C-XSC - A C++ Class Library for Extended Scientific Computing  2.5.4
l_rmath.hpp
00001 /*
00002 **  CXSC is a C++ library for eXtended Scientific Computing (V 2.5.4)
00003 **
00004 **  Copyright (C) 1990-2000 Institut fuer Angewandte Mathematik,
00005 **                          Universitaet Karlsruhe, Germany
00006 **            (C) 2000-2014 Wiss. Rechnen/Softwaretechnologie
00007 **                          Universitaet Wuppertal, Germany   
00008 **
00009 **  This library is free software; you can redistribute it and/or
00010 **  modify it under the terms of the GNU Library General Public
00011 **  License as published by the Free Software Foundation; either
00012 **  version 2 of the License, or (at your option) any later version.
00013 **
00014 **  This library is distributed in the hope that it will be useful,
00015 **  but WITHOUT ANY WARRANTY; without even the implied warranty of
00016 **  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00017 **  Library General Public License for more details.
00018 **
00019 **  You should have received a copy of the GNU Library General Public
00020 **  License along with this library; if not, write to the Free
00021 **  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
00022 */
00023 
00024 /* CVS $Id: l_rmath.hpp,v 1.32 2014/01/30 17:23:46 cxsc Exp $ */
00025 
00026 #ifndef _CXSC_L_RMATH_HPP_INCLUDED
00027 #define _CXSC_L_RMATH_HPP_INCLUDED
00028 
00029 #include "l_real.hpp"
00030 
00031 namespace cxsc {
00032 
00034 inline l_real sqr     (const l_real&) throw(); // Sqr(x)
00036        l_real sqrt    (const l_real&) throw(ERROR_LREAL_STD_FKT_OUT_OF_DEF);
00037                                                // Sqrt(x)
00039        l_real sqrtx2y2(const l_real&, const l_real&) throw(); 
00040                                                // Sqrt(x^2+y^2)
00042        l_real sqrt1px2(const l_real&) throw(); // Sqrt(1+x^2)
00044 inline l_real sqrtp1m1(const l_real &) throw(); 
00046 inline l_real sqrtx2m1(const l_real &) throw();
00048 inline l_real sqrt1mx2(const l_real &) throw();
00050 inline l_real expm1   (const l_real &x) throw();
00052 inline l_real expmx2  (const l_real&) throw();
00054 inline l_real ln_sqrtx2y2(const l_real& x, const l_real& y) throw();
00056 inline l_real acoshp1 (const l_real& x);
00057 
00058 // inline l_real sqrt   (const l_real &, int);  // Sqrt(x, n)
00059 // inline l_real sin    (const l_real&) throw();        // Sin(x)
00060 // inline l_real cos    (const l_real&) throw();        // Cos(x)
00061 // inline l_real tan    (const l_real&) throw();        // Tan(x)
00062 // inline l_real cot    (const l_real&) throw();        // Cot(x)
00063 // inline l_real asin   (const l_real&);        // ASin(x)
00064 // inline l_real acos   (const l_real&);        // ACos(x)
00065 // inline l_real atan   (const l_real&);        // ATan(x) 
00066 // inline l_real acot   (const l_real&);        // ACot(x)
00067 // inline l_real exp    (const l_real&) throw();        // Exp(x)
00068 // inline l_real ln     (const l_real&);        // Ln(x)
00069 // inline l_real sinh   (const l_real&) throw();        // Sinh(x)
00070 // inline l_real cosh   (const l_real&) throw();        // Cosh(x)
00071 // inline l_real tanh   (const l_real&) throw();        // Tanh(x) 
00072 // inline l_real coth   (const l_real&) throw();        // Coth(x)
00073 // inline l_real asinh  (const l_real&);        // ASinh(x)
00074 // inline l_real acosh  (const l_real&);        // ACosh(x)
00075 // inline l_real atanh  (const l_real&);        // ATanh(x)
00076 // inline l_real acoth  (const l_real&);        // ACoth(x)
00077 
00079 inline l_real pow    (const l_real&, const l_real&); // Pow(x,y)
00081 l_real power         (const l_real&, const int);     // Power(x,n)
00082 
00083 // real staggered constants (the same as in l_interval.hpp):
00084 l_real Ln2_l_real()   throw();   // ln(2) 
00085 l_real Ln10_l_real()  throw();   // ln(10)
00086 l_real Ln10r_l_real() throw();   // 1/ln(10)
00087 l_real Pid4_l_real()  throw();   // Pi/4
00088 l_real Sqrt2_l_real() throw();   // sqrt(2)
00089 l_real Sqrt5_l_real() throw();   // sqrt(5)
00090 l_real Sqrt7_l_real() throw();   // sqrt(7)
00091 l_real Ln2r_l_real() throw();     // 1/ln(2)
00092 l_real Pi_l_real() throw();       // Pi
00093 l_real Pid2_l_real() throw();     // Pi/2
00094 l_real Pi2_l_real() throw();      // 2*Pi
00095 l_real Pid3_l_real() throw();     // Pi/3
00096 l_real Pir_l_real() throw();      // 1/Pi
00097 l_real Pi2r_l_real() throw();     // 1/(2*Pi)
00098 l_real SqrtPi_l_real() throw();   // sqrt(Pi)
00099 l_real Sqrt2Pi_l_real() throw();  // sqrt(2*Pi)
00100 l_real SqrtPir_l_real() throw();  // 1/sqrt(Pi)
00101 l_real Sqrt2Pir_l_real() throw(); // 1/sqrt(2*Pi)
00102 l_real Pip2_l_real() throw();     // Pi^2
00103 l_real Sqrt2r_l_real() throw();   // 1/sqrt(2)
00104 l_real Sqrt3_l_real() throw();    // sqrt(3)
00105 l_real Sqrt3d2_l_real() throw();  // sqrt(3)/2
00106 l_real Sqrt3r_l_real() throw();   // 1/sqrt(3)
00107 l_real LnPi_l_real() throw();     // ln(Pi)
00108 l_real Ln2Pi_l_real() throw();    // ln(2*Pi)
00109 l_real E_l_real() throw();        // e = exp(1)
00110 l_real Er_l_real() throw();       // 1/e
00111 l_real Ep2_l_real() throw();      // e^2
00112 l_real Ep2r_l_real() throw();     // 1/e^2
00113 l_real EpPi_l_real() throw();     // e^Pi
00114 l_real Ep2Pi_l_real() throw();    // e^(2*Pi)
00115 l_real EpPid2_l_real() throw();   // e^(Pi/2)
00116 l_real EpPid4_l_real() throw();   // e^(Pi/4)
00117 l_real EulerGa_l_real() throw();  // EulerGamma
00118 l_real Catalan_l_real() throw();  // Catalan
00119 
00120 } // namespace cxsc 
00121 
00122 #include "l_rmath.inl"
00123 #endif // _CXSC_L_RMATH_HPP_INCLUDED