim== ) /1l Treat trivial case separately
if( AILb(A, RON][Lb(A COL)] == 0.0 ) errcode = 2;
el se

t Y[ Lb(Y, RQ/\)][Lb(Y COL)] =interval (1.0) / A Lb(A, RON][Lb(A CO)];
) errcode = 0;

el se

{
FLAGS
err =
b = 0.
for(i

0;

n oc?u

Lb(A, ROW; i <= Ub(A COL); i++)



5 C-XSC PROGRAM CODE

b[i] = 1.0;

LSS( A b, xTeer errcode, Rl, R2, C, FLAGS );
Y[ Lb(Y, RCW -Lb(A, RCW] = xTenp,

i f( errcode > err ) err = errcode;
b[i] = 0.0;

}

errcode = err;

[l Conputing: Y = transp(Y);

for( i = Lb(Y,RON; i <= Ub(Y,COL); i++)
Row(tenmp,i) = Col (V,i);

Y = tenp;

}
} /1 end SQUARE_I NV

I e L
/1 Inverse matrix: over-determ ned case

/1 The result Y is an enclosure of the pseudo inverse A+ of A

/1 -

/1 If m>nthen Y = A+ = (AHA) * AHis solution of:

/1

Il A -1 ] 1Y [1] ( A nxn )

/1| [ 1| =11 (X=AY- I: nxm )

/1] 0 AH| [X [0] (Y= A+ ©onxm )

/1 ( right hand side: )

/1 (1 : mm 0: nxm)

I e e

void OVER_INV( rmatrix& A, imatrix& Y, int& errcode)
{

imatrix C(1,dim1,dim;
rvector BIG b(1,dim;
ivector BIG Y(1,dim;

i nt i, j, err, FLAGS,

rmatrix RL(1,dim1,din, R(1,dim1,din, BIGA(1,dim1l,dim;

BIGA( 1,m 1,n) = A

/1 BIGA( 1,m n+l,ntm) = -1d(m;
for( i =1; i <=m i++)
for( j =n+l; j <= n+tm j++ )
(j ==1+2)? BIGA[i][j]l=1: BIGAI][j] = 0;

BIGA( m1, m#n, 1,n )

= 0.0;
BIG A( mtl, mtn, n+1, n+m)

= transp(A);
BIGb = 0. O,
FLAGS = 0;
err = 0;

for(j =1; j <=m j++)

|G b, BIGY, errcode, RL, R2, C, FLAGS )
rr ) err = errcode;

CoI(Y Lb(Y CG_)+J-1) = BIG Y(1,n);
}
errcode = err;
} /1 end OVER_ I NV

28



5 C-XSC PROGRAM CODE 29

/1 Inverse matrix: under-deternined case

/1l The result Y is an enclosure of the pseudo inverse A+ of A
/1 -1

/1 1f m<nthenY = A+ = AHF(A*AH) is solution of:

/1

/1 |AH -1 | |YH [1] ( A nxn )

/1| [ | | | | ( X=AY - |: nxn )

/1] 0 A |XH [O] (Y = A+ ©onxm )

/1 ( right hand side: )

/1 (1 : nxn, O0: nxn)
e e

void UNDER INV( rmatrix& A, imatrix& Y, int& errcode)
{
rmatrix RL(1,dim1,din, R(1,dim1,din, BIGA(1,dim1l,dim;
imatrix C(1,dim1,dinm;
rvector BIG b(1,dim;
ivector BIG Y(1,dim;
i nt i, j, err, FLAGS,

BIGA( 1,n, 1, m) = transp(A);

[/BIGA( 1,n, ml,mn ) = -1d(m;
for( i =1; i <= n; i++)
for( j = mtl; |j <= n+m j ++)
(j == 1+2)? BIGA[i][j]l=-1: BIGAIi][j] = 0;

BIGA( ntl,ntm 1, m) = 0.0;

Bl G A( n+1, n+m ml, mtn ) = A
BIGb =
FLAGS:
err = 0;
for( i =1; i <=n; i++)

{

0;

BIGb[i] = 1.

LSS( BI G A, BI

if( errcode >

BIGb[i] = 0.

