
Bergische Universität
Wuppertal

Letters to the IEEE Computer Arithmetic
Standards Revision Group

Ulrich Kulisch

Preprint
BUW-WRSWT 2006/5

Wissenschaftliches Rechnen/
Softwaretechnologie

Impressum

Herausgeber: Prof. Dr. W. Krämer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich C (Mathematik und Naturwissenschaften)
Bergische Universität Wuppertal
Gaußstr. 20
42097 Wuppertal, Germany

Internet-Zugriff

Die Berichte sind in elektronischer Form erhältlich über die World Wide Web Seiten

http://www.math.uni-wuppertal.de/wrswt/literatur.html

Autoren-Kontaktadresse

Prof. Dr. Ulrich Kulisch
Institut für Angewandte Mathematik
Universität Karlsruhe
76128 Karlsruhe, Germany

Letters to the IEEE Computer Arithmetic

Standards Revision Group

Ulrich Kulisch

Institut für Angewandte Mathematik

Universität Karlsruhe

Abstract

The IEEE standards 754 and 854 for floating-point arithmetic have been under revision
for some time. The work is pushed forward by the Floating-Point Working Group (ca.
100 scientists) of the Standards Committee of the IEEE Computer Society. The group
meets monthly near Palo Alto/San Jose in California. At present Dec. 2006 is the
deadline for the new standard. The author has tried to influence the development of
the new standard by several letters he has sent to the working group. The text of
these letters follows.

Key words: computer arithmetic, floating-point arithmetic, interval arithmetic, ele-
mentary functions, arithmetic standards.

May 2005

Dear colleagues,

recently I have been asked by several colleagues to comment on the ongoing
IEEE 754 revision work. So I am trying today to comment a little on interval
arithmetic. Perhaps later I will send you comments on other topics.

The IEEE standard, adopted in 1985, seems to support interval arithmetic. It
requires the basic four arithmetic operations with rounding to nearest, towards
zero, and with rounding downwards and upwards. The latter two are needed
for interval arithmetic. But almost all processors that provide IEEE arithmetic
separate the rounding from the operation, which proves to be a severe drawback.
In a conventional floating-point computation this does not cause any difficul-
ties. The rounding mode is set only once. Then a large number of operations
is performed with this rounding mode each one in a single cycle. However,
when interval arithmetic is performed the rounding mode has to be switched
very frequently. The lower bound of the result of every interval operation has
to be rounded downwards and the upper bound rounded upwards. Thus, the
rounding mode has to be reset for every arithmetic operation. If setting the
rounding mode and the arithmetic operation are equally fast this slows down
the computation of each bound unnecessarily by a factor of two in comparison
to conventional floating-point arithmetic. On almost all existing commercial
processors, however, setting the rounding mode takes a multiple (three, five,

1

ten) of the time that is needed for the arithmetic operation. Thus an interval
operation is unnecessarily at least eight (or twenty and even more) times slower
than the corresponding floating-point operation not counting the necessary case
distinctions for interval multiplication and interval division. This actually kills
interval arithmetic. The rounding should be an integral part of the arithmetic
operation. Every one of the rounded arithmetic operations with rounding to
nearest, downwards or upwards should be equally fast and executed in a single
cycle. (Of course I know to code around all that. But I do not need a standard
for that).

Interval arithmetic is an essential extension of floating-point arithmetic. It will
only be widely accepted, used, and understood if it is equally fast. I append
a paper which shows how interval arithmetic should be implemented on com-
puters. The IEEE 754 standard should more precisely specify how interval
arithmetic should be supported on computers.

I also append the title page of a new book which in the chapter ”Interval Arith-
metic Revisited” gives more (easily readable) information on the subject.

I wish you all much success with the IEEE 754 revision work. Progress in
scientific computing depends critical on that standard.

With best regards

Ulrich Kulisch

Kulisch, U.: Advanced Arithmetic for the Digital Computer - Design of Arith-
metic Units. Springer-Verlag 2002.

