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4 Error Function and the Complementary Error Function

Abstract

The given algorithms allow the calculation of confinements for values of the error func-
tion erf(x) resp. the complementary error function erfc(x) for point and interval argu-
ments in the IEEE–double number format [29]. As well the approximation errors in
the various parts as all appearing rounding errors are seized certainly with a priori er-
ror estimates by using interval methods. The obtained worst–case error bounds for the
maximum relative error are valid for all admissible arguments simultaneously. They
are finally used for certain confinement of the ranges over points or intervals. Under
the address http://www.math.uni-wuppertal.de/wrswt/software/erf a complete XSC–
implementation [25] of the algorithms discussed can be found. All approximation coefficients
are given, such that a translation into another programming language is very simple.

Key Words: Error Function, Complementary Error Function, Reliable Er-
ror Estimates, IEEE–double Format, Special Functions

MSC: 65D15, 65G05, 65G10, 68M15

1 Introduction

For algorithms in the domain of numerical mathematics with result verification so–
called interval functions are needed whose result interval with certainty confines the
exact range of the considered function with interval arguments. The calculated con-
finement should be as narrow as possible.

For the implementation of such functions, sure a priori estimates of the approxi-
mation errors in the various parts as well as a priori worst–case error estimates of the
inaccuracies due to rounding errors are necessary. In the first sections of this paper,
this theme is discussed first of all generally. XSC–programs allowing large parts of
the error estimates to be performed automatically by the machine, are described in
[3, 4, 10, 11, 14, 16] more closely.

In the actual main section the algorithms for the error function erf(x) and its com-
plement erfc(x) are given. For the various parts are developed auxiliary approximation
functions and their approximation error is determined analytically. By means of these
(programmable and almost perfect) auxiliary approximation functions, the errors of
the rational approximations actually used may later be determined by the machine
using numerically sure interval methods.

The relative worst–case error bounds found here are finally used for putting to-
gether the interval routines from the point functions. By calculating confinements, the
separate treatment of arguments leading to values in the underflow area may be omit-
ted (for such arguments the obtained relative error bound generally does not hold).
These values are mapped either to 0 or the smallest positive or the largest negative
normalized floating point number, in such a way that the desired confinement property
remains guaranteed.

The complete XSC program listings of the error function as well as the comple-
mentary error function for point and interval arguments and also the source code
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of some important auxiliary routines are available on the web under the address
http://www.math.uni-wuppertal.de/wrswt/software/erf. In the appendix of this
paper is listed a short test program with numerical results.

2 Notation

S = S(b, l) = S(b, l, e, e) floating point screen with base b, mantissa
length l and exponent e with e ≤ e ≤ e

S(2, 53,−1022, 1023) IEEE data format double
◦ ∈ {+,−, •, /} exact real operation

✷◦ , ◦ ∈ {+,−, •, /} floating point operator, machine operation with
rounding to the closest floating point number

	◦ , ◦ ∈ {+,−, •, /} machine operation with rounding downwards


◦ , ◦ ∈ {+,−, •, /} machine operation with rounding upwards
|a ◦ b− a ✷◦ b| := |(a ◦ b) − (a ✷◦ b)| notice implicit bracketing!
MinReal smallest positive normalized floating point number,

for IEEE data format:
MinReal:=2.22 . . . · 10−308

MaxReal largest normalized floating point number,
for IEEE data format:
MaxReal:=1.78 . . . · 10308

a, x, f , . . . exact quantities

ã, x̃, f̃ , . . . machine–calculated, generally erroneous, quantities
ulp (a) unit (in the) last (mantissa) place
ε∗ := 1

2
21−l = 2−l relative machine accuracy with respect to S(b, l)

eps52 eps52:= 21−53 = 2.22044 . . . · 10−16

eps53 eps53:= 1
2
21−53 = 1.11022 . . . · 10−16 = ε∗

succ(x), x ∈ S floating point successor of x
IR+ set of positive reals
IIR set of closed intervals in the reals
X = [x, x] ∈ IIR notation for intervals
IS := {[a, a]|a, a ∈ S, a ≤ a} set of machine intervals
|A|, A ∈ IIR |A| := max

a∈A
|a|, maximum of absolute values

〈A 〉, A ∈ IIR 〈A 〉 := min
a∈A

|a|, minimum of absolute values

diam(A) := sup(A) − inf(A) diameter of an interval A ∈ IIR
Wf(X) := {f(x) | x ∈ X} range of f on interval X

H(x) ≈ f(x) almost perfect auxiliary approximation function
for the function f(x).
H(x) generally also depends on the momentarily
considered approximation domain. H(x)
is used to find automatically error bounds
for the efficient fast approximation finally sought

ε(app, 1) relative error bound of the almost
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perfect approximation H(x) for f
ε(app, 2) relative error bound of the implemented

approximation (relative to H(x))
ε(f) relative total error bound of the final

machine realization f̃ of f

3 Generalities on Error Splitting

In this section those errors are considered which usually occur when evaluating a given
continuous function

h : [c, d ] −→ IR, c, d ∈ S(B, k)

on a machine with floating point system S with k mantissa digits to the base B. The
possible errors appear while:

1. calculating a reduced argument x resp. its machine approximation x̃ using the
continuous function

r : [c, d ] −→ IR, Wr([c, d ]) = [a, b] := { x | x = r(t), t ∈ [c, d ] }
x̃ = r̃(t) = x · (1 + εx), |εx| ≤ ε(x) for all x ∈ [a, b], a, b ∈ IR.

2. approximating h(t) = f(r(t)) = f(x) by g(x):

f(x) ≈ g(x), x = r(t) ∈ [a, b];

εapp :=
g(x) − f(x)

f(x)
, |εapp| ≤ ε(app) for all x ∈ [a, b] with f(x) �= 0.

3. evaluating the approximation function g for the generally perturbed values of x̃
under argument reduction:

εg :=
g̃(x̃) − g(x)

g(x)
, |εg| ≤ ε(g), x̃ = x · (1 + εx), x ∈ [a, b].

Thus, if for t ∈ [c, d ] a reduced argument x is calculated using the continuous
function x = r(t), and if [a, b] with a, b ∈ IR is the range of r, then instead of h(t) with
t ∈ [c, d ] the function f(x) = f(r(t)) = h(t) with x ∈ [a, b] is to be evaluated. Since
x = r(t) is calculated on the machine for given t, one does not obtain x ∈ [a, b], but
the generally erroneous value x̃ = x · (1+ εx) ∈ S with the relative error bound ε(x). If
g(x) ≈ f(x) for x ∈ [a, b] is the approximation function, then the latter is not evaluated
with the exact x, but with x̃ = x · (1 + εk) ∈ S(B, k). Since for this evaluation on
the machine more rounding errors are to be expected, one does not obtain g(x̃) ∈ IR,
but the generally erroneous machine value g̃(x̃) ∈ S(B, k). Instead of f(x) = h(t) one
therefore obtains only g̃(x̃) with the relative error

εh(t) :=
g̃(x̃) − h(t)

h(t)
=

g̃(x̃) − f(x)

f(x)
,
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where f(x) �= 0 for x ∈ [a, b] is presumed. Using the error splitting |εh(t)| may now be
estimated [12] :

∣∣∣∣∣f(x) − g̃(x̃)

f(x)

∣∣∣∣∣ =

∣∣∣∣∣f(x) − g(x) + g(x) − g̃(x̃)

f(x)

∣∣∣∣∣
≤

∣∣∣∣∣f(x) − g(x)

f(x)

∣∣∣∣∣+
∣∣∣∣∣g(x)− g̃(x̃)

g(x)

∣∣∣∣∣ ·
∣∣∣∣∣g(x)− f(x) + f(x)

f(x)

∣∣∣∣∣
≤ ε(app) + [1 + ε(app)] · ε(g) =: ε(h)

(1)

ε(app) is the relative approximation error, and ε(g) means the relative evaluation error
of the approximation function g. ε(h) is the total error bound of h(t) for t ∈ [c, d ],
if the reduced argument x = r(t) is calculated only approximately and therefore in
general erroneously to x̃ = x · (1+ εx), |εx| ≤ ε(x), and if the approximation function
g is evaluated afterwards for this perturbed argument x̃ using floating point operations
on the machine: g̃(x̃) = g(x) · (1 + εg); |εg| ≤ ε(g).

If one calculates ε(h) according to formula (1), then it is assured that∣∣∣∣∣h(t) − g̃(r̃(t))

h(t)

∣∣∣∣∣ ≤ ε(h), simultaneously for all t ∈ [c, d ].

This means that ε(h) is just the dependable total error bound wanted for the machine
realization h̃(t) := g̃(r̃(t)) of h(t) and therefore of f(x).

4 Principalities on Error Estimates for Special

Functions

In connection with realizing special functions (error function, gamma–function, Bessel–
functions, . . . ) in computers it appears that it is often significant for the safe error
estimation to use, in addition to the actually wanted and on the calculator to be real-
ized approximation g(x), an auxiliary approximation function H(x) (this is in general
an almost perfect approximation e. g. one which is calculable with a long number
arithmetic. More exactly can be proceeded as described in the following way.

One may proceed again from a continuous real–valued function

f : [a, b] −→ IR

to be evaluated on a calculator with a floating point screen S(B, k). In order to obtain
short run–time, the approximating function g ≈ f should be as constructed as simply
as possible (e. g. rational function). If one denotes again with f̃(x) the in general
erroneous machine result, then

f̃(x) = f(x)(1 + εf), |εf | ≤ ε(f) for all x ∈ [a, b] ∩ S(B, k).
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In order to calculate the wanted error bound ε(f), generally two approximation steps
are necessary. First an auxiliary function H(x) approximating f(x) has to be found
which may be built up actually quite complicated. It is only demanded that H(x) be
programmable with interval functions resp. interval operations already implemented.
The corresponding approximation error bound ε(app, 1) generally has to be developed
analytically (by hand). The extraction of the actual approximation function g(x) for
implementing the initial function f(x) is then made using H(x). A bound ε(app, 2)
for the hereby appearing (second) approximation error may now be automatically
determined by interval arithmetical means. More exactly, it is proceeded as following:

Step 1: f(x) ≈ H(x), x ∈ [a, b],
where H(x) is built only from the standard functions supplied by the interval long
number module mpitaylor. The relative approximation error is given for f(x) �= 0
by:

εapp,1 =
f(x) −H(x)

f(x)
; |εapp,1| ≤ ε(app, 1), x ∈ [a, b].

The calculation of ε(app, 1) is therefore a purely mathematical problem to be solved
for every function individually. For this it is not demanded that H(x) can be evaluated
on the calculator as quickly as possible. The main objective is rather to calculate a
guaranteed upper limit ε(app, 1) for the corresponding approximation error!

