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Foreword

to the GAMM– IMACS Proposal for

Accurate Floating-Point Vector Arithmetic1

The Proposal for Accurate Floating-Point Vector Arithmetic is an official
document of GAMM and IMACS. It was unanimously approved by the GAMM
Steering Committee at the annual GAMM meeting in April 1993 and subse-
quently adopted by the IMACS Board of Directors in May 1993. It is a follow-up
on the IMACS-GAMM Resolution on Computer Arithmetic which was officially
approved by GAMM in 1987 and by IMACS in 1988.

The proposal was drafted and developed by the GAMM technical committee
for “Computer Arithmetic and Scientific Computing” and the IMACS working
group for “Enhanced Computer Arithmetic”. Many have contributed to its de-
velopment either at working group meetings and open discussion sessions held
at various international conferences or by commenting on draft versions of the
proposal. In the end, it was decided that a rather rigorous and concise formu-
lation of the essential mathematical principles of computer arithmetic would be
the most effective way of conveying the basic ideas.

The former Resolution on Computer Arithmetic appealed to computer man-
ufacturers to implement compound (vector) operations with extreme care. The
new proposal intends to give more guidance to manufacturers who are trying to
assess the current needs of the numerical community and who are confronted
with many options for future floating-point hardware design. By extending
the principles of elementary floating-point arithmetic to the product spaces of
computation (vectors, matrices, complex numbers, etc.), the proposal tries to
focus future hardware development efforts on the enhancement of existing arith-
metic hardware conforming to such standards as the IEEE Standard for Binary

Floating-Point Arithmetic (IEEE 754). While it remains applicable to a wide
range of hardware platforms and floating-point formats, the new proposal is
much more explicit than the former resolution by proposing a consistent and
simple mathematical model that allows a concise and uniform definition of com-
puter arithmetic. Various software, firmware, and hardware implementations of
this model are available, some of which have been in use for more than ten years.
Detailed technical propositions for an efficient realization in hardware exist for
many diverse platforms.

The ultimate goal of this proposal is to make floating-point computation
more accurate and reliable and, as a consequence, to make numerical algorithms
and their results more portable across different platforms — in spite of different
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code generation and optimization strategies. This is achieved by giving a rig-
orous definition of the mathematical behavior of compound vector operations,
independent of any particular hardware and software configuration.

The text of the official GAMM and IMACS document follows:2

2The GAMM-IMACS Proposal for Accurate Floating-Point Vector Arithmetic is published

in: GAMM, Rundbrief 2, pp. 9-16, 1993, and in: Mathematics and Computers in Simulation,

Vol. 35, IMACS, North Holland, 1993, and in: News of IMACS, Vol. 35, No. 4, pp. 375-382,

Oct. 1993.
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Gesellschaft für Angewandte Mathematik und
Mechanik (GAMM) &

Int. Assoc. for Mathematics and Computers in
Simulation (IMACS)

Proposal for

Accurate Floating-Point Vector Arithmetic

Abstract

Advances in computer technology are now so profound that the arith-
metic capability and repertoire of computers can and should be expanded.
The roundings and elementary arithmetic operations (including interval
roundings and operations) of the quality provided by the IEEE Standards
for Floating-Point Arithmetic [2, 3] should be extended to the product
spaces of computation (vectors, matrices, complex numbers, etc.). This
proposal gives the essential details for doing this. The new, expanded
computational capability is gained at modest cost. Remarkably, the new
methodology does not implicate a performance penalty. Moreover, tech-
niques are now available so that with this expanded capability, the com-
puter itself can be used to appraise the quality and the reliability of the
computed results over a wide range of applications.