Kirchner, R. and Kulisch, U.: Hardware Support for Interval Arithmetic. Reli-
able Computing, January 2006.

2

June 2005

Dear colleague,

In early May I sent you a letter concerning interval arithmetic and the IEEE
754 revision work. I thank everybody who sent me comments. Apart from some
misunderstandings about my meaning, all comments have been positive.

Today I would like to comment on another topic. It is related to interval arith-
metic and is equally directed at increasing the speed of computation and the
reliability of computed results.

Undoubtedly for elementary floating-point computation the IEEE standard arith-
metic is thorough, consistent, and well defined. It has been widely accepted and
can be found in virtually every processor developed since 1985. This has greatly
improved the portability of floating-point programs.

However, computer technology has been dramatically improved since 1985.
Arithmetic speed has gone from megaflops to gigaflops to teraflops, and it is
already approaching the petaflops range. This is not just a gain in speed. A
qualitative difference goes with it. At the time of the megaflops computer a con-
ventional error analysis was recommended in every numerical analysis textbook.
Today the PC is a gigaflops computer. For the teraflops computer conventional
error analysis is no longer possible. An avalanche of numbers is produced when
a teraflops computer runs for a few hours. If these numbers were to be printed
they would need a pile of paper that reaches from the earth to the sun. Com-
puting indeed has already reached astronomical dimensions!

This brings to the fore the question of whether the computed result really solves
the given problem. The only way to answer this question is by the computer
itself. Mathematical methods that provide an answer to this question are avail-
able for very many problems. Computers, however, are not at present built in
a way that allows these methods to be used effectively.

During the last several decades of numerical analysis, methods for a large variety
of problems have been developed which allow the computer itself to validate or
verify its computed results. These methods compute unconditional bounds for
a solution and can iteratively improve the accuracy of the computed result.
Hardly any of these methods needs higher precision floating-point arithmetic.
Double precision floating-point arithmetic is the basic arithmetical tool.

3

Two additional arithmetical features are fundamental and necessary:
1. fast interval arithmetic and
2. a fast and accurate multiply and accumulate instruction.1

How fast interval arithmetic can be implemented was described in my earlier
letter. To obtain close bounds for the solution interval arithmetic has to be
combined with defect correction or iterative refinement techniques. To be effec-
tive these techniques require an accurate multiply and accumulate instruction
or, what is equivalent to this, an accurate scalar product. It is realized by
accumulating products of the full double length into a wide fixed-point regis-
ter. This fixed-point accumulation is completely free of truncation error. Fast
hardware circuitry for an accurate multiply and accumulate instruction for all
kinds of computers is discussed in the first chapter of my new book: Advanced
Arithmetic for the Digital Computer - Design of Arithmetic Units. See the
Appendix.

A very natural pipelining of the multiply and accumulate instruction leads to
very fast and simple circuits. The hardware expenditure for it is comparable
to that for a fast multiplier with an adder tree, accepted years ago. A speed
increase by a factor of four, compared to a possibly wrong accumulation of the
products in conventional floating-point arithmetic, is easily achieved.

With the fast and accurate multiply and accumulate instruction, fast quadruple
or multiple precision arithmetic also easily can be provided. A multiple precision
number is represented as an array of floating-point numbers. The value of
this number is the sum of its components. It can be represented in the wide
fixed-point register. Addition and subtraction of multiple precision variables or
numbers can easily be performed in this register. Multiplication of two such
numbers is simply a sum of products of floating-point numbers. It can be
computed by means of the accurate multiply and accumulate instruction which
is very fast. For instance in case of a fourfold precision the product of two such
numbers a = (a1 + a2 + a3 + a4) and b = (b1 + b2 + b3 + b4) is obtained by

a × b = (a1 + a2 + a3 + a4) × (b1 + b2 + b3 + b4)
= a1b1 + a1b2 + a1b3 + a1b4 + a2b1 + · · · + a4b3 + a4b4

=
4∑

i=1

4∑

j=1

aibj .

