
Bergische Universität

Wuppertal

Advanced Software Tools for Validated Computing

Walter Krämer

Preprint 2002/1

Wissenschaftliches Rechnen/

Softwaretechnologie

Impressum

Herausgeber: Prof. Dr. W. Krämer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich 7 (Mathematik)
Bergische Universität Wuppertal
Gaußstr. 20
D-42097 Wuppertal

Internet-Zugriff

Die Berichte sind in elektronischer Form erhältlich über die World Wide Web Seiten

http://www.math.uni-wuppertal.de/wrswt/literatur.html

Autoren-Kontaktadresse

Prof. Dr. Walter Krämer
Bergische Universität Wuppertal
Gaußstr. 20
D-42097 Wuppertal

E-mail: kraemer@math.uni-wuppertal.de

Advanced Software Tools for Validated Computing

Walter Krämer
Scientific Computing/Software Engineering

University of Wuppertal, Germany

Abstract: Validated computing based on interval computations is one essential technology
to achieve increased software reliability. In this paper several advanced interval software tools
with emphasis on validated computing are considered. Pros and cons are given and by sample
codes the usage of the tools is illustrated (for your convenience the full codes will be made
available on our web pages http://www.math.uni-wuppertal.de/wrswt/).

The tools INTLAB, Sun’s Forte C++ compilers with interval support, filib++, and C-
XSC are discussed in some detail. Due to limited space, many other interval tools for more
or less special applications are not considered here. You can find pointers to such tools on
the web (e. g. http://www.cs.utep.edu/interval-comp/intsoft.html).

1 Introduction

The program committee organizing Validated Computing 2002 wrote

Ever increasing reliance on computer systems brings ever increasing need
for reliability. Validated computing is one essential technology to achieve
increased software reliability. Validated computing uses controlled round-
ing of computer arithmetic to guarantee that hypotheses of suitable math-
ematical theorems are (or are not) satisfied. Mathematical rigor in the
computer arithmetic, in algorithm design, and in program execution allow
us to guarantee that the stated problem has (or does not have) a solution in
an enclosing interval we compute. If the enclosure is narrow, we are certain
that we know the answer reliably and accurately. If the enclosing interval
is wide, we have a clear warning that our uncertainty is large, and a closer
study is demanded.

Intervals capture uncertainty in modeling and problem formulation, in
model parameter estimation, in algorithm truncation, in operation round
off, and in model interpretation.

In this paper we discuss pros and cons for several advanced interval software
tools with emphasis on validated computing. Our sample codes for simple but
powerful applications illustrate the usage of the tools INTLAB [11, 12], Sun’s
Forte C++ compilers with interval support [14, 15, 16], filib++ [8, 9], and C-
XSC [3, 5]. Other interval tools for more or less special applications (see e. g.
http://www.cs.utep.edu/interval-comp/intsoft.html) are not considered here.
Those who are interested in recent developments in the field of Validated Computing
may consult [6, 7] and the literature cited therein.

4 Advanced Software Tools for Validated Computing

2 The INTerval LABoratory INTLAB

INTLAB [11, 12] is a well designed interval toolbox for the interactive programming
environment MATLAB [10]. It allows the more traditional infimum-supremum as well
as the midpoint-radius representations of intervals. Operators for mixed operands are
available:

intvalinit(’DisplayInfsup’); % use inf-sup notation for output

midrad(2,1) + infsup(3,4) % operands may also be vectors or matrices

produces the output [4.000, 7.000].
The midpoint-radius interval arithmetic of INTLAB is entirely based on BLAS.

Matrix and vector operations avoid in a clever way case distinctions and the time con-
suming switching of rounding mode in inner loops at the expense of some additional
BLAS operations. So, in particular, INTLAB matrix operations are very fast. In con-
trast to traditional infimum-supremum arithmetic the midpoint-radius implementation
takes full advantage of the speed of vector and parallel architectures. The (theoretical)
overestimation of midpoint-radius arithmetic compared to infimum-supremum arith-
metic is globally limited by a factor 1.5 for the basic arithmetic operations as well as for
vector and matrix operations (independent of the dimension of the matrices) over IR
andC [12]. In practical machine computations the factor is around 1.0, and sometimes
even less than 1 (due to finite precision machine arithmetic).

