
Bergische Universität

Wuppertal

The Interval Library filib++ 2.0

Design, Features and Sample Programs

M. Lerch, G. Tischler, J. Wolff von Gudenberg,
W. Hofschuster, W. Krämer

Preprint 2001/4

Wissenschaftliches Rechnen/

Softwaretechnologie

Impressum

Herausgeber: Prof. Dr. W. Krämer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich 7 (Mathematik)
Bergische Universität Wuppertal
Gaußstr. 20
D-42097 Wuppertal

Internet-Zugriff

Die Berichte sind in elektronischer Form erhältlich über die World Wide Web Seiten

http://www.math.uni-wuppertal.de/wrswt/literatur.html

Autoren-Kontaktadresse

Dipl.-Inf. M. Lerch
G. Tischler
Prof. Dr. J. Wolff von Gudenberg
Lehrstuhl für Informatik II
Universität Würzburg
Am Hubland
D-97074 Würzburg

Dr. W. Hofschuster
Prof. Dr. W. Krämer
Bergische Universität Wuppertal
Gaußstr. 20
D-42097 Wuppertal

filib++ is freely available from
http://www.math.uni-wuppertal.de/wrswt/software.html

Contents

1 Interval Evaluation and Containment Evaluation 6
1.1 Interval Evaluation . 6
1.2 Containment Evaluation . 7
1.3 Functional Specification of filib++ – Overview 11

1.3.1 Internal Representation . 11
1.3.2 Construction and Access . 11
1.3.3 Arithmetic Operations . 11
1.3.4 Relations . 12
1.3.5 Set Theoretic Functions . 12
1.3.6 Elementary Arithmetic Functions 12
1.3.7 Input and Output . 12

2 Instantiation and Options 13
2.1 Namespace filib . 13
2.2 Two Modes and Two Versions . 13
2.3 Template Parameters of Class interval<> 13

2.3.1 Basic Number Type . 14
2.3.2 Rounding Control . 14

2.4 Traits . 16
2.5 Alternative Macro Version . 17
2.6 Instantiation Examples . 17

3 The fp traits<> class 19
3.1 Template Arguments . 19
3.2 Utility Functions . 19

4 The interval<> class 22
4.1 Basic Number Type . 22
4.2 Constructors . 22
4.3 Assignment . 23
4.4 Arithmetic Methods . 23
4.5 Access and Information Methods . 24
4.6 Set Theoretic Methods . 27
4.7 Interval Relational Methods . 28

4.7.1 Set Relations . 28

3

4 The Interval Library filib++

4.7.2 Certainly Relations . 29

4.7.3 Possibly Relations . 30

4.8 Input and Output . 31

5 Global Functions 32

5.1 Arithmetic Operators . 32

5.2 Access and Information . 34

5.3 Set Theoretic Functions . 34

5.4 Interval Relational Functions . 36

5.4.1 Set Relational Functions . 36

5.4.2 Certainly Relational Functions 36

5.4.3 Possibly Relational Functions 37

5.5 Elementary Functions . 37

5.6 Input and Output Operators . 39

6 Sample Programs 40

6.1 Some Simple Containment Computations 40

6.2 Working with the fp traits<> class 43

6.3 Template Version Versus Macro Library Version 46

7 Application: Verified Computation of all Solutions of a Nonlinear
Equation 49

7.1 Verified Bisection Method . 49

7.2 Extended Interval Newton Method . 55

8 Installation 64

8.1 Compiler Requirements . 64

8.2 Installation and Usage . 64

8.2.1 Installation . 64

8.2.2 Usage of the Template Library 65

8.2.3 Usage of the Macro Library . 65

8.3 Organization of Subdirectories . 65

The Interval Library filib++ 5

Abstract

filib++ is an extension of the interval library filib originally developed in Karlsruhe
[3]. The most important aim of the latter was the fast computation of guaranteed
bounds for interval versions of a comprehensive set of elementary function. filib++

extends this library in two aspects. First, it adds a second mode, the ”extended”
mode, that extends the exception-free computation mode using special values to rep-
resent infinities and NotaNumber known from the IEEE floating-point standard 754 to
intervals. In this mode so-called containment sets are computed to enclose the topo-
logical closure of a range of a function defined over an interval [6]. Second, our new
state of the art design uses templates and traits classes in order to get an efficient,
easily extendable and potable library, fully according to the C++ standard [1].

Overview

Chapter 1 presents the difference between the normal mode computing interval evalu-
ations and the exception free extended mode computing containment sets. The func-
tionality of the library is roughly sketched. Chapter 2 then shortly explains the inner
structure and describes how to use it. Chapters 3, 4, 5 contain the specification of the
complete interface and the following two chapters 6, 7 show sample programs and small
but powerful applications using filib++ . Finally, chapter 8 gives some installation
hints and describes how to compile, to link and to run a program.

Acknowledgments, Origins

Many people have contributed to the design and the construction of filib++Ṫhe first
version of the library has been published in Karlsruhe by W. Hofschuster and W.
Krämer [3, 4]. It was a library with emphasis on the fast evaluation of the elementary
functions. Only the normal mode was implemented. The code for calculating elemen-
tary functions in filib++ has been taken from this library with changes only for the
extended mode.

The implementation of the extended mode has largely been influenced by Bill Wal-
ster and his team at Sun Microsystems [5, 7]. They started with a Fortran extension
and now also provide a C++ library [8].

Input and output routines of filib++ have been adapted from the libI77 of the
runtime system of the Gnu Fortran Compiler [9].

We further thank Jens Maurer for fruitful discussions on the design of a template
library conforming to the C++ standard.

Parts of this manual have been published in earlier reports [10, 11, 12].

Chapter 1

Interval Evaluation and
Containment Evaluation

1.1 Interval Evaluation

We assume that the reader is familiar with the basic ideas of interval arithmetic (for a
good introduction and further references see [2]). In this introductory chapter we use
bold face for continuous intervals, represented by two real bounds, i.e.

x = [x, x] = {x ∈ IR|x ≤ x ≤ x}.

IIR denotes the space of all finite intervals.
Let us deal with the enclosure of the range of a function, one of the main topics of

interval arithmetic. We restrict our consideration to the one-dimensional case, exten-
sions to more dimensions are obvious. Given an arithmetic function f : Df ⊆ IR → IR,
f(x) = {f(x)|x ∈ x} denotes the range of values of f over the interval x ⊆ Df .

Definition 1 The interval evaluation f : IIR → IIR of f is defined as the function
that is obtained by replacing every occurrence of the variable x by the interval variable
x and by replacing every operator by its interval arithmetic counterpart and every
elementary function by its range. Note, that this definition only holds, if all operations
are executable without exception.

The following theorem is known as the fundamental theorem of interval arithmetic.

Theorem 1 If the interval evaluation is defined, we have

f(x) ⊆ f(x)

The interval evaluation is not defined, if x contains a point y /∈ Df . Division by
an interval containing 0, e.g., is forbidden. But note, that even if x ⊆ Df , f may not
be defined. The result depends on the syntactic formulation of the expression: For the
function

f1(x) =
1

x · x + 2

6

The Interval Library filib++ 7

the call f1([−2, 2]) is not defined, because

[−2, 2] · [−2, 2] = [−4, 4]

whereas

f2(x) =
1

x2 + 2

yields f2([−2, 2]) = [1/6, 1/2]. Of course for real arguments x it holds f1(x) = f2(x)
The result of an elementary function call over an interval is defined as the set, i.e.

interval because of continuity, of all function values. Such function calls are not defined,
if the argument interval contains a point outside the domain of the corresponding
function. For elementary functions f ∈{ sin, cos, exp . . .} it holds f(x) := f(x) =
{f(x)|x ∈ x ⊆ Df}, i.e. the result of an interval evaluation of such a function is by
definition equal to the range of the function over the argument interval.

1.2 Containment Evaluation

To overcome the difficulties with partially defined functions throwing exceptions, we
introduce a second mode, the “extended” mode. Here, no exceptions are raised, but the
domains of interval functions and ranges of interval results are consistently extended.
In the extended mode interval arithmetic operations and mathematical functions form
a closed mathematical system. This means that valid results are produced for any pos-
sible operator-operand combination, including division by zero and other indeterminate
forms involving zero and infinities.

Following G. W. Walster in [5, 6] we define the containment set:

Definition 2 Let f : Df ⊆ IR → IR, then the containment set f ∗ : ℘IR∗
→ ℘IR∗

defined by

f ∗(x) := {f(x)|x ∈ x ∩ Df} ∪ { lim
x→x∗ f(x)|x ∈ Df , x

∗ ∈ x} ⊆ R
∗ (1.1)

contains the extended range of f , where R
∗ = IR ∪ {−∞} ∪ {∞}.

Hence, the containment set of a function is the closure of the range including all
limits and accumulation points.

Our goal is now to define an analogon to the interval evaluation which encloses the
containment set, and is easy to compute.

Let IR
∗ denote the set of all extended intervals with endpoints in R

∗ .

Definition 3 The containment evaluation f∗ : IR
∗ → IR

∗ of f is defined as the
function that is obtained by replacing every occurrence of the variable x by the in-
terval variable x and by replacing every operator or function by its extended interval
arithmetic counterpart.

We then have

8 The Interval Library filib++

+ −∞ y +∞
−∞ −∞ −∞ R

∗

x −∞ x + y +∞
+∞ R

∗ +∞ +∞

Table 1.1: extended addition

− −∞ y +∞
−∞ R

∗ −∞ −∞
x +∞ x − y −∞
+∞ +∞ +∞ R

∗

Table 1.2: extended subtraction

∗ −∞ y < 0 0 y > 0 +∞
−∞ +∞ +∞ R

∗ −∞ −∞
x < 0 +∞ x ∗ y 0 x ∗ y −∞
0 R

∗ 0 0 0 R
∗

x > 0 −∞ x ∗ y 0 x ∗ y +∞
+∞ −∞ −∞ R

∗ +∞ +∞

Table 1.3: extended multiplication

Theorem 2 The containment evaluation is always defined1, and it holds

f ∗(x) ⊆ f∗(x)

For the proof of this theorem all arithmetic operators and elementary functions
are extended to the closure of their domain. This can be done in a straight forward
manner, cf. [5]. We apply the well known rules to compute with infinities. If we
encounter an undefined operation like 0 · ∞ we deliver the set of all limits, i.e. R

∗.
Note that negative values are also possible, since 0 can be approached from both sides.

We show the containment sets for the basic arithmetic operations in the following
tables.

From these tables the definition of extended interval arithmetic can easily be de-
duced. For addition, subtraction, and multiplication infinite intervals can be returned,
if a corresponding operation is encountered.

1in contrast to the interval evaluation

The Interval Library filib++ 9

/ −∞ y < 0 0 y > 0 +∞
−∞ [0,+∞] +∞ {−∞,+∞} −∞ [−∞, 0]
x < 0 0 x/y {−∞,+∞} x/y 0
0 0 0 R

∗ 0 0
x > 0 0 x/y {−∞,+∞} x/y 0
+∞ [−∞, 0] −∞ {−∞,+∞} +∞ [0,+∞]

Table 1.4: extended division

A = [a; a] B = [b; b] Range containment set
0 ∈ A 0 ∈ B IR∗ IR∗

0 ∈ A B = [0; 0] {−∞; +∞} IR∗

a < 0 b < b = 0 [a/b,∞) [a/b,∞]

a < 0 b < 0 < b (−∞, a/b] ∪ [a/b,+∞) IR∗

a < 0 0 = b < b (−∞, a/b] [−∞, a/b]

a > 0 b < b = 0 (−∞, a/b] [−∞, a/b]

a > 0 b < 0 = b (−∞, a/b] ∪ [a/b,+∞) IR∗

a > 0 0 = b < b [a/b,+∞) [a/b,+∞]

Table 1.5: extended interval division

Some examples:
[2,∞] + [3,∞] = [5,∞], [2,∞]− [3,∞] = R

∗, [2,∞] ∗ [−3, 3] = R
∗

Division is a little bit more subtle. Table 1.5 shows the cases where the denominator
contains 0.