By using the accurate multiply and accumulate instruction the result is inde-

1To achieve high speed all conventional vector processors provide a ’multiply and accumu-
late’ instruction. It is, however, not accurate. By pipelining, the accumulation (continued
summation) is executed very swiftly. The accumulation is done in floating-point arithmetic.
The pipeline usually has four or five stages. What comes out of the pipeline is fed back to
become the second input into the pipeline. Thus four or five sums are built up and are finally
added together. This so-called partial sum technique alters the sequence of the summands
and causes errors in addition to the usual floating-point errors. A vectorizing compiler uses
this ’multiply and accumulate’ operation within a user’s program as often as possible, since
it greatly speeds up the execution. Thus the user loses complete control of his computation.

4

pendent of the sequence in which the summands are added.

In Summary: Interval arithmetic can bring guarantees into computation while
an accurate multiply and accumulate instruction can bring high accuracy via
defect correction methods and at high speed. It also is the key operation for
fast multiple precision arithmetic.

Fast and accurate hardware support for 1. and 2. must be added to conventional
floating-point arithmetic. Both are necessary extensions. Instead of the com-
puter being merely a fast calculating tool they would turn it into a scientific
instrument of mathematics. Computing that is continually and greatly speeded
up makes this step necessary and it is that very speed that calls conventional
computing into question.

Of course, often the computer would have to do more work to obtain verified
results. But the mathematical safety should be worth it. The step from as-
sembler to higher programming languages or the use of convenient operating
systems also consumes a lot of computing power and nobody complains about
it. Fast computers in particular are often used for safety critical applications.
Severe, expensive, and tragic accidents can occur if the eigenfrequencies of a
heavy electricity generator, for instance, are erroneously computed, or if a nu-
clear explosion is incorrectly simulated.

The IEEE standards 754 and 854 have been under revision for some time. I
hope that the revision does not get bogged down in details but that it will
also consider the more basic features of high speed scientific computing. The
computer should not be just a glorified calculator for another twenty years.

Again, I wish you all much success with the IEEE 754 revision work. A major
breakthrough is necessary for scientific computing.

With best regards

Ulrich Kulisch

5

August 8, 2005

Dear Colleague,

It really is not easy to follow a discussion from far away. So I am not sure whether
I correctly understand everything what I read about ’Static Mode Declarations’.
Nevertheless I do have a comment about the rounding mode.

I think the old way (of IEEE 754), first to set the rounding mode and then to
call the arithmetic operation, is well established and I have no complaint about
it nor did my earlier letter request its elimination.

However, for interval arithmetic we need to be able to call each of the operations
+ >, −>, ∗>, / >, and + <, −<, ∗<, / < (here > means rounding upwards
and < means rounding downwards) as one single instruction. (I simply call
these operations ’my operations’). This requires new operation codes! These
operations are distinct from the other approach where first the rounding mode
has to be set and then the arithmetic operation is called.

I see a need for the older mechanism as well, in particular for those applica-
tions where the rounding mode is to be selected randomly. I think in this case
the status register should provide a new mode for choosing the rounding mode
randomly (by a hardware random number generator). Then all standard round-
ings would be performed with roundings that change at random. This would
not have any effect on ’my operations’ since they are called by other operation
codes.

I would appreciate it very much if, with a new arithmetic standard, denotations
for arithmetic operations with different roundings would be introduced. They
could be: +,−, ∗, / for operations with rounding to the nearest floating-point
number, + >, −>, ∗>, / > for operations with rounding upwards, + <, −<,
∗<, /< for operations with rounding downwards, and +|,−|, ∗|, /| for operations
with rounding towards zero (chopping).

