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1 INTRODUCTION 1

Abstract: C-XSC is a powerful C++ class library which simplifies the development
of selfverifying numerical software. But C-XSC is not only a development tool, it also
provides a lot of predefined highly accurate routines to compute reliable bounds for the
solution to standard numerical problems.

In this note we discuss the usage of a reliable linear system solver to compute the
solution of problem 7 of the SIAM 100-digit challenge [23, 24]. To get the result we have
to solve a 20 000 × 20 000 system of linear equations using interval computations. To
perform this task we run our software on the advanced Linux cluster engine ALiCEnext
located at the University of Wuppertal and on the high performance computer HP
XC6000 at the computing center of the University of Karlsruhe.

The main purpose of this note is to demonstrate the power/weakness of our ap-
proach to solve linear interval systems with a large dense system matrix using C-XSC
and to get feedback from other research groups all over the world concerned with the
topic described. We are very much interested to see comparisons concerning different
methods/algorithms, timings, memory consumptions, and different hardware/software
environments. It should be easy to adapt our main routine (see Section 3 below) to
other programming languages, and different computing environments. Changing just
one variable allows the generation of arbitrary large system matrices making it easy to
do sound (reproducible and comparable) timings and to check for the largest possible
system size that can be handled successfully by a specific package/environment.

Key words: C-XSC, reliable computing, 100-digit challenge, reliable linear system
solver, high performance computing, large dense linear systems

1 Introduction

Up to now there are no special linear system solvers for sparse system matrices available
in C-XSC [21, 8] (but see e.g. [15, 11] for some first approaches). Thus we will solve
the 7. Problem of the Siam 100-digit Challenge (see the next section) for dimensions
20.000 and 50.000 with brute force using our parallel linear system solver for dense
matrices [25, 12, 5]. In case of dimension n = 20.000 the matrix has 400.000.000 and
in case of n = 50.000 it has 2.500.000.000 entries. We do not store all these entries
on one (master) processor. Each processor generates a matrix MyA, which stores only
his part of the matrix, with the help of the function generateElementOfA (a pointer
to this function is the first parameter when calling our new solver LSS). Matrices are
stored according to the two-dimensional block cyclic distribution used by ScaLAPACK
[17]. Internally the solver creates an approximate inverse R of A and also computes an
enclosure (an interval matrix [C]) for I − R × A. Because the solver does not exploit
the sparse structure of the problem these matrices will be dense. Thus a lot of memory
is needed. Nevertheless, using e.g. the cluster computer ALiCEnext at the University
of Wuppertal or the high performance computer HP XC6000 at the computing center
of the University of Karlsruhe we are able to solve the linear system Ax = e1, where
e1 = (1, 0 . . . 0)T denotes the first unit vector. Then, the first component of the solution



2 THE 7. PROBLEM OF THE SIAM 100-DIGIT CHALLENGE 2

vector x gives an enclosure of the element at position (1, 1) of A−1, which is needed to
solve the 7. problem of the challenge mentioned.

In this note we do not give any details on the algorithm used to solve linear systems
with interval matrices. We refer the reader to [22, 7]. The parallelization is described in
[25, 12]. A different ansatz (some kind of master-slave) for the parallelization has been
used in [5, 16, 4] storing the complete system matrix (and/or some auxiliary matrices)
on a single node (memory bottleneck). The new solver [25, 12] overcomes this difficulty
using a two dimensional block cyclic distribution of the matrices. It is based on BLAS,
MPI [9, 6], ScaLAPACK [17], so called error free transformations [2, 10, 20, 19, 18] and
allows very large matrices.

2 The 7. Problem of the Siam 100-digit Challenge

Here comes the original problem [23]: Let A = (aij) be the 20 000×20 000 matrix whose
entries are zero everywhere except for the primes 2, 3, 5, 7, . . ., 224737 along the main
diagonal and the number 1 in all the positions aij with |i − j| = 1, 2, 4, 8, . . . , 16384.
What is the (1, 1) entry of A−1?

Later on we also solve this problem with dimension n = 50.000. In this case the
primes from 2 to 611953 are the diagonal entries and the number 1 is in all the positions
|i − j| = 1, 2, 4, 8, ..., 32768.

Please note that we are only interested in an accurate enclosure of the true result
within an interval with floating point numbers as bounds (i.e. roughly 15 decimal digits
accuracy).

3 Source Code to Create the System Matrix and to

Call the Parallel Solver

In this section we reproduce the source code of the program to create the matrix and
right hand side. It calls the parallel solver LSS for dense linear interval systems available
in C-XSC [25, 12].

/*

* Solving problem 7 of the SIAM 100-digit challenge using C-XSC

*

* The problem: A=a_ij is the 20000x20000 matrix (in this program,

* the dimension can be altered) whose entries are zero everywhere except

* for the primes 2,3,5,7,... along the main diagonal and the number 1 in

* all position a_ij with |i-j|=1,2,4,8,...