For the elementary functions Table 1.6 shows the extended domains and extended
ranges. The containment set for an elementary function is computed by directly ap-
plying the definition f(x) := {f(x)|x ∈ x ∩ Df}. If the argument lies strictly outside
the domain of the function, we obtain the empty set as result. If the argument x
contains a singularity the corresponding values for ±∞ are produced. The functions
in containment mode never produce an overflow or illegal argument error.
Some examples:

log[−1, 1] = [−∞, 0],
√

[−1, 1] = [0, 1], log[−2,−1] = Ø, coth[−1, 1] = IR∗

The special values column shows the results of the interval version at points on the
border of the open domain. In all cases the lim construction in (1.1) is applied and
containment is guaranteed. Note that for the power function xk only limx→0 x0 is to
be considered whereas xy is calculated as ey ln x in the pow function. We intentionally
chose 2 different names, since power(x, k) ⊆ pow(x, [k, k]) does not hold for negative
x.

It has been shown in [6, 7], that using these extended operations the containment
evaluation can be computed without exceptions.

10 The Interval Library filib++

name domain range special values
sqr R

∗ [0,∞]
power R

∗ × Z R
∗ power([0,0],0) = [1,1]

pow [0,∞]× R
∗ [0,∞] pow([0,0],[0,0]) =[0,∞]

sqrt [0,∞] [0,∞]
exp, exp10, exp2 R

∗ [0,∞]
expm1 R

∗ [−1,∞]
log, log10, log2 [0,∞] R

∗ log ([0, 0]) = [−∞]
log1p [−1,∞] R

∗ log1p ([−1,−1]) = [−∞]
sin R

∗ [−1, 1]
cos R

∗ [−1, 1]
tan R

∗
R

∗ tan(x) = R
∗, if

π/2 + kπ ∈ x, k ∈ Z

cot R
∗

R
∗ cot(x) = R

∗, if
kπ ∈ x, k ∈ Z

asin [−1, 1] [−π/2, π/2]
acos [−1, 1] [0, π]
atan R

∗ [−π/2, π/2]
acot R

∗ [0, π]
sinh R

∗
R

∗

cosh R
∗ [1,∞]

tanh R
∗ [−1, 1]

coth R
∗ [−∞,−1] ∪ [1,∞] coth[0,0] =R

∗

asinh R
∗

R
∗

acosh [1,∞] [0,∞]
atanh [−1, 1] R

∗

acoth [−∞,−1] ∪ [1,∞] R
∗ acoth[−1, 1] = [−∞]

acoth[1, 1] = [∞]

Table 1.6: extended domains and ranges of elementary functions

The Interval Library filib++ 11

1.3 Functional Specification of filib++ – Overview

1.3.1 Internal Representation

In the normal mode of the library continuous real intervals are represented by two
floating-point bounds, in fact a more general instantiation is possible, see 2.3. If a
function or interval evaluation is not defined, the exception handling for the floating-
point type is activated. That should terminate the program with an error message.

To cope with the closed set of real numbers in the extended mode, we accept the
IEEE representation of −∞, or ∞ as left or right hand bound of an extended interval,
respectively. Thus we introduce one-sided open intervals:

x = [x,∞] = {x ∈ IR|x ≥ x}
x = [−∞, x] = {x ∈ IR|x ≤ x}

The real numbers larger than the overflow threshold M are

x = [M,∞] = {x ∈ IR|x ≥ M}
the real numbers smaller than the negative overflow threshold are

x = [−∞, -M] = {x ∈ IR|x ≤ -M}
and

[−∞,∞] = R∗

means all real numbers.
The empty interval Ø is represented as [NaN,NaN] . There are, however, no point

intervals [−∞, −∞] or [∞, ∞], we use the closed exterior intervals [−∞, -M], [M,∞]
instead. This trick helps in a clear set theoretical interpretation and also facilitates
the implementation. If we consider R∗ as the base set all the open intervals can be
interpreted as closed, and the usual formulae for interval arithmetic extended with
obvious rules for ±∞ can be applied.

1.3.2 Construction and Access

The interval constructor expects two or one floating-point values as arguments with a
default value for the point interval [0.0, 0.0]. Inf and sup are accessible via methods.
There are checks for point interval (isPoint), empty interval (isEmpty) and unbounded
interval (isInfinite). To check for sharpness of an interval the method hasUlpAcc(n)

is provided, it is fulfilled, if both bounds differ at most by n ulps (unit last place).

1.3.3 Arithmetic Operations

The extended arithmetic operations for the interval data type, abbreviated as I and the
(scalar) base type D (e. g. D = double) are accessible as overloaded operators. Operand
combinations I x I D x I, and I x D are available for all operations +,−, ∗, /. As-
signment operators + =,− =, ∗ =, / = are provided for I x I and I x D as methods
of the class interval.

12 The Interval Library filib++

1.3.4 Relations

All three kinds of set-like, certainly or possibly comparisons [5] are provided as methods
and as functions. For a certainly-relation to be true, every element of the operand
intervals must satisfy the relation. A possibly-relation is true if it is satisfied by any
elements of the operand intervals. The set-relations treat intervals as sets. All three
classes of interval relational functions converge to the normal relational function on
points if both operand intervals are degenerate.

For set-relations the operators ==, !=, >=, <= are overloaded. We further supply
the predicate y interior x ⇐⇒ x < y < x.

1.3.5 Set Theoretic Functions

Utility methods and functions like midpoint, radius, diameter of an interval, its migni-
tude or magnitude, the interval of all absolute values, minima, maxima are provided.
Lattice operations as intersection (intersect) or interval hull (hull) can be performed
and the Hausdorff distance (dist) between two intervals can be computed.

1.3.6 Elementary Arithmetic Functions

The provided elementary functions and their (closed) domains and (closed) ranges
are listed in Table 1.6. In the normal mode the true domains (natural domains) of
the functions are valid, i.e. log[0, 1.0] yields an error. The implemented elementary
functions do not return least-bit accurate results, but an almost sharp enclosure within
a few ulps of the range is always guaranteed.

1.3.7 Input and Output

The standard input output operators are overloaded for intervals, but without appro-
priate rounding to the external decimal string format. Hexadecimal and binary input
and output routines are also provided.

Chapter 2

Instantiation and Options

2.1 Namespace filib

The library is contained in the namespace filib. Hence, it is required to qualify each
identifier of the library with filib:: or to use the directive using namespace filib.

2.2 Two Modes and Two Versions

One template version and one macro version of the library are supplied. In either
version two modes can be used. In the default or “normal” mode traditional interval
evaluations are computed, and the program terminates, if the argument interval is not
contained in the domain of a function. Overflow treatment is done according to the
chosen floating point option.

In the “extended” mode containment sets over R
∗ are computed, no exceptions

are raised. This mode is obtained by setting the constant FILIB EXTENDED during
compilation.

For the macro library, this constant FILIB EXTENDED has to be set for the compi-
lation of the library as well as the application program. For the template version, the
constant is not used during the building of the static parts of the library and thus only
has be provided when compiling application programs. That essentially means that
you do not have to recompile the template version for switching the extended mode on
or off.

In the following we describe the template version. Since the interface of both
versions are essentially identical, a few statements about the macro version in Section
2.5 are sufficient.

2.3 Template Parameters of Class interval<>

An interval is defined as a template. There are two template parameters, the underlying
basic (floating-point) number type N, and the method, how to implement the directed
roundings rounding control.

13

14 The Interval Library filib++

2.3.1 Basic Number Type

An interval is given by two computer representable bounds, the lower bound or infimum
and the upper bound or supremum

x = [x, x]

It represents the continuous set of all numbers from the mathematical set S that is
approximated by the basic scalar number type N, e.g. S = IR and N=double.

x = [x, x] = {x ∈ S|x ≤ x ≤ x}
The type N has to be an arithmetic type, i.e. all the operators have to be provided.

In the extended mode constants for ±∞ and NaN are needed. These constants are
supplied by the fp traits<> class. Currently the only reasonable choices are double

or float. Hence, only R can be taken for S. The elementary functions for a basic
type cannot be generated by instantiation of a template, but have to be implemented
by suitable algorithms. In the current version of filib++ only double functions are
implemented1.

2.3.2 Rounding Control

Rounding, the use of the directed roundings in particular, is controlled by the sec-
ond template parameter. It addresses the low-level, machine dependent part of the
implementation.

The second parameter can have the following values

• native switched: Before an operation computing a floating-point bound of the
interval is executed, the rounding mode is switched via an assembler statement
that changes the floating-point control word. This is an expensive operation, since
the pipelines have to be cleared. After the interval operation the rounding mode
is switched back to the default. This is our default mode for interval operations.

• native directed: The same as native switched but the rounding mode is not
switched back. Note, that this mode influences the non-interval operations of
the program.

• native onesided switched: Since ∆(x) = −(∇(−x)), one directed rounding mode
suffices for interval operations, where ∇ and ∆ denote the rounding to −∞ or
∞, respectively. After the interval operation the rounding mode is switched back
to the default.

• native onesided global: Here, the rounding mode is set to ∇ and never changed.
Note, that this mode influences the non-interval operations of the program. Be-
fore using this mode the user has to switch the rounding mode to rounding to
−∞. (fp traits<T>::downward())

1this implementation is the original filib code, see [3]

The Interval Library filib++ 15

• multiplicative: If the architecture does not support directed rounding modes,
they can be simulated by a multiplication of the result.

We define two functions (R is a floating-point screen):

low : R → R

low(a) :=

{
a ≥ 0 : a � pred(1)
a < 0 : a � succ(1)

(2.1)

and high : R → R

high(a) :=

{
a ≥ 0 : a � succ(1)
a < 0 : a � pred(1).

(2.2)

where � means round-to-nearest-multiplication and where succ(x) = min{y|y ∈
R, y > x} or pred(x) = max{y|y ∈ R, y < x}, respectively.

Note that, because high(a) = −low(−a), one function suffices.

For a binary floating-point system R = R(2, n, emin, emax) we have

pred(1) = 1− 2−n = 1 − 1

2
ε∗

succ(1) = 1 + 21−n = 1 + ε∗

where ε∗ = 21−n denotes the bound for the relative rounding error (|ε| ≤ ε∗).

Theorem 3 :
Let R = R(2, n, emin, emax) be a binary floating-point system and © : IR → R
the rounding to the nearest. Then for all x ∈ IR not in the over- or underflow
range, i.e. M ≥ |x| ≥ 2emin−1 or x = 0, we have

low(©x) ≤ x

high(©x) ≥ x

For the proof, see [11].

• pred succ rounding: Another way to simulate the directed roundings is to ma-
nipulate the representation of a floating-point number in order to obtain the
predecessor or successor of that number. This is usually done using integer arith-
metic. It can be sped up, if a table of ulp(x) is stored containing the unit in last
place with respect to the exponent of x.

• no rounding: This mode is only for testing and tuning. Do NOT use it in appli-
cations. It does NOT compute enclosures.