We would have to convince the language designers that this is much simpler
and leads to much more easily readable expressions than for instance the use
of operators like .addup. or .adddown. in Fortran. In languages like C++
which just provide operator overloading and do not allow user defined operators
these operations would be called as functions or via assembler. Our C-XSC, for
instance, does not provide operations with directed roundings. They are hidden
within the interval operations.

With best regards

Ulrich Kulisch

6

October 2005

HIGH SPEED COMPUTING WITH HIGH ACCURACY

Dear colleague: In my second letter to the IEEE 754 revision group (in June
2005) I proposed an accurate multiply and accumulate operation for inclusion
in the revised IEEE arithmetic standard. Some of my colleagues have since
urged me to expand on the significance of this operation in a further mail. My
comments are the following:

A pipelined multiply and accumulate operation is the key to obtaining high
speed on all existing vector processors. However, the way this operation has
been implemented causes errors beyond those of conventional floating-point. I
append the GAMM-IMACS Resolution and the GAMM-IMACS Proposal which
address these errors.

The proposed accurate multiply and accumulate operation, or equivalently an
accurate scalar product, comes with the same gain in speed (multiplication and
accumulation are performed in one pipeline). In addition it delivers a fully
accurate result and it is the key operation for high speed multiple precision
arithmetic and multiple precision interval arithmetic. These latter two in turn
are the key operations for controlling the accuracy in a computation.

As far as I understand the drafts of the IEEE revision work, quadruple precision
arithmetic will be part of the next IEEE arithmetic standard. Of course the
entire computing community would be grateful for this. But this should not
be the only way to higher accuracy. If the attainable accuracy in a particular
class of problems is insufficient with double precision, then it will very often be
insufficient with quadruple precision as well. I think it is necessary, therefore,
also to provide a basis for improving the accuracy rather than simply providing
higher precision. Hardware implementation of a full quadruple precision arith-
metic is much more costly than implementation of the accurate scalar product.
The latter only requires fixed-point accumulation of double precision products.
Fast multiple precision arithmetic and multiple precision interval arithmetic can
easily be provided as a by-product.

The accurate multiply and accumulate operation is realized by accumulating the
products of the full double length into a wide fixed-point register. Fixed-point
accumulation is simple, error free, and fast. No under- or overflow can occur
during a scalar product computation, if the width of this register is appropriately
chosen. There is a specific technique for absorbing a possible carry before it
appears (see the first chapter of my book on ’Advanced Computer Arithmetic’).
Of course it is most convenient to supply enough local memory on the arithmetic
unit for all scalar products of double precision data to be computed to full
accuracy. We did this on our chip. However if this much memory or register
space is not available, compromises are quite possible. See the section ’Hardware
Accumulation Window’ in my book. For example in the case of the data format
’long’ of the /370 architecture all scalar products that do not cause an over- or

7

underflow can be computed to full accuracy in a register space of 624 bits. If
this register space is available on the arithmetic unit the vast majority of scalar
products could be computed to full accuracy on very fast hardware. In case
of an over- or underflow, an underlying software routine (exception handling)
would take over. Thus in every case a fully accurate result is computed.

There are many good reasons to urge very strongly that the accurate multiply
and accumulate operation be included in a future IEEE arithmetic standard. For
obtaining high accuracy it is the ultimate solution. A hardware implementation
of the accurate scalar product, by the way, brings a considerable speed up
compared to a conventional computation of the scalar product in floating-point,
while any software simulation will be considerably slower than the latter. This
is also the case if quadruple precision and/or computing the second part of an
operation and/or other aids like multiply and add fused are available. Computer
arithmetic without the accurate multiply and accumulate operation is incomplete
and unnecessarily slow.

With best regards

Ulrich Kulisch

IMACS-GAMM Resolution on Computer Arithmetic.
In: Mathematics and Computers in Simulation 31, 297-298, 1989.
In: Zeitschrift für Angewandte Mathematik und Mechanik 70, no. 4, T5, 1990.