* What is the entry (1,1) of the inverse of A?

*

* Here this problem is solved by computing the solution of the linear system

* A*x=b, where b is the first unit vector, with a fast parallel dense linear

* system solver using C-XSC. (Note: Since A is a sparse matrix, using a
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* dense solver is not very efficient).

*

* Author: Michael Zimmer

*

*/

//Headerfiles for output streams(logfile)

#include <iostream>

#include <fstream>

#include <sstream>

//Headerfile for MPI functions

#include "mpi.h"

//Headerfile for time mesurements

#include "sys/time.h"

//Headerfile for the solver

#include "lss_par.hpp"

using namespace cxsc;

using namespace std;

//Dimension of the interval matrix A

const int dim = 20000;

//All primes between 1 and dim

int primes[dim];

//Directory for logfile of each node

const string datadir = "/data/mzimmer";

//Directory to which all logfiles will be copied at the end

const string targetdir = "/home/mzimmer/Upload/bin/output";

//Get current timer value in s

double getTime() {

struct timeval _tp;

gettimeofday(&_tp,0);

return _tp.tv_sec + _tp.tv_usec / 1000000.0;

}

//Logarithm of base 10

real log10(real x) {

return ln(x) / ln(real(10.0));

}

//Logarithm of base 2

real log2(real x) {

return ln(x) / ln(real(2.0));

}
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//Determines if an integer n is a prime

bool isPrime(int n) {

if(n == 2)

return true;

else if(n < 2 || n%2 == 0)

return false;

bool prime = true;

for(int i=3 ; i<=(int)sqrt((double)n) ; i++) {

if(n%i == 0) {

prime = false;

break;

}

}

return prime;

}

//Generates all primes between 1 and dim and stores them in the

//array primes

void generatePrimes() {

int p = 0;

int i = 0;

while(p < dim) {

i++;

if(isPrime(i)) {

primes[p] = i;

p++;

}

}

}

//Determines if an integer n is a power of two

bool isPowTwo(int n) { //works well in the range were we use it

real l = log2(n);

return l == (int)_double(l);

}

//Function defining elements of A. The reference parameter r

//will be overwritten with the value of element (i,j) of matrix

//A.

void generateElementOfA(int i, int j, real& r) {

if(i==j)

r = primes[i-1];
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else if(isPowTwo(cxsc::abs(i-j)))

r = 1.0;

else

r = 0.0;

}

//Computes an approximate of the average number of

//exact digits (the number of digits equal in the

//infimum and the supremum)

real computeNumberOfExactDigits(ivector &x) {

dotprecision accu(0);

for(int i=1 ; i<=VecLen(x) ; i++) {

real d = diam(x[i]);

if(d == 0) {

accu += 1e16;

} else {

accu += abs(mid(x[i])) / d;

}

}

return abs(log10(rnd(accu)/VecLen(x)));

}

int main (int argc, char** argv) {

//MPI process ID

int myId;

//Number of processes

int np;

//Dimension of the matrix A

int m=dim, n=dim;

//Right hand side of the system

rvector b(m);

//Computed solution

ivector x(n);

//Precision to be used for computation of dot products

//(K-fold working precision)

int K=2;

//Number of threads used for computation of dot products

int threads=0;

//Variables for error codes

int comErr, err;

//Blocksize for ScaLAPACK

int nb=256;

//Variables for the measurement of the time needed
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double start, stop;

//Initialise MPI

MPI_Init(&argc,&argv);

//Determine the number of processes

MPI_Comm_size(MPI_COMM_WORLD, &np);

//Determine own process ID

MPI_Comm_rank(MPI_COMM_WORLD, &myId);

//Prepare output of process data into a logfile

ostringstream s;

s << datadir << "/" << "output" << myId << ".txt";

ofstream out(s.str().c_str());

//Write some information to the logfile

out << SetPrecision(23,15) << Scientific; // Output format

out << "K=" << K << endl;

out << "m=" << m << endl;

out << "n=" << n << endl;

//Generate all needed prime numbers

generatePrimes();

//Right hand side is the first unit vector. Will be broadcast

//by process 0 to the other processes

if(myId==0) {

b = 0.0;

b[1] = 1.0;

}

//Start the solver

//

//Parameters are:

//generateElementOfA: A pointer to a function which generates

// Element (i,j) of the matrix A

//b: Right hand side of the system

//x: Solution of the system (will be overwritten by the solver)

//m: Number of rows of matrix A

//n: Number of columns of matrix A

//np: Number of available processes

//myId: Own process id

//nb: Block size for ScaLAPACK

//err: General error variable

//comErr: Communication-error variable
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//out: Output stream to write status messages to