Every computation using INTLAB is rigorously verified to be correct, including
input and output. Portability is assured by implementing all algorithms in MAT-
LAB itself with exception of exactly three routines for switching the rounding down-
wards, upwards and to nearest (the routines for switching the rounding mode are
freely available for many platforms on the web). INTLAB itself may be freely copied
from the home page http://www.ti3.tu-harburg.de/~rump/intlab. But to be
able to use INTLAB you have to buy the commercial product MATLAB [10] (see
http://www.mathworks.com).

INTLAB allows to write verification algorithms in a way which is very near to
pseudo-code used in scientific publications. E. g., the following INTLAB code may be
used to solve a dense system of linear equations with automatic result verification (the
code is taken from the file verifylss.m coming with INTLAB).

function X = denselss(A,b) % linear system solver for dense matrices
midA = mid(A); % midpoint matrix
midb = mid(b);

R = inv(midA) ; % preconditioner: approximate inverse

xs = R * midb ; % approximate solution

% interval iteration
A = intval(A);
Z = R * (b - A*xs) ;
RA = R*A;

Advanced Software Tools for Validated Computing 5

C = eye(dim(A)) - RA; % eye produces an identity matrix
Y = Z;
E = 0.1*rad(Y)*hull(-1,1) + midrad(0,10*realmin); % prepare inflation
k = 0; kmax = 7; ready = 0;
while (~ready) & (k<kmax) & (~any(isnan(Y(:))))

k = k+1;
X = Y + E; % inflation
Y = Z + C * X;
ready = all(all(in0(Y,X))); % check proper inclusion

end
if ready

X = xs + Y; % verified result
else % no succss

disp(’*** In routine denselss: No verification!’)
X = NaN;

end

Let this code be stored in a Matlab M-File denselss.m. Then we can call this routine
to compute a verified enclosure of the solution of a linear system:

intvalinit(’DisplayInfsup’); % use inf/sup output
===> Default display of intervals by infimum/supremum (e.g. [3.14 , 3.15])
A = random(3); % generate a 3 by 3 point matrix
A = hull(1-1e-3, 1+1e-3)*A % intervalmatrix
intval A =
[0.2543, 0.2549] [-0.1730, -0.1725] [-0.2571, -0.2565]
[0.3977, 0.3986] [0.3101, 0.3108] [-0.1497, -0.1493]
[-0.2059, -0.2054] [0.6744, 0.6759] [0.1891, 0.1896]
b = ones(3,1) % right hand side
b =

1
1
1

solution = denselss(A,b) % solve the linear system
intval solution =
[-3.4063, -3.3193]
[3.0485, 3.0745]
[-9.3545, -9.2224]
all(in(b, A*solution)) % check b element of A*solution
ans = 1

Note, the code for denselss() works for real point and real interval matrices as well
as for complex point and complex interval matrices.

INTLAB offers predefined problem solving routines for dense and sparse systems
of linear and nonlinear equations and eigenvalue problems (verifylss, verifynlss,
verifyeig). A multi precision interval arithmetic, a slope arithmetic as well as routines
for automatic differentiation are also included. The main features of INTLAB can

6 Advanced Software Tools for Validated Computing

be nicely explored using several demo files (demointval1, demolong1, demoslope1,
demogradient1).

INTLAB is a very powerful interactive tool to implement prototypes of verification
algorithms. INTLAB code is elegant, easy to read and to maintain. For those who are
interested in guaranteed numerical results and have available MATLAB the INTLAB
package is a must.

3 Sun’s Forte C++ compilers with interval support

In this section features of the interval library provided with the actual Sun Forte C++
compilers are discussed. First of all, the Sun Forte Compilers are commercial program
products. So, in contrast to all other interval tools discussed in this paper you have
to buy it. The goal of Sun’s interval support in C++ is to stimulate development of
commercial interval solver libraries and applications by providing program developers
with quality interval code, narrow-width interval results, rapidly executing interval
code and an easy-to-use software development environment [14].

The following interval extensions are included:

• interval template specializations for intervals using float, double, and
long double scalar data types (with full support and tuned for speed only for
data type double).

• extended interval arithmetic operations and mathematical functions that form
a closed mathematical system: For any possible operator-operand combination,
including division by zero and other indeterminate forms involving zero and in-
finities valid interval results are produced. (The empty set is also an interval.)