The one-sided rounding mode seems to be very appealing, since it minimizes
switches of the rounding control. But note, that it currently does not work in the
case of gradual underflow. For i386 architectures the rounding of values in the
overflow range to ±∞ have to be forced by an intermediate storing of the value
and, hence, the predicted performance gain is lost.

IMPORTANT: it is necessary to call the method

16 The Interval Library filib++

filib::fp traits<N,K>::setup()

whenever you use instances of a different instantiation of the interval<> class
with template parameters N,K. This is especially true at program start. When
starting the usage of the native onesided global mode, the correct sequence
is first calling setup and then downward.

2.4 Traits

Let us have a closer look into the design of the library. The interval<> class
implements its operations relying on functions for directed floating-point arith-
metic operations and on a function to reset the rounding mode. For example a
simplified version of the += operator looks like:

interval<N,K> & interval<N,K>::operator +=

(interval<N,K> const & o)

{

INF=fp_traits<N,K>::downward_plus(INF,o.INF);

SUP=fp_traits<N,K>::upward_plus(SUP,o.SUP);

fp_traits<N,K>::reset();

return *this;

}

These type and rounding mode specific operations are provided by a traits class
fp traits<> that handles all the operations depending on the type N and round-
ing control K. Specializations of this traits class for double and float and each
of the described rounding control mechanisms are instantiated in the library.
The specializations for rounding modes that rely on machine specific round-
ing control methods inherit these methods from an instantiation of the class
rounding control. That is illustrated in the following diagram.

The Interval Library filib++ 17

interval

operator+=(interval<> o)

rounding control based

setup()
upward()
downward()
reset()

implementation

fp_traits<double,native_switched>

downward_plus(N a, N b)
upward_plus(N a, N b)
isinf(N a)

implementation
machine independant

fp_traits<double,multiplicative>

rounding_control<double>

<<bind>>

<<bind>>(double)

<<bind>>

N, K

 N
rounding_control

fp_traits

N, K

2.5 Alternative Macro Version

For the mainly used data type interval<double> a non generic version that
is highly optimized in speed is provided. It only supports the data type Interval,
i.e. an interval of doubles. The switching between the various rounding modes is
implemented via compile time constants. The arithmetic operations are defined
as macros. This design certainly is not up to date concerning modern software
engineering principles, but benchmarks showed, that the arithmetic was consid-
erably faster, see [10]. The interface of the methods and functions is identical to
the templated version.

2.6 Instantiation Examples

Some examples may help to use the library. Another example can be found in the
examples directory of the distribution.

• filib::interval<double> A;

This is the default instantiation. A is an interval over the floating-point type

18 The Interval Library filib++

double. The second parameter is set to its default filib::native switched

• filib::interval<double,filib::multiplicative> A;

A is an interval over double. Multiplicative rounding is used. The hardware need
not support directed roundings.

• filib::interval<double,filib::native onesided global> A;

This is probably the fastest mode for most of the currently available machines.
But it changes the floating-point semantics of the program.

Chapter 3

The fp traits<> class

3.1 Template Arguments

The fp traits<> class is a template class with two template arguments. The first
argument is supposed to be a numeric type, where there are currently implementa-
tions for float and double. The second parameter is a non-type parameter of type
rounding strategy as described in section 2.3.2. The following table shows the cur-
rently available combinations.

first param second param

double native switched

double native directed

double multiplicative

double no rounding

double native onesided switched

double native onesided global

double pred succ rounding

float native switched

float native directed

float multiplicative

float no rounding

float native onesided switched

float native onesided global

3.2 Utility Functions

The following static member functions are mandatory for all implementations of the
fp traits<> class (where N denotes the first template parameter):

• bool IsNaN(N const & a)

test if a is not a number

• bool IsInf(N const & a)

test if a is infinite

19

20 The Interval Library filib++

• N const & infinity()
returns positive infinity

• N const & ninfinity()
returns negative infinity

• N const & quiet NaN()

returns a quiet (non-signaling) NaN

• N const & max()
returns the maximum finite value possible for N

• N const & min()
returns the minimum finite positive non-denormalized value possible for N

• N const & l pi()
returns a value that is no bigger than π

• N const & u pi()
returns a value that is no smaller than π

• int const & precision()
returns the current output precision

• N abs(N const & a)

returns the absolute value of a

• N upward plus(N const & a, N const & b)

returns a value of type N. It shall be as close to a + b as possible and no smaller
than a + b.

• N downward plus(N const & a, N const & b)

returns a value of type N. It shall be as close to a + b as possible and no bigger
than a + b.

• N upward minus(N const & a, N const & b)

returns a value of type N. It shall be as close to a − b as possible and no smaller
than a − b.

• N downward minus(N const & a, N const & b)

returns a value of type N. It shall be as close to a − b as possible and no bigger
than a − b.

• N upward multiplies(N const & a, N const & b)

returns a value of type N. It shall be as close to a · b as possible and no smaller
than a · b.

• N downward multiplies(N const & a, N const & b)

returns a value of type N. It shall be as close to a · b as possible and no bigger
than a · b.

The Interval Library filib++ 21

• N upward divides(N const & a, N const & b)

returns a value of type N. It shall be as close to a/b as possible and no smaller
than a/b.

• N downward divides(N const & a, N const & b)

returns a value of type N. It shall be as close to a/b as possible and no bigger
than a/b.

Chapter 4

The interval<> class

Let x or x denote infimum or supremum of the interval X, the interval this* is written
as T = [t , t]. N denotes the underlying basic number type, i.e the type of the bounds
(see 2.3.1). Furthermore M is the largest representable number of type N and ±INFTY

denotes an internal constant for ±∞. [NaN, NaN] represents the empty interval where
NaN denotes an internal representation for “Not a Number”.

4.1 Basic Number Type

• The typename value type is defined for the basic number type.

• The type of traits used by the class is introduced as traits type.

4.2 Constructors

The following constructors are provided for the interval class:

• interval():
The interval [0, 0] is constructed.

• interval(N const & a):
The interval [a, a] is constructed.The point intervals for +∞ and −∞ are given
by [M,+INFTY] or [−INFTY,−M], respectively.

• interval(N const & a, N const & b):
If a ≤ b the interval [a, b] is constructed, otherwise the empty interval.

• interval(std::string const & infs, std::string const & sups)

throw(filib::interval io exception):
Construct an interval using the strings infs and sups. The bounds are first
transformed to the primitive double type by the standard function strtod and
then the infimum is rounded down and the supremum is rounded up. If the
strings cannot be parsed by strtod, an exception of type
filib::interval io exception is thrown.

22

The Interval Library filib++ 23

• interval(interval<> const & o):
Copy constructor, an interval equal to the interval o is constructed.

4.3 Assignment

• interval<> & operator=(interval<> const & o):
The interval o is assigned.

4.4 Arithmetic Methods

The following methods are provided for updating arithmetic operations. Note that the
usual operators are available as global functions (see 5.1).

The special cases of the extended mode are not explicitly mentioned here, see tables
1.1,1.2,1.3,1.4 for details.

• interval<> const & operator+() const (unary plus):
The unchanged interval is returned.

• interval<> operator-() const (unary minus):
[−t,−t] is returned.

• interval<> & operator+=(interval<> const & A)(updating addition):

t := t + a, t := t + a

• interval<> & operator+=(N const & a)(updating addition):

t := t + a, t := t + a

• interval<> & operator-=(interval<> const & A)(updating subtraction):

t := t − a, t := t − a

• interval<> & operator-=(N const & a)(updating subtraction):

t := t − a, t := t − a

• interval<> & operator*=(interval<> const & A)(updating multiplica-
tion):

24 The Interval Library filib++

t := min{t ∗ a, t ∗ a, t ∗ a, t ∗ a}, t := max{t ∗ a, t ∗ a, t ∗ a, t ∗ a}

• interval<> & operator*=(N const & a)(updating multiplication):

t := min{t ∗ a, t ∗ a}, t := max{t ∗ a, t ∗ a}

• interval<> & operator/=(interval<> const & A)(updating division):

t := min{t/a, t/a, t/a, t/a}, t := max{t/a, t/a, t/a, t/a}

The case 0 ∈ A throws an error in normal mode. R
∗ is returned in extended

mode.

• interval<> & operator/=(N const & a)(updating division):

t := min{t/a, t/a}, t := max{t/a, t/a}

The case a = 0 throws an error in normal mode. R
∗ is returned in extended

mode.

4.5 Access and Information Methods

Methods only available in extended mode are marked with the specific item marker ∗.
• N const & inf() const:

returns the lower bound.

• N const & sup() const:
returns the upper bound.

∗ bool isEmpty() const:
returns true, iff T is the empty interval.

∗ bool isInfinite() const:
returns true, iff T has at least one infinite bound.

∗ static interval<> EMPTY() :
returns the empty interval.

∗ static interval<> ENTIRE() :
returns R

∗.

The Interval Library filib++ 25

∗ static interval<> NEG INFTY() :
returns the point interval −∞ = [−INFTY,−M].

∗ static interval<> POS INFTY()

returns the point interval +∞ = [M,+INFTY].

• static interval<> ZERO() :
returns the point interval 0 = [0.0, 0.0]

• static interval<> ONE() :
returns the point interval 1 = [1.0, 1.0]

• static interval<> PI() :
returns an enclosure of π.

• bool isPoint() const:
returns true,iff T is a point interval.

• static bool isExtended() const:
returns true,iff the library has been compiled in the extended mode.

• bool hasUlpAcc(unsigned int const & n) const:
returns true, iff the distance of the bounds t−t ≤ n ulp, i.e. the interval contains
at most n + 1 machine representable numbers.

• N mid() const:
returns an approximation of the midpoint of T, that is contained in T

In the extended mode the following cases are distinguished:

T.mid() =

NaN for T == Ø
0.0 for T == R

∗

+INFTY for T == [a,+INFTY]

−INFTY for T == [−INFTY, a]

• N diam() const:
returns the diameter or width of the interval (upwardly rounded). The method
is also available under the alias width. In the extended mode the following cases
are distinguished:

T.diam() =

{
NaN if T == Ø
+INFTY if T.isInfinite()

• N relDiam() const:
returns an upper bound for the relative diameter of T:

T.relDiam() == T.diam() if T.mig() is less than the smallest positive
normalized floating-point number,

T.relDiam() == T.diam()/T.mig() otherwise.

26 The Interval Library filib++

In the extended mode the following cases are distinguished:

T.relDiam() =

{
NaN if T == Ø
+INFTY if T.isInfinite()

• N rad() const:
returns the radius of T (upwardly rounded) In the extended mode the following
cases are considered:

T.rad() =

{
NaN if T == Ø
+INFTY if T.isInfinite()

• N mig() const:
returns the mignitude, i.e.

T.mig() == min{abs(t) t∈ T}

In the extended mode the following cases are considered:

T.mig() = NaN if T == Ø

• N mag() const:
returns the magnitude, the absolute value of T. also

T.mag() == max({abs(t) t∈ T})

In the extended mode the following cases are considered:

T.mag() =

{
NaN if T == Ø
+INFTY if T.isInfinite()

• interval<> abs() const:
returns the interval of all absolute values (moduli) of T:

T.abs() = [T.mig(), T.mag()]

In the extended mode the following cases are considered:

T.abs() =

{
Ø for T == Ø
[M,+INFTY] if T.isInfinite()

The Interval Library filib++ 27

4.6 Set Theoretic Methods

• interval<> imin(interval<> const & X):
returns an enclosure of the interval of all minima of T and X, i.e.