Scope

This proposal is an official document of GAMM and IMACS. It defines the
mathematical properties that arithmetic floating-point operations, especially
compound vector operations, should satisfy (see also [17]). It can be viewed as an
extension of the approach of the IEEE Standards for Floating-Point Arithmetic
(754 and 854) [2, 3] from purely scalar to vector/matrix arithmetic [6, 7, 8, 12,
22, 25, 26, 27]. However, rather than being prescriptive to the bit-level, this
proposal applies to many hardware platforms and floating-point formats. It
may also be used to specify the mathematical behavior of arithmetic operations
in programming languages. A system equipped with the proposed arithmetic
is an ideal platform upon which automatic result verification techniques can be
realized [1, 16, 21, 23, 24, 36, 37].

The principal goals of this proposal are the reliability and security of nu-
merical results. Part of the proposed features may be provided in software,
although good hardware support is strongly recommended. Existing hardware
and software implementations demonstrate that accurate floating-point vector
arithmetic is feasible using current technology — at modest cost and generally
without incurring a runtime penalty.
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Definition of Computer Arithmetic

A floating-point format is defined by its base b (radix), its precision p (man-
tissa length), and its minimal and maximal exponent, emin and emax. These
four parameters define a floating-point format F (b, p, emin, emax) and thus the
finite set of real numbers representable in that format, the floating-point num-

bers F . For convenience, it is assumed that a particular floating-point format
is given.

A rounding rnd(x) is a monotonic nondecreasing function from the real
numbers R onto the set of floating-point numbers F ⊂ R which leaves all ele-
ments of F unchanged. Monotonicity eliminates erratic behavior of a rounding.
Formally, the following two properties must hold:

rnd(x) = x if x ∈ F (projection) (1)

x ≤ y ⇒ rnd(x) ≤ rnd(y) for x, y ∈ R (monotonicity) (2)

Commonly used roundings are also antisymmetric:

rnd(−x) = −rnd(x) for all x ∈ R (antisymmetry) (3)

Note that (3) imposes the property of symmetry on F , so if x ∈ F , then
−x ∈ F . Examples of antisymmetric roundings are the rounding toward

zero (truncation), the rounding away from zero (augmentation), and certain
roundings to nearest. There are several ways to define a rounding to the nearest
floating-point number.

Other important roundings are the directed roundings toward −∞ (down-

ward , denoted by ∇) and toward +∞ (upward , denoted by ∆), which are both
uniquely defined by (1), (2), and the additional property

∇x ≤ x ≤ ∆x for all x ∈ R (directed rounding) (4)

An exponent overflow could be mapped to +∞ or −∞, as the case may be.
The directed roundings are not antisymmetric, but satisfy the rule ∇(−x) =
−∆(x).

Roundings are defined in exactly the same way for complex numbers and
for the basic product spaces (the real and complex vectors and matrices). In
all of these spaces, the order relation ≤ is defined componentwise, inducing a
partial ordering on these sets. If T denotes one of these sets and S its computer-
representable subset, a rounding from T onto S fulfills the same properties (1),
(2), (3) with R replaced by T and F by S (e. g., if T = Rn, then S = F n):

rnd(x) = x if x ∈ S (projection) (1’)
x ≤ y ⇒ rnd(x) ≤ rnd(y) for x, y ∈ T (monotonicity) (2’)

rnd(−x) = −rnd(x) for all x ∈ T (antisymmetry) (3’)

Note that (3’) imposes the property of symmetry on S. The theory of com-
puter arithmetic shows that these roundings are equivalent to applying the
analogous roundings to the individual vector or matrix components or to the
real and the imaginary part of a complex number separately [26, 27].
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For the corresponding interval spaces — the intervals over the real and
the complex numbers as well as the intervals over the real and complex vectors
and matrices — the order relation is the subset relation ⊆ (in (2’)). A rounding
from any interval set T onto its computer-representable subset S is defined by
properties (1’), (2’) (with ≤ replaced by ⊆), plus the additional property

x ⊆ rnd(x) for all x ∈ T (inclusion) (4’)

These interval roundings are also antisymmetric, that is, they satisfy (3’).
When an arithmetic operation in one of the basic spaces (the real and com-

plex numbers, vectors and matrices and the corresponding interval spaces) is
modelled on the computer, it shall be defined as follows.