Step 2: H(x) ≈ g(x), x ∈ [a, b],
where g now denotes the function which actually approximates f on the calculator.
In order to obtain short run–time, g is chosen in many cases as a broken rational
function whose coefficients may be calculated using a computer algebra system. For
the relative approximation error (with respect to the auxiliary function H(x)) it is
possible, assuming H(x) �= 0, to determine automatically on the calculator the upper
bound ε(app, 2):

εapp,2 =
H(x) − g(x)

H(x)
, |εapp,2| ≤ ε(app, 2), x ∈ [a, b].

For this may be used the XSC–program AppErr [4, 14].
Corresponding to the approximation f ≈ g the relative approximation error is

defined as

εapp :=
f(x) − g(x)

f(x)
, |εapp| ≤ ε(app), x ∈ [a, b],

and |εapp| may be approximated using the bounds ε(app, 1) and ε(app, 2) and the
triangle inequality:

|εapp| ≤ ε(app, 1)+ [1+ ε(app, 1)] · ε(app, 2) =: ε(app) . (2)

If g̃(x) denotes the generally erroneous machine result of g, then the representation

g̃(x) = g · (1 + εg)
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follows, and the upper bound ε(g) for the maximum absolute value of the relative
evaluation error εg may be calculated automatically with an XSC–program [4, 10].
Thereafter

g̃(x) = g(x) · (1 + εg); |εg| ≤ ε(g) for all x ∈ [a, b] ∩ S(B, k).

With the total error estimate (1) one finally obtains with f̃(x) = f(x)(1 + εf)

|εf | ≤ ε(app) + [1 + ε(app)] · ε(g) =: ε(f) . (3)

Hereby is assumed

x ∈ [a, b] ∩ S(B, k) ∧ f(x) = 0 =⇒ f̃(x) ≡ g̃(x) = 0 .

This requirement may be fulfilled in general simply by a suitable special treatment of
the zeros of the considered function in the developing of the algorithm for g.

5 About the Approximation Error

5.1 Review

When implementing a real–valued function defined on a real interval

f : [a, b] −→ IR

on a calculator, the following two points are to be observed:

• In order to obtain short run–time, f should be approximated on the interval [a, b]
by a rational function, where numerator and denominator each are defined by a
polynomial:

f(x) ≈ g(x) :=
PN(x)

QM(x)
; QM(x) �= 0, x ∈ [a, b], N,M ∈ {0, 1, 2, ... }

• Because of the approximation f(x) ≈ g(x) and because of the generally in-
evitable rounding error in the evaluation of g the machine result will be equal to
the exact value f(x) only in exceptional cases. In order to calculate a guaran-
teed error bound it is therefore necessary, among other things, also to determine
a guaranteed upper bound for the approximation error for all x ∈ [a, b].

The absolute resp. relative approximation error is defined by

∆(x) := f(x) − g(x), |∆(x)| ≤ ∆(app), x ∈ [a, b],

ε(x) :=
f(x) − g(x)

f(x)
, |ε(x)| ≤ ε(app), f(x) �= 0, x ∈ [a, b].
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In order to determine the upper bounds ∆(app), ε(app) there are various meth-
ods depending on the given function f and its approximation interval. For this
∆(app), ε(app) should not be too large, and the upper limits must be calculated
correctly from the mathematical point of view.

For standard functions ( f = exp, sin, arctan, ... ) [a, b] may be reduced to a
relatively small Interval whose centre is the origin of the coordinate system. As an
approximating function may therefore be chosen a Taylor–polynomial of low order
(short run–time), and the remainder of the Taylor–series may be estimaed either by
a geometrical series or by the following member of the series if the power series is a
Leibniz–series [6, 12]. Doing this, one obtains for the upper limit of the approximation
error a simple expression in closed form which may be safely estimated from above
using interval calculus.

When calculating the approximation error for special functions in mathematical
physics, things are different as now an argument–reduction to a very small interval in
general is not possible as opposed to standard functions.

The following example should illustrate this. With the Riemann zeta-function ζ(x)
und the Euler–constant γ = 0.57721 . . . for the function f(x) = − ln(Γ(x)) the power–
series expansion

f(x) ≡ (x− 2)(γ − 1) −
∞∑

k=2

(−1)k[ζ(k) − 1] · (x− 2)k

k
, |x− 2| ≤ 1

2

holds. If one now approximates f(x) in the interval [1.5, 2.5] by the Taylor–polynomial

TN(x) := (x− 2)(γ − 1)−
N∑

k=2

(−1)k[ζ(k)− 1] · (x− 2)k

k
≈ f(x),

one obtains for the absolute error only with N=26 the upper limit ∆(app) = 4.1121 ·
10−18 by the method described above. For run–time reasons the machine evaluation of
T26(x) is thus absolutely inacceptable. The calculation time, however, is reduced by
about a factor of 2.4 if one replaces T26(x) by a rational best approximation

f(x) ≈ T26(x) ≈ P6(x− 2)

Q5(x− 2)
, |x− 2| ≤ 1

2
(4)

where

P6(x− 2) :=
6∑

k=0

ak · (x− 2)k, Q5(x− 2) :=
5∑

k=0

bk · (x− 2)k .

The polynomial coefficients ak, bk may be determined e. g. by a computer algebra
system (long number calculation). For the rational approximation here, the error must
be estimated safely with respect to T26.
In order to formulate this problem in somewhat more general terms, one often replaces
the special polynomial T26(x) by an auxiliary function H(x) sufficiently many times
differentiable which is built up in |x − x0| ≤ η from only finitely many standard
functions provided by the XSC–module mpitaylor. One thus wants to find for the
following approximation

H(x) ≈ PN(x− x0)

QM(x− x0)
, QM(x− x0) �= 0, |x− x0| ≤ η (5)
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the upper bounds ∆(app) resp. ε(app) for the absolute resp. relative approximation
error. For ε(x) e. g. this leads to

ε(x) :=
PN(x− x0) −QM(x− x0) ·H(x)

QM(x− x0) ·H(x)
, |x− x0| ≤ η, denominator �= 0, (6)

and the calculation of a guaranteed upper bound ε(app) for |ε(x)| seems to be simple
at first glance, being used to solve similar problems with methods of (verified) global
optimization without difficulties. It turns out to be principally impossible to determine
ε(app) by global optimization! In order to see this, it may be reminded that global
optimization is possible only if the range of ε(x) can be calculated without substantial
overestimation for every subinterval of a finite partition of |x− x0| ≤ η [9, S.106]. If
[x] denotes such a subinterval, then in the numerator of (6) the expression

PN([x] − x0) − QM([x] − x0) ·H([x]) (7)

is to be evaluated intervalwise, where the resulting intervals of minuend and subtra-
hend agree more the higher the polynomial degrees N,M are chosen in the rational
approximation. In the expression (7) are therefore two almost identical intervals —
and not points — to be subtracted which leads to very big overestimations. This is
the reason why global optimization algorithms fail when error curves in approximation
problems are studied. By the way, the problem is also not solved by evaluating the
two interval addends in (7) using the interval long–term module mpi_ari [13] with
high accuracy; for the fact that two almost identical intervals are to be subtracted is
not eliminated by long number arithmetics. A purely theoretical solution could con-
sist in choosing the subintervals [x] quasi point–shaped, which would however lead to
unpractical calculation times.

An estimation of the approximation error will therefore only be possible if one
succeeds in transforming the expression (7) in such a way that prevents subtraction of
two identical intervals. For this, one develops H(x) in x0 e. g. with the methods of
automatic differentiation into a Taylor–polymomial with remainder H(x) =

∑K
k=0 sk ·

(x− x0)
k + R(x,K) . One obtains for the expression 7 the form

[
PN(x− x0) − QM(x− x0) ·

K∑
k=0

sk · (x− x0)
k

]
︸ ︷︷ ︸

(∗)

−QM(x− x0) · R(x,K) . (8)

The actual trick consists in calculating the polynomial difference (∗) directly by
determining in (8) the coefficient of the subtrahend first and then takes the difference
of the corresponding polynomial coefficients. Namely, if one confines the coefficient
of minuend and subtrahend with long number interval arithmetics, then one obtains
quasi point–like intervals separated far enough to calculate their differences without
overestimation! Thus, the evaluation of (∗) is reduced to that of a single polynomial,
which may be performed e. g. using the interval–Horner–scheme if |x−x0| ≤ η is par-
titioned into several subintervals for prevention of overestimation, whenever necessary.



12 Error Function and the Complementary Error Function

The estimation of the remainder in Lagrangian form is done by automatic differentia-
tion and evaluation of the (k + 1)-th derivative of H(x) on the interval |x− x0| ≤ η,
where an interval–partitioning may also become necessary.

Let it be emphasized that the procedure described above shows very clearly that a
naive application of interval calculus does not lead to the desired result, whereas under
purposeful application on the right spot (difference of polynomial coefficients) interval
arithmetics is a highly useful tool!

5.2 Rational Approximation

In this section we consider the approximation of a given auxiliary function H(x) by
a rational function, and show how a guaranteed upper bound for the absolute resp.
relative approximation error can be calculated. Using an XSC–program these bounds
may be calculated automatically.

As the procedure uses automatic differentiation, it is assumed that the auxiliary
function H(x) is given as a finite expression in

exp, ln, sqr, sqrt, sin, cos, arctan, pow

as well as the basic operations −(unary),+,−, ∗, /. (Such expressions can at present
be treated with the module mpitaylor.)

The rational function approximating H(x) may have

A0 + A1 · (x− x0)
1 + . . . + AN · (x− x0)

N

as numerator polynomial and

B0 + B1 · (x− x0)
1 + . . . + BM · (x− x0)

M

as denominator polynomial.
For fixed polynomial degrees N,M one often obtains a very effective approximation,

if the coefficients Aj , Bj are determined according to Chebyshev. The absolute or
relative approximation error then has in the interior of the approximation interval
|x−x0| ≤ η at least N+M relative extrema with oscillating or equally absolute–valued
extremal values. Equality of absolute value of the extremal values can in practice not
be realized for the following reasons:

• The Aj , Bj can be calculated only up to finitely many decimals.

• It is in general sensible to round Aj , Bj to the nearest number in the screen in
which the polynomials are to be evaluated.

Due to the necessary rounding of the polynomial coefficients the absolute extremal
values of the approximation error will be different, and in general it cannot be guaran-
teed that the number of extrema does not change.

If aj, bj denote the coefficients arising from the Aj , Bj by an appropriate rounding,
then the polynomials actually used for approximating on the machine are

PN(x− x0) := a0 + a1 · (x− x0)
1 + . . . + aN · (x− x0)

N ; numerator polynomial

QM(x− x0) := b0 + b1 · (x− x0)
1 + . . . + bM · (x− x0)

M ; denominator polynomial
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i. e. H(x) is approximated by

H(x) ≈ PN(x− x0)

QM(x− x0)
, QM(x− x0) �= 0, |x− x0| ≤ η.

