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Zusammenfassung

Ein PASCAL XSC Uberblick und eine Sprachbeschreibungs-Erganzung: PASCAT, XSC
ist eine universelle Programmiersprache, die aufierdem speziell die Implementierung von hochentwick-
elten numerischen Algorithmen unterstutzt. Das PASCAT, XSC System hat den Vorteil der Porta-
bilitdt auf verschiedenen Plattformen (Personal Computer, Workstations, Grofirechner und Super-
computer) durch einen portablen Compiler, der nach ANST-C tibersetzt.

Mittels der mathematischen Module von PASCAT. XSC konnen numerische Algorithmen, die
hochgenaue und automatisch verifizierte FErgebnisse liefern, sehr leicht programmiert werden.
PASCAT. XSC vereinfacht das Design von Programmmen in den Ingenieurwissenschaften und
im wissenschaftlichen Rechnen durch modulare Programmstruktur, benutzerdefinierte Operatoren,
Uberladen von Funktionen, Prozeduren und Operatoren, Funktionen und Operatoren mit allgemeinem
Frgebnistyp und dynamische Felder. Arithmetische Standard Module fur zusatzliche numerische Da-
tentypen (inclusive Operatoren und Standardfunktions von hoher Genauigkeit) und die exakte Aus-
drucksauswertungn stellen die wichtigsten numerischen Tools dar.

In PASCAT XSC geschriebene Programme sind leicht lesbar, da alle Operationen, auch die in
hoheren mathematischen Raumen, als Operatoren realisiert sind und in der iiblichen mathematischen
Notation verwendet werden konnen.

In aktuellen Compiler-Versionen von PASCAT, XSC wurde das Konzept der dynamischen Felder
betrachtlich erweitert. Ein Benutzer kann nun dynamische Felder mehrfach und mit unterschiedlicher
Grofle zur Laufzeit seines Programmes allokieren. Dariberhinaus konnen dynamische Felder auch als
Komponenten anderer PASCAT, Strukturen wie Records und statische Felder vereinbart werden.

Abstract

A Survey of PASCAL XSC and a Language Reference Supplement: PASCAT, XSC is
a general purpose programming language which provides special support for the implementation of
sophisticated numerical algorithms. The new PASCAT, XSO system has the advantage of being
portable across many platforms and is available for personal computers, workstations, mainframes
and supercomputers by means of a portable compiler which translates to ANSI-C language.

By using the mathematical modules of PASCAT. XSC| numerical algorithms which deliver highly
accurate and automatically verified results can be programmed easily. PASCAT, XSC simplifies the
design of programs in engineering and scientific computation by modular program structure, user-
defined operators, overloading of functions, procedures, and operators, functions and operators with
arbitrary result type and dynamic arrays. Arithmetic standard modules for additional numerical
data types including operators and standard functions of high accuracy and the exact evaluation of
expressions provide the main numerical tools.

Programs written in PASCAT, XSC are easily readable since all operations, even those in the
higher mathematical spaces, have been realized as operators and can be used in conventional mathe-
matical notation.

In current compiler versions of PASCATL XSC, the concept of dynamic arrays has been signif-
icantly extended. A user is now able to allocate a dynamic array variable several times and with
different size during the execution of his or her program. Moreover, dynamic arrays may now be
declared as components of other PASCAT structures such as records or static arrays.

1 Introduction

In the last decades continuous efforts have been made to enhance the power of program-
ming languages. New powerful languages have been designed, and the enhancement
of existing languages such as Fortran is in constant progress. However, since many
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of these languages still lack a precise definition of their arithmetic, the same program
may produce different results on different processors.

These days, the elementary arithmetic operations of electronic computers are usu-
ally floating-point operations of highest accuracy. In particular, this means that for
any choice of operands, the computed result is the rounded exact result of the opera-
tion with just one final rounding applied. See the IEEE Arithmetic Standard [4] as an
example. This arithmetic standard also requires the four basic arithmetic operations
+,—,*, and / with directed roundings. A large number of processors already provide
these operations, but only few programming languages allows easy access to them.