//K: Precision for dot products

//threads: Number of threads used for dot products

//LSS_ONLY_PART_ONE: A pre-defined constant determining that only

// part one of the solver should be executed

// (other possibilities: LSS_ONLY_PART_TWO, LSS_BOTH_PARTS)

start = getTime();

LSS(generateElementOfA,

b, x, m, n, np, myId, nb, err, comErr,

out, K, threads, LSS_ONLY_PART_ONE);

stop = getTime();

//Write overall time needed to logfile

out << endl << "Overall time needed: " << stop-start << "s" << endl;

//Write result or error message to logfile

if(myId == 0) {

if (!err) {

out << "Average number of exact digits: "

<< computeNumberOfExactDigits(x) << endl;

out << "Result: " << x[1] << endl;

} else {

out << "Error: " << LinSolveErrMsg(err) << endl;

}

}

//Close the logfile and move it to the targetdir

out.close();

string syscmd_mvres= "mv "+ s.str() + " " + targetdir;

system(syscmd_mvres.c_str());

//End the program

MPI_Finalize();

return 0;

}

4 Parallel Computer Systems Used

Our software has been developed and tested on two very different high performance
cluster computers at the Universities of Wuppertal and Karlsruhe, on which also the
final computations have been done.
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4.1 The system ALiCEnext at the University of Wuppertal

The following information is taken from
http://www.alicenext.uni-wuppertal.de/hardware.htm

ALiCEnext consists of 1024 AMD-Opteron processors as one would find in many
standard desktop PCs. However, in ALiCEnext these processors are not located in usual
PC cases but in towers with highly integrated technology (blade technology). They are
connected by a double communication network, which allows super fast data exchange.
Super-computers with this type of architecture are called clusters.
The Blades

1024 processors are distributed on 512 blades. On each of these blades are:

• 2 x AMD Opteron 1.8 GHz processors

• 2 x 250 GB harddiscs

• 2 x 1024 MByte RAM

• 6 x Gigabit-Ethernet connections

The Network

The network is a combination of gigabit-ethernet and 2-d tori. The additional 2-d
torus is needed for computations in lattice gauge theory, because here mainly data from
immediate neighbours is required by each process.

On this machine, the Intel Compiler 9.0 and the AMD Core Math Library (contain-
ing optimized implementations of BLAS, LAPACK and ScaLAPACK) were used. Our
selfverifying solver for linear interval systems was first developed on this machine [25].

4.2 The system HP XC6000 at the University of Karlsruhe

The following information is taken from
http://www.rz.uni-karlsruhe.de/ssck/4141.php

Configuration of High Performance Computer HP XC6000

Nodes of HP XC6000 may have different roles. In Karlsruhe there are

• 2 login nodes each with 8 processors,

• 101 compute nodes each with 2 processors,

• 10 compute nodes each with 8 processors,

• a few service nodes for resource management etc.,

• 8 file server nodes each with 2 processors with a netto capacity of 10 TB and

• a fast Quadrics QsNet II Interconnect.

http://www.alicenext.uni-wuppertal.de/hardware.htm
http://www.rz.uni-karlsruhe.de/ssck/4141.php
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The HP XC6000 is a distributed memory parallel computer with 128 nodes all in
all; 108 nodes consist of 2 Intel Itanium2 processors with a frequency of 1.5 GHz and
12 nodes consist of 8 Intel Itanium2 processors with a frequency of 1.6 GHz and all
nodes own local memory, local disks and network adapters. Thus the theoretical peak
performance of the system is 1.9 TFLOPS. The main memory above all compute node
is about 2 TB. Additionally special nodes are attached as file servers to the cluster to
support a fast and scalable parallel filesystem. All nodes are connected to the Quadrics
QsNet II interconnect that shows a high bandwidth of more than 800 MB/s and a low
latency.

The basic operating system on each node is HP XC Linux for High Performance
Computing (HPC), a Linux implementation which is compatible to RedHat AS 4.0.
On top of this operating system a set of open source as well as proprietary software
components constitute the XC software environment enabling the efficient usage of the
parallel computer.

As global filesystem the scalable, parallel filesystem Lustre is used within the XC
cluster. By the usage of several Lustre Object Storage Target (OST) servers and Meta
Data Servers (MDS) both high scalability and redundancy are reached in case of mal-
function of single servers. At present 10 TB disk space is available within the global
filesystem. Besides each node of HP XC6000 is equipped with local disks for temporary
data.

More detailled description of the nodes: 108 nodes each with 2 Intel Itanium2 pro-
cessors and 12 GB main memory and 146 GB local disk space; 12 nodes each with 8
Intel Itanium2 processors and 64 GB main memory and about 500 GB local disk space;
8 2-way file server nodes based on Xeon processors with attached disks of the overall
size of 10 TB.