The following example shows with four graphs the influence of rounding the poly-
nomial coefficients on the progress of the relative approximation error. It is considered
H(x) := ex, x0 = 0, η = 0.2, M = N = 4. The first 18 decimals of the coefficients
Aj , Bj calculated with Mathematica are

j Aj Bj

0 9.99999999999999999 . . . · 10−1 +1.00000000000000000 . . . · 10+0

1 4.99999999999998228 . . . · 10−1 −4.99999999999998228 . . . · 10−1

2 1.07140305127468128 . . . · 10−1 +1.07140305127468128 . . . · 10−1

3 1.19034858976579290 . . . · 10−2 −1.19034858976579290 . . . · 10−2

4 5.95025533669726278 . . . · 10−4 +5.95025533669726278 . . . · 10−4

Table 1: the first 18 decimals of A[j], B[j]

Rel. Appr.-Fehler:  a[j],b[j] mit 17,16,15,14 dezimalen Stellen
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The four graphs in the figure above show the relative approximation error multiplied
by 10+17 if the coefficients Aj, Bj calculated by Mathematica are rounded to 17, 16,
15 resp. 14 decimals of aj, bj . Thereby one sees e. g. that the maximum absolute value
of the relative approximation error triples if the coefficients are rounded to only 14
decimals.

Due to the in practice necessary rounding of the polynomial coefficients Aj , Bj the
relative extremal values do not have the same absolute value, so that an estimate of
the absolute or relative approximation error relative to aj , bj is always required.

5.3 Estimating the Approximation Error

After introducing the principal method in the first section and after demonstrating the
influence of rounding the polynomial coefficients on the approximation error, now are
gathered formulae enabling the calculation (with a suitable XSC–program) of guaran-
teed upper limits for the absolute resp. relative error of the approximation

H(x) ≈ PN(x− x0)

QM(x− x0)
, QM(x− x0) �= 0, |x− x0| ≤ η (9)

With the approximating polynomials (the coefficients are machine numbers)

PN(x− x0) :=
N∑

j=0

aj · (x− x0)
j, QM(x− x0) :=

M∑
j=0

bj · (x− x0)
j (10)

and the Taylor expansion of the auxiliary function H(x)

H(x) = TK(x− x0) + RK(x) (11)

TK(x− x0) :=
K∑

j=0

sj · (x− x0)
j

RK(x) :=
H(K+1)(ζ)

(K + 1)!
· (x− x0)

K+1, ζ = ζ(x) between x and x0 (12)

the estimates for the absolute and relative approximation error are valid:

|∆(x)| ≤
∣∣∣∣∣QM(x− x0) · TK(x− x0) − PN(x− x0)

QM(x− x0)

∣∣∣∣∣+ |RK(x)| ,

|ε(x)| ≤
∣∣∣∣∣QM(x− x0) · TK(x− x0) − PN(x− x0)

H(x) · QM(x− x0)

∣∣∣∣∣+
∣∣∣∣∣RK(x)

H(x)

∣∣∣∣∣ , H(x) �= 0 .

Since in practice the polynomial degrees N,M usually differ at most by 1, it is not
a real restriction if in the following it is assumed that M + K ≥ N. The basic idea
is now to calculate the numerator polynomial above by evaluating the differences zj of
the polynomial coefficients using interval long number arithmetics

QM · TK − PN ≡ ZM+K(x− x0) :=
M+K∑
j=0

zj · (x− x0)
j .
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By inserting one then obtains the following estimations:

|∆(x)| ≤
∣∣∣∣∣ZM+K(x− x0)

QM(x− x0)

∣∣∣∣∣+ |RK(x)|, |x− x0| ≤ η, (13)

|ε(x)| ≤
∣∣∣∣∣ ZM+K(x− x0)

H(x) · QM(x− x0)

∣∣∣∣∣+
∣∣∣∣∣RK(x)

H(x)

∣∣∣∣∣ , H(x) �= 0 (14)

In order to calculate the upper limits of |∆(x)|, |ε(x)| with respect to |x − x0| ≤ η
the right hand side of (13),(14) are to be evaluated with intervals. Because of the
appearing overestimations, the set |x − x0| ≤ η must be divided into a sufficiently
large number of intervals.

Estimating the Remainder in (13) resp. in (14)

According to (12), if

u :=
H(K+1)([x0 − η, x0 + η])

(K + 1)!
,

then

RK(x) ∈ u · [−ηK+1,+ηK+1], |RK(x)| ≤ |u| · ηK+1 =: τ, RK(x) ∈ [−τ,+τ ].

The interval u is calculated by automatic differentiation using the module mpitaylor

[4], whereby [x0−η, x0 +η] can be divided into sufficiently many subintervals in order
to prevent overestimation; in this case |u| is the maximum of of the corresponding
subinterval upper bounds |uj|.

In (14) RK(x) still has to be divided by H(x). Since with automatic differentiation
the confinement of the function value H(uj) is given for each subinterval, one divides
|u| ·ηK+1 by the minimum of the values of the calculated 〈 |H([x]j)| 〉. If this minimum
vanishes, the quotient is set to MaxReal in order to show that an upper bound of the
relative approximation error cannot be calculated.

Estimation of the First Term in (13) resp. in (14)

In (13), with the abbreviation

v :=
ZM+K([x0 − η, x0 + η]− x0)

QM([x0 − η, x0 + η]− x0)
,

is valid the estimation ∣∣∣∣∣ZM+K(x− x0)

QM(x− x0)

∣∣∣∣∣ ≤ |v|.

If |v| in a too large interval [x0 − η, x0 + η] becomes too large due to overestimations
of the Horner scheme in the polynomial evaluations, then [x0 − η, x0 + η] must again
be divided into sufficiently large number of subintervals.
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In (14) the first term in the sum on the right hand side must additionally be divided
by H(x) which increases the runtime considerably if more complicated functions are
used. This can, however, be prevented by replacing H(x) according to (11) by its
already calculated Taylor expansion with remainder:

|ε(x)| ≤
∣∣∣∣∣ ZM+K(x− x0)

[TK(x− x0) + RK(x)] · QM(x− x0)

∣∣∣∣∣+
∣∣∣∣∣RK(x)

H(x)

∣∣∣∣∣ , H(x) �= 0.

Since |RK(x)| has already been estimated by τ , RK(x) ∈ [−τ,+τ ] holds, and the
first term in the sum can be evaluated for x ∈ [x0−η, x0+η] with intervals, as described
in the previous paragraph.

6 The error functions erf(x) and erfc(x)

Figure 1 shows for the error function

erf(x) :=
2√
π

x∫
0

e−t2 dt

and the complementary error function

erfc(x) := 1 − erf(x) =
2√
π

∞∫
x

e−t2 dt

the corresponding graphs. For these functions with real argument x shall be developed
fast algorithms with guaranteed error bounds.

−1

1

2

−2 −1 0.65 1 2
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erf(x)

erfc(x)

Figure 1: erf(x) and erfc(x)

In the literature (e. g. in [2, 18, 19, 20, 21, 26, 27]) there is a large number of er-
ror bounds. But one finds either only absolute error bounds or the relative error is
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estimated only asymptotically, so that concrete and guaranteed bounds of the approxi-
mation error are not available. If the approximating functions are given by polynomials,
then certainly hints on possible extinction effects are made; but an estimate for the
error of the polynomial evaluation is not undertaken, so that a guaranteed error bound
for the evaluation of erf(x) resp. erfc(x) for a certain data format does not exist.

The algorithms wanted for the functions erf(x) and erfc(x) are implemented in
PASCAL -XSC in IEEE-double-format, and it is assumed that the elementary opera-
tions are performed only highly accurate (1 ulp accuracy). Together with the calculated
error bounds are realized corresponding interval functions.

6.1 The Coarse Algorithm

area approximation for erf(x) approximation for erfc(x)

B◦ = 0 0 1

(B◦, B1] 0 resp. warning 1

(B1, B2] x · 2√
π

=⇒ 1− x · 2√
π

(B2, B3] x · p2(x
2)

q2(x2)

∈ P4

∈ P4
=⇒ 1 − x

p2(x
2)

q2(x2)

(B3, B4] 1 − e−x2 p3(x)

q3(x)
⇐= e−x2 p3(x)

q3(x)

∈ P5

∈ P6

(B4, B5] 1 − e−x2 p4(x)

q4(x)
⇐= e−x2 p4(x)

q4(x)

∈ P5

∈ P6

(B5, B6] 1
1

x
· e−x2 p5(

1
x2 )

q5(
1
x2 )

∈ P4

∈ P4

> B6 1 0 resp. warning

x < 0 erf(x) = −erf(|x|) erfc(x) = 2 − erfc(|x|)
The table above shows review–like the various approximations for erf(x) and erfc(x)

in the different areas. These are given by the following bounds:

B0 := 0, B1 := 1.97193 · 10−308, B2 := 10−10, B3 := 0.65,

B4 := 2.2, B5 := 6, B6 := 26.5432 .
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Arrows indicate where the actual elementary approximation is also used slightly mod-
ified for the corresponding complementary function. A symbol pn(x) ∈ Pk indicates
that the numerator polynomial pn(x) is used in (Bn, Bn+1] and has degree k. The
symbols for appearing denominator polynomials are to be treated correspondingly.

It is therefore not necessary to give for erf(x) and erfc(x) an algorithm for completely
all x! Only in the bold–faced areas of Figure 1 have to be given approximating functions
for erf(x) resp. erfc(x):

erf(x) ≈ G(x), x ∈ [0, 0.65] =: A,

erfc(x)≈ g(x), x ∈ [0.65, +∞) =: B.

With the identities

erf(x) ≡ 1 − erfc(x), x ∈ [0.65, +∞) = B,

erfc(x)≡ 1 − erf(x), x ∈ [0, 0.65] = A,

erf(x) ≡ − erf(−x), x ∈ (−∞, 0] =: C,

erfc(x)≡ 1 + erf(−x), x ∈ (−∞, 0] = C

the functions erf(x) and erfc(x) can then be evaluated for all desired arguments x using
G(x) and g(x). With respect to erf(x) resp. erfc(x) the intervalls A resp. B still have
to be further partitioned into subintervalls:

erf(x) in underflow range, x ∈ [0, 1.97193 · 10−308 ) =: A0,

erf(x) ≈ G1(x), x ∈ [1.97193 · 10−308, 10−10] =: A1,

erf(x) ≈ G2(x), x ∈ [10−10, 0.65] =: A2,

erfc(x) ≈ g1(x), x ∈ [0.65, 2.2] =: B1,

erfc(x) ≈ g2(x), x ∈ [2.2, 6] =: B2,

erfc(x) ≈ g3(x), x ∈ [6, 26.5432] =: B3,

erfc(x) in underflow range, x ∈ [26.5432, +∞ )=: B4.
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In the error estimates, instead of the interval endpoints which are not representable
in number format, are used corresponding confinements of these values. In the subin-
tervals A0 and B4 the values of erf(x) and erfc(x) can fall into the denormalized area
of the IEEE-double-format, so that the subsequent error estimates referring to the
normalized area only are not valid in the denoted intervals. For point arguments in
A0 and B4 therefore, are produced corresponding error messages while for the interval
evaluation of erf(x) and erfc(x) the function values are set to zero.