T.imin(X) == { z: z == min(a,b): a ∈ T, b ∈ X }

T.imin() = Ø für T == Ø or X == Ø

• interval<> imax(interval<> const & X):
returns an enclosure of the interval of all minima of T and X, i.e.

T.imax(X) == { z: z == max(a,b): a ∈ T, b ∈ X }

In the extended mode return

T.imax() = Ø für T == Ø or X == Ø

• N dist(interval<> const & X):
returns an upper bound of the Hausdorff-distance of T and X, i.e.

T.dist(X) == max { abs(T.inf()-X.inf()), abs(T.sup()-X.sup()) }

In the extended mode return

T.dist(X) = NaN für T == Ø or X == Ø

• interval<> blow(N const & eps) const:
return the ε-inflation:

T.blow(eps) == (1+eps)·T - eps·T

• interval<> intersect(interval<> const & X) const:
returns the intersection of the intervals T and X. If T and X are disjoint return Ø
in the extended mode and an error in the normal mode.

• interval<> hull(interval<> const & X) const:
the interval hull

In the extended mode return

T.hull() = Ø if T == X == Ø

This function is also available under the interval hull() alias.

28 The Interval Library filib++

• interval<> hull(N const & X) const:
the interval hull.

In the extended mode return

T.hull() = Ø if T == Ø and X == NaN

This function is also available under the interval hull() alias.

• bool disjoint(interval<> const & X) const:
returns true, iff T and X are disjoint, i.e. T.intersect(X) == Ø.

• bool contains(N x) const:
returns true, iff x ∈ T

• bool interior(interval<> const & X) const:
returns true, iff T is contained in the interior of X.

In the extended mode return true, if T == Ø

• bool proper subset(interval<> const & X) const:
returns true, iff T is a proper subset of X.

• bool subset(interval<> const & X) const:
returns true, iff T is a subset of X.

• bool proper superset(interval<> const & X) const:
returns true, iff T is a proper superset of X.

• bool superset(interval<> const & X) const:
returns true, iff T is a superset of X.

4.7 Interval Relational Methods

4.7.1 Set Relations

• bool seq(interval<> const & X) const:
returns true, iff T and X are equal sets.

• bool sne(interval<> const & X) const:
returns true, iff T and X are not equal sets.

• bool sge(interval<> const & X) const:
returns true, iff the ≥ relation holds for the bounds

T.sge(X) == T.inf() ≥ X.inf() && T.sup() ≥ X.sup()

In the extended mode return true, if T == Ø and X == Ø.

The Interval Library filib++ 29

• bool sgt(interval<> const & X) const:
returns true, iff the > relation holds for the bounds

T.sgt(X) == T.inf() > X.inf() && T.sup() > X.sup()

In the extended mode return false, if T == Ø and X == Ø.

• bool sle(interval<> const & X) const:
returns true, iff the ≤ relation holds for the bounds

T.sle(X) == T.inf() ≤ X.inf() && T.sup() ≤ X.sup()

In the extended mode return true, if T == Ø and X == Ø.

• bool slt(interval<> const & X) const:
returns true, iff the < relation holds for the bounds

T.slt(X) == T.inf() < X.inf() && T.sup() < X.sup()

In the extended mode return false, if T == Ø and X == Ø.

4.7.2 Certainly Relations

• bool ceq(interval<> const & X) const:
returns true, iff the = relation holds for all individual points from T and X, i.e.

∀t ∈ T, ∀x ∈ X : t = x

That implies that T and X are point intervals.

In the extended mode return false, if T == Ø or X == Ø.

• bool cne(interval<> const & X) const:
returns true, iff the �= relation holds for all individual points from T and X, i.e.

∀t ∈ T, ∀x ∈ X : t �= x

That implies that T and X are disjoint.

In the extended mode return true, if T == Ø or X == Ø.

• bool cge(interval<> const & X) const:
returns true, iff the ≥ relation holds for all individual points from T and X, i.e.

∀t ∈ T, ∀x ∈ X : t ≥ x

In the extended mode return false, if T == Ø or X == Ø.

30 The Interval Library filib++

• bool cgt(interval<> const & X) const:
returns true, iff the > relation holds for all individual points from T and X, i.e.

∀t ∈ T, ∀x ∈ X : t > x

That implies that T and X are disjoint.

In the extended mode return false, if T == Ø or X == Ø.

• bool cle(interval<> const & X) const:
returns true, iff the ≤ relation holds for all individual points from T and X, i.e.

∀t ∈ T, ∀x ∈ X : t ≤ x

In the extended mode return false, if T == Ø or X == Ø.

• bool clt(interval<> const & X) const:
returns true, iff the < relation holds for all individual points from T and X, i.e.

∀t ∈ T, ∀x ∈ X : t < x

That implies that T and X are disjoint.

In the extended mode return false, if T == Ø or X == Ø.

4.7.3 Possibly Relations

• bool peq(interval<> const & X) const:
returns true, iff the = relation holds for any points from T and X, i.e.

∃t ∈ T, ∃x ∈ X : t = x

In the extended mode return false, if T == Ø or X == Ø.

• bool pne(interval<> const & X) const:
returns true, iff the �= relation holds for any points from T and X, i.e.

∃t ∈ T, ∃x ∈ X : t �= x

In the extended mode return true, if T == Ø or X == Ø.

• bool pge(interval<> const & X) const:
returns true, iff the ≥ relation holds for any points from T and X, i.e.

∃t ∈ T, ∃x ∈ X : t ≥ x

In the extended mode return false, if T == Ø or X == Ø.

The Interval Library filib++ 31

• bool pgt(interval<> const & X) const:
returns true, iff the > relation holds for any points from T and X, i.e.

∃t ∈ T, ∃x ∈ X : t > x

In the extended mode return false, if T == Ø or X == Ø.

• bool ple(interval<> const & X) const:
returns true, iff the ≤ relation holds for any points from T and X, i.e.

∃t ∈ T, ∃x ∈ X : t ≤ x

In the extended mode return false, if T == Ø or X == Ø.

• bool plt(interval<> const & X) const:
returns true, iff the < relation holds for any points from T and X, i.e.

∃t ∈ T, ∃x ∈ X : t < x

In the extended mode return false, if T == Ø or X == Ø.

4.8 Input and Output

• std::ostream & bitImage(std::ostream & out) const:
output the bitwise internal representation.

• std::ostream & hexImage(std::ostream & out) const:
output a hexadecimal representation. This routine is not available for the macro
version of filib++ .

• static interval<N,K> readBitImage(std::istream & in)

throw(filib::interval io exception): read a bit representation of an inter-
val from in and return it. If the input cannot be parsed as a bit image, an
exception of type filib::interval io exception is thrown.

• static interval<N,K> readHexImage(std::istream & in)

throw(filib::interval io exception): read a hex representation of an inter-
val from in and return it. If the input cannot be parsed as a hex image, an
exception of type filib::interval io exception is thrown. This routine is
not available for the macro version of filib++ .

• static int const & precision():
returns the output precision that is used by the output operator <<. (see 5.6)

• static int precision(int const & p):
set the output precision to p. The default value is 3.

Chapter 5

Global Functions

Let R denote the interval [r, r]. All operations which have been specified as updating
methods of the class interval<> are available as global functions as well. This interface
to the operations is not only more familiar and convenient for the user, but also more
efficient.

5.1 Arithmetic Operators

• interval<> operator+(interval<> const & A, interval<> const & B):
returns the interval R with

r := a + b, r := a + b

• interval<> & operator+(interval<> const & A, N const & b):
returns the interval R with

r := a + b, r := a + b

• interval<> operator+(N const & A, interval<> const & B):
returns the interval R with

r := a + b, r := a + b

• interval<> operator-(interval<> const & A, interval<> const & B):
returns the interval R with

r := a − b, r := a − b

• interval<> & operator-(interval<> const & A, N const & b):
returns the interval R with

r := a − b, r := a − b

32

The Interval Library filib++ 33

• interval<> operator-(N const & A, interval<> const & B):
returns the interval R with

r := a − b, r := a − b

• interval<> cancel(interval<> const & A, interval<> const & B):
returns the interval R with

r := a − b, r := a − b

if a− b ≤ a− b. Otherwise an error is thrown in the normal mode, or the empty
interval is returned in the extended mode.

• interval<> operator*(interval<> const & A, interval<> const & B):
returns the interval R with

r := min{a ∗ b, a ∗ b, a ∗ b, a ∗ b}, r := max{a ∗ b, a ∗ b, a ∗ b, a ∗ b}

• interval<> & operator*(interval<> const & A, N const & b):
returns the interval R with

r := min{a ∗ b, a ∗ b}, r := max{a ∗ b, a ∗ b}

• interval<> operator*(N const & A, interval<> const & B):
returns the interval R with

r := min{a ∗ b, a ∗ b, a ∗ b, a ∗ b}, r := max{a ∗ b, a ∗ b, a ∗ b, a ∗ b}

• interval<> operator/(interval<> const & A, interval<> const & B):
returns the interval R with

r := min{a/b, a/b, a/b, a/b}, r := max{a/b, a/b, a/b, a/b}

0 ∈ a produces an error in the normal mode.

• interval<> & operator/(interval<> const & A, N const & b):
returns the interval R with

r := min{a/b, a/b}, r := max{a/b, a/b}

b = 0 produces an error in the normal mode.

• interval<> operator/(N const & A, interval<> const & B):
returns the interval R with

r := min{a/b, a/b, a/b, a/b}, r := max{a/b, a/b, a/b, a/b}

0 ∈ a produces an error in the normal mode.

34 The Interval Library filib++

5.2 Access and Information

• N const & inf(interval<> const & A):
equivalent to A.inf().

• N const & sup(interval<> const & A):
equivalent to A.sup().

• N inf by value(interval<> const & A):
return a copy of A.inf().

• N sup by value(interval<> const & A):
return a copy of A.sup().

• bool isPoint(interval<> const & A):
equivalent to A.isPoint().

• bool hasUlpAcc(interval<> const & A):
equivalent to A.hasUlpAcc().

• N mid(interval<> const & A):
equivalent to A.mid().

• N diam(interval<> const & A):
equivalent to A.diam(). An alias named width is available.

• N relDiam(interval<> const & A):
equivalent to A.relDiam().

• N rad(interval<> const & A):
equivalent to A.rad().

• N mig(interval<> const & A):
equivalent to A.mig().

• N mag(interval<> const & A):
equivalent to A.mag().

• interval<> abs(interval<> const & A):
equivalent to A.abs().

5.3 Set Theoretic Functions

• interval<> imin(interval<> const & A, interval<> const & B):
equivalent to A.imin(B).

• interval<> imax(interval<> const & A, interval<> const & B):
equivalent to A.imax(B).

The Interval Library filib++ 35

• N dist(interval<> const & A, interval<> const & B):
equivalent to A.dist(B).

• interval<> blow(interval<> const & A, N const & eps):
equivalent to A.blow(eps).

• interval<> intersect(interval<> const & A, interval<> const & B):
equivalent to A.intersect(B).

• interval<> hull(interval<> const & A, interval<> const & B):
equivalent to A.hull(B), also available as interval hull().

• interval<> hull(N const & b, interval<> const & A):
equivalent to A.hull(b), also available as interval hull().

• interval<> hull(N const & a, N const & b):
returns the interval hull of the 2 numbers a and b, also available as
interval hull().

In the extended mode returns Ø, if x == y == NaN

• bool disjoint(interval<> const & A, interval<> const & B):
equivalent to A.disjoint(B).

• bool in(N & a, interval<> const & B):
equivalent to B.contains(a).

• bool interior(interval<> const & A, interval<> const & B):
equivalent to A.interior(B).