GAMM-IMACS Proposal for Accurate Floating-Point Vector Arithmetic.
In: GAMM, Rundbrief 2, 9-16, 1993.
In: Mathematics and Computers in Simulation, Vol. 35, IMACS, North Holland,
1993.
In: News of IMACS, Vol. 35, No. 4, 375-382, Oct. 1993.

8

January 28, 2006

To: Nelson H. F. Beebe and to stds-754@IEEE.ORG

Dear colleague, in your mail of Nov. 22, 2005 to stds-754@IEEE.ORG and to
me you refer to the GAMM-IMACS Proposal for Accurate Floating-Point Vector
Arithmetic. Methods that realize the proposal are developed in my book [KUL].
In the same mail you mention the paper [ORO], and in another mail of Jan. 4,
2006 the paper [ROO]. I also appreciate these excellent papers. All these papers
[ORO], [ROO], and [KUL] claim to provide fast methods that compute accurate
sums and dot products. The question is: fast in comparison with what?

[ORO] and [ROO] just use conventional floating-point arithmetic. The methods
are fast compared with other software methods that compute highly accurate
sums and dot products. The computing time comes surprisingly close to the
time T needed for (a possibly wrong) computation in conventional floating-point
arithmetic. The speed mildly decreases with increasing condition number.

[KUL] suggests hardware solutions. The methods are fast compared with other
hardware solutions. The computing time is independent of the condition num-
ber. It is less than T. This high speed is reached because the actions: loading the
data, computing, shifting, and accumulation of the products are performed in one
pipeline. Furthermore fixed-point accumulation of the products is simpler than
accumulation in floating-point arithmetic. Many intermediate steps that are
executed in a floating-point accumulation such as normalization and rounding
of the products and of the intermediate sum, composition into a floating-point
number and decomposition into mantissa and exponent for the next operation
do not occur in the fixed-point accumulation. It simply is performed by a shift
and addition of the products of full double length into a wide fixed-point reg-
ister. Fixed-point accumulation is error free! If supported by a (conventional)
vectorizing compiler the method would boost both the speed of a computation
and the accuracy of the result! The [KUL] method does not just solve the
problem with faithful rounding. Sums and dot products are computed to full
accuracy. This allows an easy and very fast realization of multiple precision
floating-point and interval arithmetics.

The second paragraph in your mail of Nov. 22 reads: One implementation of
this proposal would use internal accumulators wide enough to hold the entire
exponent range, requiring width of hundreds to tens of thousands of bits (for the
32-bit, 64-bit, 80-bit, and 128-bit formats).

Other methods only consider the 32-bit and the 64-bit formats. Who knows
how they would perform for a 128-bit format? The wording accumulator in
your mail may be misleading the understanding of the situation. All that is
actually needed in the case of the 64-bit format is a tiny local memory on the
arithmetic unit of about 1K bytes. We really can and we should afford this at
a time where computer memory is measured in gigabytes. The arithmetic itself
is not much different from what is available on a conventional CPU. For larger

9

data formats see the section ’Hardware Accumulation Window’ in my book. I
very much appreciate your suggestion to further investigate the subject with
regard to an emerging revised IEEE 754 standard. A new standard should also
consider the more basic features of high speed scientific computing.

With best regards

Ulrich Kulisch

[ORO] Takeshi Ogita, Siegfried M. Rump, Shin’ichi Oishi: Accurate Sum and
Dot Product, SIAM Journal on Scientific Computing, Vol. 26, No. 6, pp. 1955
- 1988, 2005.

[ROO] Siegfried M. Rump, Takeshi Ogita, Shin’ichi Oishi: Accurate Floating-
Point Summation, to be published in Reliable Computing, 2006, http://www.ti3.tu-
harburg.de/paper/rump/Ru05d.pdf.

[KUL] Ulrich W. Kulisch: Advanced Arithmetic for the Digital Computer - De-
sign of Arithmetic Units, Springer-Verlag, 2002.