6.2 Approximation of erf(x) in A=[0, 0.65]

The subinterval A = [0, 0.65] is now subdivided into the two subintervals A1 =
[0, 10−10] and A2 = [10−10, 0.65]. First the part where x ∈ [0, 10−10] is examined.
Here we proceed from the expansion

erf(x) =
2x√
π

∞∑
n=0

(−1)n · x2n

n! (2n+ 1)
=

2x√
π

[
1 − x2

3
+

x4

10
−+ · · ·

]
.

Since this series [2, Formel 7.1.5] is a Leibniz series for |x| < 1, with respect to the
approximation

G1(x) :=
2√
π
· x ≈ erf(x)

the inequality

|r(x)| ≤ 2x3

3 · √π

is valid for the absolute error r(x) := erf(x) − 2x/
√
π.

Together with

erf(x) >
2x√
π
·
(
1 − x2

3

)

we obtain for the relative approximation error εapp(x) := r(x)/erf(x) the inequality

|εapp(x)| ≤ x2

3 − x2
≤ 10−20

3 − 10−20
< 3.3334 · 10−21 =: ε(app) .

In order to obtain with (3) an error bound for erf(x) in x ∈ [0, 10−10]∩S(2, 53) one
needs the error bound for the machine evaluation of G1(x):

G̃1(x) =

[
2̃√
π

]
✷· x = G1(x) · (1 + ε)(1 + 2ε), |ε| ≤ ε∗ = 2−53

= G1(x) · (1 + εG1); |εG1| ≤ 3.3307 · 10−16 =: ε(G1) .

For the estimation above it is assumed that 2/
√
π is stored in S(2, 53) with maximal

accuracy. With (3) then follows
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ẽrf(x) = erf(x)(1 + εf ); |εf | ≤ 3.3308 · 10−16 =: ε(f) .

As the error estimation above is performed with error bound 2ε∗ = 2−52, it must
be assumed that the values of G(x) lie in the normalized number domain, i. e.

G̃1(x) = G1(x) · (1 + εf) ≥ G1(x) · [1 − ε(f)] =
2x√
π
· [1 − ε(f)] ≥ 2−1022

must hold. The last inequality is fulfilled if x ≥ 1.97193 · 10−308.
For the subinterval A1 = [1.97193 · 10−308, 10−10] follows the result

ẽrf(x) = erf(x)(1+ εf); |εf | ≤ 3.3308 · 10−16 = ε(erf,A1), x ∈ A1 ∩S(2, 53) .

In case x < 1.97193 · 10−308 a corresponding error message is generated if erf(x) is
calculated. For the second subinterval A2 := [10−10, 0.65] the expansion

erf(x) =
2x√
π
· e−x2 ·

∞∑
n=0

an · x2n, an =
2n

1 · 3 · . . . · (2n + 1)
,

valid for |x| < +∞ is used. Because an+1/an < 1 one obtains with

∞∑
n=0

an · x2n =
N∑

n=0

an · x2n +
∞∑

n=N+1

an · x2n

the inequality

∞∑
n=N+1

an · x2n = aN+1 · x2(N+1)

[
1 +

aN+2

aN+1

· x2 +
aN+3

aN+1

· x4 + · · ·
]

< aN+1 · x2(N+1)
∞∑

n=0

x2n =
aN+1 · x2(N+1)

1 − x2
, |x| < 1 .

With the auxiliary approximation

erf(x) ≈ H(x) :=
2x√
π
· e−x2

N∑
n=0

an · x2n

and the inequality

erf(x) ≥ 2x√
π
· e−x2

, x ≥ 0 ,

due to the series expansion, follows for the relative approximation error

εapp,1 :=
erf(x) −H(x)

erf(x)
;

|εapp,1| <
2N+1 · x2(N+1)

1 · 3 · . . . · (2N + 3)
· 1

1 − x2
≤ ε(app, 1), |x| < 1.
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For N = 14 therefore in A2 = [10−10, 0.65] we have

erf(x) ≈ H(x) =
2x√
π
· e−x2

14∑
n=0

an · x2n , ε(app, 1) = 7.2149 · 10−19 .

The auxiliary approximating function H(x) in IEEE–Format could actually be used
as a machine approximation for erf(x), but the runtime would be very high because
of the appearing exponential function and the high polynomial degree N = 14! A lot
more effective is the use of a second approximation G2(x) with

erf(x) ≈ x · P4(x
2)

Q4(x
2)

=: G2(x), P4(x
2) =

4∑
n=0

pn · x2n, Q4(x
2) =

4∑
n=0

qn · x2n,

n pn := nearest( . ) qn := nearest( . )

0 1.12837916709551256 · 10+0 1.00000000000000000 · 10+0

1 1.35894887627277916 · 10−1 4.53767041780002545 · 10−1

2 4.03259488531795274 · 10−2 8.69936222615385890 · 10−2

3 1.20339380863079457 · 10−3 8.49717371168693357 · 10−3

4 6.49254556481904354 · 10−5 3.64915280629351082 · 10−4

The decimals in the table above were determined by rational approximation of the
auxiliary function H(x) using a computer algebra system. The coefficients pn.qn are
the IEEE–numbers nearest to the decimals given. For determining the approximation
error one may then assume exactly representable approximation coefficients.

For G2(x) the relative approximation error is given by

εapp,2(x) :=
H(x) −G2(x)

H(x)
, x ∈ A2 = [10−10, 0.65].

Using the XSC–programs AppErr and ErrBound a guaranteed upper bound
ε(app, 2) for |εapp,2(x)| corresponding to x ∈ A2 can be calculated. One obtains

H(x) ≈ G2(x) = x · P4(x
2)

Q4(x
2)

; |εapp,2(x)| ≤ 1.3594 · 10−17 = ε(app, 2) .

With the error bounds ε(app, 1), ε(app, 2) now available one is now in the position
to calculate according to equation (2) an upper bound for the corresponding approxi-
mation error

εapp(x) :=
erf(x) −G2(x)

erf(x)
; |εapp(x)| ≤ ε(app), x ∈ A2 = [10−10, 0.65]
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with respect to the approximation

erf(x) ≈ G2(x) = x · P4(x
2)

Q4(x
2)
.

This results in

erf(x) ≈ G2(x) = x · P4(x
2)

Q4(x
2)

; |εapp(x)| ≤ 1.4316 ·10−17 =: ε(app) .

In order to calculate with equation (1) an error bound of erf(x) in x ∈ A2∩S(2, 53),
we need the relative error bound of the machine evaluation of G2(x). For this is used
that

G̃2(x) = x ✷· P̃4(x ✷· x) ✷/ Q̃4(x ✷· x) = G2(x)(1 + εG2). (15)

The error bound wanted is again calculated automatically. For the numerator
polynomial follows

P̃4(x ✷· x) = P4(x
2)(1 + εP4); |εP4| ≤ 2.6230 · 10−16 = ε(P4) .

For the denominator polynomial one finds

Q̃4(x ✷· x) = Q4(x
2)(1 + εQ4); |εQ4| ≤ 3.4600 · 10−16 = ε(Q4) .

For G̃2(x) according to equation (15) we have:

G̃2(x) =
x · P4(x

2)(1 + εP4)(1 + 2ε)2

Q4(x
2)(1 + εQ4)

= G2(x)
(1 + εP4)(1 + 2ε)2

(1 + εQ4)
= G2(x)(1 + εG2) .

The error bounds ε(P4), ε(Q4) and |ε| ≤ ε∗ = 2−53 finally imply for |εG2|

G̃2(x) = G2(x)(1 + εG2); |εG2| ≤ 1.0524 · 10−15 = ε(G2) .

With respect to ẽrf(x) = erf(x)(1 + εf) one finds at last an estimation for |εf | in
A2 = [10−10, 0.65] using equation (3):

ẽrf(x) = erf(x)(1+εf); |εf | ≤ 1.0668 ·10−15 = ε(erf,A2), x ∈ A2∩S(2, 53) .
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6.3 Error Bound for erfc(x) in A= [0, 0.65]

Using the machine approximation ẽrf(x) determined in the previous section and the
corresponding relative error bound, now erfc(x) ≡ 1 − erf(x) is calculated on the
machine as follows:

ẽrfc(x) :=

{
1 : x ∈ A0 = [0, 1.97193 · 10−308 )

1 ✷− ẽrf(x) : x ∈ D := A1 ∪A2 = [1.97193 · 10−308, 0.65]
.

First the subinterval D = [1.97193 · 10−308, 0.65] is considered. With

ẽrfc(x) := 1 ✷− ẽrf(x) = erfc(x) · (1 + ε)

one obtains for |ε| the inequality

|ε| ≤ 2 · ε∗ + [1 + 2 · ε∗] ·
max
x ∈ D

{erf(x)} · ε(erf,A2)

min
x ∈ D

{erfc(x)} ; ε∗ = 2−53

= 2 · ε∗ + [1 + 2 · ε∗] · erf(0.65) · ε(erf,A2)

1 − erf(0.65)
.

For estimating the right hand side one needs an upper bound for the value erf(0.65).
According to the definition of εapp,1 (compare page 20) for x ∈ D follows

erf(x) =
H(x)

1 − εapp,1
≤ H(x)

1 − ε(app, 1)
=

2√
π
· x · e−x2

1 − ε(app, 1)
·

14∑
n=0

an · x2n .

If one evaluates the term after the last equal sign for x = [0.65, 0.65] with intervals,
then one obtains a confinement of the upper bound wanted for erf(0.65). The following

XSC–program delivers a guaranteed upper bound of the expression erf(0.65)

1−erf(0.65)
. The

upper bound OS has the numerical value

erf(0.65)

erfc(0.65)
< 1.793525 =: OS .

program OS;

{*******************************************}

{* The confinement of an upper bound for *}

{* erf(0.65)/( 1-erf(0.65) is calculated *}

{*******************************************}

use i_ari;

var a : array[0..14] of interval;

k : integer;

c, x, x2, eps, t : interval;

begin

a[0] := 1;

for k := 1 to 14 do
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a[k] := 2 * a[k-1] / (2*k + 1);

c := 1 / SQRT( arctan(intval(1)) );

{ c: confinement of 2/SQRT(Pi) }

x := 65 / intval(100);

x2 := x * x;

eps := intval( (<7.2149e-19),(>7.2149e-19) );

t := a[14]; { Horner-scheme for }

for k := 13 downto 0 do { calculating the }

t := t * x2 + a[k]; { sum }

t := c * x * exp(-x2) * t / (1 - eps);

t := t / (1 - t);

{ t: confinement of an upper bound }

{ of erf(0.65)/( 1-erf(0.65) ) }

writeln(sup(t));

end.