On the other hand, there has been a noticeable shift in scientific computation
from general purpose computers to vector and parallel computers. These so-called
supercomputers provide additional arithmetic operations such as “multiply and add”,
“accumulate” or “multiply and accumulate” (see [11]). These hardware operations
should always deliver a result of highest accuracy, but as of yet, no processor which
fulfills this requirement is available. In some cases, the results of numerical algorithms
computed on vector computers are totally different from the results computed on the
same processor in scalar mode (see [15],[30]).

PASCAT, XSC is the result of a long-term venture by a team of scientists to pro-
duce a powerful tool for solving scientific problems. The mathematical definition of the
arithmetic is an intrinsic part of the language, including optimal arithmetic operations
with directed roundings which are directly accessible in the language. Further arith-
metic operations for intervals and complex numbers and even vector/matrix operations
provided by precompiled arithmetic modules are defined with maximum accuracy ac-
cording to the rules of semimorphism (see [25]).

The development of PASCAT XSC programs is supported by the PASCAT XS5C
development system [3] consisting of the PASCATL XSC compiler [2] and the
PASCATL XSC runtime system [12] which are both written in ANST C [5]. Instead
of implementing a large variety of “native code generators” for different processor and
operating systems, the PASCAT XSC system compiles a given PASCAT XSO source
code into O code which is passed to a C compiler. Finally, the resulting object code
and the routines of the PASCAT, XSC runtime system are linked together. Because of
the wide distribution of C compilers, the PASCAT XSC system is available on many
computers (see section 3.3). Both the PASCAIL XSC source code and the generated
C code are portable.

From the point of view of mathematics, it is of fundamental importance that results
of implemented algorithms are reproducible in spite of different computing facilities.
Unfortunately, the arithmetical capabilities of computer systems are quite different con-
cerning the representation of floating-point numbers and the way arithmetic operations
are processed. Therefore, a common accurate arithmetical basis must be supported by
a programming language. The PASCAT, XSC runtime system comprises a complete
set of routines which is based on the IEEE 754 binary floating-point arithmetic stan-
dard [4]. All arithmetic operations are implemented in software and do not depend on
the actual operations of the processor in use nor on the C runtime system. To achieve
better performance, the runtime system can be configured in such a way that it adapts
to the arithmetic hardware unit of the processor in use.
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2

PASCAT, XS5C is an eXtension of the programming language PASCAL for Scientific

Peter Januschke, Dietmar Ratz

The Language PASCAL-XSC

Computation, containing the following features:

A complete description of the language PASCAT, XSC and the arithmetic modules as
well as a collection of sample programs is given in [21] and [22]. A short survey of the
language features is given in the following sections. Moreover, the extended concept of
dynamic and flexible arrays contained in current versions (Version 3.0 and higher) of

Standard PASCAT,

Universal operator concept (user-defined operators)
Functions and Operators with arbitrary result type
Overloading of procedures, functions and operators
Overloading of assignment operator

Overloading of the 1/O -routines read and write
Module concept

Dynamic arrays

Access to subarrays

String concept

Controlled rounding

Optimal (exact) scalar product

Standard type dotprecision (a fixed-point format covering the whole range of

floating-point products)

Additional arithmetic standard types such as complex, interval, etc.

Highly accurate arithmetic for all standard types
Highly accurate standard functions

FExact evaluation of expressions (#-expressions)

PASCAT, XSC is described in detail in Appendix B.

2.1

In addition to the integer and real data types of standard PASCATL, the following

Standard Data Types, Predefined Operators, and Func-

tions

numerical data types are available in PASCAT, XSC:

complex interval cinterval
rvector cvector ivector civector
rmatrix cmatrix imatrix cimatrix
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where the prefix letters r, i, and ¢ are abbreviations for real, interval, and complex. So
cinterval means complex interval and, for example, cimatrix denotes complex interval
maftrices, whereas rvector specifies real vectors. The vector and matrix types are
defined as dynamic arrays and can be used with arbitrary index ranges.