10

February 10, 2006

Dear colleagues

My thanks to everybody who sent me comments on my letter of January 28,
2006 to stds-754@IEEE.ORG and to Nelson Beebe. In the responses, the word-
ings accurate sum and dot product, exact sum and dot product, and faithfully
rounded sum and dot product are used more or less synonymously. For me the
meaning of the last differs from that of the others. An accurate or exact dot
product means that the result is computed to the fullest possible accuracy. Not
a single bit is lost.

Here is why I see the issue in this way:

A. The most natural way to accumulate numbers is fixed-point accumulation. It
is simple, error free and fast. This is also true for the accumulation of floating-
point numbers and of their products. If the result register is wide enough
it can be done without exception. The result is exact. Not a single bit is
lost. The arithmetic to achieve this is much the same as that of a conventional
CPU. Fixed-point accumulation of floating-point sums and dot products can be
realized in hardware at low cost. And it is very very fast. If supported by a
vectorizing compiler it would boost both the speed of a computation and the
accuracy of the result.

Fully accurate sums and dot products improve many applications. As a by-
product, multiple precision real and interval arithmetic can be done at very
high speed. With operator overloading they are very easy to use. With a long
precision interval arithmetic, for instance, highly accurate enclosures of orbits of
dynamical systems have been obtained for considerable long durations. Iterated
defect correction is another important class of applications. The method can
be applied to compute enclosures of arithmetic expressions or of polynomials
with very high accuracy. The result is an enclosure as a long precision interval.
Verified solution of badly conditioned systems of linear equations by use of
the Rump-operator is another large class of important applications. Finally,
of course, a faithfully rounded result can be obtained. All these and other
applications of an accurate dot product come with very high speed. They can
be considered as top-down approaches of a fully accurate dot product.

B. In contrast to this the Rump-Ogita-Oishi method is a bottom-up approach.
I mentioned in my mail of January 26, 2006 that I very much admire this
method. It achieves faithfully rounded sums and dot products just by using
conventional floating-point arithmetic. The methods are fast in comparison
with other software methods. This certainly is a great achievement of our field.
Applications of these methods are inherently a subset of the applications of A.

I do not see any reason why we need the methods B. as justification for accurate
sums and dot products in the next arithmetic standard. Fixed-point accumula-
tion of sums and dot products is the additive equivalent of fast multiplication

11

techniques, for instance by an adder tree. The advantages, the cost and gain in
speed of both techniques are similar. I do not see any reason why mathemati-
cians should hesitate to require this mode of operation from a new arithmetic
standard. If we do not require it we will never get it. We would not have got
floating-point operations with directed roundings if IEEE 754 hadn’t required
it.

With best regards

Ulrich Kulisch

12

June 2006

Dear colleagues:

Following the discussion on elementary functions, my colleagues here urged me
to comment to you on this subject. These are my comments:

Concepts like correct rounding, well rounded, faithful rounding, monotone round-
ing, and others have been discussed at length. I think a clear distinction should
be made between arithmetic operations and elementary functions.

The IEEE 754 standard requires that arithmetic operations are provided with
four different roundings: Rounding downwards, rounding upwards, rounding to-
wards zero, and rounding to the nearest floating-point number (round to nearest
even). All these roundings are monotone. Implementation of these operations
is well understood and established. It is supported by hardware (guard digits,
etc.). The error is less than 1 or 0.5 ulp respectively. But what is most impor-
tant is that the potential error is known to the user so that he can deal with
it.

The situation is very different for elementary functions. Extremely accurate
evaluation of elementary functions for all relevant argument values needs sev-
eral guard digits in each individual case. In general, however, the hardware does
not support enough guard digits. Their realization in software results in slow
function evaluations. A practical compromise is to evaluate elementary func-
tions just using machine precision. Function evaluation is then fast. Experience
shows that for the double precision format this can be done for the conventional
24 elementary functions with an error that is less than 1.5 ulp. Even for a long
data type elementary functions can be implemented with an error less than a
few ulp.