For |ε| one obtains with upper limit OS = 1.793525 the estimation

|ε| ≤ 2 · ε∗ + [1 + 2 · ε∗] · OS · ε(erf,A2) < 2.1354 · 10−15 = ε(erfc,D) ,

i. e.

ẽrfc(x) = erfc(x)(1 + ε); |ε| ≤ 2.1354 · 10−15 = ε(erfc,D), x ∈ D ∩ S(2, 53) .

For the remaining second subinterval A0 = [0, 1.97193 · 10−308 ) one finds for the
relative approximation error

εapp(x) :=
1 − erfc(x)

erfc(x)
=

1

erfc(x)
− 1 =

erf(x)

1 − erf(x)
<

erf(1.97193 · 10−308)

1 − erf(1.97193 · 10−308)
.

The series expansion of erf(x) on page 19 shows that the relative approximation
error is of the order 10−308. As in this subinterval is used as approximating func-
tion the (exactly representable) constant 1, no additional evaluation error appears, so
the relative error with respect to erfc(x) in this subinterval is certainly smaller than
ε(erfc,D) = 2.1354 · 10−15. Thus, it is shown that

ẽrfc(x) = erfc(x)(1+ε); |ε| ≤ 2.1354·10−15 = ε(erfc,A), x ∈ A∩S(2, 53).

6.4 Approximation of erfc(x) in B1
⋃
B2 = [0.65, 6]

In this section the function erfc(x) is approximated in the interval [0.65, 6] by an auxil-
iary function H(x) which can be realized by a standard function. For the corresponding
approximation error a guaranteed upper limit is developed.
First, according to [2, 7.4.11], for x > 0 we have the integral

erfc(x) =
2√
π

∫ ∞

x
e−t2dt ≡ 2x · e−x2

π

∫ ∞

0

e−t2

t2 + x2
dt, x > 0 .
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If the trapezoid rule of numerical integration is applied to the last integral, one receives
[19, S. 114], [21, S. 134]:

erfc(x) = T(x, h) + P(x, h), x > 0,

T(x, h) :=
2x · h
π

· e−x2

[
1

2x2
+

∞∑
k=1

e−k2h2

k2h2 + x2

]
,

P(x, h) := −
∞∑

r=1

Gr, Gr :=
4x · e−x2

π

∫ ∞

0

e−t2 · cos ωt

t2 + x2
dt, ω :=

2πr

h
.

According to [24] the Fourier–integral Gr can be written as

Gr = eωx · erfc(x +
ω

2
) + e−ωx · erfc(x− ω

2
); ω :=

2πr

h
. (16)

Using the auxiliary approximation function

H(x) :=
2x · h
π

· e−x2

[
1

2x2
+

N∑
k=1

e−k2h2

h2k2 + x2

]
≈ erfc(x)

the absolute value of the absolute approximation error ∆ can be estimated by

|∆| := |H(x) − erfc(x)| ≤ 2xh · e−x2

π
·

∞∑
k=N+1

e−h2k2

h2k2 + x2
+ |P(x, h)| (17)

∞∑
k=N+1

e−h2k2

h2k2 + x2
<

∞∑
k=N+1

e−h2k2

h2k2
<

1

h2(N + 1)2

∞∑
k=N+1

e−h2k2

;

∞∑
k=N+1

e−h2k2

=
∞∑

k=0

e−h2([N+1]+k)2 = e−h2(N+1)2 ·
∞∑

k=0

e−h2k(2[N+1]+k)

< e−h2(N+1)2 ·
∞∑

k=0

e−4h2·k =
e−h2(N+1)2

1 − e−4h2 .

Thus

|∆| ≤ 2x · e−x2

πh · (N + 1)2
· e

−h2(N+1)2

1 − e−4h2 + |P(x, h)| . (18)

For estimating |P(x, h)| one uses because of erfc(x) < 2 first the inequality

Gr < eωx · erc(x +
ω

2
) + 2 · e−ωx < eωx · erfc(ω

2
) + 2 · e−ωx ,

from which follows with [2, Formel 7.1.13]

erfc
(
ω

2

)
<

2 · e−ω2/4

√
π · ω



26 Error Function and the Complementary Error Function

as well as with ω = 2πr/h and r ≥ 1, that

Gr <
h

π3/2
· e−2πr

h
( π

2h
− x) + 2 · e−2πx

h
· r, r = 1, 2, . . . . (19)

The necessary summation over r can now be performed under the assumption 2h ·
x < π using the geometric series. It follows that

|P(x, h)| < h

π3/2
· 1

e
2π
h
( π

2h
− x) − 1

+
2

e
2π·x

h − 1
; 2h · x < π . (20)

In order to calculate a relative error bound, (18) has now only be divided by a
lower bound of erfc(x). With inequality [21, S. 137,(1)]

erfc(x) >
2x√
π
· e−x2

1 + 2x2
, x > 0

one finally obtains together with (18) and (20) the results:

erfc(x) ≈ H(x) =
2xh

π
· e−x2

[
1

2x2
+

N∑
k=1

e−h2k2

h2k2 + x2

]
;

erfc(x) = H(x)(1 + εapp,1); x ∈ [0.65, 6];

U1(x, h,N) :=
1 + 2x2

√
π · h · (N + 1)2

· e
−h2(N+1)2

1 − e−4h2 ;

U2(x, h) :=
h · (1 + 2x2) · ex2

2πx ·
[
e

2π
h
( π

2h
− x) − 1

] , 2hx < π;

U3(x, h) :=

√
π · (1 + 2x2) · ex2

x
· 1

e
2πx
h − 1

;

|εapp,1| < U1(x, h,N) + U2(x, h) + U3(x, h) ≤ ε(app, 1; x, h,N);

x ∈ [0.65, 6]; 2hx < π .

Finally, in the functions Ui the parameters x, h,N have to be chosen such that one
obtains with respect to IEEE–format a relative error bound which is of order 10−18 for
all x ∈ [0.65, 6].

For U3(x, h) one therefore seeks for given h > 0 an upper bound for the global
maximum with respect to x ∈ [0.65, 6].

For calculating a guaranteed upper bound the XSC–program for one–dimensional
global optimization in [9] can be used, in which the function now denoted with u3 is
to be defined as follows:
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function u3 (x : DerivType) : DerivType;

var h,pi2,sqrtpi : DerivType;

c1,c2 : interval;

begin

h := DerivConst( 93/intval(1000) );

c1 := ARCTAN( intval(1) ); { pi/4 }

pi2 := DerivConst( 8*c1 ); { 2*pi }

sqrtpi := DerivConst( 2*SQRT(c1) ); { sqrt(pi) }

u3 := -sqrtpi*(1+2*x*x)*exp(x*x)/(x* (exp(pi2*x/h)-1) );

end;

With h = 0.093 on obtains the result

U3(x, 0.093) ≤ 6.5046 · 10−19, x ∈ [0.65, 6] .

Accordingly, also an upper bound for the function U2(x, h) can be calculated with
the program for global optimization. For preventing overflow, however, the estimation

U2(x, h) :=
h · (1 + 2x2) · ex2

2πx ·
[
e

2π
h
( π

2h
− x) − 1

] <
h · (1 + 2x2) · ex2

2πx ·
[
e

2π
h
( π

2h
− 8) − 1

] , 2hx < π

is performed before. For the function u2

function u2 (x : DerivType) : DerivType;

var h : DerivType;

pi : interval;

begin

h := DerivConst( 93/intval(1000) );

pi :=4*ARCTAN( intval(1) ); { pi }

u2 := -h*(1+2*x*x)*exp(x*x)/

( 2*pi*x*(exp( 2*pi/h*(pi/(2*h)-8) )-1) )

end;

then follows with h = 0.093 the upper bound

U2(x, 0.093) ≤ 1.0877 · 10−246, x ∈ [0.65, 6] .

For estimating U1(x, h,N) the function u1

function u1 (x : DerivType) : DerivType;

var h : DerivType;

sqrtpi : interval;

N : integer;

begin

h := DerivConst( 93/intval(1000) );

sqrtpi :=2*SQRT( ARCTAN(intval(1)) ); { sqrt(pi) }

N := 70,

u1 := -(1+2*x*x)*exp(-h*h*(N+1)*(N+1))/

( sqrtpi*h*(N+1)*(N+1)*(1-exp(-4*h*h)) )

end;
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with h = 0.093 and N = 70 is used. This results in

U1(x, 0.093, 70) ≤ 3.0002 · 10−19, x ∈ [0.65, 6].

The calculated global maxima of the three functions Ui now allow to give a guaranteed
upper bound ε(app, 1) of the relative approximation error for the data set x ∈ [0.65, 6] :

erfc(x) ≈ H(x) =
2xh

π
· e−x2

[
1

2x2
+

N∑
k=1

e−h2k2

h2k2 + x2

]
;

erfc(x) = H(x)(1 + εapp,1); x ∈ [0.65, 6];

|εapp,1| < 9.5049 · 10−19 = ε(app, 1), h = 0.093, N = 70 .

For the actual approximation of erfc(x) on the calculator, the Interval [0.65, 6]
is partitioned again into two subintervals. In each of these intervals the auxiliary
function H(x) is used for finding an efficient approximation with guaranteed relative
error bound.

erfc(x) in B1 = [0.65, 2.2]

First is considered the interval B1 = [0.65, 2.2]. Here, erfc(x) is approximated on the
calculator by

erfc(x) ≈ e−x2 · P5(x)

Q6(x)
=: g1(x); P5(x) =

5∑
n=0

pn · xn, Q6(x) =
6∑

n=0

qn · xn.

n pn := nearest( . ) qn := nearest( . )

0 9.99999992049799098 · 10−1 1.00000000000000000 · 10+0

1 1.33154163936765307 · 10+0 2.45992070144245533 · 10+0

2 8.78115804155881782 · 10−1 2.65383972869775752 · 10+0

3 3.31899559578213215 · 10−1 1.61876655543871376 · 10+0

4 7.14193832506776067 · 10−2 5.94651311286481502 · 10−1

5 7.06940843763253131 · 10−3 1.26579413030177940 · 10−1

6 1.25304936549413393 · 10−2

Table 2: Polynomial coefficients with 18 decimals

The given decimal values of the approximation to H(x) were determined again with a
computer algebra system. The actually used coefficients pn, qn are the IEEE–numbers
nearest to each of them.
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An upper bound |εapp,2(x)| for the relative approximation error

εapp,2(x) :=
H(x) − g1(x)

H(x)
, x ∈ B1 = [0.65, 2.2]

can be again determined automatically. One finds

H(x) ≈ g1(x) := e−x2 · P5(x)

Q6(x)
; |εapp,2(x)| ≤ 1.5772·10−16 =: ε(app, 2) .

