
Bergische Universität

GH Wuppertal

C–XSC 2.0

A C++ Class Library

for

Extended Scientific Computing

W. Hofschuster, W. Krämer, S. Wedner, A. Wiethoff

Preprint 2001/1

Wissenschaftliches Rechnen/

Softwaretechnologie

Impressum

Herausgeber: Prof. Dr. W. Krämer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich 7 (Mathematik)
Bergische Universität GH Wuppertal
Gaußstr. 20
D-42097 Wuppertal

Internet-Zugriff

Die Berichte sind in elektronischer Form erhältlich über die World Wide Web Seiten

http://www.math.uni-wuppertal.de/wrswt/literatur.html

Autoren-Kontaktadresse

Dr. W. Hofschuster
Prof. Dr. W. Krämer
Dr. S. Wedner
Dr. A. Wiethoff
Bergische Universität GH Wuppertal
Gaußstr. 20
D-42097 Wuppertal

e-mail: xsc@math.uni-wuppertal.de
WWW: http://www.math.uni-wuppertal.de/~xsc/

C–XSC 2.0 is freely available from
http://www.math.uni-wuppertal.de/~xsc/xsc/download.html

Version 2.0 of the C++Toolbox for Verified Computing [3]

is freely available from
http://www.math.uni-wuppertal.de/~xsc/xsc/download.html

Zusammenfassung

C–XSC 2.0: Eine C++ Klassenbibliothek für erweitertes Wissenschaftliches Rech-
nen: C – XSC ist ein Werkzeug zur Entwicklung numerischer Algorithmen, die hochgenaue und
selbstverifizierende Resultate liefern. C – XSC stellt eine große Zahl vordefinierter Datentypen und Op-
eratoren zur Verfügung. Diese Datentypen sind als Klassen in C++ implementiert. Damit ermöglicht
C – XSC die komfortable Programmierung numerischer Anwendungen in C++. C – XSC ist für viele
Rechnersysteme verfügbar. Die neue Version C – XSC 2.0 entspricht dem C++ Standard [12]. Die
Quellen von C – XSC 2.0 sind im Netz frei verfügbar. Dies trifft auch auf eine an C – XSC 2.0 angepasste
Version der Problemlöseroutinen [3] zu.

Abstract

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing: C – XSC is a tool
for the development of numerical algorithms delivering highly accurate and automatically verified
results. It provides a large number of predefined numerical data types and operators. These types are
implemented as C++ classes. Thus, C – XSC allows high-level programming of numerical applications
in C++. The C – XSC package is available for many computers with a C++ compiler conforming to
the C++ standard [12]. The sources of the new version C – XSC 2.0 as well as the problem solving
routines [3] are freely available. C – XSC 2.0 now conforms ISO/IEC C++ standard [12].

1 Acknowledgements

The work on C–XSC started in 1990 at the Institute for Applied Mathematics (Prof.
Kulisch), University of Karlsruhe. Many colleagues and scientists have directly and
indirectly contributed to the realization of C –XSC. The authors would like to thank
each of them for his or her cooperation. Special thanks go to U. Allendörfer, C.
Baumhof, H. Berlejung, B. Bohl, G. Bohlender, D. Cordes, K. Grüner, R. Hammer,
M. Hocks, W. Hofschuster, R. Klatte, W. Krämer, U. Kulisch, C. Lawo, M. Neaga, D.
Ratz, M. Rauch, S. Ritterbusch, G. Schumacher, J. Suckfüll, F. Toussaint, W. Walter,
S. Wedner, G. Werheit, A. Wiethoff, and J. Wolff von Gudenberg.

C –XSC 2.0 is an outcome of an ongoing collaboration of the Institute for Applied
Mathematics (Prof. Kulisch), University of Karlsruhe and the Institute for Scientific
Computing/Software Engineering (Prof. Krämer), University of Wuppertal. For the
latest news and up to date software contact
http://www.math.uni-wuppertal.de/~xsc/

2 Introduction

Some deficiencies in the programming language C make it seem rather inappropriate
for the programming of numerical algorithms. C does not provide the basic numerical
data structures such as vectors and matrices and does not perform index range checking
for arrays. This results in unpredictable errors which are difficult to locate within
numerical algorithms. Additionally, pointer handling and the lack of overloadable
operators in C reduce the readability of programs and make program development

4 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

more difficult. Furthermore, ANSI C does not specify the accuracy or the rounding
direction of the arithmetic operators. The same applies to input and output library
functions of C. The ANSI C standard does not prescribe the conversion error of input
or output.

The programming language C++, an object-oriented C extension, has become more
and more popular over the past few years. It does not provide better facilities for
the given problems, but its new concept of abstract data structures (classes) and the
concept of overloaded operators and functions provide the possibility to create a pro-
gramming tool eliminating the disadvantages of C mentioned above: C –XSC (C for
eXtended Scientific Computing). It provides the C and C++ programmer with a tool
to write numerical algorithms producing reliable results in a comfortable programming
environment without having to give up the intrinsic language with its special qualities.
The object-oriented aspects of C++ provide additional powerful language features that
reduce the programming effort and enhance the readability and reliability of programs.