Of utmost importance, however, is that all elementary functions must be pro-
vided with proven and reliable error bounds. This error bound must be made
known to the user so that he can deal with it. He should know just what he
gets if an elementary function is used in a program. It is the vendor’s responsi-
bility to deliver these error bounds. Error estimates or error statements based
on speculation are simply not acceptable. Of course, deriving proven reliable a
priori error bounds can take a lot of work. But this work has to be done only
once. A great deal of it can be done by use of the computer and of interval
arithmetic. For an individual elementary function different error bounds may
be obtained for different evaluation domains. Their maximum then is a global
error bound. Proven error bounds must consider all error sources, like the ap-
proximation error in a reduced range, errors resulting from range reductions,
etc.

Correctly rounded, well rounded, faithfully rounded, or monotone rounded ele-
mentary functions would be desirable since they might preserve nice mathemat-
ical properties. For a 32 bit data format this may be a realistic requirement.

13

But they will be very very difficult to achieve for the longer data formats which
are expected to be available in a new IEEE arithmetic standard. Of course,
elementary functions should be provided for all data formats of a new arith-
metic standard and possibly even for a dynamic data format. For a 128 bit data
format, for instance, an error bound of 3 bits certainly would be acceptable. Di-
rected rounding, of course, must deliver lower and upper bounds appropriately.

Comments on interval elementary functions have been solicited. Of course, high
accuracy is desirable. However, to require results that differ from the correct
result by only the monotone directed roundings is quite unrealistic. Speed
also is an issue for interval arithmetic! For the double precision format the
elementary functions have been implemented for interval arguments (just using
double precision arithmetic) with proven reliable error bounds that differ from
the best possible interval enclosure of the result by an error that is, say, less
than 1.5 ulp for each of the bounds. This is fully acceptable!

A programming language or an arithmetic standard that supports interval arith-
metic should provide highly accurate elementary functions for interval data for
all data formats of the standard and for dynamic precision. These function eval-
uations suffer little from overestimation caused by interval arithmetic. For point
intervals the computed bounds show immediately how accurately the function
has been evaluated.

Lots of experience is available concerning the implementation of elementary
and special functions for real and interval arguments with proven reliable error
bounds for diverse data formats. I refer to published and unpublished work of
Walter Kraemer, Werner Hofschuster, Frithjof Blomquist, and others.

For easy and fast evaluation of special functions and of complex elementary
functions it would be extremely useful if a new standard would provide, in
addition to the usual elementary functions, a number of auxiliary functions
with proven a priory error bounds. Examples are: f(x) = sqrt(1 + x) − 1,
g(x) = 0.5 ∗ log(x ∗ x + y ∗ y), h(x) = exp(x) − 1, r(x) = sqrt(x ∗ x − 1), and
perhaps some others.

Beyond of these issues, it must be remembered that a most important elemen-
tary function is a fully accurate scalar product! As a side effect it would boost
both the speed of a computation and the accuracy of its result. A fused multiply
and add operation at the matrix level is inherent to it, and is fundamental to
the whole of numerical analysis. Also, fast multiple precision arithmetic can
easily be provided with it to a certain extent.

The vendor is responsible for the quality of the arithmetic and of the elementary
functions, and he has to provide valid (guaranteed) error bounds. The user
is responsible for the mapping of his problem onto the computer and for the
interpretation of the computed result. These are distinct responsibilities. They
should not be confused or conflated.

14

It is my personal opinion that a new arithmetic standard should primarily stan-
dardize certain data formats for ease of data transfer between different plat-
forms. In my opinion it is not desirable that all platforms in all instances
should be required to react in an identical way. Pinning details down at too
early a stage may greatly hinder further progress. Competition is healthy and
continued development depends on it.

This and my earlier letters to the IEEE754 revision group have the support of
the GAMM-Fachausschuss on Computer Arithmetic and Scientific Computing.

With best regards

Ulrich Kulisch

15