With the now available error bounds ε(app, 1), ε(app, 2) one is now able to cal-
culate with respect to the approximation

g1(x) := e−x2 · P5(x)

Q6(x)
≈ erfc(x)

accordin to equation (2) an upper bound for the corresponding approximation error

εapp(x) :=
erfc(x) − g1(x)

erfc(x)
; |εapp(x)| ≤ ε(app), x ∈ B1 = [0.65, 2.2].

It follows

erfc(x) ≈ g1(x) = e−x2 · P5(x)

Q6(x)
; |εapp(x)| ≤ 1.5868 · 10−16 = ε(app) .

In order to be able to calculate with equation (3) an error bound of erfc(x) in
x ∈ B1 ∩ S(2, 53), one still needs the relative error bound for the evaluation of g1(x)
on the machine:

g̃1(x) := EXPx2(x) ✷·
[
P̃5(x) ✷/ Q̃6(x)

]
= e−x2 · (1 + ε1) · P̃5(x)

Q̃6(x)
· (1 + 2 · ε)2, |ε1| ≤ ε(1)

= e−x2 · (1 + ε1) · P5(x) · (1 + εP5)

Q6(x) · (1 + εQ6)
· (1 + 2 · ε)2, (21)

|ε| ≤ ε∗ = 2−53, |εP5| ≤ ε(P5), |εQ6| ≤ ε(Q6) .

If EXPx2(x) denotes the e−x2
-function, then according to page 42 is valid with

highly accurate arithmetics:

EXPx2(x) = e−x2 · (1 + ε1), |ε1| ≤ 1.0823 · 10−15 =: ε(1) .

The calculation of an error bound ε(P5) for the numerator polynomial can again be
performed automatically, which results in

P̃5(x) = P5(x)(1 + εP5); |εP5| ≤ 1.2027 · 10−15 = ε(P5).
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Accordingly one finds as error bound ε(Q6) for the denominator polynomial

Q̃6(x) = Q6(x)(1 + εQ6); |εQ6| ≤ 1.5838 · 10−15 = ε(Q6) .

For the according to equation (21) valid property

g̃1(x) = g1(x) · (1 + ε1) · 1 + εP5

1 + εQ6

· (1 + 2 · ε)2 = g1(x) · (1 + εg1)

follows

g̃1(x) = g1(x)(1 + εg1); |εg1| ≤ 4.3129 · 10−15 = ε(g1).

With respect to ẽrfc(x) = erfc(x)(1 + εf) one finds using equation (3) and the
error bounds ε(app) = 1.5868·10−16, ε(g1) = 4.3129·10−15 for |εf | the final estimation

ẽrfc(x) = erfc(x)(1+εf); |εf | ≤ 4.4716·10−15 = ε(erfc,B1), x ∈ B1∩S(2, 53) .

erfc(x) in B2 = [2.2, 6]

In the interval B2 = [2.2, 6] erfc(x) is approximated on the calculator by

erfc(x) ≈ e−x2 · P5(x)

Q6(x)
=: g2(x); P5(x) =

5∑
n=0

pn · xn, Q6(x) =
6∑

n=0

qn · xn.

n pn := nearest( . ) qn := nearest( . )

0 9.99921140009714409 · 10−1 1.00000000000000000 · 10+0

1 1.62356584489366647 · 10+0 2.75143870676376208 · 10+0

2 1.26739901455873222 · 10+0 3.37367334657284535 · 10+0

3 5.81528574177741135 · 10−1 2.38574194785344389 · 10+0

4 1.57289620742838702 · 10−1 1.05074004614827206 · 10+0

5 2.25716982919217555 · 10−2 2.78788439273628983 · 10−1

6 4.00072964526861362 · 10−2

Table 3: Polynomial coefficients with 18 decimals

The decimal values of table 3 were determined by approximating H(x) with a computer
algebra system. The actually used coefficients pn, qn are the IEEE–numbers nearest to
each of the given decimal values.
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For the approximation error

εapp,2(x) :=
H(x) − g2(x)

H(x)
, x ∈ B2 = [2.2, 6]

the upper bound |εapp,2(x)| with respect to x ∈ B2 can be calculated again automati-
cally. One finds

H(x) ≈ g2(x) := e−x2 · P5(x)

Q6(x)
; |εapp,2(x)| ≤ 1.5282 · 10−16 =: ε(app, 2) .

With the now available error bounds ε(app, 1), ε(app, 2) one is able to calculate
for the approximation

erfc(x) ≈ g2(x) = e−x2 · P5(x)

Q6(x)

according to equation (2) an upper bound for the corresponding relative approximation
error

εapp(x) :=
erfc(x) − g2(x)

erfc(x)
; |εapp(x)| ≤ ε(app), x ∈ B2 = [2.2, 6],

namely:

erfc(x) ≈ g2(x) = e−x2 · P5(x)

Q6(x)
; |εapp(x)| ≤ 1.5378 · 10−16 = ε(app) .

Before being able to calculate with equation (3) an error bound for erfc(x) in x ∈
B2 ∩ S(2, 53), a relative error bound for the machine evaluation of g2(x) must be
determined, whereby it shall be assumed that the factor e−x2

is evaluated using the
function EXPx2(. . . ). One finds

g̃2(x) := EXPx2(x) ✷·
[
P̃5(x) ✷/ Q̃6(x)

]
= e−x2 · (1 + ε1) · P̃5(x)

Q̃6(x)
· (1 + 2 · ε)2, |ε| ≤ ε∗ = 2−53

= e−x2 · (1 + ε1) · P5(x) · (1 + εP5)

Q6(x) · (1 + εQ6)
· (1 + 2 · ε)2, (22)

|εP5| ≤ ε(P5), |εQ6| ≤ ε(Q6) ,

where ε1 denotes the error imported by the exponential function (cf. page 42).
In by now accustomed manner results as an error bound for the numerator polyno-

mial ε(P5)

P̃5(x) = P5(x)(1 + εP5); |εP5| ≤ 1.8701 · 10−15 = ε(P5),
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and as error bound for the denominator polynomial ε(Q6)

Q̃6(x) = Q6(x)(1 + εQ6); |εQ6| ≤ 2.3036 · 10−15 = ε(Q6) .

Equation (22) yields

g̃2(x) = g2(x) · (1 + ε1) · 1 + εP5

1 + εQ6

· (1 + 2ε)2 = g2(x) · (1 + εg2),

for which can be shown

g̃2(x) = g2(x)(1 + εg2); |εg2| ≤ 5.7002 · 10−15 = ε(g2).

With respect to ẽrfc(x) = erfc(x)(1 + εf) one finds using equation (3) and the
error bounds

ε(app) = 1.5378 · 10−16, ε(g2) = 5.7002 · 10−15

for |εf | at last the estimation

ẽrfc(x) = erfc(x)(1+ εf); |εf | ≤ 5.8540 · 10−15 = ε(erfc,B2), x ∈ B2 ∩S(2, 53) .

6.5 Error Bound for erf(x) in B1
⋃
B2 = [0.65, 6]

First the subinterval [0.65, 2.2] is considered. Because of erf(x) ≡ 1 − erfc(x), for the
evaluation on the calculator holds

ẽrf(x) := 1 ✷− ẽrfc(x) = erf(x) · (1 + ε0) .

Thus, one obtains

|ε0| ≤ 2 · ε∗ + [1 + 2 · ε∗] ·
max
x∈B1

{erfc(x)} · ε(erfc,B1)

min
x∈B1

{erf(x)} ; ε∗ = 2−53

= 2 · ε∗ + [1 + 2 · ε∗] · [1 − erf(0.65)] · ε(erfc,B1)

erf(0.65)
.

For further approximation of the right hand side one needs first a lower bound of
erf(0.65). According to the definition of εapp,1 (cf. p. 20) follows for x ∈ A = [0, 0.65]:

erf(x) =
H(x)

1 − εapp,1
≥ H(x)

1 + ε(app, 1)
=

2√
π
· x · e−x2

1 + ε(app, 1)
·

14∑
n=0

an · x2n.

If one evaluates here the term after the last equality sign for x = [0.65, 0.65] with
intervals, then one obtains a confinement of the wanted lower bound of erf(0.65). The
following program uses this lower bound in order to calculate a guaranteed upper bound
for the expression [1− erf(0.65)]/erf(0.65).
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program upper_b2;

{**************************************************}

{* Calculates the confinement of an upper bound *}

{* for [1-erf(0.65)]/erf(0.65) *}

{**************************************************}

use i_ari;

var a : array[0..14] of interval;

k : integer;

c,x,x2,eps,t : interval;

begin

a[0] := 1;

for k := 1 to 14 do

a[k] := 2 * a[k-1] / (2*k + 1);

c := 1 / SQRT( arctan(intval(1)) );

{ c: confinement of 2/SQRT(Pi) }

x := 65 / intval(100); x2 := x * x;

eps := intval( (<7.2149e-19),(>7.2149e-19) );

t := a[14]; { Horner scheme for }

for k := 13 downto 0 do { calculating the }

t := t * x2 + a[k]; { sum }

t := c * x * exp(-x2) * t / (1 + eps);

t := 1 / t - 1; writeln(t);

{ t: confinement of an upper bound }

{ for [1-erf(0.65)] / erf(0.65) ) }

end.

One finds
1 − erf(0.65)

erf(0.65)
=

erfc(0.65)

erf(0.65)
< 0.5575613 =: OS .

For |ε0| one obtains using the upper bound OS = 0.5575613 the estimation

|ε0| ≤ 2 · ε∗ + [1 + 2 · ε∗] · OS · ε(erfc,B1) < 2.7153 · 10−15 = ε(erf,B1) ,

so

ẽrf(x) = erf(x)(1+ ε); |ε| ≤ 2.7153 · 10−15 = ε(erf,B1), x ∈ B1 ∩S(2, 53) .

Now the second subinterval B2 = [2.2, 6] is considered. Because of erf(x) ≡
1 − erfc(x) for the evaluation on the calculator is valid

ẽrf(x) := 1 ✷− ẽrfc(x) = erf(x) · (1 + ε0) ,

with which one obtains for the relative error |ε0| with respect to addition of erroneous
quantities the estimation

|ε0| ≤ 2 · ε∗ + [1 + 2 · ε∗] ·
max
x∈B2

{erfc(x)} · ε(erfc,B2)

min
x∈B2

{1− erfc(x)} ; ε∗ = 2−53
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= 2 · ε∗ + [1 + 2 · ε∗] · erfc(2.2) · ε(erfc,B2)

1 − erfc(2.2)
.

