
Basic Requirements for a Future

Floating-Point Arithmetic Standard1

GAMM Fachausschuss on

Computer Arithmetic and Scientific Computing

For elementary binary floating-point computation the IEEE standard arith-
metic, adopted in 1985, is undoubtedly thorough, consistent, and well defined
[1]. It has been widely accepted and can be found in almost every processor de-
veloped since 1985. This has greatly improved the portability of floating-point
programs.

Dramatic advances in speed and memory size of computers have been made
since 1985. Arithmetic speed has gone from megaflops to gigaflops, to teraflops,
and to petaflops. This is not just a gain in speed. A qualitative difference
goes with it. If the numbers a petaflops computer produces in one hour were
to be printed (500 on one page and 1000 on one sheet) they would fill a pile
that reaches twice from the earth to the sun. Computing that is continually
and greatly speeded up calls conventional computing into question. Even with
quadruple and extended precision arithmetic the computer remains an experi-
mental tool. A new arithmetic standard must move strongly towards

more reliability in computation. Instead of the computer being merely a
fast calculating tool it must be turned into a scientific instrument of mathe-
matics. Three simple steps in this direction would have great effect. They are
both simple and practical. These requirements are backed up by extensive ex-
perience with software and hardware implementations carried out over the last
three decades [2, 10, 11, 12, 15, 16, 17, 9, 20].

During the last several decades of numerical analysis, methods for very many
problems have been developed which allow the computer itself to validate or
verify its computed results. Mathematical fixed-point theorems, residual correc-
tion techniques, and interval arithmetic are basic engredients of these methods.
Hardly any of these verification techniques needs higher precision floating-point
arithmetic. Double precision floating-point arithmetic is the basic arithmetical
tool.

Three additional arithmetical features are fundamental and necessary:
I. fast interval arithmetic,

II. a fast and exact multiply and accumulate instruction

or, what is equivalent to it, an exact scalar product, and

III. elementary functions with proven and reliable a priori error

bounds.

I: The IEEE standard 754 seems to support interval arithmetic. It requires the
basic four arithmetic operations to have rounding to nearest, towards zero, and

1Draft: Oct. 10, 2006.

1

downwards and upwards. The latter two are essential for interval arithmetic.
But almost all processors that provide IEEE arithmetic separate the rounding
from the basic operation, which makes interval arithmetic extremely slow.

Future processors should provide the basic arithmetic operations with the
monotone downwardly and upwardly directed roundings▽+ ,

▽−
,
▽×

,
▽/ and△+ ,△− ,△× ,

△/ by distinct operation codes. Each of these 8 operations must be callable as a
single instruction, that is, the rounding mode must be inherent in each.

It is desirable that with a new arithmetic standard, denotations for arith-
metic operations with different roundings be introduced. They could be:
+, -, *, / for operations with rounding to the nearest floating-point

number,
+>, ->, *>, /> for operations with rounding upwards,
+<, -<, *<, /< for operations with rounding downwards, and
+|, -|, *|, /| for operations with rounding towards zero (chopping).

This would lead to much more easily readable expressions than for instance
the use of operators like .addup. or .adddown. in Fortran. In languages like
C++ which just provide operator overloading and do not allow user defined
operators these operations would have to be called as functions or assembler
instructions.

The operations with the monotone directed roundings are basic building
blocks for interval arithmetic. Speed has always been an issue for computing
and especially so for interval arithmetic. It is very desirable, therefore, that
the case selections for interval multiplication (9 cases) and interval division (14
cases) are also supported by hardware where they can be chosen without any
time penalty. See [15, 18].

II: To achieve high speed all conventional vector processors provide a multiply
and accumulate instruction. It is, however, not reliably accurate. By pipelining,
the accumulation (continued summation) is executed very swiftly. It is done in
floating-point arithmetic using the so-called partial sum technique. This alters
the sequence of the summands and causes errors beyond the usual floating-point
errors [13, 14].