Y[ Lb(Y, ROW +i - 1] = BIGY(1,m;
}

errcode = err;
} // end UNDER_ I NV

> b, BIG_ Y, errcode, RL, R2, C, FLAGS ) ;
rr

) err = errcode;

0
e
0;

void INV( rmatrix& A, imatrix& Y, int& errcode )
{

errcode = O;

m= Ub(A RON - Lb(A RON + 1;

n = Ub(A COL) - Lb(A COL) + 1;

di m = men;

|f(n': Uo(Y, RON -Lb(Y, RON+1 ) errcode = 3;
/1Y : wong nunber of rows

if(m: Ub(Y,COL)-Lb(Y,COL)+1 ) errcode = 4,
/1 Y : wong nunber of col ums

if( errcode == 0)



5 C-XSC PROGRAM CODE 30

if( m>n) O/ERINV( A Y, errcode ); // over-determ ned system
el se
if( m<n) UNDER INV( A Y, errcode ); // under-determ ned system
el se

{
dim= n;
SQUARE INV( A, Y, errcode ); // square system

}
} /1 end I NV

To conclude this section, we want to indicate changes required in the preceding C-XSC
program code to yield programs that treat the casestefval, complexandcomplex interval
input data.

First we consider the case of interval data, i.e. the input matisan interval matrix, and
the right hand sidé is an interval vector.

We construct a new file headel ss. hpp from the file headek ss. hpp by applying the
following changes:

e Change the statements
#i fndef LSS HPPand#defi ne LSS HPP by
#i fndef | LSS HPPand#define _|ILSS HPP.

¢ Change the statements
extern void LSS( rmatrix& rvector&, ivector& int&); and
extern void INV( rmatrix& imatrix& int&); by
extern void LSS( imatrix& 1ivector& ivector& int&); and
extern void INV( imatrix& imtrix&int&);.

We construct a new moduid ss from the moduld ss by applying the changes which we
describe now.
These are the changes in the first (local) functi®s:

e In the head of the function makeani mat ri x andb ani vect or.

¢ In the declaration part, add variablés of typer mat ri x andbmof typer vect or
which will be used to hold the midpoints & andb and the variable accu of type
i dot preci si on.

¢ In this function, replace the variabsecu by i accu in all statements that need to use
interval variables of typenmat ri x andi vect or.

¢ At the beginning of the function body, add the statements
AM = m d(A); andbm = m d(b);.

e In the partUSE_SI NGLE_R, replace the variables by AMandb by bmin each of the
four statements:
R1L = A
x1 = Rl*b;
accu = b[i]; and
accumnul at e(accu, - Al Row(i )], x0);



5 C-XSC PROGRAM CODE 31

e Alsoin USE_SI NGLE_R, replace (the variabliet enp is of typei nt er val )
yO[i]=rnd(accu); byrnd(iaccu,itenp); yO[i] = md(itenp);

e In the partUSE_DOUBLE_R, replace the variable&d by AMandb by bmin each of the
Six statements:
R2 = R1*A; accunul ate(accu, RI[ Rowmi)], b);
accunul ate(accu, RR[ Row(i )], b); accu = b[i];
accunul ate(accu, -AfRowmi)], x1); and
accunul ate(accu, - Af/Rowi)], x0);

e Alsoin USE_DOUBLE _R, replace (the variabliet enp is of typei nt er val )
yO[i]=rnd(accu); byrnd(iaccu, itenp); yO[i] = md(itenp);

The other functions in the module must be modified as follows:

e MakeAani matri x andb ani vect or in the heads of the functions:
SQUARE_LSS, OVER LSS, UNDER LSS, LSS, SQUARE | NV, OVER | NV, | NV
andUNDER | Nv.

e In SQUARE LSS andinSQUARE_I NV delete the conversion functiomt er val inthe
special casdi m = 1 and in both functions replace the test
Al Lb(A RON][Lb(A COL)] == 0.0 by the test
in(0.0, AlLb(A RONW][Lb(A CO)]).

e In the functionsOVER LSS, UNDER LSS, OVER | NV and UNDER | NV change the
types of the variableBl G_A andBI G _b to the types mat ri x andi vect or.

¢ In function SQUARE_I NV, change the type of the local varialdefrom r vect or to
i vector.

Next, we turn to the case of a complex input matdxand a complex input vectdr. In
this case, we also have to modify the functignNVto compute an approximate inverse of a
complex matrix.

We construct a new header fité ssapr x. hpp from the header filé ss_apr x. hpp by
applying the following changes:

e Change the statements
#1 fndef LSS HPP, and#defi ne LSS HPPto
#1 f ndef _CLSS HPP, and#define _CLSS HPP.

e Deleteall statement#i ncl ude and include the following statements:
#i ncl ude <ci matri x. hpp>,
#i ncl ude <i ntvector. hpp>,
#i ncl ude <ci _util. hpp>,and
#i ncl ude <i ostreanp.

e Change the statement
extern void MNV(rmatrix& int&); to
extern void MNV( cmatrix& int&);.