A large number of operators are predefined for these types in the arithmetic modules
of PASCAT XSC (see section 2.9). All of these operators deliver results with maximum
accuracy.

Compared to standard PASCAT., there are 11 new operator symbols. These are the
operators o< and o>, o € {+, —,*, /} for operations with downwardly and upwardly
directed rounding and the operators #*, +*, >< needed in interval computations for

the intersection, the convex hull, and the disconnectivity test.

gt integer . . . . .
operand | interval rvector 1vector rmatrix imatrix
et rea . . . . .
perand | cinterval cvector civector cmatrix cimatrix
operan complex
1
monadic ) +, — +, — +, — +, — +, — +, -
+,+ <, +>,
integer ||—, —<,—>
& ' ' ' +7 % /7
real ke, ok <k > n ok <, k> * *, ok < k> *
*
complex || /,/<,/>,
—+x
interval +, =k [ | —x . . . .
cinterval 4k +k, kx
%)
+,+ <, +>, 2)
rvector K,k <, k>, . / O (S
cvector || /,/<,/> ' s,k <, k>, L%
—+x
. 2 2
l‘vector . / . / +, —, *7) +, ,*,)
civector ' ' +x +x, %
%)
+,+ <, +>, 9
i *, % <, x _ _ )
T’maTT’I‘X 9 <7 >7 *7/ *7*<7*> * 9 <7 >7 +7 7*7
cmatrix || /,/<,/> K, %k <, k> 4%
—+x
. . 2 2
l‘ma,tﬂ‘X *7/ *7/ % * +777*7) +7 7*7)
cimatrix 4% +k, kx

") The operators of this row are monadic (i.e. there is no left operand).
%) x denotes the scalar or matrix product.

+x : Interval hull

% : Interval intersection

Table 1: Predefined Arithmetic Operators
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Tables 1 and 2 show all predefined arithmetic and relational operators in connection
with the possible combinations of operand types.

right| integer | | ) . . .
operand ] interval |rvector| ivector |rmatrix| imatrix
et rea . . . . .
cinterval |cvector| civector |cmatrix| cimatrix
operand complex
integer =, <>, in
real <=, <,
=, <>
complex >=,>
")
. m, ><,
1‘nterva,l _os | =<
cinterval = <
b b
>=,>
=, <>, .
rvector n
<=, <,
cvector =, <>
>=,>
. h
. m, ><,
l‘vector N = <>,
civector <=, <,
>=,>
rmatrix = <> in
. <=, <,
cmatrix =, <>
>=,>
. h
m, ><,
imatrix _
. . = <> | T <>
cimatrix <=, <,
>=,>

") The operators <= and < denote the “subset” relations,
>=— and > denote the “superset” relations.

>< ¢ Test of disconnectivity for intervals

Test of membership of a point in an interval or test on
" strict enclosure of an interval in the interior of an interval

Table 2: Predefined Relational Operators

Compared with standard PASCAT, PASCAT XSO provides an extended set of math-
ematical standard functions (see table 3). These functions are available for the types
real, complex, interval, and cinterval with a generic name and deliver a result of max-
imum accuracy. The functions for the types complex, interval, and cinterval are pro-

vided in the arithmetic modules of PASCAT, XSC.
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Function Generic Name
1 Absolute Value abs
2 || Arc Cosine arccos
3 || Arc Cotangent arccot
4 || Tnverse Hyperbolic Cosine arcosh
5 || Inverse Hyperbolic Cotangent arcoth
6 || Arc Sine arcsin
7 || Arc Tangent arctan
8 || Inverse Hyperbolic Sine arsinh
9 || Inverse Hyperbolic Tangent artanh
10 || Cosine cos
11 Cotangent, cot
12 || Hyperbolic Cosine cosh
13 || Hyperbolic Cotangent coth
14 || Exponential Function exp
15 || Power Function (Base 2) exp?2
16 || Power Function (Base 10) expl0
17 || Natural Logarithm (Base €) In
18 || Logarithm (Base 2) log2
19 || Logarithm (Base 10) log10
20 || Sine sin
21 Hyperbolic Sine sinh
22 || Square sqr
23 || Square Root sqrt
24 || Tangent tan
25 || Hyperbolic Tangent tanh

Table 3: Predefined Mathematical Functions for the types
integer, real, complex, interval, and cinterval

Besides the mathematical standard functions, PASCAT XSC provides the necessary
type transfer functions intval, inf, sup, compl, re, and im for conversion between the
numerical data types (for scalar and array types).