To obtain narrow bounds for a result, interval arithmetic has to be combined
with defect correction or iterative refinement techniques. To be effective these
techniques should be supported by an exact multiply and accumulate operation
or, what is equivalent to this, an exact scalar product. It may be realized e.g.
by accumulating complete products of double length factors into a wide fixed-
point word. Fixed-point accumulation is simple, error free, and fast. The result
is independent of the sequence in which the summands are added. No under-
or overflow can occur during a scalar product computation, if the width of
this fixed-point word is properly chosen. For the double precision data format,
about 0.5K bytes suffice for this fixed-point word. The exact scalar product
eliminates many rounding errors in numerical computations and it stabilizes
these computations. It is a necessary complement to floating-point and interval
arithmetic.

2

Apparently, quadruple precision arithmetic will be part of the next IEEE
arithmetic standard. But this should not be the only way to higher accuracy.
If the attainable accuracy in a particular class of problems is insufficient with
double precision, then it will very often be insufficient with quadruple precision
as well. It is necessary, therefore, also to provide a basis for improving the
accuracy rather than simply providing higher precision.

With the fast and exact multiply and accumulate operation, fast quadruple
or higher precision arithmetic can also be provided easily. A multiple precision
number is represented as a group of floating-point numbers. The value of the
number is the sum of the components of the group. It can be represented in the
wide fixed-point word. Addition and subtraction of multiple precision variables
or numbers can easily be performed in this word. Multiplication of two such
numbers is simply a sum of products of floating-point numbers. It also can be
computed by means of the exact multiply and accumulate operation.

Software simulations for an exact scalar product are available in the XSC
languages [12, 16, 17, 9], and in other more recent publications [4, 25]. A variable
precision data type staggered precision is based on it. Both are heavily used in
problem solving routines with automatic result verification [11, 5, 6].

Hardware support for the exact multiply and accumulate operation or the
exact scalar product could considerably speed up the operation. A minimum
hardware support would consist of:
a) computation of exact products of two double precision floating-point numbers
(i.e., to their full length).
b) local memory on the arithmetic unit of between 1K and 8K bytes.

A future arithmetic standard, however, should consider full hardware sup-
port for an exact scalar product! Implementation in hardware is easy. The
operation is performed by a shift of the exact products and their accumulation
into a wide fixed-point register on the arithmetic unit. Fixed-point accumulation
of the products is error free, and it is simpler than accumulation in floating-point
arithmetic. There is a specific technique for absorbing a possible carry as soon
as it arises. A very natural pipelining of the actions: loading the data, compu-
tation of the product, shifting, and accumulation of the products into the wide
fixed-point register leads to very fast and simple circuits [2, 20]. The circuitry
required for it is comparable to that for a fast multiplier with an adder tree,
accepted years ago. If supported by a (conventional) vectorizing compiler the
operation would boost both the speed of a computation and the accuracy of
the result! Hardware implementation of a full quadruple precision arithmetic is
likely to be more costly than implementation of the exact scalar product. The
latter only requires fixed-point accumulation of exact products. Fast quadruple
or multiple precision arithmetic and multiple precision interval arithmetic can
easily be provided as a by-product.

The scalar product of two floating-point vectors is the most important and
most frequently used elementary function. Since the dot product computed in
double, quadruple or extended precision arithmetic can fail to produce a correct

3

answer an error analysis is needed for all applications. This can be left to the
computer. As the scalar product can always be executed exactly with moderate
technical effort it should indeed always be executed exactly. Error analysis
then becomes irrelevant. Furthermore, the same result is always obtained on
different platforms. An exact fused multiply and add operation at the matrix
level is inherent to it. It is fundamental to the whole of numerical analysis. In
mathematics it makes a big difference whether an operation is exact for many
or for all applications. Also, fast arithmetic for varying-precision formats can
easily be provided with it to a certain extent.

III: All arithmetic operations, functions or routines predefined by the processor,
the manufacturer or the vendor must be provided with proven and reliable a
priori error bounds. These error bounds must be made known to the user so that
he can deal with it. He should know just what he gets if an elementary function
or routine is used in a program. It is the vendor’s responsibility to deliver
these error bounds. Error estimates or error statements based on speculation
are simply not acceptable. Of course, deriving proven reliable a priori error
bounds can take a lot of work. But this work has to be done only once. A
great deal of it can be done by use of the computer and of interval arithmetic.
For an individual elementary function different error bounds may be obtained
for different evaluation domains. Their maximum then is a global error bound.
Proven error bounds must consider all error sources, like the approximation
error in a reduced range, errors resulting from range reductions, etc. [19, 23].