The operating system on each node is HP XC Linux for High Performance Com-
puting. The C++ compiler is icc 10.0 and theversion of the Intel Math Kernel Library
(which contains optimized implementations of BLAS, LAPACK and ScaLAPACK) is
10.0.011.

5 Interval Results and some Timing Information

Let us first discuss the results obtained for the original problem (n = 20.000). We find
the interval enclosure
A−1

11
= 0.725078346268401167468687719251160968869180594479508957878164769 . . . ∈

[0.7250783462684010, 0.7250783462684012]. This enclosure was reproduced in all
cases on both machines even when using different numbers of processors. The value of
A−1

11
is known exactly as a rational number in which the numerator and denominator

each have 97389 decimal digits, see [24] or
http://www-m3.ma.tum.de/m3old/bornemann/challengebook/Chapter7/sol7_numerator.txt

and
http://www-m3.ma.tum.de/m3old/bornemann/challengebook/Chapter7/sol7_denominator.txt

On AliceNext, solving the problem using np= 20 processes took about 1800 seconds

http://www-m3.ma.tum.de/m3old/bornemann/challengebook/Chapter7/sol7_numerator.txt
http://www-m3.ma.tum.de/m3old/bornemann/challengebook/Chapter7/sol7_denominator.txt
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and using np=50 processes, it took about 870 sec. On the super computer HP XC6000
in Karlsruhe the corresponding timings are 620 and 280 seconds, respectively.

Problem with dimension n = 50.000: In this case we found the interval enclosure
A−1

11
∈ [ 7.250799024199662E-001, 7.250799024199664E-001]. Again the computed

result does not depend on the number of processors used.
On the high performance computer in Karlsruhe the timings using 50 and 100 pro-

cesses are 3603 and 1958 sec, respectively.
The following two excerpts are taken from the logfiles produced in Wuppertal and

Karlsruhe, respectively when executing the linear system solver in case of a system
matrix with dimension n = 20.000 and using 50 processes. Comparing these data gives
deeper insight in the main contributions to the overall computing times. These main
contributions are (as expected) on both machines

• computing the approximate inverse R,

• and computing the enclosure [C] of I − R × A.

There is a significant difference comparing the ratio of the time to compute R to the
time to compute [C] on the different machines. This is most likely due to different levels
of optimization of the used ScaLAPACK libraries but further investigations have to be
done.
Here are the details concerning AliceNext:

K=2

Number of rows m=20000

Number of columns n=20000

Starting LSS...

Time for data distribution and initialization: 27.6366

Starting matrix inversion

Inversion finished

Time for inversion to compute matrix R: 430.164

Starting defect iteration...

1. iteration step

2. iteration step

Time for defect iteration: 3.85521

Computing [z]

Time for computation of [z]: 3.58533

Computing [C]

Time for computation of [C]: 402.01

Verifying...

1. verification step

Time for verification: 2.12393

LSS finished.

Overall time needed: 869.747s
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Average number of exact digits: 1.581288580850802E+001

Result: A^(-1)[1,1] lies in [ 7.250783462684010E-001, 7.250783462684012E-001]

The corresponding data concerning HP XC6000 are:

K=2

Number of rows m=20000

Number of columns n=20000

Starting LSS...

Time for data distribution and initialization: 23.6741

Starting matrix inversion

Inversion finished

Time for inversion to compute matrix R: 94.8271

Starting defect iteration...

1. iteration step

2. iteration step

Time for defect iteration: 3.40674

Computing [z]

Time for computation of [z]: 4.42973

Computing [C]

Time for computation of [C]: 149.153

Verifying...

1. verification step

Time for verification: 2.34285

LSS finished.

Overall time needed: 278.179s

Average number of exact digits: 1.581288580850802E+001

Result: A^(-1)[1,1] lies in [ 7.250783462684010E-001, 7.250783462684012E-001]

6 Conclusion

To solve the Hundred-Dollar, Hundred-Digit Challenge Problem 7 is not very hard when
using our parallel C-XSC solver. We get bounds for the correct mathematical results.
The correctness of these bounds is proved automatically by the computer using (machine)
interval calculations. Our open source parallel C-XSC solver for linear interval systems is
a very powerful tool. It is also able to handle system matrices and right hand sides with
real or even with complex interval entries. The numerical results are always reliable.
To the authors knowledge there is no other software available which is able to solve
such large dense interval linear systems (please inform us if you are aware of other
packages!). Of course, a lot of additional work has to be done to create algorithms and
to implement corresponding software packages which are able to exploit sparsity. This
is a very challenging task.

We will extend this note with some additional material concerning the solution of
large ill conditioned dense matrices in the near future.
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