• bool proper subset(interval<> const & A, interval<> const & B):
equivalent to A.proper subset(B).

• bool subset(interval<> const & A, interval<> const & B):
equivalent to A.subset(B).

• bool operator<=(interval<> const & A, interval<> const & B):
equivalent to A.subset(B).

• bool proper superset(interval<> const & A, interval<> const & B):
equivalent to A.proper superset(B).

• bool superset(interval<> const & A, interval<> const & B):
equivalent to A.superset(B).

• bool operator>= (interval<> const & A, interval<> const & B):
equivalent to A.superset(B).

36 The Interval Library filib++

5.4 Interval Relational Functions

5.4.1 Set Relational Functions

• bool seq(interval<> const & A, interval<> const & B):
equivalent to A.seq(B).

• bool operator==(interval<> const & A, interval<> const & B):
equivalent to A.seq(B).

• bool sne(interval<> const & A, interval<> const & B):
equivalent to A.sne(B).

• bool operator! =(interval<> const & A, interval<> const & B):
equivalent to A.sne(B).

• bool sge(interval<> const & A, interval<> const & B):
equivalent to A.sge(B).

• bool sgt(interval<> const & A, interval<> const & B):
equivalent to A.sgt(B).

• bool sle(interval<> const & A, interval<> const & B):
equivalent to A.sle(B).

• bool slt(interval<> const & A, interval<> const & B):
equivalent to A.slt(B).

5.4.2 Certainly Relational Functions

• bool ceq(interval<> const & A, interval<> const & B):
equivalent to A.ceq(B).

• bool cne(interval<> const & A, interval<> const & B):
equivalent to A.cne(B).

• bool cge(interval<> const & A, interval<> const & B):
equivalent to A.cge(B).

• bool cgt(interval<> const & A, interval<> const & B):
equivalent to A.cgt(B).

• bool cle(interval<> const & A, interval<> const & B):
equivalent to A.cle(B).

• bool clt(interval<> const & A, interval<> const & B):
equivalent to A.clt(B).

The Interval Library filib++ 37

5.4.3 Possibly Relational Functions

• bool peq(interval<> const & A, interval<> const & B):
equivalent to A.peq(B).

• bool pne(interval<> const & A, interval<> const & B):
equivalent to A.pne(B).

• bool pge(interval<> const & A, interval<> const & B):
equivalent to A.pge(B).

• bool pgt(interval<> const & A, interval<> const & B):
equivalent to A.pgt(B).

• bool ple(interval<> const & A, interval<> const & B):
equivalent to A.ple(B).

• bool plt(interval<> const & A, interval<> const & B):
equivalent to A.plt(B).

5.5 Elementary Functions

The elementary functions return enclosures of the ranges. In general, they are not 1-
ulp accurate, but reasonably fast. These functions are only implemented for intervals
based on the double type.

• interval<> acos(interval<> const & A):
inverse cosine

• interval<> acosh(interval<> const & A):
inverse hyperbolic cosine

• interval<> acot(interval<> const & A):
inverse cotangent

• interval<> acoth(interval<> const & A):
inverse hyperbolic cotangent

• interval<> asin(interval<> const & A):
inverse sine

• interval<> asinh(interval<> const & A):
inverse hyperbolic sine

• interval<> atan(interval<> const & A):
inverse tangent

• interval<> atanh(interval<> const & A):
inverse hyperbolic tangent

38 The Interval Library filib++

• interval<> cos(interval<> const & A):
cosine

• interval<> cosh(interval<> const & A):
hyperbolic cosine

• interval<> cot(interval<> const & A):
cotangent

• interval<> coth(interval<> const & A):
hyperbolic cotangent

• interval<> exp(interval<> const & A):
exponential eA

• interval<> exp10(interval<> const & A):
exponential to base 10. 10A

• interval<> exp2(interval<> const & A):
exponential to base 2. 2A

• interval<> expm1(interval<> const & A):
eA − 1

• interval<> log(interval<> const & A):
logarithm to base e

• interval<> log10(interval<> const & A):
logarithm to base 10

• interval<> log1p(interval<> const & A):
log(A + 1)

• interval<> log2(interval<> const & A):
logarithm to base 2

• interval<> power(interval<> const & A, int const & p):
power to an integer Ap

• interval<> pow(interval<> const & A, interval<> const & B):
general power function {ab : a ∈ A, b ∈ B}.

• interval<> sin(interval<> const & A):
sine

• interval<> sinh(interval<> const & A):
hyperbolic sine

• interval<> sqr(interval<> const & A):
square

The Interval Library filib++ 39

• interval<> sqrt(interval<> const & A):
square root

• interval<> tan(interval<> const & A):
tangent

• interval<> tanh(interval<> const & A):
hyperbolic tangent

5.6 Input and Output Operators

• std::ostream & operator<<(std::ostream & out, interval<> const &

A):
outputs the interval A to the stream out. According to the output precision
the usual format is [a, a]. Note that the bounds are NOT rounded directly
to the string format, but the standard output method is used instead. We
recommend to use the bitImage method (see 4.8) for a detailed view. In case
of an erroneous interval [UNDEFINED] is output in the normal mode. In the
extended mode there are several special cases:

– [EMPTY] for the empty interval

– [-INFTY] for [−∞,−M]

– [+INFTY] for [M,∞]

– [ENTIRE] for R
∗

• std::istream & operator>>(std::istream & in, interval<> & A)

throw(filib::interval io exception) :
reads the interval A from the stream in. If the input cannot be parsed as an
interval, an exception of type filib::interval io exception is thrown. Note
that the input is converted to the used arithmetic type by using the standard
function strtod(). That means that there is no care taken for directed rounding
in the case that the provided numbers do not have an exact machine represen-
tation. We recommend using the method readBitImage() if there is need for a
perfectly predictable input method.

Chapter 6

Sample Programs

This section demonstrates important features of the library filib++ by small and
easy to read sample programs. Some simple containment computations are shown,
the problem of data conversion is demonstrated, the usage of the fp traits<> class
is considered, and binary and hexadecimal input and output of intervals is presented.
An example for the usage of the template version as well as the usage of the macro
version of filib++ is given.

6.1 Some Simple Containment Computations

The following simple program shows how to use the (extended) interval data type
filib::interval<double> of the library filib++ to perform containment computa-
tions. To access the operations of the closed extended real interval system the compiler
option -DFILIB EXTENDED has to be used.

#include <interval/interval.hpp> //Use filib++
#include <iostream>

//Simplify instantiation of intervals
typedef filib::interval<double> interval;

using std::cout;
using std::endl;

int main()
{

filib::fp_traits<double>::setup(); //Do initializations
interval x(-1.5, 3); //Constructor call to create the interval [-1.5,3]
cout << "x= " << x << endl;
cout << "cos(x)= " << cos(x) << endl;
cout << "log(x)= " << log(x) << endl;
cout << "atan(log(x))= " << atan(log(x)) << endl;
cout << "log([-2,-1])= " << log(interval(-2,-1)) << endl;
return 0;

}

40

The Interval Library filib++ 41

The output shows the results of the (exception free) containment computations:

x= [-1.5, 3]
cos(x)= [-0.99, 1]
log(x)= [-Infinity, 1.1]
atan(log(x))= [-1.57, 0.832]
log([-2,-1])= [EMPTY]

Predefined interval constants like PI() or ENTIRE() may be used. Again the typedef
typedef filib::interval<double> interval; simplifies instantiation of intervals
and access of interval constants.

#include <interval/interval.hpp> //Use filib++
#include <iostream>

//Simplify instantiation of intervals
typedef filib::interval<double> interval;

using std::cout;
using std::endl;

int main()
{

filib::fp_traits<double>::setup(); //Do initializations
interval x(0.5); //Point interval [0.5, 0.5]
cout << "x= " << x << endl;
cout << "isPoint(x): " << isPoint(x) << endl;

x= interval::PI(); //Predefined constant interval containing Pi
interval::precision(16); //Increase precision for output
cout << "x= " << x << endl << "sin(x)= " << sin(x) << endl;
cout << "x.hasUlpAcc(1): " << x.hasUlpAcc(1) << endl;

x= interval::ENTIRE(); //x represents the complete real line
cout << "x= " << x << " rad(x)= " << rad(x) << endl;
cout << "isInfinite(x): " << isInfinite(x) << endl;
cout << "cosh(sqrt(log(x-5.0))/sin(x))= "

<< cosh(sqrt(log(x-5.0))/sin(x)) << endl;
return 0;

}

The output of the program is:

x= [0.5, 0.5]
isPoint(x): 1
x= [3.141592653589793, 3.141592653589794]
sin(x)= [-3.216245299353279e-16, 1.224646799147355e-16]
x.hasUlpAcc(1): 1
x= [ENTIRE] rad(x)= Infinity

42 The Interval Library filib++

isInfinite(x): 1
cosh(sqrt(log(x-5.0))/sin(x))= [1, Infinity]

To get proper enclosures of non representable real numbers like 0.1 you have to
be careful. Simply writing interval(0.1) gives no such enclosure (for a detailed
discussion of the data conversion problem which is a common problem in numerical
computing see [2]):

#include <interval/interval.hpp> //Use filib++
#include <iostream>

//Simplify instantiation of intervals
typedef filib::interval<double> interval;

using std::cout;
using std::endl;

int main()
{

filib::fp_traits<double>::setup(); //Do initializations
//Note: interval(0.1) gives no enclosure for 0.1!
//The real value 0.1 is not machine representable
interval x= interval(0.1);
cout << "x.hasUlpAcc(0): " << x.hasUlpAcc(0) << endl;

//Compute an enclosure of the real value 0.1
interval y;
y= interval(1)/interval(10); //Use interval division!
//Check the accuracy of the enclosure:
cout << "y.hasUlpAcc(1): " << y.hasUlpAcc(1) << endl;
cout << "y.hasUlpAcc(0): " << y.hasUlpAcc(0) << endl;

cout << "Internal representation of interval x:" << endl;
x.hexImage(cout);
cout << "Internal representation of interval y:" << endl;
y.hexImage(cout);
return 0;

}

The output shows that the interval x is a point interval (the method call
x.hasUlpAcc(0) gives true). The real number 0.1 is not an element of x. The interval
y which is computed via an interval division is a correct enclosure of 0.1 (indeed it is
the best possible using double precision interval bounds). The hexadecimal output of y
shows this fact. As usual, printing 1 means true and 0 means false for an expression
resulting a boolean value.

x.hasUlpAcc(0): 1
y.hasUlpAcc(1): 1
y.hasUlpAcc(0): 0

The Interval Library filib++ 43

Internal representation of interval x:
[0:3fb:999999999999a ,
0:3fb:999999999999a]

Internal representation of interval y:
[0:3fb:9999999999999 ,
0:3fb:999999999999a]

Note, that the correct handling of the data conversion problem is critical to achieve
the validation interval computations promise!

6.2 Working with the fp traits<> class

We can also use directed rounded operations to compute an enclosure of
e. g. the real number 0.1. Such operations are supplied by the class
filib::fp traits<interval::value type> where value type is the scalar numeric
data type used to represent interval bounds (e. g. double).