For the double precision format the conventional 24 elementary functions
have been implemented (just using double precision arithmetic) with an error
that is less than 1.5 ulp. Even for a long data type elementary functions can be
implemented with an error less than a few ulp [3].

A programming language or an arithmetic standard that supports interval
arithmetic also should provide elementary functions for interval data for all data
formats of the standard and for dynamic precision. Of course, high accuracy
is desirable. But speed also is an issue for interval arithmetic! For the double
precision format the elementary functions have been implemented for interval
arguments (just using double precision arithmetic) with proven reliable error
bounds that differ from the best possible interval enclosure of the result by an
error that is, say, less than 1.5 ulp for each of the bounds. For point intervals
the computed bounds show immediately how accurately the function has been
evaluated.

The vendor is responsible for the quality of the arithmetic and of the el-
ementary functions, and he has to provide valid (guaranteed) a priori error
bounds.

In Summary: Interval arithmetic can bring guarantees into computation while
an exact multiply and accumulate instruction can bring high accuracy via defect
correction methods and at high speed. It also is the key operation for fast
multiple precision arithmetic.

4

Fast and accurate hardware support for I., II. and III. must be added to
conventional floating-point arithmetic. All three are necessary extensions.

A computer is supposed to be a scientific instrument of mathematics. It
is amazing that after 60 years of its use these elementary and most natural
requirements are not yet taken as a matter of course in computers.

The requirements I., II. and III. for a future arithmetic standard are in-
tended to give guidance to GAMM members when selecting future computers.

References

[1] American National Standards Institute / Institute of Electrical and Elec-
tronics Engineers: A Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Std. 754-1985, New York, 1985 (reprinted in SIGPLAN 22,
2, 9-25, 1987). Also adopted as IEC Standard 559:1989.

[2] Baumhof, Ch.: Ein Vektorarithmetik-Koprozessor in VLSI-Technik zur
Unterstützung des Wissenschaftlichen Rechnens. Dissertation, Universität
Karlsruhe, 1996.

[3] Defour, D., Hanrot, G., Lefvre, V., Muller, J.-M., Revol, N., Zimmermann,
P.: Proposal for a Standardization of Mathematical Function Implemen-
tation in Floating-Point Arithmetic. In: Numerical Algorithms, vol. 37,
367375, 2004.

[4] Demmel, J.; Hida, Y.: A floating-point technique for extending the available
precision. SIAM J. Sci. Comput. 25, 1214–1248, 2003.

[5] Hammer, R., et al.: Numerical Toolbox for Verified Computing I: Basic
Numerical Problems. Springer-Verlag, Berlin/Heidelberg/New York, 1993.

Russian translation: MIR-Verlag, Moskau, 2005.

[6] Hammer, R., et al.: C++ Toolbox for Verified Computing: Basic Numerical
Problems. Springer-Verlag, Berlin/Heidelberg/New York, 1995.

[7] Higham, N. J.: The accuracy of floating point summation, SIAM Journal
on Scientific Computing, 14:4, 783-799, 1993.

[8] Higham, N. J.: Accuracy and Stability of Numerical Algorithms. Second
edition, SIAM, Philadelphia, 2002.

[9] Hofschuster, W., Krämer, W.: C-XSC 2.0: A C++ Library for Ex-
tended Scientific Computing Preprint 2003/5, University of Wupper-
tal, 2003. Published in: Alt, R. et al. (Eds.): Numerical Software
with Result Verification, Lecture Notes in Computer Science, Volume
2991/2004, Springer-Verlag, Heidelberg, pp. 15 - 35, 2004. See also:
http://www.math.uni-wuppertal.de/~xsc/ or http://www.xsc.de/

5

[10] IBM System/370 RPQ. High Accuracy Arithmetic. SA 22-7093-0, IBM
Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032
Böblingen), 1984.