5 C-XSC PROGRAM CODE 32

Now we write a new modulel ssapr x by copyingl ss_apr x with the following modi-
fications:

The types of the paramet@rf M NV and the local variablesux andh must be replaced
by their equivalent complex typesmat ri x, cvect or, andconpl ex.

The two occurrences of the conversion functiarect or in the body ofM NV must be
replaced by the conversion functionect or .

We construct a new header fité ss. hpp from the header filé ss. hpp by applying the
following changes:

Change the statements
#i fndef LSS HPP, and#defi ne LSS HPPto
#i f ndef _CLSS HPP, and#defi ne _CLSS HPP.

Deleteall statement#i ncl ude and include the following statements:
#i ncl ude <cl ssapr x. hpp>, and
#i ncl ude <i omani p. hpp>.

Change the statements

extern void LSS( rmatrix& rvector&, ivector& int& ); and
extern void INV( rmatrix& imtrix& int&); to

extern void LSS( crmatrix& cvector&, civector& int&); and
extern void INV( cmatrix& cimatrix& int&);.

A modulecl ss will now be constructed as a copy of the modules by applying the
following changes:

Replaceall occurrences afmat ri x bycmatri x,rvect or bycvect or,i matri x
byci matri x, andi vect or byci vect or throughout the module.

In functionREL, change the type @i , bi fromr eal toconpl ex and delete the test
ai *bi <= 0. 0 without replacement.

In functionTOO_BAD, replace statement

bad = bad || Inf(A[i]) < -linit & Sup(A[i]) > linit;
by

bad = bad || InfRe(A[i]) < -limt && SupRe(Ali]) >limt
[] InfIm(A[i]) <-limt &% Suplm(Ali]) >1limt;

In functionGUESS_ZERCES, delete the testO[ i ] *x1[ i ] <0. 0 without replacement.

In the functionsSOVER_LSS, UNDER LSS, OVER | NV, andUNDER_| NV we must re-
place all function calls to the functiofRRANSP by calls to the functiotHERM This func-
tion must be included in the modut¢ ss. The code of the functioRERMis as follows:



6 TEST RESULTS 33

cmatrix Hernm( cmatrix &A )

{. .

int i;

cmatrix herm(Lb(A COL), Ub(A COL), Lb(A RON, Ub(A ROWN);
for(i=Lb(A ROWN;i<=Ub(A ROW ;i ++)

{
Col (hermi) = RowW A i);
}
return Setlmherm -1*Inm(herm );
}

¢ Additionally, inUNDER_I NV, the statemer[ Lb(Y, RON +i -1] = BIG_Y(1, m;
must be replaced by[ Lb(Y, ROW +i -1] = conj( BIG.Y(1, m );.

Finally, a new modulei | ss can be constructed from the moduless by applying ex-
actly the same changes as for the conversion fresmtocl ss.

6 Test Results
A very well known set of ill conditioned test matrices for linear system solvers are the
Hilbert matricesH,, with entries(H,,); ; := 2"‘]%1 As a test problem, we report the results

of our program for the linear system&, = = e;, wheree, is the first canonical unit vector. Thus
the solutionz is the first column of the inversé ! of the Hilbert matrix4,,. We give results
for the cases = 10 andn = 20. Since the elements of these matrices are rational numbers
which can not be stored exactly in floating point, we do not solve the given problems directly
but rather we multiply the system by the least common muliipte,, of all denominators in
H,. Then the matrices will have integer entries which makes the problem exactly storable in
IEEE floating point arithmetic. Fat = 10, we havelcm,g = 232792560 and forn = 20, we
havelcmgyy = 5342931457063200.

For the systenflcmoHyg)x = (lcmyge ), the program computes the result

z; | 1.000000000000000E+00
xy | -4.950000000000000E+0Q3
x3 | 7.920000000000000E+00
x4 | -6.006000000000000E+0Q5
x5 | 2.522520000000000E+00
ze | -6.306300000000000E+0Q6
x7 | 9.609600000000000E+00
xs | -8.751600000000000E+0Q6
x9 | 4.375800000000000E+00
x10 | -9.237800000000000E+0Q5

which is the exact solution of this ill conditioned system.
For the systeniicmqgHay)xr = (lemape; ), the program computes the enclosures (here an
obvious short notation for intervals is used)




7 NOTES AND REFERENCES 34

4.000000000000001E + 002

| e,
o s T
3 5.266799999999999 £ +- 006

zy | —1.716093509099999 E + 008
x5 | 3.294910059999908 £ + 009
T | —4.118637200500999 2 + 010
z7 | 3.569485929900900 2 4 011
zg | —2.23730278190099 E + 012
Ty | 1.044074631899040 E + 013
Ty | —3.70066452755000 E + 013
z11 | 1.0092721438500% F + 014
T | —2.13323430419999F + 014
713 | 3.50069219138909 F + 014
Ty | —4.443186242800F + 014
Ty | 4.316238064512005E + 014
Ti6 | —3.147256922030000E + 014
T17 | 1.6661948410800% F + 014
713 | —6.04404010929990 F7 + 013
Ti9 | 1.34312002449909% F + 013
Ty | —1.378465288109990F + 012

which is an extremely accurate enclosure for the exact solution. (The exact solution components
are the integers within the computed intervals).