#include <interval/interval.hpp> //Use filib++
#include <iostream>

//Simplify instantiation of intervals
typedef filib::interval<double> interval;

//Simplify access to methods of class fp_traits<>
typedef filib::fp_traits<interval::value_type> traits;

using std::cout;
using std::endl;

int main()
{

filib::fp_traits<double>::setup(); //Do initializations
//Compute an enclosure of the real value 0.1:
interval x(traits::downward_divides(1,10),

traits::upward_divides(1,10));
cout << "Internal representation of the enclosure of 0.1:" << endl;
x.hexImage(cout);

cout << "Largest floating point number: ";
cout << traits::max() << endl;

return 0;
}

The output shows the hexadecimal representation of the computed enclosure. By
the way, also the result of filib::fp traits<interval::value type>::max() is
shown, i. e. the value of the largest finite upper interval bound (which depends on
the actual numeric data type used for interval bounds).

44 The Interval Library filib++

Internal representation of the enclosure of 0.1:
[0:3fb:9999999999999 ,
0:3fb:999999999999a]

Largest floating point number: 1.79769e+308

Internal representations of some intervals including infinite intervals are shown as
output of the following program.

#include <iostream>
#include <fstream>

#include <interval/interval.hpp> //filib++

using std::cout;
using std::endl;

//Simplify instantiation of intervals
typedef filib::interval<double> interval;

//Simplify access to methods of class fp_traits<>
typedef filib::fp_traits<interval::value_type> traits;

void output(const string s, const interval x)
{

cout << s << " = " << x << " = " << endl;
x.bitImage(cout); //Internal representation

}

int main()
{

filib::fp_traits<double>::setup(); //Do initializations
interval x(2,3);
output("x", x); //Decimal output and output of internal representation
x=interval(1.7,2.9);
output("x", x);

x= interval::POS_INFTY();
output("POS_INFTY()", x);
cout << "mid(x)= " << mid(x) << endl;
cout << "mid(x)==traits::infinity(): "

<< (mid(x)==traits::infinity()) << endl;
cout << "in(mid(x), x): " << in(mid(x), x) << endl;
output("Empty set", intersect(interval(), interval(1)));
output("Point interval [1,1]", interval(1));
output("sin(interval::PI())", sin(interval::PI()));
cout << "Please input BitImage for x! ";
x=interval::readBitImage(cin);
output("Input was", x);
cout << "and in hexadecimal representation:" << endl;

The Interval Library filib++ 45

x.hexImage(cout);
cout << "Please input HexImage for x! ";
x=interval::readHexImage(cin);
cout << "Hexadecimal input was:" << endl;
x.hexImage(cout);
return 0;

}

Please take note of the qualifying prefixes of constants like POS INFTY()
and infinity. The first one comes from the class filib::interval<double>
and the second one comes from the corresponding traits class
filib::fp traits<interval::value type>).

x = [2, 3] =
[0:10000000000:00 ,
0:10000000000:1000]

x = [1.7, 2.9] =
[0:01111111111:1011001100110011001100110011001100110011001100110011 ,
0:10000000000:0111001100110011001100110011001100110011001100110011]

POS_INFTY() = [+INFTY] =
[0:11111111110:11 ,
0:11111111111:00]

mid(x)= Infinity
mid(x)==traits::infinity(): 1
in(mid(x), x): 1
Empty set = [EMPTY] =
[0:11111111111:1000 ,
0:11111111111:1000]

Point interval [1,1] = [1, 1] =
[0:01111111111:00 ,
0:01111111111:00]

sin(interval::PI()) = [-3.22e-16, 1.22e-16] =
[1:01111001011:0111001011001110110011100110011101011101001000001001 ,
0:01111001010:0001101001100010011000110011000101000101110000010000]

Please input BitImage for x!
[1:01111001011:0111001011001110110011100110011101011101001000001001 ,
0:01111001010:0001101001100010011000110011000101000101110000010000]

Input was = [-3.22e-16, 1.22e-16] =
[1:01111001011:0111001011001110110011100110011101011101001000001001 ,
0:01111001010:0001101001100010011000110011000101000101110000010000]

and in hexadecimal representation:
[1:3cb:72cece675d209 ,
0:3ca:1a62633145c10]

Please input HexImage for x!
[1:3cb:72cece675d209 ,
0:3ca:1a62633145c10]

Hexadecimal input was:
[1:3cb:72cece675d209 ,
0:3ca:1a62633145c10]

46 The Interval Library filib++

6.3 Template Version Versus Macro Library Ver-

sion

The following sample program uses the template version of filib++ together with the
C++ vector container from the standard template library (STL) to compute an interval
polynomial. The interval data type used is interval<double>.

// Typical usage of the library filib++ (template version)

#include <interval/interval.hpp>
#include <vector> // STL container vector
#include <iostream>

using filib::interval;
using std::vector;
using std::cout;
using std::endl;

// Evaluation of a polynomial using Horner’s rule
interval<double> horner
(

//interval polynomial coefficients in STL container vector
vector< interval<double> > const& pol,
//interval argument
const interval<double>& x

)
{

interval<double> res(0); //res is initialized with [0,0]
vector< interval<double> >::const_iterator p= pol.begin();

while (p != pol.end())
{

res *= x;
res += *(p++);

}
return res; //now res == pol(x)

}

int main()
{

filib::fp_traits<double>::setup(); //Do initializations
interval<double> coeff2(2), coeff1(5), coeff0(2,3);
vector< interval<double> > pol;
pol.push_back(coeff2); //[2,2]
pol.push_back(coeff1); //[5,5]
pol.push_back(coeff0); //[2,3]
//horner(pol,x) computes coeff2*x*x + coeff1*x + coeff0

The Interval Library filib++ 47

interval<double> x(0,1);
cout << "pol(" << x << ")= " << horner(pol,x) << endl;
x= interval<double>(-1,0.5);
cout << "pol(" << x << ")= " << horner(pol,x) << endl;
return 0;

}

pol([0, 1])= [2, 10]
pol([-1, 0.5])= [-4, 6]

Now a very similar program using the macro version of filib++is shown. Note the
different header file Interval.h. The macro version only knows the interval data type
Interval. The bounds of such intervals are double numbers.

// Typical usage of the library filib++ (macro version)

#include <Interval.h> //Header file for macro version
#include <vector> //STL container vector
#include <iostream>

using std::vector;
using std::cout;
using std::endl;

// Evaluation of a polynomial using Horner’s rule
Interval horner
(

//interval polynomial coefficients in STL container vector
vector<Interval> const& pol,
//interval argument
const Interval& x

)
{

Interval res(0); //res is initialized with [0,0]
vector<Interval>::const_iterator p= pol.begin();

while (p != pol.end())
{

res *= x;
res += *(p++);

}
return res; //now res == pol(x)

}

int main()
{

Interval coeff2(2), coeff1(5), coeff0(2,3);
vector< interval<double> > pol;

48 The Interval Library filib++

pol.push_back(coeff2); //[2,2]
pol.push_back(coeff1); //[5,5]
pol.push_back(coeff0); //[2,3]
//horner(pol,x) computes coeff2*x*x + coeff1*x + coeff0
Interval x(0,1);
cout << "pol(" << x << ")= " << horner(pol,x) << endl;
x= Interval(-1,0.5);
cout << "pol(" << x << ")= " << horner(pol,x) << endl;
return 0;

}

The output equals the output of the template version:

pol([0, 1])= [2, 10]
pol([-1, 0.5])= [-4, 6]

Chapter 7

Application: Verified Computation
of all Solutions of a Nonlinear
Equation

The following two application programs use containment computations to compute
enclosures for all zeros of a one dimensional function over the entire field of real num-
bers. Functions composed of arithmetical operations and the elementary functions like
sin, cos, log, . . . can be computed using the containment mode over arbitrary finite and
infinite (extended) intervals.

7.1 Verified Bisection Method

The following algorithm performs bisection steps until the final enclosures of the zeros
are sharp enough. Regions (intervals) which certainly do not contain a zero are elim-
inated. Regions which still may contain a zero and which are still not sharp enough
are stored in a list named toDo. The elements of this list are bisected in further steps.
Intervals which are sharp enough and for which a range computation does not exclude
the value 0 are stored in a second list called done. Such intervals possibly contain a
zero of the function.

The resulting list done is constructed in such a way, that all interval elements are
disjoint and ordered with respect to smaller lower bounds. This is done in the function
absorb. If a candidate is to be stored in the list done a check is performed whether
this candidate has common points with another candidate already in the list. If this is
the case the list element is replaced by the interval hull of both candidates.

The algorithm terminates if the list toDo is empty. Than it is sure that all zeros
of the function are enclosed by the elements stored in done. This result holds even if
the function has e. g. infinitely many zeros or if e. g. the search range is the complete
real line. Because containment computations are performed it is also allowed that the
search range contains regions were the function (considered as a real-valued function
with real arguments) is not defined in the usual mathematical sense.

//Bisection method to find enclosures of all zeros of a function

49

50 The Interval Library filib++

#include <iostream>
#include <list>
#include <interval/interval.hpp> //filib++

using std::cout;
using std::endl;
using std::list; //STL
using std::pair; //STL

//Simplify instantiation of intervals
typedef filib::interval<double> interval;

//Simplify access to methods of class fp_traits<>
typedef filib::fp_traits<interval::value_type> traits;

template<class T> T f(T x)
{

return sin(T(1)/(x-T(1)))*log(T(1.5)-abs(x));
}

template <class I> pair<I,I> bisect(I x)
{

typename I::value_type midx(mid(x));

if (midx == traits::ninfinity()) //midx == -00?
{

midx= -traits::max();
}
else if(midx == traits::infinity()) //midx == +00?
{

midx= traits::max(); //Set midx to largest number
}
pair<I,I> p;
p.first = I(x.inf(), midx);
p.second= I(midx, x.sup());
return p;

}

template <class I> void absorb(list<I>& done, I x)
{

list<I>::iterator p=done.begin();
bool absorbed=false;
while (p!=done.end())
{

if (!disjoint(*p, x))
{ //Overlapping intervals

*p= hull(*p, x); //hull for filib++

The Interval Library filib++ 51

absorbed= true;
break;

}
if (x.inf() < (*p).inf())
{ //Sort from left to right

done.insert(p,x);
absorbed= true;
break;

}
p++;

}
if (!absorbed) done.push_back(x);
return; //"done" is a sorted list without overlapping intervals

}

template <class function, class I>
list<I> findAllZeros(function f, const I searchRange, const double epsilon)
{

int numberOfZeros(0);
list<I> toDo;
int toDoMaxSize(10000); //Upper bound for number of elements in toDo
list<I> done;
toDo.push_back(searchRange);

while(! toDo.empty())
{

I range= toDo.front();
toDo.pop_front();
I fRange= f(range);
if (in(0., fRange))
{

pair<I,I> p=bisect(range);
if
(

(diam(range) < epsilon)
|| (diam(fRange) < epsilon)
|| (range==p.first)
|| (range==p.second)
|| (toDo.size()>toDoMaxSize)

)
{

//Interval is sharp enough and may contain a zero:
if (++numberOfZeros % 1000 == 0) cout << numberOfZeros << endl;
absorb(done, range);
continue; //Proceed with next iteration of while-loop

}
//Use bisection to get sharper results
toDo.push_back(p.first);

52 The Interval Library filib++

toDo.push_back(p.second);
}

}
cout << "Number of intervals possibly containing a zero:" << endl;
cout << " Without absorption: " << numberOfZeros << endl;
cout << " With absorption: " << done.size() << endl;
return done;

}

template<class T>
std::ostream& operator<< (std::ostream &os, const list<T>& toPrint)
{

int numberOfElement=1;
list<T>::const_iterator p=toPrint.begin();
while (p!=toPrint.end())
{

os << " " << numberOfElement++ << " " << (*p++) << endl;
}
return os;

}

int main()
{

filib::fp_traits<double>::setup(); //Do initializations
interval::precision(8); //Precision of interval output
double epsilon=0;
cout << "All zeros of sin(1/(x-1))*log(1.5-abs(x))" << endl;

while (true)
{

interval x;
x= interval::ENTIRE(); //Complete real line
cout << endl << "Search range: " << x << endl;
cout << "Epsilon (e.g. 1e-3; <ctr> <c> to terminate): ";
cin >> epsilon;
list<interval> zeros= findAllZeros(f<interval>, x, epsilon);
if (zeros.size() > 0)
{

cout << "There may be zeros in the interval(s):" << endl << zeros;
cout << "Epsilon was " << epsilon << endl;

}
else
{

cout << "There are definitely no zeros!"<< endl;
}

}
return 0;

}

The Interval Library filib++ 53

sin(1/(x–1))*log(1.5-abs(x))

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1
x

Figure 1 shows the function sin(1
x−1

) log(1.5− abs(x)). The natural domain of this
function considered as a real valued function with a real argument is the union of the
two open intervals (−1.5, 1), and (1, 1.5). Near the point 1 there are infinitely many
zeros of the function.