For estimating the right hand side one needs an upper bound for the function value
erfc(2.2). According to the definition of εapp,1 (cf. p. 28) follows for x ∈ B2 = [2.2, 6] :

erfc(x) =
H(x)

1 − εapp,1
≤ H(x)

1− ε(app, 1)
=

2xh · e−x2

π · [1 − ε(app, 1)]

[
1

2x2
+

70∑
k=1

e−h2k2

h2k2 + x2

]
.

If one evaluates here the term after the last equality sign for x = [2.2, 2.2] with intervals,
then one obtains a guaranteed upper bound for erfc(2.2). With these considerations
one notices that the following XSC–program gives out a guaranteed upper bound for
erfc(2.2)]/[1 − erfc(2.2)].

program upper_b3;

{************************************************}

{* Calculates the confinement of a guaranteed *}

{* upper bound for *}

{* erfc(2.2) / [1-erfc(2.2)] *}

{************************************************}

use i_ari;

var h,h2,pi,x,x2,eps,a,b,s,t : interval;

k : integer;

begin

h := 93 / intval(1000); h2 := h * h;

pi := 4 * arctan( intval(1) );

x := 11 / intval(5);

x2 := x * x;

eps := intval( (<9.5049e-19),(>9.5049e-19) );

a := 2 * x * h * exp(-x2) / (pi * (1-eps) );

b := 1 / (2 * x2); s := 0,

For k := 1 to 70 do

s := s + exp(-h2 * k * k) / (h2 * k * k + x2);

t := a * (b + s);

t := t / (1 - t);

{ t : confinement of a guaranteed }

{ upper bound for erfc(2.2)/[1-erfc(2.2)] }

writeln(t);

end.

One obtains
erfc(2.2)

1 − erfc(2.2)
< 1.866323 · 10−3 = OS .

For |ε0| using the upper bound OS = 1.866323 · 10−3 this implies the estimation

|ε0| ≤ 2 · ε∗ + [1 + 2 · ε∗] · OS · ε(erfc,B2) < 2.3298 · 10−16 = ε(erf,B2) ,
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and thus

ẽrf(x) = erf(x)(1+ ε); |ε| ≤ 2.3298 · 10−16 = ε(erf,B2), x ∈ B2 ∩S(2, 53) .

6.6 Approximation of erfc(x) in B3 = [6, 26.5432]

First the arguments x are bounded from above by 26.5432 in order to make sure that
the function values erfc(x) lie in the normalized number domain of the IEEE double-
format:

x ∈ B3 = [6, 26.5432] =⇒ erfc(x) > 2−1022 = 2.2250738 . . . · 10−308

For x ≥ 6 erfc(x) is approximated by its assymptotic [2, Formeln 7.1.23, 7.1.24]

erfc(x) =
e−x2

√
π · x

[
1 − 1

(2x2)1
+

1 · 3
(2x2)2

−+ . . .+ (−1)N · 1 · 3 · · · (2N − 1)

(2x2)N
+ r

]

|r| ≡ |r(x,N)| ≤ 1 · 3 · 5 · · · (2N + 1)

(2x2)N+1
; N = 1, 2, 3, . . .

For N = 35 one obtains using interval calculus

|r(x, 35)| ≤ |r(6, 35)| = 1 · 3 · 5 · · ·71
7236

< 3.276507 · 10−16 .

The relative approximation error is then given by

|εapp,1(x)| := r(6, 35)

erfc(x)
<

e−x2

√
π · x · 3.276507 · 10−16

erfc(x)
.

The function erfc(x) has according to [19, S. 201] for x > 0 the lower bound

2√
π
· x · e−x2

2x2 + 1
< erfc(x), which implies

|εapp,1(x)| <
[
1 +

1

2x2

]
· 3.276507 · 10−16 ≤

[
1 +

1

72

]
· 3.276507 · 10−16

< 3.322015 · 10−16 = ε(app, 1); x ≥ 6, N = 35.

erfc(x) ≈ H(x) :=
e−x2

√
π · x

[
1 − 1

(2x2)1
+

1 · 3
(2x2)2

− + . . . − 1 · 3 · · ·69
(2x2)35

]
erfc(x) = H(x) · [1 + εapp,1(x)]

|εapp,1(x)| < 3.322015 · 10−16 = ε(app, 1), x ≥ 6.
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n pn := nearest( . ) qn := nearest( . )

0 5.64189583547756078 · 10−1 1.00000000000000000 · 10+0

1 8.80253746105525775 · 10+0 1.61020914205869003 · 10+1

2 3.84683103716117320 · 10+1 7.54843505665954743 · 10+1

3 4.77209965874436377 · 10+1 1.12123870801026015 · 10+2

4 8.08040729052301677 · 10+0 3.73997570145040850 · 10+1

Table 4: decimal approximations for the IEEE–coefficients pn, qn

Since the numerical evaluation of H(x) would be too tedious for runtime reasons
because of N = 35, erfc(x) is approximated on the calculator by

erfc(x) ≈ e−x2

x
· P4(

1
x2 )

Q4(
1
x2 )

=: g3(x); P4(
1

x2
) =

4∑
n=0

pn · x−2n, Q4(
1

x2
) =

4∑
n=0

qn · x−2n.

The decimal values in the table above are determined as rational approximation to
H(x). The coefficients pn, qn are the IEEE–numbers closest to the given decimal values.
For the approximation the relative approximation error is given as

εapp,2(x) :=
H(x) − g3(x)

H(x)
, x ∈ [6, 27] .

With u := 1/x2 and

A(u) :=
1√
π
·
[
1 − 1 · u

21
+

1 · 3 · u2

22
− + . . . − 1 · 3 · . . . · 69 · u35

235

]
holds

εapp,2(x) ≡ ε2(u) :=
A(u) − P4(u)/Q4(u)

A(u)
, u ∈ [27−2, 6−2] .

Using the module mpitaylor the PASCAL -XSC function H(x) can be realized by the
more simple expression A(u):

VAR c : mpinterval; { c = 1 /sqrt(Pi) }

FUNCTION H(u: mpi_taylor): mpi_taylor[0..ub(u)];

var k : integer;

s,a : mpi_taylor[0..ub(u)];

BEGIN

u:= u / 2;

s[0]:= 1;

For k:= 1 to ub(u) do s[k]:= 0,

a:= s;

For k:= 1 to 35 do
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begin

a:= -a * (2*k-1) * u;

s:= s + a;

end;

H:= s * c;

END; { H }

. . .

BEGIN

setprec(8); { Definiert ca. 8*8 genaue Stellen }

c := arctan(_mpinterval(1.0));

c := 1 / ( 2 * sqrt(c) ); { c = 1/sqrt(Pi) }

END.

Now it is possible again to calculate automatically a guaranteed upper bound for
|εapp,2(x)| bzgl. x ∈ B3.

H(x) ≈ g3(x) :=
e−x2

x
· P4(x

−2)

Q4(x
−2)

; |εapp,2(x)| ≤ 9.0000 ·10−17 = ε(app, 2) .

With the now available error bounds ε(app, 1), ε(app, 2) one is able to calculate with
respect to the approximation

erfc(x) ≈ g3(x) :=
e−x2

x
· P4(x

−2)

Q4(x
−2)

according to equation (2) an upper bound for the corresponding relative approximation
error

εapp(x) :=
erfc(x) − g3(x)

erfc(x)
; |εapp(x)| ≤ ε(app), x ∈ [6, 27].

One finds

erfc(x) ≈ g3(x) :=
e−x2

x
· P4(x

−2)

Q4(x
−2)

; |εapp(x)| ≤ 4.2221 · 10−16 = ε(app).

In order to be able to calculate for B3 = [6, 26.5432] an error bound for erfc(x) in x ∈
B3 ∩S(2, 53) using equation (3), one needs the relative error bound for g3(x), whereby
shall be assumed that the factor e−x2

is calculated using the function EXPx2(. . . ).

g̃3(x) :=
[
EXP X2(x) ✷· P̃4(x ✷· x)

]
✷/
[
x ✷· Q̃4(x ✷· x)

]
=

e−x2 · (1 + ε1) · P4(x
2) · (1 + εP4) · (1 + 2 · ε)2

x · Q4(x
2) · (1 + εQ4) · (1 + εk)

, (23)

|ε1| ≤ ε(1), |ε| ≤ ε∗ = 2−53, |εP4| ≤ ε(P4), |εQ4| ≤ ε(Q4).
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As error bound ε(P4) for the evaluation of the numerator polynomial on the machine
this results in

P̃4(x
−2) = P4(x

−2)(1 + εP4); |εP4| ≤ 6.2806 · 10−16 = ε(P4)

and the error bound is ε(Q4) for the evaluation of the denominator polynomial on the
machine one finds

Q̃4(x
−2) = Q4(x

−2)(1 + εQ4); |εQ4| ≤ 6.4250 · 10−16 = ε(Q4) .

Equation (23) yields

g̃3(x) = g3(x) · (1 + ε1)(1 + εP4)(1 + 2 · ε)2
(1 + εQ4)(1 + 2 · ε) = g3(x) · (1 + εg3),

for this can be shown that

g̃3(x) = g3(x)(1 + εg3); |εg3| ≤ 3.0190 · 10−15 = ε(g3).

With respect to ẽrfc(x) = erfc(x)(1+εf) one finds using equation (3) and the error
bounds ε(app) = 4.2221 · 10−16, ε(g3) = 3.0910 · 10−15 for |εf | the estimation

ẽrfc(x) = erfc(x)(1+ εf); |εf | ≤ 3.4413 · 10−15 = ε(erfc,B3), x ∈ B3 ∩S(2, 53) .

6.7 Error Bound for erf(x) in B3
⋃
B4, i. e. for x ≥ 6

Here erf(x) is approximated by 1, i. e.

erf(x) ≈ 1 .

The relative approximation error εapp(x) is then monotonically decreasing and we
have

εapp(x) :=
1 − erf(x)

erf(x)
=

1

erf(x)
− 1 =

erfc(x)

1 − erfc(x)
≤ erfc(6)

1 − erfc(6)
,

where a guaranteed upper bound for erfc(6)/[1−erfc(6)] can be calculated with the
program upper_b3 on page 34 if one replaces only the command x:=11/intval(5)

by x:=6. The result is

erfc(6)

1 − erfc(6)
< 2.1520 · 10−17 =⇒ εapp(x) < 2.1520 · 10−17 = ε(app) =⇒

ẽrf(x) = erf(x)(1 + εf); |εf | ≤ 2.1520 · 10−17 = ε(erf, x ≥ 6) .
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6.8 Approximation of erfc(x) in C = (−∞, 0]

Due to the identity erfc(x) ≡ 1 − erf(x) we have in C = (−∞, 0]

ẽrfc(x) := 1 ✷− ẽrf(x) = erfc(x) · (1 + εf), with

|εf | ≤ 2 · ε∗ + (1 + 2 · ε∗) · max
−x≥0

[
1 · 0 + erf(−x) · ε(erf)

1 + erf(−x)

]
.