• Three types (certainly, possibly and set) of interval relational functions like. The
certainly relational functions are true if the underlying relation (e. g. less than) is
true for every element of the operand intervals. The possibly relational functions
are true if any element of the operand intervals satisfy the underlying relation and
the set relational functions are true if the interval operands satisfy the underlying
relation in the ordinary set theoretic sense (e. g. any interval is set-equal to itself,
including the empty interval).

• interval-specific functions like inf, sup, mid (midpoint), isempty, intersect,
disjoint, in, . . .

• input and output of intervals also in a special single-number form (the last dis-
played digit is used to determine the interval’s width).

The most exciting feature of Sun’s interval support is the possibility of exception free
interval computations (containment computations) [15, 16]. Using so called contain-
ment sets (set of values that a function can produce when evaluated on the boundary

1Using the current version MATLAB 6 Release 12 you have to modify the corresponding M-file:
continue is a key word and can no longer be used as a name for a variable, so you have to rename
this variable

Advanced Software Tools for Validated Computing 7

of, or outside its domain of definition in the common mathematical sense must be in-
corporated) allows valid results (including the empty set and intervals with infinities as
bounds), no matter what the value of a function’s arguments or an operator’s operands.
More precisely, the containment set of a function f with respect to an (extended) in-
terval argument X ⊆ IR∪ {−∞}∪ {∞} =: R

∗ is the closure of the range including all
limits and accumulation points, i. e. the set

{f(x)|x ∈ X ∩ Df} ∪ { lim
Df�xk→x∗ f(xk)|x∗ ∈ X} ⊆ R

∗

If the argument lies strictly outside the natural domain Df of the function, the result
is the empty set (empty interval). Some examples of containment computations are

log[−1, 1] = [−∞, 0],
√

[−1, 1] = [0, 1], log[−2,−1] = Ø, coth[−1, 1] = IR∗. The
following sample program performs some containment computations:

//To compile and link: CC -xia <progname>
#include <iostream>
#include <suninterval.h> //header file for intervals

//Simplify instantiation of intervals
typedef SUNW_interval::interval<float> interval;

using std::cout;
using std::endl;

int main()
{

interval x("[-1.5, 3]");
cout << "x= " << x << endl;
cout << "cos(x)= " << cos(x) << endl;
cout << "log(x)= " << log(x) << endl;
cout << "atan(log(x))= " << atan(log(x)) << endl;
cout << "log([-2,-1])= " << log(interval(-2,-1)) << endl;
cout << "[1]/[0]= " << interval(1)/interval(0) << endl;
return 0;

}

The generated output is:

x= [-.15000000E+001,0.30000000E+001]
cos(x)= [-.98999250E+000,0.10000000E+001]
log(x)= [-Infinity,0.10986124E+001]
atan(log(x))= [-.15707964E+001,0.83235294E+000]
log([-2,-1])= [EMPTY]
[1]/[0]= [-Infinity, Infinity]

As a more powerful application we consider the problem of root finding. The interval
Newton Method in combination with a bisection process is used to compute enclosures
of all roots of a univariate continuously differentiable real valued function.

8 Advanced Software Tools for Validated Computing

// Interval Newton method using bisection to avoid division by Intervals
// containing zero in the Interval Newton operator.
// Containment computations are performed so no exceptions are raised
// even for interval arguments (partially) outside the natural domain
// of functions and operators.

#include <suninterval.h>
#include <values.h>
#include <iostream>

using std::cout;
using std::endl;

using namespace SUNW_interval;

// Simplify instantiation of intervals with bounds of type double
typedef interval<double> I;

// Internal representation of +00, maybe there is a header file
double Infinity()
{

return sup(I(1)/I(0));
}

// Data type for univariate interval functions
typedef I (*function) (const I&);

void inewton(function f, function df, const I& x)
{

static double maxWidth(1e-5);
if (!in(0.0, f(x))) return; // Definitely no root
double midx(mid(x));
if (midx == -Infinity()) // midx == -00?
{

midx= -MAXDOUBLE;
}
else if(midx == Infinity()) // midx == +00?
{

midx= MAXDOUBLE; // Set midx to largest finite number
}
I fmidx(f(I(midx))), dfx(df(x));
if (in(0.0, dfx) // Avoid 0 in denominator interval

&& wid(x) > maxWidth) // Splitting only if x is still too wide
{ // Split interval

inewton(f, df, I(x.inf(), midx)); // Left part
inewton(f, df, I(midx, x.sup())); // Right part
return;