With its abstract data structures, predefined operators and functions, C –XSC pro-
vides an interface between scientific computing and the programming language C++.
Besides, C –XSC supports the programming of algorithms which automatically enclose
the solution of a given mathematical problem in verified bounds. Such algorithms de-
liver a precise mathematical statement about the true solution.
The most important features of C –XSC are:

• Real, complex, interval, and complex interval arithmetic with mathematically
defined properties

• Dynamic vectors and matrices

• Subarrays of vectors and matrices

• Dotprecision data types

• Predefined arithmetic operators with highest accuracy

• Standard functions of high accuracy

• Dynamic multiple-precision arithmetic and standard functions

• Rounding control for I/O data

• Library of problem-solving routines (C++ Toolbox for Verified Computing [3])

• Numerical results with mathematical rigor

What is new in C–XSC 2.0?

• All routines are now in the namespace cxsc

• Explicit typecast constructors

• Constant values passed by reference are now passed by const reference

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 5

• The error handling is done according to the C++ error handling using exception
classes

• Modification in the field for subvectors and submatrices

• The library uses templates extensively

• The source code of C-XSC 2.0 is freely available from
http://www.math.uni-wuppertal.de/~xsc/xsc/download.html

• Older C–XSC programs have to be modified slightly to run with C–XSC 2.0.

• The source code of a new version of the C++ Toolbox for Verified Computing [3]
which works with C-XSC 2.0 is freely available from
http://www.math.uni-wuppertal.de/~xsc/xsc/download.html

3 Standard Data Types, Predefined Operators, and

Functions

C–XSC provides the simple numerical data types

real, interval, complex, and cinterval (complex interval)

with their appropriate arithmetic and relational operators and mathematical standard
functions. All predefined arithmetic operators deliver results with an accuracy of at
least 1 ulp (unit in the last place). Thus, they are of maximum accuracy in the sense
of scientific computing. The rounding of the arithmetic operators may be controlled
using the data types interval and cinterval. Type casting functions are available for all
mathematically useful combinations. Literal constants may be converted with maxi-
mum accuracy.

All mathematical standard functions for the simple numerical data types may be
called by their generic names and deliver results with guaranteed high accuracy for
arbitrary permissible arguments. The elementary mathematical functions for the data
type interval provide range inclusions which are sharp bounds. Elementary functions
for the data type cinterval are also available.

For the scalar data types presented above, vector and matrix types are available:

rvector, ivector, cvector, and civector,
rmatrix, imatrix, cmatrix, and cimatrix.

The user can allocate or deallocate storage space for a dynamic array (vector or matrix)
at run time. Thus, without recompilation, the same program may use arrays of size
restricted only by the storage of the computer. Furthermore, the memory is used
efficiently, since the arrays are stored only in their required sizes. When accessing
components of the array types, the index range is checked at run time to provide
increased security during programming by avoiding invalid memory accesses.

6 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

◗
◗

◗
◗

◗
◗◗

left
operand

right
operand

integer
real

complex

interval
cinterval

rvector
cvector

ivector
civector

rmatrix
cmatrix

imatrix
cimatrix

monadic − − − − − −

integer
real

complex

+,−, ∗, /
|

+,−, ∗, /,
| ∗ ∗ ∗ ∗

interval
cinterval

+,−, ∗, /,
|

+,−, ∗, /,
|, & ∗ ∗ ∗ ∗

rvector
cvector ∗, / ∗, / +,−, ∗1,

|
+,−, ∗1,

|

ivector
civector ∗, / ∗, / +,−, ∗1,

|
+,−, ∗1,

|, &
rmatrix
cmatrix ∗, / ∗, / ∗1 ∗1 +,−, ∗1,

|
+,−, ∗1,

|

imatrix
cimatrix ∗, / ∗, / ∗1 ∗1 +,−, ∗1,

|
+,−, ∗1,

|, &

|: Convex Hull &: Intersection 1: Dot Product with Maximum Accuracy

Table 1: Predefined Arithmetic Operators

Function Generic Name

Sine sin
Cosine cos
Tangent tan
Cotangent cot

Hyperbolic Sine sinh
Hyperbolic Cosine cosh
Hyperbolic Tangent tanh
Hyperbolic Cotangent coth

Square sqr
Integer Power Function power
Exponential Function exp
Power Function pow

Absolute Value abs

Function Generic Name

Arc Sine asin
Arc Cosine acos
Arc Tangent atan
Arc Cotangent acot

Inverse Hyperbolic Sine asinh
Inverse Hyperbolic Cosine acosh
Inverse Hyperbolic Tangent atanh
Inverse Hyperbolic Cotangent acoth

Square Root sqrt
nth Root sqrt(x, n)
Natural Logarithm ln

Table 2: Mathematical Standard Functions

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 7

Example: Allocation and resizing of dynamic matrices:

...
int n, m;
cout << "Enter the dimensions n, m:";
cin >> n >> m;

imatrix B, C, A(n, m); /* A[1][1] ... A[n][m] */
Resize(B, m, n); /* B[1][1] ... B[m][n] */

...
C = A * B; /* C[1][1] ... C[n][n] */

Defining a vector or a matrix without explicitly indicating the index bounds results
in a vector of length 1 or in a 1× 1 matrix. The storage for the object is not allocated
until run time. Here, we use the Resize statement (see example above) to allocate an
object of the desired size. Alternatively, the index bounds may be determined when
defining the vector or matrix as we did in the example above with matrix A.