2.2 The General Operator Concept

By a simple example of interval addition, the advantages of a general operator concept
are demonstrated. In the absence of user-defined operators, there are two ways to
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implement the addition of two variables of type interval declared by

type interval = record inf, sup: real; end;

One can use a procedure declaration (operators with directed rounding such as + <

and 4+ > are not available in standard PASCAL)

procedure intadd (a, b: interval; var c: interval);

begin
c.inf := a.inf +< b.inf;
c.sup := a.sup +> b.sup
end;

)

mathematical notation | corresponding program statements

intadd(a,h,z);
zi=a+b+c+d intadd(z,c,7);
intadd(z,d,z);

or a function declaration (only possible in PASCAT XSC, not in standard PASCAL)

function intadd (a, b: interval): interval;

begin
intadd.inf := a.inf +< b.inf;
intadd.sup := a.sup +> b.sup
end;

mathematical notation | corresponding program statement

zi=a+b+c+d 7 = intadd(intadd(intadd(a,b),c),d);

In both cases the transcription of the mathematical formula looks rather complicated.
By comparison, if one implements an operator in PASCAT, XSC |

operator + (a, b: interval) intadd: interval;

begin
intadd.inf := a.inf +< b.inf;
intadd.sup := a.sup +> b.sup
end;

mathematical notation | corresponding program statement

zi=a+b+c+d 7z:=a-+ b+ c+d;

then multiple addition of intervals is described in the traditional mathematical nota-
tion. Besides the possibility of overloading operator symbols, one is allowed to use
named operators. The declaration of such operators must be preceded by a priority
declaration. There exist four different levels of priority, each represented by its own

symbol:
e monadic 0 level 3 (highest priority)
e multiplicative * level 2
e additive + level 1
e relational = level ()
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For example, an operator for the calculation of the binomial coefficient (Z) may be
defined in the following manner:

priority choose = *; { priority declaration }

operator choose (n, k: integer) binomial: integer;
var 1, r : 1lnteger;

begin
if k > n div 2 then k := n - k;
r = 1;
for 1 := 1 to k do
r :=r *x (n -1+ 1) div 1i;
binomial := r;
end;

)

mathematical notation | corresponding program statement

ci= (Z) ¢ :=n choose k

The operator concept realized in PASCATL XSC offers the possibilities of

e defining an arbitrary number of operators
e overloading operator symbols or operator names arbitrarily many times
e implementing recursively defined operators

Also, PASCAT, XSC offers the possibility of overloading the assignment operator :=
to allow a natural notation for assignments:

Example:

var
c : complex;
r : real;

operator := (var c: complex; r: real);
begin
c.re = r;
c.im := 0
end;

)

c = r1; { complex number with real part 1.5 and imaginary part 0 }

2.3 Overloading of Subroutines

Standard PASCAT, provides the mathematical standard functions

sin, cos, arctan, exp, In, sqr, and sqrt
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for numbers of type real only. In order to implement the sine function for interval
arguments, a new function name like isin(...) must be used hecause overloading of the
standard function name sin is not allowed in standard PASCAT..

In contrast, PASCAT XSO allows overloading of function and procedure names,
whereby a generic symbol concept is introduced into the language. So the symbols

sin, cos, arctan, exp, In, sqr, and sqrt

can be used not only for arguments of type real, but also for intervals, complex numbers,
and other types. To distinguish between overloaded functions or procedures with the
same name, the number and type of their arguments is used, similar to the method for
operators. The type of the result, however, is not used.