Nevertheless our simple bisection method using containment computations finds
regions containing all zeros. No exceptions are thrown. The resolution of the different
regions becomes better for smaller values of the variable epsilon as may be seen by
inspecting the output of the program (see below). Even though the natural domain of
the considered function is finite the program starts with the entire real line as search
region.

For the function shown in the figure and for different values of epsilon the program
produces the following output:

All zeros of sin(1/(x-1))*log(1.5-abs(x))

Search range: [ENTIRE]
Epsilon (e.g. 1e-3; <ctr> <c> to terminate): 1e-2
Number of intervals possibly containing a zero:
Without absorption: 28
With absorption: 13

There may be zeros in the interval(s):
1 [-0.515625, -0.484375]
2 [0.4921875, 0.5078125]
3 [0.6796875, 0.6875]
4 [0.8359375, 0.84375]

54 The Interval Library filib++

5 [0.890625, 0.8984375]
6 [0.9140625, 0.921875]
7 [0.9296875, 0.9375]
8 [0.9453125, 1.0546875]
9 [1.0625, 1.0703125]
10 [1.078125, 1.0859375]
11 [1.1015625, 1.109375]
12 [1.15625, 1.1640625]
13 [1.3125, 1.3203125]

Epsilon was 0.01

Search range: [ENTIRE]
Epsilon (e.g. 1e-3; <ctr> <c> to terminate): 1e-4
Number of intervals possibly containing a zero:
Without absorption: 292
With absorption: 121

There may be zeros in the interval(s):
1 [-0.50012207, -0.49987793]
2 [0.49993896, 0.50006104]
3 [0.68164062, 0.68170166]
4 [0.84082031, 0.84088135]
5 [0.89385986, 0.8939209]

... ...
117 [1.0636597, 1.0637207]
118 [1.0795288, 1.0795898]
119 [1.1060791, 1.1061401]
120 [1.1591187, 1.1591797]
121 [1.3182983, 1.3183594]

Epsilon was 0.0001

Search range: [ENTIRE]
Epsilon (e.g. 1e-3; <ctr> <c> to terminate): 1e-6
1000
2000
Number of intervals possibly containing a zero:
Without absorption: 2314
With absorption: 959

There may be zeros in the interval(s):
1 [-0.50000095, -0.49999905]
2 [0.49999905, 0.50000095]
3 [0.68168926, 0.68169022]
4 [0.84084415, 0.84084511]
5 [0.8938961, 0.89389706]

... ...
955 [1.0636616, 1.0636625]
956 [1.0795774, 1.0795784]
957 [1.1061029, 1.1061039]
958 [1.1591549, 1.1591558]

The Interval Library filib++ 55

959 [1.3183098, 1.3183107]
Epsilon was 1e-06

Some additional remarks:

• For some functions it may be advantageously to use relDiam instead of diam.

• Functions like f(x) ≡ 0 or f(x) = 1 − sin2(x) − cos2(x) should be used as test
functions for a program searching for zeros. Some further stopping criteria may
be necessary. Try it!

• The resulting list contains intervals which may contain a zero. It is possible
(e.g. due to overestimations in interval function evaluations) that there is no
zero in such an interval. It is also possible that such an interval contains several
zeros or even a continuum of zeros. Additional checks (sign tests, monotonicity
tests) should be performed. Only intervals certainly not containing a zero are
eliminated by the algorithm.

• It is not necessary that the function is differentiable.

• Due to containment computations it is not necessary that the function is contin-
uous. There may be singularities in the search region and the search region may
be infinite.

• Due to containment computations the natural domain of the function may be
rather complicated. The initial search region may or may not be a subset of the
natural domain. In any case, roots of the function are never lost!

7.2 Extended Interval Newton Method

In this subsection an alternative method to find all zeros of a univariate function is con-
sidered. For this purpose, the following application program implements an extended
interval Newton method. Under mild assumptions on the function under consideration
this method has for simple zeros locally the quadratic convergence property. In its
simplest form the interval Newton Method computes an enclosure of a zero of a real
function f(x). It is assumed that the derivative f ′(x) is continuous in [a, b], and that

0 /∈ {f ′(x), x ∈ [a, b]}, and f(a) · f(b) < 0.

If Xn is an inclusion of the zero, then an improved inclusion Xn+1 may be computed
by

Xn+1 :=

(
m(Xn) − f(m(Xn))

f ′(Xn)

)
∩ Xn,

where m(X) is a point within the interval X, usually the midpoint. The mathematical
theory of the Interval Newton method appears in [2].

In the extended mode the interval Newton operator returns the entire real axis
whenever the range of derivatives (the denominator interval in the Newton operator)

56 The Interval Library filib++

contains 0. In such cases the intersection reproduces the starting interval and no
improvement is achieved. Therefore, a bisection step is introduced and the interval
Newton operator is applied recursively to both subintervals. Intervals which do cer-
tainly not contain a root are eliminated by a range computation with additional check
whether the range contains 0.

// Interval Newton method using bisection to avoid division by intervals
// containing zero in the interval Newton operator.
// In the extended mode (compiler option -DFILIB_EXTENDED) of filib++
// containment computations are performed. No exceptions are raised
// due to a consistent extension of domains and ranges of
// interval functions.

#include <interval/interval.hpp>
#include <iostream>

using std::cout;
using std::endl;

//Simplify instantiation of intervals
typedef filib::interval<double> interval;

//Simplify access to methods of class fp_traits<>
typedef filib::fp_traits<interval::value_type> traits;

//Data type for univariate interval functions
typedef interval (*function) (const interval&);

//Function pol
interval pol(const interval& x)
{
return (x-1.0)*(x+2.0)*(x-3.0);

}

//Derivative dpol of function pol
interval dpol(const interval& x)
{

return (x+2.0)*(x-3.0)+(x-1.0)*(x-3.0)+(x-1.0)*(x+2.0);
}

//Function f
interval f(const interval& x)
{

return sin(1.0/x);
}

//Derivative df of function f

The Interval Library filib++ 57

interval df(const interval& x)
{

return -cos(1.0/x)/sqr(x);
}

//Function g
interval g(const interval& x)
{

return 0.5 + sin(1.0/x);
}

//Derivative dg of function g
interval dg(const interval& x)
{

return -cos(1.0/x)/sqr(x);
}

//Function h only partially defined
interval h(const interval & x)
{

return 1.0-sqrt(x-4.5);
}

//Derivative dh of function h
interval dh(const interval & x)
{

return -0.5/sqrt(x-4.5);
}

//Function r with multiple zeros
interval r(const interval& x)
{

return power(x-1.0,3)*power(x-2.0,2)*(x-3.0);
}

//Derivative dr of function r
interval dr(const interval& x)
{

return 6.0*power(x,5) - 50.0*power(x,4) + 160.0*power(x,3)
- 246.0*power(x,2) + 182.0*x - 52.0;

}

static unsigned int ZeroCounter; //Counts verified simple zeros

void inewton(function f, function df, const interval& x)
{

static double relDiamMax(1e-5);
if (!in(0.0, f(x))) return; //Definitely no root

58 The Interval Library filib++

interval::value_type midx(mid(x));
if (midx == traits::ninfinity()) //midx == -00?
{

midx= -traits::max();
}
else if(midx == traits::infinity()) //midx == +00?
{

midx= traits::max(); //Set midx to largest number
}
interval fmidx(f(interval(midx))), dfx(df(x));
if (in(0.0, dfx) //Avoid 0 in denominator interval

&& x!=interval::NEG_INFTY()
&& x!=interval::POS_INFTY()
&& relDiam(x) > relDiamMax) //Splitting only if x is still too wide

{ //Split interval
inewton(f, df, interval(x.inf(), midx)); //Left part
inewton(f, df, interval(midx, x.sup())); //Right part
return;

}
interval xNew;
xNew= (midx - fmidx/dfx).intersect(x); //Interval Newton Operator
if (xNew==interval::EMPTY()) return; //Definitely no root
if (xNew.interior(x)) //Verification ok, one simple root
{

cout << "*** Verified "
<< ++ZeroCounter << " " << xNew << endl;

return;
}
if (xNew==x) //No further improvement
{

cout << "Possibly containing a zero: " << xNew << endl;
return;

}
else //One bound improved, try further improvement to get validation
{

inewton(f, df, xNew);
}

}

int main()
{

filib::fp_traits<double>::setup(); //Do initializations
cout << __FILE__ << endl << endl;
interval::precision(8); //Set output precision to 8

ZeroCounter=0; //Counts only simple zeros
interval searchRange= interval::ENTIRE();
cout << "All roots of (x-1.0)*(x+2.0)*(x-3.0) in the range "

The Interval Library filib++ 59

<< searchRange << ":" << endl;
inewton(pol, dpol, searchRange); //Interval Newton Method

ZeroCounter=0;
cout << "All roots of sin(1/x) in the range "

<< searchRange << ":" << endl;
inewton(f, df, searchRange); //Interval Newton Method

ZeroCounter=0;
cout << "All roots of 1/2 + sin(1/x) in the range "

<< searchRange << ":" << endl;
inewton(g, dg, searchRange); //Interval Newton Method

ZeroCounter=0;
cout << "All roots of 1-sqrt(x-4.5) in the range "

<< searchRange << ":" << endl;
inewton(h, dh, searchRange); //Interval Newton Method

ZeroCounter=0;
cout << "All roots of (x-1)^3*(x-2)^2*(x-3) in the range "

<< searchRange << ":" <<endl;
inewton(r, dr, searchRange); //Interval Newton Method

return 0;
}

What follows is the runtime output of this program separated by the mathematical
formulas of the functions treated as test functions. Note that the search range is in all
cases the complete real line i. e. the set (−∞,∞).

The first function is the simple polynomial

pol(x) = (x − 1)(x + 2)(x − 3)

with simple zeros 1, -2, and 3. Running our program yields

All roots of (x-1.0)*(x+2.0)*(x-3.0) in the range [ENTIRE]:
===
*** Verified 1 [-2, -2]
*** Verified 2 [1, 1]
*** Verified 3 [3, 3]

The second test function is

f(x) = sin(1/x)

This function has infinitely many zeros near 0 and it tends to 0 for
x approaching −∞ or x approaching ∞. Figure 2 shows the function
sin(1

x
) itself and Figure 3 its derivative − cos(1

x
)/x2 in the subrange [1

128
, 0.1].