An implicit resizing of a vector or a matrix is also possible during an assignment:
If the index bounds of the object on the right-hand side of an assignment do not
correspond to those of the left-hand side, the object is changed correspondingly on the
left side as shown in the example above with the assignment C = A ∗ B.

The storage space of a dynamic array that is local to a subprogram is automatically
released before control returns to the calling routine.

The size of a vector or a matrix may be determined at any time by calling the
functions Lb() and Ub() for the lower and upper index bounds, respectively.

4 Subarrays of Vectors and Matrices

C–XSC provides a special notation to manipulate subarrays of vectors and matrices.
Subarrays are arbitrary rectangular parts of arrays. All predefined operators may also
use subarrays as operands. A subarray of a matrix or vector is accessed using the
()-operator or the []-operator. The ()-operator specifies a subarray of an object of the
same type as the original object. For example, if A is a real n×n-matrix, then A(i, i) is
the left upper i × i submatrix. Note that parentheses in the declaration of a dynamic
vector or matrix do not specify a subarray, but define the index ranges of the object
to be allocated. The []-operator generates a subarray of a “lower” type. For example,
if A is a n×n rmatrix, then A[i] is the i-th row of A of type rvector and A[i][j] is the
(i, j)-th element of A of type real.

Both types of subarray access may also be combined, for example:
A[k](i, j) is a subvector from index i to index j of the k-th row vector of the matrix A.

8 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

The use of subarrays is illustrated in the following example describing the LU-
factorization of a n×n-matrix A:

for (j=1; j<=n-1; j++) {
for (k=j+1; k<=n; k++) {

A[k][j] = A[k][j] / A[j][j];
A[k](j+1,n) = A[k](j+1,n) - A[k][j] * A[j](j+1,n);

}
}

This example demonstrates two important features of C –XSC. First, we save one
loop by using the subarray notation. This reduces program complexity. Second, the
program fragment above is independent of the type of matrix A (either rmatrix, ima-
trix, cmatrix or cimatrix), since all arithmetic operators are suitably predefined in the
mathematical sense.

❅
❅

❅
❅

❅
❅

left
operand

right
operand

r
e
a
l

i
n
t
e
r
v
a
l

c
o
m
p

l
e
x

c
i
n
t
e
r
v
a
l

r
v
e
c
t
o
r

i
v
e
c
t
o
r

c
v
e
c
t
o
r

c
i
v
e
c
t
o
r

r
m
a
t
r
i
x

i
m
a
t
r
i
x

c
m
a
t
r
i
x

c
i
m
a
t
r
i
x

monadic ! ! ! ! ! ! ! ! ! ! ! !

real ∨all ∨⊂ ∨eq ∨⊂
interval ∨⊃ ∨1

all
∨1

all

complex ∨eq ∨eq ∨⊂
cinterval ∨⊃ ∨1

all ∨⊃ ∨1
all

rvector ∨all ∨⊂ ∨eq ∨⊂
ivector ∨⊃ ∨1

all
∨1

all

cvector ∨eq ∨eq ∨⊂
civector ∨⊃ ∨1

all ∨⊃ ∨1
all

rmatrix ∨all ∨⊂ ∨eq ∨⊂
imatrix ∨⊃ ∨1

all ∨1
all

cmatrix ∨eq ∨eq ∨⊂
cimatrix ∨⊃ ∨1

all
∨⊃ ∨1

all

∨all = {==, ! =, <=, <, >=, >} ∨eq = {==, ! =}
∨⊂ = {==, ! =, <=, <} ∨⊃ = {==, ! =, >=, >}

1 <=: “subset of”, <: “proper subset of”, >=: “superset of”, >: “proper superset of”

Table 3: Predefined Relational Operators

5 Evaluation of Expressions with High Accuracy

When evaluating arithmetic expressions, accuracy plays a decisive role in many nu-
merical algorithms. Even if all arithmetic operators and standard functions are of
maximum accuracy, expressions composed of several operators and functions do not
necessarily deliver results with maximum accuracy (see [7]). Therefore, methods have

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 9

been developed for evaluating numerical expressions with high and mathematically
guaranteed accuracy.

A special kind of such expressions are called dot product expressions, which are
defined as sums of simple expressions. A simple expression is either a variable, a
constant, or a single product of two such objects. The variables may be of scalar,
vector, or matrix type. Only the mathematically relevant operations are permitted
for addition and multiplication. The result of such an expression is either a scalar,
a vector, or a matrix. In numerical analysis, dot product expressions are of decisive
importance. For example, methods for defect correction or iterative refinement for
linear or nonlinear problems are based on dot product expressions. An evaluation of
these expressions with maximum accuracy avoids cancellation. To obtain an evaluation
with 1 ulp accuracy, C –XSC provides the dotprecision data types

dotprecision, cdotprecision, idotprecision, and cidotprecision.