Example:

procedure rotate (var a, b: real);
procedure rotate (var a, b, ¢: complex);
procedure rotate (var a, b, c: interval);

The overloading concept also applies to the standard procedures read and write in a
slightly modified way. The first parameter of a newly declared input /output procedure
must be a var-parameter of a file type and the second parameter represents the quan-
tity that is to be input or output. All further parameters are interpreted as format
specifications.

Example:

procedure write (var f: text; c: complex; w: integer);
begin
write (f, *(’, c.re : w, ’,’, c.im : w, ’)’);

end;
When calling an overloaded input /output procedure, the file parameter may be omitted
which corresponds to a call with one of the standard files input or output. The format
parameters must be introduced and separated by colons. Moreover, several input
or output statements can be combined into a single statement just as in standard

PASCAT..

Example:

var
r : real;
c : complex;

write (r : 10, ¢ : 5, r/5);
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2.4 The Module Concept

Standard PASCAL basically assumes that a program consists of a single program text
which must be prepared completely before it can be compiled and executed. In many
cases, it is more convenient to prepare a program in several parts, called modules,
which can then be developed and compiled independently of each other. Moreover,
various other programs may use the components of a module without their having to
be copied into the source code and recompiled.

For this purpose, a module concept has been introduced into PASCAT, XSC. This
new concept offers the possibilities of

e modular programming
e syntax check and semantic analysis beyond the bounds of modules

e implementation of arithmetic packages as standard modules

A module is introduced by the keyword module followed by a name and a semicolon.
Its body is quite similar in structure to that of a normal program with the exception
that the word symbol global can be used directly in front of the keywords const,
type, var, procedure, function, and operator and directly after use and the equal
sign in type declarations.

Thus it is possible to declare private types as well as non-private types. The internal
structure of a private type is not known outside the declaring module. Objects of such
a private type can only be used and manipulated via the procedures, functions and
operators supplied by the declaring module.

For importing modules with use or use global the following transitivity rules hold

M1 use M2 and M2 use global M3 = M1 use M3,
but

M1 use M2 and M2 use M3 # M1 use M3.

Example: let a module hierarchy be built up by

‘ main program ‘

STANDARDS |

All global objects of the modules A, B, and C are visible in the main program unit,
but there is no access to the global objects of X, Y and STANDARDS from the main

program.
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2.5 Dynamic Arrays

In standard PASCAT there is no way to declare dynamic types or variables. The only
way to manage memory dynamically in standard PASCATL is through the allocation
and deallocation of fixed-size objects which are referred by pointers.

For instance, program packages with vector and matrix operations are typically
implemented with fixed (maximum) dimensions. For this reason, only part of the
allocated memory is used if the user wants to solve problems with lower dimensions.
The concept of dynamic arrays removes this limitation. In particular, the new concept
can be described by the following characteristics:

e Dynamics within procedures and functions

e Automatic allocation and deallocation of local dynamic variables
e FEconomical employment of storage space

e Row access and column access to dynamic arrays

e Compatibility of static and dynamic arrays

Dynamic arrays must be marked with the word symbol dynamic. The great disadvan-
tage of the conformant array schemes available in standard PASCAL is that they can
only be used for parameters and not for variables or function results. So, this standard
feature is not fully dynamic.

In PASCAT, XSC, dynamic and static arrays can be used in a very similar manner.
For example, a two-dimensional dynamic array type can be declared in the following
form:

type matrix = dynamic array [*,*] of real;

It is also possible to define different dynamic types with corresponding syntactical
structures. For example, it might be useful in some situations to identify the coeffi-
cients of a polynomial with the components of a vector or vice versa. Since PASCAT,
is a strictly type-oriented language, such structurally equivalent arrays may only be
combined if their types have been previously adapted. The following example shows
the definition of a polynomial and of a vector type (note that the type converting func-
tions polynomial(...) and vector(...) are defined implicitly). Access to the lower and
upper index bounds of each dimension is made possible by the new standard functions