[11] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). IBM
Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032
Böblingen), 3rd edition, 1986.
1. General Information Manual. GC33-6163-02.
2. Program Description and User’s Guide. SC33-6164-02.
3. Reference Summary. GX33-9009-02.

[12] ACRITH–XSC: IBM High Accuracy Arithmetic — Extended Scientific
Computation. Version 1, Release 1. IBM Deutschland GmbH (Schönaicher
Strasse 220, D-71032 Böblingen), 1990.
1. General Information, GC33-6461-01.
2. Reference, SC33-6462-00.
3. Sample Programs, SC33-6463-00.
4. How To Use, SC33-6464-00.
5. Syntax Diagrams, SC33-6466-00.

[13] IMACS-GAMM Resolution on Computer Arithmetic. In Mathematics and
Computers in Simulation 31, 297-298, 1989. In Zeitschrift für Angewandte
Mathematik und Mechanik 70, No. 4, T5, 1990.

[14] GAMM-IMACS Proposal for Accurate Floating-Point Vector Arithmetic.
GAMM, Rundbrief 2, 9-16, 1993. Mathematics and Computers in Simu-
lation, Vol. 35, IMACS, North Holland, 1993. News of IMACS, Vol. 35,
No. 4, 375-382, Oct. 1993.

[15] Kirchner, R.; Kulisch, U.: Hardware support for interval arithmetic. Reli-
able Computing, 1–16, 2006.

[16] Klatte, R., et al.: PASCAL–XSC — Sprachbeschreibung mit Beispie-
len. Springer-Verlag, Berlin/Heidelberg/New York, 1991. See also:
http://www.math.uni-wuppertal.de/~xsc/ or http://www.xsc.de/

English translation: PASCAL–XSC — Language Reference with Ex-
amples. Springer-Verlag, Berlin/Heidelberg/New York, 1992. See also:
http://www.math.uni-wuppertal.de/~xsc/ or http://www.xsc.de/

Russian translation: MIR-Verlag, Moskau. 1995, third edition 2006.

[17] Klatte, R., et al: C–XSC, A C++ Class Library for Extended Scientific
Computing. Springer-Verlag, Berlin/Heidelberg/New York, 1993. See also:
http://www.math.uni-wuppertal.de/~xsc/ or http://www.xsc.de/

[18] Kolla, R.; Vodopivec, A.; Wolff v. Gudenberg, J.: Splitting Double Pre-
cision FPUs for Single Precision Interval Arithmetic. In W. Erhard et al.
(edts.), ARCS’99 Workshops zur Architektur von Rechensystemen, Univer-
sität Jena, 1999, 5-16,1999.

6

[19] Krämer, W.: A priori Worst Case Error Bounds for Floating-Point Com-
putations, IEEE Transactions on Computers, Vol. 47, No. 7, July 1998.

[20] Kulisch, U.: Advanced Arithmetic for the Digital Computer — Design of
Arithmetic Units. Springer-Verlag, Wien, New York, 2002.

[21] Kulisch, U.: Letters to the IEEE Computer Arithmetic Revision Group. See:
http://www.math.uni-wuppertal.de/org/WRST/preprints/prep 06 5.pdf

[22] Ogita, T.; Rump, S. M., and Oishi, S.: Accurate Sum and Dot Product.
SIAM Journal on Scientific Computing (SISC), 26(6):1955-1988, 2005.

[23] Rump, S. M.: Rigorous and portable standard functions. BIT 41(3), 540-
562, 2001.

[24] Rump, S.M.: INTLAB - Interval Laboratory, a Matlab tool-
box for verified computations, Version 5.1, 2005. http://www.ti3.tu-
harburg.de/rump/intlab/index.html.

[25] Rump, S.M.; Ogita, T.; Oishi,S: Accurate Floating-point Summation. Tech-
nical Report 05.12, Faculty for Information- and Communication Sciences,
Hamburg University of Technology, November 13, 2005.

[26] Zielke, G.; Drygalla, V.: Genaue Lösung linearer Gleichungssysteme.
GAMM Mitt., Ges. Angew. Math. Mech. 26, 7–107, 2003.

7