7 Notesand References

In the program the case= 2 should of course be computed separately, as it is done forl.
This concerns the functiof8QUARE LSS andSQUARE | NV in modulel ss as well adM NV
in | ss_apr x. We have omitted these cases to keep the procedures somewhat shorter. Even
n = 3 might be profitably programmed directly.
The form of the result of iterated defect correction in the algorithm

T €T+ [y

is a special case of a staggered correction format [14], which has the more general form

k
x € Zl‘z + [y],
=1

where the sum of the; is an approximation of, and[y] is an enclosure of its error. Such
a representation can easily be obtained by a modification of our algorithm in such a way that
several iterated defect correction steps are performed.

If the algorithm is modified in the way that it produces output in staggered correction format,
it is almost trivial to make a further modification to allow input of the coefficient matrixnd
the right hand sidé in staggered form. Then we have a verifying multi-precision linear system
solver.



REFERENCES 35

Such a linear system solver in staggered format can be applied to solve the least squares
problem and compute the pseudo inverse in a different and cheaper way from the method in our
program. For the least squares problem, we proceed as follows (see [27]): In the case
we computeB := A7 A andd := A”b in double length (i.eB andd have staggered format)
and solveBx = d with the staggered linear system solver. In the case n, we compute
B := AA" in double length and solvBx = b with the staggered linear system solver. Then,
finally, y = Az is the desired solution (which must be computed in double length).

The methods presented in this section were originally developed by Rump [23], [24], some
ideas go back to Wilkinson [32]. Some newer methods exist usindractorization with back-
ward error estimation for the solution of full triangular systems [11]. These algorithms can be
adapted to the condition of the system and use less computing time than ours in the case of well
conditioned problems.

Special methods for symmetric matrices also exist. Such special methods give better results
especially in the case of an interval matdxand have somewhat less overhead.

For symmetric and positive definite matrices, a variant of the Cholesky method has been
investigated in [5].

Similarly, different methods exist for M-matrices and H-matrices. For example, the interval
Gauss elimination can be applied in these cases. See [3], [4], or [21].

Another popular class of methods are iterative methods not directly based on defect correc-
tion. See also [18], [19], or [20].

Finally, we note that our algorithm is not well suited for large systems which are sparse or
which have banded structure since the approximate invensdl be in general a full matrix.

A special C-XSC implementation for these cases is discussed in [8] (see also [14], or [17]).

References

[1] Adams, E., Kulisch, U. (Eds.)Scientific Computing with Automatic Result \erification.
I. Language and Programming Support for Verified Scientific Computation, Il. Enclosure
Methods and Algorithms with Automatic Result Verification, 1ll. Applications in the
Engineering Sciences. Academic Press, San Diego, 1993.

[2] Albrecht, R., Kulisch, U. (Eds.)Grundlagen der Computerarithmetik. Computing Sup-
plementumil, Springer-Verlag, Wien, New York, 1977.

[3] Alefeld, G.: Uber die Durchfiihrbarkeit des GauRRschen Algorithmus bei Gleichungen mit
Intervallen als Koeffizienten. In [2], pp 15-19, 1977.

[4] Alefeld, G., Herzberger, Jintroduction to Interval Computations. Academic Press, New
York, 1983.

[5] Alefeld, G., Mayer, G.: The Cholesky Method for Interval Data. Presentation at the
International Conference on “Numerical Analysis with Automatic Result Verification”.
Lafayette, Louisiana, USA, Feb. 25 — March 1, 1993.

[6] Cornelius, H., Lohner, R.Computing the Range of Values of Real Functionswith Accu-
racy Higher Than Second Order. Computing33, pp 331-347, 1984.



REFERENCES 36

[7] Hofschuster, W., Kamer, W., Wedner, S., Wiethoff, AC-XSC 2.0. A C++ Class Li-
brary for Extended Scientific Computing. Universi&it Wuppertal, Preprint BUGHW -
WRSWT 2001/1, 2001.