Ibound(...) and ubound(...) or their abbreviations Ib(...) and ub(...).
type vector = dynamic array [*] of real;
type polynomial = dynamic array [*] of real;

operator + (a, b: vector) res: vector[lb(a)..ub(a)l;
var 1 : integer;
begin
for i := 1b(a) to ub(a)
res[i] := ali] + b[1b(b) + 1 - 1b(a)]
end;

)

var
v : vector[1l..n];
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p : polynomiall0..n-1];

v := vector(p);

p := polynomial(v);

Vo= v o+ v,

v := vector(p) + v; { but not v :=p + v, }

In addition to accessing each component variable, PASCAT, XSC offers the possibility
of accessing subarrays. If a component variable contains an * or a range instead of an
index expression, it refers to the subarray with the entire or specified index range in
the corresponding dimension. For example, M[1..2, 3] is the array consisting of the
1st and 2nd elements of the j-th column of a two-dimensional array M.

This example demonstrates access to rows or columns of dynamic arrays:

type vector = dynamic array [*] of real;

type matrix = dynamic array [*] of vector;

var
v : vector[1l..n];
m : matrix[1..n,1..n];

v :=ml[i];
m[i] := vector(m[*,j]);

In the first assignment it is not necessary to use a type converting function since both
the left and the right side are of known dynamic type. A different case is demonstrated
in the second assignment. The left-hand side is of known dynamic type, but the
right-hand side is of anonymous dynamic type, so it is necessary to use the intrinsic
converting function vector(...).

2.6 Flexible Arrays
Current releases (Version 3.0 and higher) of PASCAT XSC include the concept of

flexible arrays. A dynamic array is called flexible if it can be reallocated with new
index bounds and new size at any time during its lifetime.

There are two possibilities of declaring flexible array types. The first possibility is
the usual declaration of a dynamic array type, i.e. every dynamic array is also a flexible
array.

type vector = dynamic array [*] of real;
The second possibility is to provide default index ranges for flexible array variables
(for example in a program using many array variables with identical index bounds and

only a few variables of the same type with other index bounds). The extended rules
for array declaration allow

type vec = dynamic array [1..10] of real;
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or

type vec = vector [1..10];

alternatively.
Now, there are several possibilities to declare flexible array variables:

e We can specify index ranges by
var v : vector [1..10];
or by
var v : dynamic array [1..10] of real;

and the variables declared in this way are automatically allocated and deallocated
on entry and exit of the subroutine they belong to. But those variables may also
be reallocated during the execution of the subroutine they belong to.

e We can omit index ranges by
var v @ vector;
or by
var v : dynamic array [*] of real;

and we must explicitely allocate v by ourselves. Nevertheless, it will be automat-
ically deallocated on exit of the subroutine it belongs to.

e We can use a flexible array with default index ranges by
var v [ vecC,
or by
var v : vec [1..20];

where in both cases automatic memory allocation and deallocation will be carried
out, but the allocation process is different. In the first case the index bounds for
v are the the default index bounds of vec, in the second case the specified index
bounds replace the default bounds.

Of course, PASCAT, XSC supplies routines for the memory management of dynamic
(flexible) arrays. Procedure allocate allows the explicit allocation of a dynamic array
with specified index bounds. Procedure free allows the deallocation of a variable, i.e.
the freeing of the memory occupied by a dynamic array variable. Moreover, since
access to an array might result in a runtime error, PASCAT, XSC provides the boolean
function allocated for testing the accessibility of dynamic arrays.

In the following example, we use a real vector in different lengths to perform com-
putations until a desired accuracy is achieved.
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type
vector = dynamic array [*] of real;

procedure high accuracy (basic_length: integer; result: real);

var
accurate : boolean;
rvec . vector;
k : integer;

begin
accurate := false; k = 0;
repeat

k:= k+1;
allocate (rvec, 1..kx*basic_length);

{ computations *
accurate := ...

free (rvec); { might be ommitted }
until accurate;

result := ...
end;

In our second example, we give a routine for reading integer vectors from a text file,
where each vector is preceded by the number of its components. Without the possibility
of reallocation of dynamic arrays the solution of this problem is very laborious.

type
vector = dynamic array [*] of integer;

procedure read (var f: text; var v: vector);

var
1, length : integer;
begin
if allocated(v) then
free (v);

read(f, length);
allocate(v, 1..length);
for 1:=1b(v) to ub(v) do
read(f, v[il);
end;

)

A detailed description of syntax and semantic for the concept of dynamic and flexible

arrays is given in Appendix B.