60 The Interval Library filib++

The function f(x)=sin(1/x)

–1

–0.5

0

0.5

1

0.02 0.04 0.06 0.08 0.1

x

The derivative df(x)=-cos(1/x)/(x*X)

–10000

–5000

0

5000

10000

15000

0.02 0.04 0.06 0.08 0.1

x

The (drastically shortened) runtime output of our interval Newton program is as fol-
lows:

All roots of sin(1/x) in the range [ENTIRE]:
===
Possibly containing a zero: [-INFTY]
*** Verified 1 [-0.33679641, -0.3113457]
*** Verified 2 [-0.15917363, -0.15913636]
*** Verified 3 [-0.10610816, -0.10609895]
*** Verified 4 [-0.079602173, -0.079558769]

The Interval Library filib++ 61

*** Verified 5 [-0.063685996, -0.063649611]
*** Verified 6 [-0.053242997, -0.053026195]

...
*** Verified 41720 [-7.6296714e-06, -7.6296414e-06]
*** Verified 41721 [-7.6294899e-06, -7.6294884e-06]
Possibly containing a zero: [-7.6293945e-06, 0]
Possibly containing a zero: [0, 7.6293945e-06]
*** Verified 41722 [7.6294884e-06, 7.6294899e-06]
*** Verified 41723 [7.6296414e-06, 7.6296714e-06]

...

*** Verified 83437 [0.053026195, 0.053242997]
*** Verified 83438 [0.063649611, 0.063685996]
*** Verified 83439 [0.079558769, 0.079602173]
*** Verified 83440 [0.10609895, 0.10610816]
*** Verified 83441 [0.15913636, 0.15917363]
*** Verified 83442 [0.3113457, 0.33679641]
Possibly containing a zero: [+INFTY]

Only the enclosures of the first six zeros, the enclosures near the point 0 and the
enclosures of the last six zeros are shown. Indeed, 83442 enclosures of roots are com-
puted and automatically verified by the program. The asymptotic behavior of f(x)
leads to the first and the last line shown in the output. The two lines

Possibly containing a zero: [-7.6293945e-06, 0]

Possibly containing a zero: [0, 7.6293945e-06]

reflect the fact that the function has infinitely many zeros near the point 0.
The test function

g(x) =
1

2
+ sin(1/x)

is very similar to the previous function but it tends to 1/2 for x approaching −∞ or
∞. It produces the output

All roots of 1/2 + sin(1/x) in the range [ENTIRE]:
==
*** Verified 1 [-1.9292209, -1.8871211]
*** Verified 2 [-0.40066845, -0.37767046]
*** Verified 3 [-0.1472081, -0.1462089]
*** Verified 4 [-0.11235794, -0.11232511]
*** Verified 5 [-0.07649634, -0.076357255]
*** Verified 6 [-0.065858203, -0.065856122]

...

*** Verified 41721 [-7.6296417e-06, -7.6296405e-06]
*** Verified 41722 [-7.629519e-06, -7.6295188e-06]
Possibly containing a zero: [-7.6293945e-06, 0]
Possibly containing a zero: [0, 7.6293945e-06]

62 The Interval Library filib++

*** Verified 41723 [7.6294543e-06, 7.6294593e-06]
*** Verified 41724 [7.6297005e-06, 7.6297324e-06]

...

*** Verified 83438 [0.054564438, 0.054569839]
*** Verified 83439 [0.061578931, 0.061635973]
*** Verified 83440 [0.082842379, 0.083672968]
*** Verified 83441 [0.1004532, 0.10057939]
*** Verified 83442 [0.17313413, 0.17499143]
*** Verified 83443 [0.26538306, 0.27550698]

The output shows that g(x) does not have zeros smaller than -1.92923 or greater
than 0.27551.

The next test function
h(x) = 1 −√

x − 4.5

is only partially defined. Its natural domain is x ≥ 4.5. The only zero 5.5 is simple.
The program produces

All roots of 1-sqrt(x-4.5) in the range [ENTIRE]:
===
*** Verified 1 [5.5, 5.5]

The last test function

r(x) = (x − 1)3(x − 2)2(x − 3)

is a polynomial with multiple zeros at the points 1 and 2 and a simple zero at the point
3. For this function we get

All roots of (x-1)^3*(x-2)^2*(x-3) in the range [ENTIRE]:
===
Possibly containing a zero: [1, 1.0000076]
Possibly containing a zero: [2, 2.0000153]
*** Verified 1 [3, 3]

Multiple zeros cannot be verified by the implemented method.
Some general remarks:

• Due to the bisection mechanism, the program can also be used to get enclosures
of multiple zeros.

• Zeros cannot be lost by the method.

• Further rigorous existence and nonexistence tests should be applied. Such tests
may be based on sign changes.

• The program should be improved by an additional stopping criterion to avoid
infinite recursions. E. g. a check for a maximum recursion level should be applied
or a bound for the maximum number of enclosures to be computed should be
given.

The Interval Library filib++ 63

• If at a certain state of the algorithm a root is verified (the Newton operator maps
the starting interval in its interior) some more iterations may be performed to
get a sharper enclosure of the root. The convergence is fast (locally quadratic
convergence rate).

• The program is already rather sophisticated with respect to robustness. Nev-
ertheless it is short, easy to understand and it demonstrates powerful extended
interval computations.

• As search regions infinite intervals may be used. The extended mode of filib++
allows the (exception free) computation of enclosures of all(!) zeros of a given
function considering the complete(!) real line IR.

• Using extended interval operations and infinite intervals allows the propagation
of information in such a way that the algorithm may finally give back verified
results even if intermediate overflows (again exception free) occur.

• All test functions use an explicit formula for their corresponding derivative func-
tion. Of course, automatic differentiation or automatic slope computations may
be used (and should be used) instead.

• To get a list or a vector containing all enclosures of zeros the Standard Template
Library can be used (as we have done when implementing the verified bisection
method in the previous subsection)

Chapter 8

Installation

8.1 Compiler Requirements

A compiler conforming to ISO 14882 (ISO C++) is sufficient, but currently not avail-
able. We have used GNU C++ Compiler (version 2.95.2) and KAI C++ Compiler.
The code also compiles with version 3 of the GNU C++ Compiler.

Furtheron a unix compatible make utility is needed (e.g. GNU make or BSD make),
GNU Binutils (version 2.9.5 or better) and a BSD compatible install program.

8.2 Installation and Usage

8.2.1 Installation

The library is delivered as a gziped tar file. If you unpack it, the source code is put
into a subdirectory interval. The compilation with the GCC or KCC is controlled by
the included makefiles. A convenient way is to set the appropriate link

ln -s makefiles/Makefile.gcc Makefile

or

ln -s makefiles/Makefile.kcc Makefile

For other compilers the makefile has to be adapted.

The command

make libs

compiles and builds the library.
The target directory, e.g. /usr/local/filib is set to the variable PREFIX and then

the library is installed by the command

make install OWN=<user> GRP=<group> PREFIX=/usr/local/filib

64

The Interval Library filib++ 65

8.2.2 Usage of the Template Library

The source file has to contain the directive

#include <interval/interval.hpp>

in order to declare the identifiers of the library. It has to work in the namespace filib.
When compiling source files, it is necessary to inform the compiler about the path of
the include files. For GCC or KCC the compiler option -IPREFIX /include is given.

c++ -c -I/usr/local/filib/include source.cpp -o source.o

Linking is controlled by another option telling the location of the library during linking
and at runtime. An example for the KAI compiler:

KCC source.o -o source --no abstract float -L/usr/local/filib/lib

-lprim -Wl,-rpath=/usr/local/filib/lib

--no abstract float is used for calling the KAI compiler for correctness reasons.

8.2.3 Usage of the Macro Library

The source file has to contain the directive

#include <Interval.h>

in order to declare the identifiers of the macro library. When compiling source files,
it is necessary to inform the compiler about the path of the include files. For GCC or
KCC the compiler option -IPREFIX /include is given.

c++ -c -I/usr/local/filib/include source.cpp -o source.o

Linking is controlled by another option telling the location of the library during linking.
An example for the KAI compiler:

KCC source.o -o source -L/usr/local/filib/lib -lfi -lieee -lm

-Wl,-rpath=/usr/local/filib/lib --no exceptions --no abstract float

As above --no abstract float is used for the KAI compiler. In addition the macro
library is by default compiled with --no exceptions for performance reasons.

8.3 Organization of Subdirectories

We finally describe the structure of the directories in form of a directory tree:

66 The Interval Library filib++

interval

|

|--- doc (this manual)

| |

| |--- tex (PS/PDF documentation files)

|

|--- examples (a few tiny examples)

|

|--- fp_traits (traits classes for fp types)

|

|--- ieee (code for handling IEEE 754 types)

|

|--- interval (interval arithmetics)

| |

| |--- stdfun (standard functions)

| |

| |--- interval (interval versions)

| |

| |--- point (point versions)

|

|--- macro (macro based library)

| |

| |-- config (compile time switches)

| |

| |-- doc (old documentation)

| |

| |-- example (example code)

| |

| |-- include (c++ header files)

| |

| |-- src (static/non-inline interval code)

|

|-- licenses (license (GPL))

|

|-- makefiles (various makefiles for GCC/KAI/etc.)

|

|-- readme (some information on installations)

|

|-- rounding_control (low-level machine rounding control)

The installation copies files from the directories interval, fp traits, ieee,
rounding control and macro/include to the installation include directory. The
installation lib directory is after installing filib++ populated by libraries built on the
target machine (we currently do not support cross-compilation).

Bibliography

[1] The C++ Programming Language, ISO 14882, 1998

[2] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Com-
puting . Basic Numerical Problems. Springer-Verlag, Berlin, 1995

[3] Hofschuster, W., Krämer, W.: FI LIB, eine schnelle und portable Funk-
tionsbibliothek für reelle Argumente und reelle Intervalle im IEEE-double-
Format, Preprint Nr. 98/7 des Instituts für Wissenschaftliches Rech-
nen und Mathematische Modellbildung, Universität Karlsruhe, July 1998.
ftp://ftp.iam.mathematik.uni-karlsruhe.de

/pub/iwrmm/preprints/prep987.ps

[4] Hofschuster, W., Krämer, W.: Quellen der fi lib

ftp://iamk4515.mathematik.uni-karlsruhe.de/pub/iwrmm/software/fi lib.tgz

Now in Wuppertal:
http://www.math.uni-wuppertal.de/WRSWT/software.html

[5] Chiriaev, D., Walster, G.W.: Interval Arithmetic Specification,
www.mscs.mu.edu/~globsol/walster-papers.html

[6] Walster, G.W. et al.: Extended Real Intervals and the Topological Closure of Ex-
tended Real Numbers, Sun Microsystems, Feb 2000

[7] Walster, G.W. et al.: The ”Simple” Closed Interval System, Sun Microsystems,
Feb 2000

[8] Sun Microsystems: C++ Interval Arithmetic Programming Reference, Sun Mi-
crosystems, Oct 2000
http://www.sun.com/forte/cplusplus/interval/index.html

[9] libI77: see http://www.eecs.lehigh.edu/~mschulte/compiler

[10] Lerch, M., Wolff von Gudenberg, J., fi lib++ : Specification, Implementation
and Test of a Library for Extended Interval Arithmetic, RNC4 proceedings, pp.
111-123, April 2000

[11] Wolff von Gudenberg, J.: Interval Arithmetic and Multimedia Architectures,
Techn. Report 265, Informatik, Universität Würzburg, Oct 2000

67

68 The Interval Library filib++

[12] Lerch, M., Tischler, G., Wolff von Gudenberg, J.: filib++-Interval Library,
Specification and Reference Manual, Techn. Report 279, Informatik, Universität
Würzburg, August 2001