[8] Holbig, C., Krdmer, W.: A Selfverifying Solver for Linear Systems with Banded Coef-
ficient Matrix Realized in C-XSC. Universiit Wuppertal, Preprint BUGHW - WRSWT
2003/2, 2003.

[9] ISO/IEC 14882 International Standarérogramming languages— C++, 1998.

[10] Jahn, K.-U. (Ed.):Computernumerik mit Ergebnisverifikation. Problemseminar, Tech-
nische Hochschule Leipzig, 13.-15.avk” 1991. Proceedings in Wissenschatftliche
Zeitschrift der Technischen Hochschule Leipzig, Jahrgang 15, Heft 6, 1991.

[11] Jansson, C.:A Fast Direct Method for Computing Verified Inclusions. Berichte des
Forschungsschwerpunktes Informations- und Kommunikationstechnik, Technische Uni-
versiéit Hamburg-Harburg, Bericht 90.4, 1990.

[12] Kaucher, E., Kulisch, U., Ullrich, Ch. (Eds.Eomputerarithmetic: Scientific Computa-
tion and Programming Languages. B. G. Teubner Verlag, Stuttgart, 1987

[13] Kaucher, E., Mayer, G., Markov, S. M. (EdsGomputer Arithmetic, Scientific Compu-
tation and Mathematical Modelling. Proceedings of SCAN-90. IMACS Annals on Com-
puting and Applied Mathematics, Vd2 (1992), published Oct. 1991. J. C. Baltzer AG,
Basel, 1991.

[14] Kramer, W., Kulisch, U., Lohner, R.:Numerical Toolbox for \erified Comput-

ing Il - Advanced Numerical Problems. Universitit Karlsruhe, 1994http://www.uni-
kar|sruhe.de/"Rudolf.Lohner/papers/tb2.ps.gz.

[15] Kulisch, U., Miranker, W. L. (Eds.)A New Approach to Scientific Computation. Pro-
ceedings of Symposium held at IBM Research Center, Yorktown Heights, N.Y., 1982.
Academic Press, New York, 1983.

[16] Kulisch, U., Stetter, H. J. (Eds.Ecientific Computation with Automatic Result \erifica-
tion. Computing Supplementus Springer-Verlag, Wien / New York, 1988.

[17] Lohner, R.:Verified computing and programs in PASCAL-XSC. Universitaet Karlsruhe,
Habilitationsschrift, pp 230, 1994.

[18] Mayer, G.:Regulére Zerlegungen und der Satz von Stein und Rosenberg fir Intervallma-
trizen. Habilitationsschrift, Universit Karlsruhe, 1986.

[19] Mayer, G.:Enclosing the Solutions of Linear Equations by Interval Iterative Processes.
In [16], pp 47-58, 1988.

[20] Mayer, G., Frommer, A.A Multisplitting Method for \erification and Enclosure on a
Parallel Computer. In [31], pp 483-497, 1990.

[21] Mayer, G.:Old and New Aspects for the Interval Gaussian Algorithm. In [13], pp 329—
349, 1991.

[22] Neumaier, A.:Interval Methods for Systems of Equations. Cambridge University Press,
Cambridge, 1990.



REFERENCES 37

[23] Rump, S. M.: Kleine Fehlerschranken bei Matrixproblemen. Dissertation, Universat’
Karlsruhe, 1980.

[24] Rump, S. M.:Solving Algebraic Problems with High Accuracy. Habilitationsschrift. In
[15], pp 51-120, 1983.

[25] Rump, S. M.:Estimation of the Sensitivity of Linear and Nonlinear Algebraic Problems.
Linear Algebra and its Applications3, pp 1-34, 1991.

[26] Rump, S. M.: Convergence Properties of Iterations Using Sets. In [10], pp 427-431,
1991.

[27] Stewart, G. H.introduction to Matrix Computations. Academic Press, New York, 1973.

[28] Stoer, J.; Bulirsch, R.tntroduction to Numerical Analysis. Springer-Verlag, New York,
1980.

[29] Ullrich, Ch., Wolff v. Gudenberg, J. (Eds Accurate Numerical Algorithms, A Collection
of DIAMOND Research Papers. Springer-Verlag, Berlin, 1989.

[30] Ullrich, Ch. (Ed.): Computer Arithmetic and Self-Validating Numerical Methods. (Pro-
ceedings of SCAN-89, invited papers). Academic Press, San Diego, 1990.

[31] Ullrich, Ch.: Programming Languages for Enclosure Methods. In [30], pp 115-136,
1990.

[32] Wilkinson, J.:Rounding Errorsin Algebraic Processes. Prentice-Hall, Englewood Cliffs,
New Jersey, 1964.