Since [. . .] increases for (−x) → +∞ monotonically, immediately follows

|εf | ≤ 2 · ε∗ + (1 + 2 · ε∗) · 0.5 · 2.7153 · 10−15 < 1.5797 · 10−15 =⇒

ẽrfc(x) = erfc(x)(1+εf); |εf | ≤ 1.5797 ·10−15 = ε(erfc,C), x ∈ C∩S(2, 53) .

6.9 Summary of the results for erf(x) and erfc(x)

By this is performed for the functions erf(x), erfc(x) the error approximation with re-
spect to the IEEE-double-format, assuming only a highly accurate basic arithmetics
(1 ulp) in all subintervals. The relative error bounds are the maxima of the upper
bounds calculated in each part:

ε(erf) = 2.7153 · 10−15; |x| ∈ [1.97193 · 10−308, +∞) ∩ S(2, 53)

ε(erfc) = 5.8540 · 10−15; x ∈ (−∞, 26.5432] ∩ S(2, 53)

If one evaluates the functions erf(x), erfc(x) using the same algorithm in IEEE double-
format in maximally accurate arithmetics (i. e. rounding to the nearest floating point
number), one finds correspondingly the even smaller error bounds

ε(erf) = 1.5643 · 10−15; |x| ∈ [1.97193 · 10−308, +∞) ∩ S(2, 53)

ε(erfc) = 3.2952 · 10−15; x ∈ (−∞, 26.5432] ∩ S(2, 53) .

The given numerical error bounds correspond to arguments in IEEE-double-format.
The presented method of error estimation can also be performed for other data formats
(cf. e. g. [5]).
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A The Auxiliary Function e−x2

As the function f = e−x2
plays an important role in implementing the error func-

tion and in Dawsons integral, in this section is given for f a suitable algorithm with
corresponding error estimation assuming the following:

• The basic operations in IEEE double-format are performed highly accurate,
i. e. a ✷· b = (a · b)(1 + ε), |ε| ≤ 2 · ε∗ = 2−52 = 2.220446 . . . · 10−16

• It is used the fast exponential function in IEEE double-format, implemented
according to the table–procedure, (cf. [10, 11]), i. e.
EXP(x) = ex · (1 + εexp), |εexp| ≤ 2.3580 · 10−16 =: ε(exp)

In order to prevent the function values f(x) from falling into the denormalized number
domain of the IEEE double-format the inequality

e−x2 ≥ 2−1022 (smallest positive normalized floating point number) ⇐⇒
|x| ≤

√
1022 · ln(2) = 26.615717509251260202 . . .

must be fulfilled. Because f(−x) ≡ f one may restrict to nonnegative arguments x,
i. e. it is considered only

0 ≤ x < 26.615717.

First the question has to be answered why f = e−x2
cannot be realized on the calculator

by calling up the already implemented standard exponential function EXP(. . .) with
perturbed argument −x ✷· x. The corresponding error estimation will show that this
method is not appropriate.

If EXP(x) denotes the exponential function in IEEE -format, implemented according
to the table–procedure, then we first have

EXP(x) = ex · (1 + εexp), |εexp| ≤ 2.3580 · 10−16 =: ε(exp)

EXP(−x ✷· x) = e−x2 · (1 + ε1), |ε1| ≤ ε(1) = ?

Because of

x ✷· x = x2 · (1 + εx), |εx| ≤ 2 · ε∗ ≤ 2.220447 · 10−16 = ε(x),

x ∈ [0, 26.615717] =⇒ x2 ∈ [0, 708.397]

the function EXP(. . . ) is called with perturbed arguments. Using the XSC–program
ErrBound one obtains with input

Interval of exact arguments [x1, x2] = ? [0, 708.397]

Relative bound for perturbed arguments 2.220447 · 10−16

Rel. error bound for function in screen S(B,k) = ? 2.3580 · 10−16
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the unnecessarily large bound

ε(1) = 1.5754 · 10−13 .

An error bound smaller by about the order two is given by the following algorithm
whose runtime compared with the fast exponential function is about double:

var x,m : real;

z : integer;

begin

z := trunc(x); { z: integer part of argument }

m := x - z; { m: }

if m > 0.5 then

begin

z := z + 1; { z = 0,1,2,....,27 }

m := m - 1; { m <= 0.5; x = z + m; }

end; ...

end.

With the integers m and z calculated in this way, e−x2
is then calculated according to

e−x2

= e−z2 · e−(2z)·m · e−m2

. (24)

The constants e−z2
are calculated using the module mp_ari and can be stored for

z ∈ {0, 1, . . . , 26} maximally accurate in IEEE-double-format:

ẽ−z2 = e−z2 · (1 + ε); |ε| ≤ ε∗ = 2−53 = 1.1102230 . . . · 10−16.

Because e−272
= e−729 < 2−1022, the constant e−272

cannot be stored maximally
accurate in the normalized number domain of the IEEE-double-format. If, however,
one factorizes e−729 into the two factors:

e−729 =
[
264 · e−729

]
· 2−64,

then the first factor can be stored maximally accurate because of [264 · e−729] > 2−1022,
and the multiplication with 2−64 can be performed very fast and without rounding
error. The relative error bound ε(k) is thus valid for all factors e−z2

.
As the exponent of the second factor in equation (24) is calculated without rounding
error, we have

EXP(−(z ✷+ z) ✷· m) = EXP(−(z + z) ·m) = e−(2z)·m · (1 + εexp)

|εexp| ≤ 2.3580 · 10−16 = ε(exp) .

The exponential function is therefore called up in the algorithm presented here with
the unperturbed argument −(2z) ·m. The last factor e−m2

in (24) is evaluated using
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the fast exponential function which is called up with the perturbed argument −m✷· m,
which is, however, bounded with very much smaller absolute values.

EXP(−m ✷· m) = e−m2

(1 + ε2), |ε2| ≤ ε(2) = ?

Using the program ErrBound with the now significantly smaller argument interval this
results in

Interval of exact arguments [x1, x2] = ? [−0.25, 0]

(the other input data agree with those given in the calculation of ε(1)) the wanted
upper bound for the absolute value of the relative calculation error ε2

ε(2) = 2.9132 · 10−16 .

Thus, the error bounds for the three factors in (24) are estimated, and one obtains
with

ẽ−x2 = e−z2

(1 + ε) · e−(2z)·m(1 + εexp) · e−m2

(1 + ε2) · (1 + 2ε)2 = e−x2

(1 + ε3)

for |ε3|, using again the program ErrBound assuming a highly accurate arithmetics,
as upper bound for the total error

ẽ−x2 = e−x2

(1 + ε3); |ε3| ≤ 1.0823 · 10−15, |x| ∈ [0, 26.615717]∩ S(2, 53) .

Comparison with the error bound ε(1) = 1.5754 · 10−13 shows that instead of about
13 digits, the function values e−x2

can be calculated with at least 15 correct decimals.
Assuming maximally accurate arithmetics one obtains by using otherwise the

same algorithm, the again improved total error bound

ẽ−x2 = e−x2

(1 + ε3); |ε3| ≤ 8.3243 · 10−16, |x| ∈ [0, 26.615717]∩ S(2, 53) .

B A Simple Test Program, Numerical Results

The following program uses the relation

erf(x) + erfc(x) − 1 = 0

for a simple test. The evaluation with intervals of the left hand side must result in an
interval containing zero.

The user has only to include the module erf_mod with the command use erf_mod

into his PASCAL-XSC program in order to have available the erf as well as the erfc
function for interval arguments.
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PROGRAM erf_test;
USE i_ari, erf_mod;
VAR x, fx: interval;
BEGIN
writeln;
writeln(’ ******************************************’);
writeln(’ * Computing erf(x) and erfc(x) *’);
writeln(’ ******************************************’);
writeln;
writeln(’Program termination using <Ctrl> <C> ’);
REPEAT

writeln;
write(’x = [xlb, xub] = ? ’); read(x); writeln;
writeln(’Argument interval:’, x); writeln;
fx := erf(x);
writeln(’erf(x) = [’, fx.inf:23:0:-1, ’ , ’, fx.sup:23:0:+1, ’ ]’);
fx := erfc(x);
writeln(’erfc(x) = [’, fx.inf:23:0:-1, ’ , ’, fx.sup:23:0:+1, ’ ]’);
writeln(’erf(x) + erfc(x) - 1: ’, erf(x) + erfc(x) - 1 );

UNTIL FALSE

END.

Output of test program:

******************************************
* Computing erf(x) and erfc(x) *
******************************************

Program termination using <Ctrl> <C>

x = [xlb, xub] = ?
Argument interval:[ 1.000000000000000E+000, 1.000000000000000E+000 ]

erf(x) = [ 8.427007929497132E-001 , 8.427007929497166E-001 ]
erfc(x) = [ 1.572992070502843E-001 , 1.572992070502860E-001 ]
erf(x) + erfc(x) - 1: [ -2.6E-015, 2.7E-015 ]

x = [xlb, xub] = ?
Argument interval:[ 5.000000000000000E+000, 5.000000000000000E+000 ]

erf(x) = [ 9.999999999984608E-001 , 9.999999999984643E-001 ]
erfc(x) = [ 1.537459794428029E-012 , 1.537459794428042E-012 ]
erf(x) + erfc(x) - 1: [ -1.7E-015, 1.8E-015 ]

x = [xlb, xub] = ?
Argument interval:[ -1.000000000000000E+000, -1.000000000000000E+000 ]
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erf(x) = [-8.427007929497166E-001 , -8.427007929497132E-001 ]
erfc(x) = [ 1.842700792949708E+000 , 1.842700792949722E+000 ]
erf(x) + erfc(x) - 1: [ -8.3E-015, 8.5E-015 ]

x = [xlb, xub] = ?
Argument interval:[ -2.000000000000000E+000, -2.000000000000000E+000 ]

erf(x) = [-9.953222650189544E-001 , -9.953222650189510E-001 ]
erfc(x) = [ 1.995322265018946E+000 , 1.995322265018960E+000 ]
erf(x) + erfc(x) - 1: [ -8.3E-015, 8.5E-015 ]

x = [xlb, xub] = ?
Argument interval:[ 2.000000000000000E+002, 2.000000000000000E+002 ]

erf(x) = [ 9.999999999999967E-001 , 1.000000000000000E+000 ]
erfc(x) = [ 0.000000000000000E+000 , 4.450147717014403E-308 ]
erf(x) + erfc(x) - 1: [ -3.3E-015, 2.3E-016 ]

The results essentially reflect the size of the error bounds for implementations of
erf and erfc. Also in all tested cases, zero lies inside the calculated resulting interval.
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