Intermediate results of a dot product expression can be computed and stored in a
dotprecision variable without any rounding error. The following example computes an
optimal inclusion of the defect b − Ax of a linear system Ax = b:

ivector defect(rvector b, rmatrix A, rvector x)
{
idotprecision accu;
ivector incl(Lb(x),Ub(x));
for (int i=Lb(x); i<=Ub(x); i++) {

accu = b[i];
accumulate(accu, -A[i], x);
incl[i] = rnd(accu);

}
return incl;

}

In the example above, the function accumulate() computes the sum:

n∑
j=1

−Aij · xj

and adds the result to the accumulator accu without rounding error. The idotprecision
variable accu is initially assigned b[i]. Finally, the accumulator is rounded to the
optimal standard interval incl[i]. Thus, the bounds of incl[i] will either be the same or
two adjacent floating-point numbers.

For all dotprecision data types, a reduced set of predefined operators is available to
compute results without any error. The overloaded dot product routine accumulate()
and the rounding function rnd() are available for all reasonable type combinations.

6 Dynamic Multiple-Precision Arithmetic

Besides the classes real and interval, the dynamic classes long real (l real) and long
interval (l interval) as well as the corresponding dynamic vectors and matrices are

10 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

◗
◗

◗
◗

◗
◗◗

left
operand

right
operand real

complex
interval
cinterval

dotprecision
cdotprecision

idotprecision
cidotprecision

monadic − − − −
real

complex
+,−,

∗, /, |
+,−,

∗, /, |
+,−,
|

+,−,
|

interval
cinterval

+,−,

∗, /, |
+,−,

∗, /, |, &
+,−,
|

+,−,
|, &

dotprecision
cdotprecision

+,−,
|

+,−,
|

+,−,
|

+,−,
|

idotprecision
cidotprecision

+,−,
|

+,−,
|, &

+,−,
|

+,−,
|, &

| : Convex hull & : Intersection

Table 4: Predefined Dotprecision Operators

implemented including all arithmetic and relational operators and multiple-precision
standard functions. The computing precision may be controlled by the user at run
time. By replacing the real and interval declarations by l real and l interval, the user’s
application program turns into a multiple-precision program. This concept provides
the user with a powerful and easy-to-use tool for error analysis. Furthermore, it is
possible to write programs delivering numerical results with a user-specified accuracy
by internally modifying the computing precision at run time in response to the error
bounds for intermediate results within the algorithm.

All predefined operators for real and interval types are also available for l real
and l interval. Additionally, all possible operator combinations between single and
multiple-precision types are included. The following example shows a single-precision
program and its multiple-precision version:

#include "interval.hpp" // predefined interval arithmetic
#include <iostream>
using namespace cxsc;
using namespace std;

int main()
{
interval a, b; // Standard intervals
a = 1.0; // a = [1.0,1.0]
b = 3.0; // b = [3.0,3.0]
cout << "a/b = " << a/b << endl;
return 0;

}

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 11

Run Time Output

a/b = [0.333333, 0.333334]

The corresponding multi-precision version using the staggered interval arithmetic
is very similar:

#include "l_interval.hpp" // interval staggered arithmetic
#include <iostream>
using namespace cxsc;
using namespace std;

int main()
{
l_interval a, b; // Multiple-precision intervals
a = 1.0;
b = 3.0;
stagprec = 2; // global integer variable
cout << SetDotPrecision(16*stagprec, 16*stagprec-3) << RndNext;
// I/O for variables of type l_interval is done using
// the long accumulator (i.e. a dotprecision variable)

cout << "a/b = " << a/b << endl;
return(0);

}

Run Time Output

a/b = [0.33333333333333333333333333333, 0.33333333333333333333333333334]

At run time, the predefined global integer variable stagprec (staggered precision)
controls the computing precision of the multiprecision arithmetic in steps of a single
real (64 bit words). The precision of a multiple-precision number is defined as the
number of reals used to store the long number’s value. An object of type l real or
l interval may change its precision at run time. Components of a vector or a matrix
may be of different precision. All multiple-precision arithmetic routines and standard
functions compute a numerical result possessing a precision specified by the actual
value of stagprec. Allocation, resize, and subarray access of multiple-precision vectors
and matrices are similar to the corresponding single-precision data types.

7 Input and Output in C –XSC

Using the stream concept and the overloadable operators << and >> of C++, C–XSC
provides rounding and formatting control during I/O (input/output) for all new data
types, even for the dotprecision and multiple-precision data types. I/O parameters
such as rounding direction, field width, etc. also use the overloaded I/O operators to
manipulate I/O data. If a new set of I/O parameters is to be used, the old parameter

12 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

settings can be saved on an internal stack. New parameter values can then be defined.
After the use of the new settings, the old ones can be restored from stack. The following
example illustrates the use of the C–XSC input and output facilities:

#include <iostream>
#include "interval.hpp"
using namespace cxsc;
using namespace std;

int main()
{
real a, b;

cout << "Please enter real a: ";
cout << RndDown; // set rounding mode
cin >> a; // read a rounded downwards
cout << SetPrecision(7,4); // set field width and number of digits

// for output
cout << a << endl; // print a rounded downwards to 4 digits
cout << RndUp;
cout << a << endl; // print a rounded upwards to 4 digits

"0.3" >> b; // convert the string "0.3" to a floating
// point value b using rounding down

cout << SetPrecision(18,15); // from now on print 15 digits

cout << b << endl; // print b rounded upwards to 15 digits
cout << RndDown;
cout << b << endl; // print b rounded downwards to 15 digits
interval x;
"[1.5, 2]" >> x; // string to interval conversion
cout << x << endl; // print interval x using default setting

cout << SaveOpt; // push I/O parameters to internal stack
cout << SetPrecision(10,7); // modifies output field width and