2.7 Accurate Expressions

The theory of computer arithmetic (see [25]) requires the implementation of the dot
product with only one rounding according to the following definition (see [6]):

Given two vectors x and y with n floating-point components each, and a
prescribed rounding mode O, the floating-point result s of the dot product
operation (applied to = and y) is defined by

s:=0(3) := D(r//:-y):D(ﬁzmi*yi)7 n > 1

=1
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where all arithmetic operations are mathematically exact. Thus s shall be
computed as if an intermediate result 3 correct to infinite precision and with
unbounded exponent range were first produced and then rounded to the
desired floating-point destination format according to the selected rounding
mode 0.

Thus the result of the operation must be the exact result of the dot product with just
one final rounding applied.

The implementation of enclosure algorithms with automatic result verification or
validation (see [14],[17],[18],[27],[32]) makes extensive use of the accurate evaluation
of dot products. To evaluate this kind of expression the new datatype dotprecision
was introduced. Variables of type dotprecision can hold any possible value which
results from the evaluation of dot product expressions without loss of accuracy (see
[25],[14]). Based upon this type, so-called accurate expressions (#-expressions), can
be formulated by an accurate symbol (#, #x, #<, #>, or ##) followed by an exact
expression enclosed in parentheses. The exact expression must have the form of a dot
product expression in scalar, vector or matrix structure and is evaluated without any
rounding error. Because of this, the result of an accurate expression has an error of at
most 1 ulp, i.e. at most one unit in the last mantissa place. Tables in the appendix
give an overview of possible exact expressions within the accurate expressions (see [16]
for the detailed overview).

To obtain the unrounded or correctly rounded result of a dot product expression,
the user needs to parenthesize the expression and precede it by the symbol # which
may optionally be followed by a symbol for the rounding mode. Table 4 shows the
possible rounding modes with respect to the dot product expression form.

Symbol Fxpression Form Rounding Mode Math. Symbol
#x  |scalar, vector or matrix nearest O
# < |scalar, vector or matrix downwards \V4
#> |scalar, vector or matrix upwards A
##  |scalar, vector or matrix|smallest enclosing interval O
# scalar only exact, no rounding

Table 4: Rounding Modes for Accurate Expressions

In practice, dot product expressions may contain a large number of terms making an
explicit notation very cumbersome. To alleviate this difficulty in mathematics, the
symbol > is used. If for instance A and B are n-dimensional matrices, then the
evaluation of

d= Z Aig - B

k=1

represents a dot product expression. PASCAT XSC provides the equivalent shorthand
notation sum for this purpose. The corresponding PASCAT XSC statement for this
expression 1s
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d := #(for k:=1 to n sum (A[i,k] * B[k,jl1));

where d is a dotprecision variable.

Dot product expressions or accurate expressions are used mainly in computing a
defect (or residual). In the case of a linear system Az = b, A € R"*" x.b € IR", Ayxb
is considered as an example. Then an enclosure of the defect is given by O(b— Ay)
which in PASCAT, XSC can be realized by means of the dot product expression

## (b — A * y);

with only one interval rounding operation for each component of the resulting interval
vector. To get verified enclosures for linear systems of equations it is necessary to
evaluate the defect expression

O(FE — RA)

where R ~ A~" and F is the identity matrix. ITn PASCAT, XSC this expression can be
programmed as
# (1d(A) - R * A);

where an interval matrix is computed with only one rounding operation per component.
The function id(...) is defined in the module for real matrix/vector arithmetic and
generates an identity matrix of the same shape as its arguments (see section 2.9).