Let T be one of the spaces under consideration in which arithmetic operations
are defined, and let S be its computer-representable subset. If ◦ is an arithmetic
operation in T , the corresponding computer operation ◦ in S is given by

r ◦ s := rnd(r ◦ s) for all r, s ∈ S (rounded operation) (5)

where rnd is a rounding. That is, the computer operation must be performed
as if the exact result were first computed and then rounded with the selected
rounding. The rounding rnd uniquely determines the (rounded) computer op-
eration ◦ . With the exception of ∇ and ∆, commonly used roundings are
antisymmetric. Recall that in the case of intervals, the rounding must addition-
ally satisfy the inclusion requirement (4’). A mapping from T onto S satisfying
(1’), (2’), (3’), and (5) (and (4’) in the case of intervals) is called a semimor-

phism. Many properties of both the order structure and the algebraic structure
are invariant under a semimorphism. For more details, refer to [26, 27].

It is easily seen that property (5) guarantees that all arithmetic operations
are accurate to at least 1 ulp (unit in the last place). 1/2 ulp is achieved in
the case of rounding to nearest. This accuracy is achieved by the elementary
floating-point operations defined by several implementations including those
conforming to one of the IEEE standards (754 or 854) [2, 3].

A careful analysis shows that all the arithmetic operations under consider-
ation (with one exception) can be expressed in terms of the four elementary
arithmetic operations +,−, ∗ , / for floating-point numbers plus one additional
operation (which is a compound operation), the (accurate) dot product (scalar
product, inner product) of two vectors with floating-point components (denoted
by · ). This fifth operation is defined in the box below. To implement the corre-
sponding interval operations, the theory of computer arithmetic shows that the
same five operations (+,−, ∗ , / , · ) with the directed roundings toward −∞
(downward , ∇) and toward +∞ (upward , ∆) are sufficient. The exception,
complex (interval) division, can be performed iteratively [26, 27, 29].

Summarizing, semimorphic operations for real and complex numbers, vectors
and matrices as well as for real and complex intervals, interval vectors and
interval matrices can be realized in terms of the 15 fundamental arithmetic
operations of floating-point arithmetic: +,−, ∗ , / , · , each with the roundings

, ∇, and ∆, where stands for an antisymmetric rounding (typically to

nearest). The symbols ◦ , 5◦ , and 4◦ (where ◦ ∈ {+,−, ∗ , / , · }) represent the
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operations defined by (5) using an antisymmetric rounding (semimorphism),
the rounding downward ∇, and the rounding upward ∆, respectively.

These 15 fundamental operations are found in a variety of programming
systems [14, 15, 16, 23, 24]. Twelve of the 15 are provided by the IEEE standards
[2, 3]. By adding just three more, the arithmetic operations in all the basic
product spaces of mathematics can be performed with 1 (or 1/2) ulp accuracy
(in each component).

In numerical analysis, the dot product is ubiquitous. It appears in complex
arithmetic, vector and matrix arithmetic, multiple precision arithmetic, and
iterative refinement techniques, among many other places.

To complete the specification of computer arithmetic, we now give a formal
definition of an accurate dot product operation.

Given two vectors x and y with n floating-point components each and a pre-
scribed rounding rnd, the floating-point result s of the dot product opera-

tion (applied to x and y) is defined by

s := rnd(s) := rnd(x · y) = rnd

(

n
∑

i=1

xi ∗ yi

)

,

where all arithmetic operations are exact. In other words, s shall be com-
puted as if an intermediate result s = x · y correct to infinite precision and
with unbounded exponent range were first produced and then rounded to the
desired floating-point destination format according to the selected rounding
rnd.

This definition of the dot product operation guarantees highest possible ac-
curacy (for the given rounding and the given floating-point destination format).
It is analogous to the definition of scalar floating-point arithmetic given in the
IEEE standards [2, 3].