// number of digits to be print
cout << x << endl; // print x in the modified format
cout << RestoreOpt; // pop parameters from internal stack
cout << x << endl; // again, print x using the former format
return 0;

}

Run Time Output

Please enter real a: 0.3
0.2999
0.3000

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 13

0.300000000000001
0.300000000000000

[1.500000000000000, 2.000000000000000]
[1.5000000, 2.0000000]
[1.500000000000000, 2.000000000000000]

8 Error Handling in C –XSC

C++ provides intrinsic safety features such as type checking, type-safe linking of pro-
grams, and function prototypes. C –XSC supports additional features for safe program-
ming such as index range checking for vectors and matrices and checking for numerical
errors such as overflow, underflow, loss of accuracy, illegal arguments, etc. C –XSC
provides the user with various modification possibilities to manipulate the reactions of
the error handler. C –XSC 2.0 supports C++ error handling using exception classes.

9 Library of Problem Solving Routines

The C–XSC problem solving library (C++ Toolbox for verified computing [3], also
freely available) is a collection of routines for standard problems of numerical analysis
producing guaranteed results of high accuracy. The following areas are covered:

• One-dimensional problems

– Evaluation of polynomials

– Automatic differentiation

– Nonlinear equations in one variable

– Global optimization

– Accurate evaluation of arithmetic expressions

– Zeros of complex polynomials

• Multi-dimensional problems

– Linear systems of equations

– Linear optimization

– Automatic differentiation for gradients, Jacobians, and Hessian

– Nonlinear systems of Equations

– Global optimization

– Initial value problems in ordinary differential equations1

Slightly modified sources of the programs published in the book C++ Toolbox for
verified computing [3] are available for the use in connection with C–XSC 2.0. You
can freely download these files from
http://www.math.uni-wuppertal.de/~xsc/xsc/download.html

1Available from R. Lohner (see http://www.uni-karlsruhe.de/∼Rudolf.Lohner/)

14 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

10 C–XSC 2.0 Sample Programs

The following C–XSC sample programs demonstrate various concepts of C –XSC. The
sources are all available in the examples directory of your C–XSC 2.0 installation.

• Interval Newton Method

– Data type interval

– Interval operators

– Interval standard functions

• Interval Newton Method using Staggered Intervals

– Data type l interval for multi-precision computations

– Overloaded operators and function for staggered intervals

– Illustration of output facilities

• Runge-Kutta Method

– Dynamic arrays

– Array operators

– Overloading of operators

– Mathematical notation

• Trace of a Product Matrix

– Dynamic arrays

– Subarrays

– Dotproduct expressions

• Get All Zeros of a One-Dimensional Function

– Calling a problem-solving routine from the C++ Toolbox for verified com-
puting [3]

– Reliability of computed results: Verified(!) enclosures of all(!) zeros are
computed

– Simple usage: Only the function expression has to be supplied by the user;
derivatives are computed automatically using automatic differentiation

Well-known algorithms were intentionally chosen so that a brief explanation of
the mathematical background is sufficient. We hope that the programs are largely
self-explanatory. For a very readable introduction to interval mathematics and the
construction of algorithms with numerical result verification we refer to [3].

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 15

10.1 Interval Newton Method

Compute an enclosure of a zero of a real function f(x). It is assumed that the derivative
f ′(x) is continuous in [a, b], and that

0 /∈ {f ′(x), x ∈ [a, b]}, and f(a) · f(b) < 0.

If Xn is an inclusion of the zero, then an improved inclusion Xn+1 may be computed
by

Xn+1 :=

(
m(Xn) − f(m(Xn))

f ′(Xn)

)
∩ Xn,

where m(X) is a point within the interval X, usually the midpoint. The mathematical
theory of the Interval Newton method appears in [3].

In this example, we apply Newton’s method to the function

f(x) =
√

x + (x + 1) · cos(x).
Generic function names are used for interval square root, interval sine, and interval
cosine so that f may be written in a mathematical notation. mid(x) computes any
floating point number out of x.

// Interval Newton method using ordinary interval arithmetic
// Verified computation of a zero of the function f()

#include <iostream>
#include "interval.hpp" // Include interval arithmetic package
#include "imath.hpp" // Include interval standard functions
using namespace std;
using namespace cxsc;

interval f(const real x)
{ // Function f
interval y(x); // y is a thin interval initialized by x
return sqrt(y) + (y+1)*cos(y); // Interval arithmetic is used

}

interval deriv(const interval& x)
{ // Derivative function f’

return 1/(2*sqrt(x)) + cos(x) - (x+1)*sin(x);
}

bool criter(const interval& x) // Computing: f(a)*f(b) < 0 and
{ // not 0 in f’([x])?

return Sup(f(Inf(x))*f(Sup(x))) < 0.0 && !(0.0 <= deriv(x));
} // ’<=’ means ’element of’

int main(void)
{

16 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

interval x, xOld;
cout << SetPrecision(20,15); // Number of mantissa digits in I/O
x= interval(2,3);
cout << "Starting interval is [2,3]" << endl;
if (criter(x))
{ // There is exactly one zero of f in the interval x

do {
xOld = x;
cout << "Actual enclosure is " << x << endl;
x = (mid(x)-f(mid(x))/deriv(x)) & x; // Iteration formula