}

Advanced Software Tools for Validated Computing 9

I xNew;
xNew= intersect(I(midx) - fmidx/dfx, x); // Interval Newton operator
if (xNew==I("[empty]")) return; // Definitely no root
if (in_interior(xNew, x)) // Verification ok, one simple root
{

cout << "*** Verified " << xNew << endl;
return;

}
if (xNew==x) // No further improvement
{

cout << "Possibly containing a zero: " << xNew << endl;
return;

}
else // One bound improved, try further improvement to get validation

inewton(f, df, xNew);
}

I pol(const I& x) // Function pol
{
return (x-I(1))*(x+I(2))*(x-I(3)); // I() interval constructor

}

int main()
{

I searchRange("[-inf, inf]"); // Entire real line!
cout << "All roots of (x-1)*(x+2)*(x-3) in the range \n"

<< " " << searchRange << ":" << endl;
inewton(pol, dpol, searchRange); // Interval Newton with bisection

return 0;
}

Running the program produces the following output:

All roots of (x-1)*(x+2)*(x-3) in the range
[-Infinity, Infinity]:

*** Verified [-.2000000000000000E+001,-.2000000000000000E+001]
*** Verified [0.1000000000000000E+001,0.1000000000000000E+001]
*** Verified [0.3000000000000000E+001,0.3000000000000000E+001]

Note, that the complete (unbounded) real line is searched for zeros.
Of course, the program may be improved considerably. Some hints can be found

in [9]. But already this simple version allows to attack functions with singularities (e.
g. 1+sin(1/x)) and functions with restricted natural domains (e. g. sqrt(1/(x-4)). No
exceptions are raised and no roots (whether simple or multiple) are lost. Containment
computations are a powerful tool avoiding special programming efforts of various case
distinctions.

Up to now no so called interval problem solving routines are available. For example,
there are no automatic differentiation package, no linear and nonlinear system solvers,

10 Advanced Software Tools for Validated Computing

and no library with vector/matrix data types and operations. Also typical functions
like isempty, ispoint, succ, . . . and predefined constants are missing.

4 The Interval Library filib++

filib++ is an extension of the interval library filib originally developed in Karlsruhe
[2]. The most important aim of the latter was the fast computation of guaranteed
bounds for interval versions of a comprehensive set of elementary function. filib++

extends this library in two aspects. First, it adds a second mode, the extended mode,
that extends the exception-free computation mode using special values to represent
infinities and Not-a-Number known from the IEEE floating-point standard 754 to in-
tervals. In this mode containment sets are computed to enclose the topological closure
of a range of a function defined over an interval [15, 16]. Second, the new state of the
art design uses templates and traits classes in order to get an efficient, easily extendable
and portable library, fully according to the C++ standard [4].

In contrast to Sun’s C++ compilers with interval support filib++ is freely avail-
able. Completely coded in C++ and fully according to the C++ standard the library
can be used with many compilers on a large variety of computer platforms.

The following program computes enclosures for level curves of two dimensional
functions. filib++ in combination with the standard template library is used. The
numerical output is stored in a file called level. After completion of the program this
file contains data in such a way that gnuplot can display with confidence a graph of
the desired level curve using the command plot "level" with lines.

#include <fstream>
#include <list>

#include <interval/interval.hpp>

using std::cout;
using std::endl;
using std::list;
using std::pair;
using std::make_pair;

//Simplify instantiation of intervals
typedef filib::interval<double> I;

//Simplify access to methods of class fp_traits<>
typedef filib::fp_traits<I::value_type> traits;

pair<I,I> bisect(I x)
{

//...
}

void levelCurve(I(*f)(I,I), I x, I y, double level, double epsilon)

Advanced Software Tools for Validated Computing 11

{
//Store boxes containing points of level curve in file "level"
std::ofstream out("level");
typedef pair<I,I> rectangle;
list<rectangle> toDo, done;
toDo.push_back(make_pair(x,y));
while(!toDo.empty())
{

rectangle box= toDo.front();
toDo.pop_front();
I fRange= f(box.first, box.second);
if (in(level, fRange)) //Box may contain points of level curve?
{

if (width(box) < epsilon) //Box sufficiently small?
{ //plot the box possibly containing points of the level curve

//more precisely: write data points for a plot using gnuplot
//gnuplot command: plot "filename" with lines
out << inf(box.first) << " " << inf(box.second) << endl;
//...