It is important to note that the order in which the elementary operations
are performed when determining the dot product is not specified, and that
this accomodates pipelined (and potentially parallel) processing. Reordering
the summands has no influence on the computed result since all intermediate
results are exact.

By way of contrast, note that a traditional computation of the dot product
of two vectors with n components each (in ordinary floating-point arithmetic
with rounded multiplications and additions) involves 2n−1 roundings. If catas-
trophic cancellation occurs, a large number of significant digits may be lost
[13, 35]. This may happen even if an extended precision data format is used for
the accumulation. Loss of accuracy aside, a considerable amount of processing
time may be required to perform gratuitous intermediate steps such as composi-
tion, decomposition, normalization, and rounding of intermediate floating-point
values. Furthermore, unnecessary load and store operations may have to be
performed in the traditional mode.
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Implementation Options

Implementations of the elementary floating-point operations with different round-
ings are commonplace. The computer realization of the new dot product op-
erations can be achieved in several ways [14, 8]. A natural way of adding n
numbers or products is via fixed-point accumulation. The scaling which accom-
panies fixed-point computation is eliminated by a hardware implementation
which has been in use for more than ten years. This device employs a long

fixed-point register (accumulator) covering twice the exponent range of the
floating-point format in which the vector components are given (see for instance
[14]). If a relatively small number of extra digits is provided at the front (high-
significance) end of such a register to collect extra carries, the intermediate
result in such a register is always exact and cannot overflow or underflow for
any feasible number of summands. Only one rounding occurs, and this at the
end of the accumulation process. This method has the advantage of being rather
simple and straightforward, and it always provides the desired accurate answer.

Existing implementations and detailed studies show that a full hardware
implementation of the long register is routine and inexpensive in units of addi-
tional silicon and can be made to perform as fast as conventional floating-point
accumulation. The fundamental operations that are needed are: initialization

of the long register, addition of a product of two floating-point numbers to the
register, and rounding the contents of the register to a floating-point number
(using the prescribed rounding). Other desirable operations include: addition
of a floating-point number to the register, addition, and comparison of two long
registers. Existing programming language extensions provide and exploit these
operations [14, 15, 16, 23, 24].

A number of studies in search of a solution that will require less silicon than
a long register are under way. One alternative is a window (short register)
where only a segment of the long register is actually provided in hardware.
This may be justified since computations involving very large or very small
exponents rarely occur. In its simplest form, the window is a segment of fixed
width covering a fixed range of exponents. A more sophisticated variant allows
the window to be shifted to the left (to accomodate larger intermediate values),
but never to the right, thus maintaining a window on the most significant part of
the dot product. However, any summand that does not fit fully requires costly
extra treatment, most likely through special software.

There are well-known iterative methods for computing sums and dot prod-
ucts accurately which use floating-point arithmetic only [5, 33]. One of these
proceeds by the successive replacement of the entire set of summands, using a
correction technique. In a finite number of steps, the set of summands is driven
to a state where no summand overlaps another in a fixed-point sense, and so the
summation is correctly completed. It is important to note and exploit the fact
that the correctly rounded sum may be available much earlier in the process,
often after one iteration. See [5] for an example of a stopping criterion. These
methods require exact operations +,−, ∗ which can be furnished by represent-
ing the result with two floating-point numbers, a high-order and a low-order
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part [9]. However, these iterative methods have some major disadvantages: the
number of iterations and the amount of memory required to obtain an accurate
answer are not known a priori, and intermediate overflow and underflow cannot
be avoided without a significant degradation of performance.

¿From the users’ point of view, the well-defined, predictable behavior of the
long register is highly desirable. Any partial hardware support requires comple-
mentary software. Manufacturers who decline to provide a full implementation
of the accurate dot product in hardware must be aware of the fact that there
may be a substantial performance penalty in essential applications.
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