} while (x != xOld);
cout << "Final enclosure of the zero: " << x << endl;

}
else

cout << "Criterion not satisfied!" << endl;
return 0;

}

Run Time Output

Starting interval is [2,3]
Actual enclosure is [2.000000000000000, 3.000000000000000]
Actual enclosure is [2.000000000000000, 2.218137182953809]
Actual enclosure is [2.051401462380920, 2.064726329907714]
Actual enclosure is [2.059037791936965, 2.059053011233253]
Actual enclosure is [2.059045253413831, 2.059045253416460]
Actual enclosure is [2.059045253415142, 2.059045253415145]
Final enclosure of the zero: [2.059045253415142,

2.059045253415145]

10.2 Interval Newton Method Using Staggered Arithmetic

Again, we apply Newton’s method to the function

f(x) =
√

x + (x + 1) · cos(x).

But now we search for an enclosure of the zero in higher precision using multi-precision
staggered intervals. The code is very similar to the code given in section 10.1 using
ordinary interval arithmetic.

// Interval Newton method using a multi-precision interval data type
// Verified computation of a zero of the function f() to high accuracy

#include <iostream>
#include "l_interval.hpp" // Include multi-precision intervals
#include "l_imath.hpp" // Include multi-precision math functions
using namespace std;

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 17

using namespace cxsc;

l_interval f(const l_real& x) // Function f
{

l_interval y(x); // y is a thin interval initialized by x
return sqrt(y) + (y+1)*cos(y); // Use multi-precision interval arithmetic

}

l_interval deriv(const l_interval& x) // Derivative function f’
{

return 1/(2*sqrt(x)) + cos(x) - (x+1)*sin(x);
}

bool criter(const l_interval& x) // Computing: f(a)*f(b) < 0 and
{ // not 0 in f’([x])?

return Sup(f(Inf(x))*f(Sup(x))) < 0.0 && !(0.0 <= deriv(x));
} // ’<=’ means ’element of’

int main(void)
{

l_interval x, xOld;
stagprec= 3; // Set precision of the staggered correction arithmetic
x= l_interval(2,3);
cout << "Starting interval is [2,3]" << endl;
cout << SetDotPrecision(16*stagprec, 16*stagprec-3) << RndNext;
// I/O for variables of type l_interval is done using
// the long accumulator (i.e. a dotprecision variable)
if (criter(x))
{ // There is exactly one zero of f in the interval x

do {
xOld = x;
cout << "Diameter of actual enclosure: " << real(diam(x)) << endl;
x = (mid(x)-f(mid(x))/deriv(x)) & x; // Iteration formula

} while (x != xOld); // & means intersection
cout << "Final enclosure of the zero: " << x << endl;

}
else

cout << "Criterion not satisfied!" << endl;
return 0;

}

Run Time Output

Starting interval is [2,3])
Diameter of actual enclosure: 1.000000
Diameter of actual enclosure: 0.218137
Diameter of actual enclosure: 0.013325
Diameter of actual enclosure: 1.521930E-005

18 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

Diameter of actual enclosure: 2.625899E-012
Diameter of actual enclosure: 4.708711E-027
Diameter of actual enclosure: 5.473822E-048
Final enclosure of the zero:

[2.059045253415143788680636155343254522623083897,
2.059045253415143788680636155343254522623083898]

As can be seen the method converges quadratically.

10.3 Runge-Kutta Method

The initial value problem for a system of differential equations is to be solved by
the well known Runge-Kutta method. The C–XSC program is very similar to the
mathematical notation. Dynamic vectors are used to make the program independent
of the size of the system of differential equations to be solved.

Consider the first-order system of differential equations

Y ′ = F (x, Y), Y (x0) = Y0.

If the solution Y is known at a point x, the approximation Y (x+h) may be determined
by the Runge-Kutta method:

K1 = h · F (x, Y)

K2 = h · F (x + h/2, Y + K1/2)

K3 = h · F (x + h/2, Y + K2/2)

K4 = h · F (x + h, Y + K3)

Y (x + h) = Y + (K1 + 2 · K2 + 2 · K3 + K4)/6.

For example, we solve the system

Y ′
1 = Y2Y3, Y1(0) = 0

Y ′
2 = −Y1Y3, Y2(0) = 1

Y ′
3 = −0.522Y1Y2, Y3(0) = 1.

The program computes an approximation of the solution at the points

xi = x0 + i · h, i = 1, 2, 3,

starting at given x0 (here: x0 = 0, h = 0.1).