}
else
{

if(width(box.first) > width(box.second))
{

pair<I,I> p = bisect(box.first);
toDo.push_back(make_pair(p.first, box.second));
toDo.push_back(make_pair(p.second, box.second));

}
else
{

pair<I,I> p = bisect(box.second);
toDo.push_back(make_pair(box.first, p.first));
toDo.push_back(make_pair(box.first, p.second));

}
}

}
}
out << endl;

}

I f(I x, I y) //Two dimensional (interval) function
{

I xx=sqr(x), yy=sqr(y);
return sqr(xx + yy + I(4)*x) - xx - yy;

}

int main()

12 Advanced Software Tools for Validated Computing

{
traits::setup(); //Do initializations for filib++
double epsilon=0.1;
double level=0.0;
I::precision(16);
I xRange(-10, 10), yRange(-10, 10);
cout << "xRange: " << xRange << endl << "yRange: " << yRange << endl;
levelCurve(f, xRange, yRange, level, epsilon); //Create data for gnuplot
return 0;

}

The figures show the level curve to level 0 for the function f(x, y) = (x2+y2+4x)−x2−
y2 using the values 0.1 (left figure) and 0.01 (right figure) for the epsilon-parameter.

-3

-2

-1

0

1

2

3

-6 -5 -4 -3 -2 -1 0 1

"level"

-3

-2

-1

0

1

2

3

-6 -5 -4 -3 -2 -1 0 1

"level"

In both cases the graph is covered with confidence by the rectangles shown.
To demonstrate that such plots are not trivial the following figures show the result

coming from Maple (the computer algebra system Maple is famous for its great graph-
ical capabilities). Here, interpolation goes totally wrong near the point of intersection.

–1

–0.5

0

0.5

1

y

–0.1 –0.08 –0.06 –0.04 –0.02 0.02 0.04 0.06

x

–1

–0.5

0

0.5

1

y

–0.1 –0.08 –0.06 –0.04 –0.02 0.02 0.04 0.06

x

The left figure uses the default value for the numpoints parameter of the implicitplot
command, the right picture was generated with numpoints=9000. In both cases the
x-range was from -0.1 to 0.1. Using the x-range from -10 to 1 together with numpoints

default value we get

Advanced Software Tools for Validated Computing 13

–2

–1

0

1

2

y

–5 –4 –3 –2 –1

x

Such results can be avoided using interval techniques.
Only small modifications in the source code are necessary to transform the program

into source code accepted by Sun’s Forte C++ compilers with interval support or
accepted by the C++ class library C-XSC to be described in the following section.

5 C++ Class Library C-XSC

C–XSC is a tool for the development of numerical algorithms delivering highly accurate
and automatically verified results. It provides a large number of predefined numerical
data types and operators of maximum accuracy. These types are implemented as C++

classes. Thus, C –XSC allows high-level programming of numerical applications in C
and C++. The C–XSC package is available for many computers with a C++ compiler
conformant to the C++ standard [4, 13]. The sources of the new version C–XSC 2.0
are freely available.

The most important features of C –XSC are real, complex, interval, and complex
interval arithmetic with mathematically defined properties; dynamic vectors and ma-
trices; dotprecision data types (accurate dot products); predefined arithmetic operators
with highest accuracy; standard functions of high accuracy; dynamic multiple-precision
arithmetic and standard functions rounding control for I/O data; additional library of
problem-solving routines (C++ Toolbox for Verified Computing [1]).

The just mentioned additional library covers the one-dimensional problems

• Accurate evaluation of polynomials

• Automatic differentiation

• Nonlinear equations in one variable

• Global optimization

• Accurate evaluation of arithmetic expressions

14 Advanced Software Tools for Validated Computing

• Zeros of complex polynomials

as well as the multi-dimensional problems

• Linear systems of equations

• Linear optimization

• Automatic differentiation for gradients, Jacobians, an Hessian

• Nonlinear systems of Equations

• Global optimization

Further C–XSC packages are freely available or under construction. E. g.

• Verified integration of regular and singular integrals (quadrature and cubature)
[17]

• Computation of enclosures for Taylor coefficients of analytical functions

• Slope arithmetic

• Taylor arithmetic

• Initial value problems in ordinary differential equations2

So, C–XSC provides a large number of freely available high quality numerical software
tools with automatic result verification. The complete source codes as well as a lot of
documentation are freely available. See http://www.math.uni-wuppertal.de/~xsc/.