// Runge-Kutta Method

#include <iostream>
#include "rvector.hpp" // Include dynamic arrays (real vectors)
using namespace std;
using namespace cxsc;

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 19

rvector F(const real x, const rvector& Y) // Function definition
{

rvector Z(3); // Constructor call

Z[1] = Y[2] * Y[3]; // F is independent of x
Z[2] = -Y[1] * Y[3];
Z[3] = -0.522 * Y[1] * Y[2];
return Z;

}

void Init(real& x, real& h, rvector& Y)
{ // Initialization

x = 0.0; h = 0.1;
Y[1] = 0.0; Y[2] = 1.0; Y[3] = 1.0;

}

int main(void)
{

real x, h; // Declarations and dynamic
rvector Y(3), K1, K2, K3, K4; // memory allocation

// Automatic resize of Ki below
Init(x, h, Y);
for (int i=1; i<=3; i++) { // 3 Runge-Kutta steps

K1 = h * F(x, Y); // with array result
K2 = h * F(x + h / 2, Y + K1 / 2);
K3 = h * F(x + h / 2, Y + K2 / 2);
K4 = h * F(x + h, Y + K3);
Y = Y + (K1 + 2 * K2 + 2 * K3 + K4) / 6;
x += h;
cout << SetPrecision(10,6) << Dec; // I/O modification
cout << "Step: " << i << ", "

<< "x = " << x << endl;
cout << "Y = " << endl << Y << endl;

}
return 0;

}

Run Time Output

Step: 1, x = 0.100000
Y =
0.099747
0.995013
0.997400

Step: 2, x = 0.200000
Y =
0.197993

20 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

0.980203
0.989716

Step: 3, x = 0.300000
Y =
0.293320
0.956014
0.977286

10.4 Trace of a Product Matrix

Dot product expressions are sums of real, interval, complex, or cinterval constants,
variables, vectors, matrices, or simple products of them. Dotprecision variables are
used to store intermediate results of a dot product expression without any rounding
error. The contents of a dotprecision variable may be rounded into a floating-point
number using the rounding direction specified by the user.

The following C–XSC program demonstrates the use of this concept. The trace of
a complex matrix A ·B is evaluated without calculating the actual product. The result
is of maximum accuracy. That is, it is the best possible approximation of the exact
result. The trace of the product matrix is

Trace(A · B) :=
n∑

i=1

n∑
j=1

Aij · Bji,

i. e. the sum of the diagonal entries of the product matrix.

// Trace of a (complex) matrix product
// Let C denote the matrix product A*B.
// Then the diagonal entries of C are added to get the trace of C.

#include <iostream>
#include "cmatrix.hpp" // Use the complex matrix package
using namespace std;
using namespace cxsc;

int main()
{

int n;
cout << "Please enter the matrix dimension n: "; cin >> n;
cmatrix A(n,n), B(n,n); // Dynamic allocation of A, B
cdotprecision accu; // Allows exact computation of dotproducts
cout << "Please enter the matrix A:" << endl; cin >> A;
cout << "Please enter the matrix B:" << endl; cin >> B;
accu = 0.0; // Clear accumulator
for (int i=1; i<=n; i++) accumulate(accu, A[i], B[Col(i)]);
// A[i] and B[Col(i)] are subarrays of type rvector.

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 21

// The exact result stored in the complex dotprecision variable accu
// is rounded to the nearest complex floating point number:
complex result = rnd(accu);
cout << SetPrecision(12,6) << RndNext << Dec;
cout << "Trace of tye product matrix:" << result << endl;
return 0;

}

Run Time Output

Please enter the matrix dimension n: 3
Please enter the matrix A:
(1,0) (2,0) (3,0)
(4,0) (5,0) (6,0)
(7,0) (8,0) (9,0)
Please enter the matrix B:
(10,0) (11,0) (12,0)
(13,0) (14,0) (15,0)
(16,0) (17,0) (18,0)
Trace of product matrix: (666.000000, 0.000000)

10.5 Get All Zeros of a One-Dimensional Function

The interval Newton method as described in 10.1 can be generalized in several ways.
The following program uses such a modification which allows the computation of all
zeros of a given one-dimensional function f in a specified starting interval. Because
automatic differentiation is used to compute the derivative f ′ automatically, f has to
be defined for the type DerivType. Using extended interval divisions in the Newton
steps allows the treatment of functions with horizontal tangents in the search interval
(a typical situation for functions with several zeros).

Notice: if no error is indicated by the routine AllZeros the computed enclosures
for the zeros are verified in a rigorous mathematical sense.

We use modules of the C++ Toolbox for verified computing [3]. So the program
below can not be run without installing this toolbox. The sources as well as an instal-
lation guide can be found on the web:

http://www.math.uni-wuppertal.de/~xsc/xsc/download.html

Figure 1 shows the graph of the function

f(x) = (x − 1) ∗ (exp(−3 ∗ x) − power(sin(x), 3))

for which the enclosures of all zeros in the interval [−1, 15] are to be computed. Notice
the mathematical notation of the sample function f in the program code. To consider
any other function it suffices to modify the definition of f .

// Compute all zeros of the function
//
// (x-1)*(exp(-3*x) - power(sin(x), 3))

22 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

–10

–5

5

10

2 4 6 8 10 12 14
x

Figure 1: f(x) = (x − 1) ∗ (exp(−3 ∗ x) − power(sin(x), 3))

//
#include "nlfzero.hpp" // Nonlinear equations module
#include "stacksz.hpp" // To increase stack size for some

// special C++ compiler
using namespace cxsc;
using namespace std;

DerivType f (const DerivType& x) // Sample function
{

return (x-1)*(exp(-3*x) - power(sin(x),3));
}

// The class DerivType allows the computation of f, f’, and f’’ using
// automatic differentiation; see "C++ Toolbox for Verified Computing"

int main()
{
interval SearchInterval;
real Tolerance;
ivector Zero;
intvector Unique;
int NumberOfZeros, i, Error;

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 23

cout << SetPrecision(23,15) << Scientific; // Output format

cout << "Search interval : ";
cin >> SearchInterval;
cout << "Tolerance (relative): ";
cin >> Tolerance;
cout << endl;

// Call the function ’AllZeros()’ from the C++ Toolbox
AllZeros(f,SearchInterval,Tolerance,Zero,Unique,NumberOfZeros,Error);

for (i = 1; i <= NumberOfZeros; i++) {
cout << Zero[i] << endl;
if (Unique[i])
cout << "encloses a locally unique zero!" << endl;

else
cout << "may contain a zero (not verified unique)!" << endl;

}
cout << endl << NumberOfZeros << " interval enclosure(s)" << endl;
if (Error) cout << endl << AllZerosErrMsg(Error) << endl;
return 0;

}

Run Time Output

Search interval : [-1,15]
Tolerance (relative) : 1e-10

[5.885327439818601E-001, 5.885327439818619E-001]
encloses a locally unique zero!
[9.999999999999998E-001, 1.000000000000001E+000]
encloses a locally unique zero!
[3.096363932404308E+000, 3.096363932416931E+000]
encloses a locally unique zero!
[6.285049273371415E+000, 6.285049273396501E+000]
encloses a locally unique zero!
[9.424697254738511E+000, 9.424697254738533E+000]
encloses a locally unique zero!
[1.256637410119757E+001, 1.256637410231546E+001]
encloses a locally unique zero!

6 interval enclosure(s)

Let us again emphasize that these results are verified! The problem-solving routines
apply interval arithmetic and mathematical fixed point theorems to guarantee the
existence and uniqueness of the zeros. It is also verified that f has no other zeros in
the interval [−1, 15].

24 C–XSC 2.0: A C++ Class Library for Extended Scientific Computing

11 Conclusions

In contrast to C and C++, all predefined arithmetic operators, especially the vector
and matrix operations, deliver a result of at least 1 ulp accuracy in C–XSC. The
huge set of predefined operators and functions can be called by their usual symbols
and names. Thus, arithmetic expressions and numerical algorithms are expressed in a
notation that is very close to the usual mathematical notation. Using C–XSC many
programs can be read like a technical report. Programs are much easier to read, to
write, and to debug.

C –XSC is particularly suited for the the development of numerical algorithms that
deliver highly accurate and automatically verified results, which are essential, for ex-
ample, in simulation runs where the user has to distinguish between computational
artifacts and genuine reactions of the model. C –XSC allows the numerical computa-
tions to carry their own accuracy control.

The advanced user can extend C–XSC using object-oriented programming features
of C++. Programs written in C–XSC can be combined with any other C++ software.

Meanwhile a lot of problem-solving functions with automatic result verification have
been developed in C–XSC for several standard problems of numerical analysis. This
is still an ongoing process (e. g. numerical quadrature and cubature [11], validated
bounds for taylor coefficients [9], automatic forward error analysis [5]). A lot of actual
material as well as a lot of references in the field of validated numerics and verified
computing may be found in [6] and [8].

C–XSC 2.0: A C++ Class Library for Extended Scientific Computing 25

References

[1] Adams, E.; Kulisch, U.: Scientific Computing with Automatic Result Verification.
Academic Press, New York, 1993.

[2] Alefeld, G.; Herzberger, J.: Introduction to Interval Analysis. Academic Press,
New York, 1983.

[3] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D.: C++ Toolbox for Verified Com-
puting . Basic Numerical Problems. Springer-Verlag, Berlin, 1995.

[4] Klatte, R.; Kulisch, U.; Lawo, C.; Rauch, M.; Wiethoff, A.: C–XSC – A C++

Class Library for Scientific Computing. Springer-Verlag, Berlin, 1993.

[5] Krämer, W.; Bantle, A.: Automatic Forward Error Analysis for Floating Point
Algorithms. Reliable Computing, Vol. 7, No. 4, pp. 321-340, 2001.

[6] Krämer, W.; Wolff von Gudenberg, J. (eds.): Scientific Computing, Validated
Numerics, Interval Methods. Kluwer Academic Publishers, Boston, Dordrecht,
London, 2001.

[7] Kulisch, U.: Computer Arithmetic in Theory and Practice. Academic Press, New
York, 1983.

[8] Kulisch, U.; Lohner, R.; Facius, A. (eds): Perspectives on Enclosure Methods.
Springer Verlag, Wien, New York, 2001.

[9] Neher, M.: Validated Bounds for Taylor Coefficients of Analytic Functions. Reli-
able Computing, Vol. 7, No. 4, pp. 307-319, 2001.

[10] Stroustrup, B.: The C++ Programming Language. Special Edition, Addison-
Wesley, Reading, Mass., 2000.
Deutsche Übersetzung: Die C++ Programmiersprache, 4. Auflage, Addison-
Wesley, München, 2000.

[11] Wedner, S.: Verifizierte Bestimmung singulärer Integrale - Quadratur und Ku-
batur. Dissertation, Universität Karlsruhe, 2000.

[12] ISO/IEC 14882: Standard for the C++ Programming Language, 1998.