6 Conclusion

The great advantage of the interactive programming tool INTLAB and the C++ class
library C–XSC is the availability of many problem solving routines (the source codes
of the tools itself as well as the sources of the problem solving routines are public
and for free). Such routines are not shipped with Sun’s (commercial) C++ compilers.
Sun replaces the traditional interval computations by so called containment compu-
tations. As discussed, containment computations do not rise exceptions. This fact
may be stressed advantageously when writing software for parallel and vector comput-
ers. filib++ also offers an extended interval mode for containment computations. The
design of filib++ is up to date (template programming using traits classes) and the
source code of the library is freely available. An automatic differentiation package and
an additional package providing a slope arithmetic is under construction.

Using the underlying MATLAB functionality INTLAB handles sparse interval ma-
trices, a feature that is not supported by any other tool considered in this paper. Also
midpoint-radius representations of intervals are allowed. Of course, to run INTLAB
you must have (must buy) MATLAB.

2Available from R. Lohner

Advanced Software Tools for Validated Computing 15

A lot of other (more or less specialized) software tools in the field of validated
numerics are available. Links may be found on the web. Whenever you have to
compute the solution to a numerical problem rigorously verified to be correct do not
reinvent the wheel but have a look on software packages already available. For help
you can send an email to reliable computing@interval.louisiana.edu.

References

[1] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D.: C++ Toolbox for Verified Com-
puting . Basic Numerical Problems. Springer-Verlag, Berlin, 1995.

[2] Hofschuster, W., Krämer, W.: filib-Sources,
http://www.math.uni-wuppertal.de/org/WRSWT/software.html, 1998.

[3] Hofschuster, W., Krämer, W., Wedner, S., Wiethoff, A.: C-XSC 2.0 - A
C++ Class Library for Extended Scientific Computing, Preprint 2001/1, Wis-
senschaftliches Rechnen/Softwaretechnologie, Universität Wuppertal, 2001.

[4] ISO/IEC 14882: Standard for the C++ Programming Language, 1998.

[5] Klatte, R.; Kulisch, U.; Lawo, C.; Rauch, M.; Wiethoff, A.: C–XSC – A C++

Class Library for Scientific Computing. Springer-Verlag, Berlin, 1993.

[6] Krämer, W., Wolff von Gudenberg, J. (eds.): Scientific Computing, Validated
Numerics, Interval Methods, Kluwer Academic/Plenum Publishers, 2001.

[7] Kulisch, U., Lohner, R., Facius, A.(eds.): Perspectives on Enclosure Methods,
Springer-Verlag/Wien, 2001.

[8] Lerch, M., Wolff von Gudenberg, J.: filib++, Specification, Implementation, and
Test of a Library for Extended Interval Arithmetic, RNC4 proceedings, April 2000.

[9] Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer,
W.: The Interval Library filib++ 2.0, Design, Features and Sample Programs,
Preprint 2001/4, Wissenschaftliches Rechnen/Softwaretechnologie, Universität
Wuppertal, 2001.

[10] The MathWorks, Inc. (Publisher): MATLAB, The Language of Technical Com-
puting, 2001.

[11] Rump, S., M.: INTLAB - INTerval LABoratory, in Csendes, T. (Ed.), Develop-
ments in Reliable Computing, KluwerAcademic Publisher, Dordrecht, pp. 77-104,
1998.

[12] Rump, S., M.: Fast and Parallel Interval Arithmetic, Bit, Vol. 39, No. 3, pp.
534-554, Sept. 1999.

[13] Stroustrup, B.: The C++ Programming Language. Special Edition, Addison-
Wesley, Reading, Mass., 2000.

16 Advanced Software Tools for Validated Computing

[14] Sun Microsystems: C++ Interval Arithmetic Programming Reference (Forte De-
veloper 6 update 2), Sun Microsystems, July 2001.

[15] Walster, G.W.: Closed Interval Systems, Technical Report, Sun Microsystems,
August 1999.

[16] Walster, W.G., Hansen, E.R., Pryce J.D.: Extended Real Intervals and the Topo-
logical Closure of Extended Real Relations, Technical Report, Sun Microsystems,
Februar 2000.

[17] Wedner, S.: Verifizierte Bestimmung singulärer Integrale - Quadratur und Ku-
batur. Dissertation, Universität Karlsruhe, 2000.