2.8 The String Concept

The tools provided for handling character strings in standard PASCAT do not allow
convenient text processing. For this reason, a string concept was integrated into the
language definition of PASCATL XSC which admits a convenient treatment of textual
information and, using the operator concept, even symbolic computation. With new
data type string, the user can work with strings of up to MAXINT characters. When
declaring variables of type string, the user can specify a maximum string length less

than MAXINT. Thus a string s declared by
var s : string[40];

can be up to 40 characters long. The following standard operations are available:

e concatenation

e actual length

e conversion string — real

e conversion string — integer
e conversion real — string

e conversion integer — string
e extraction of substrings

e position of first appearance

e relational operators <=, <, >=, >, <>, =, and in
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2.9 Standard Modules

The following standard modules are available:
o interval arithmetic (I_ARI)
e complex arithmetic (C_ARI)
e complex interval arithmetic (CI_ARI)
e real matrix/vector arithmetic (MV_ARI)
o interval matrix/vector arithmetic (MVI_ARI)
e complex matrix/vector arithmetic (MVC_ARI)
e complex interval matrix/vector arithmetic (MVCI_ARI)

These modules may be incorporated via the use statement described in section 2.4.
As an example, Table 5 exhibits the operators provided by the module for interval
maftrix/vector arithmetic.

right
operand || integer |. . . . .
left renl interval| rvector ivector rmatrix imatrix
operand ’
monadic +,— +,—
integer N N
real
interval * * * *
+x,
rvector *, / +x +,—, =,
in,=, <>
+x, i—*,**,
— %
ivector * * — o, |, oo
S s e D
’ <=, = >
+x,
rmatrix *, / * 4x +, —, %,
in,=, <>
.
imatrix * * * * 4=k, | 1T
o/ v P = <5
o <=, >

Table 5: Predefined Arithmetic and Relational Operators of the Mod-
ule MVI_ARI

In addition to these operators, the module MVI_ARI provides the following generically
named standard operators, functions, and procedures:

intval, inf, sup, diam, mid, blow, transp, null, id, read, and write.

The function intval is used to generate interval vectors and matrices, whereas inf and
sup are selection functions for the infimum and supremum of an interval object. The
diameter and the midpoint of interval vectors and matrices can be computed by diam
and mid, blow yields an interval inflation, and transp delivers the transpose of a

matrix.
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7ero vectors and matrices are generated by the function null, while id returns an
identity matrix of appropriate shape. Finally, there are the generic input/output-
procedures read and write, which may be used in connection with all matrix/vector
data types defined in the modules mentioned above.

2.10 Problem-Solving Routines

Routines for solving common numerical problems have been implemented in PASCAT,
XSC. The applied methods compute a highly accurate enclosure of the true solution
of the problem and, at the same time, prove the existence and the uniqueness of the
solution in the computed interval. The advantages of these new routines are :

e The solution is computed with maximum or high, but always controlled accuracy,
even in many ill-conditioned cases.

e The correctness of the result is automatically verified, i.e. an enclosing set is com-
puted, which guarantees existence and often also uniqueness of the true solution
contained in this set.

e If no solution exists or if the problem is extremely ill-conditioned, an error mes-
sage 1s issued.

Among others, PASCAT, XSC routines cover the following subjects:

e linear systems of equations

full systems (real, complex, interval, cinterval)
— maftrix inversion (real, complex, interval, cinterval)
— least squares problems (real, complex, interval, cinterval)

— computation of pseudo inverses (real, complex, interval, cinterval)

band matrices (real)

— sparse matrices (real)
e polynomial evaluation

— in one variable (real, complex, interval, cinterval)

— in several variables (real)

o zeros of polynomials (real, complex, interval, cinterval)

e cigenvalues and eigenvectors

— symmetric matrices (real)

— arbitrary matrices (real, complex, interval, cinterval)
e initial and boundary value problems of ordinary differential equations

— linear

— nonlinear
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e evaluation of arithmetic expressions
e nonlinear systems of equations

e numerical quadrature

e integral equations

e automatic differentiation

e optimization

3 The Implementation of PASCAL-XSC

The language PASCATL XSC extends the PASCATL SC language [7, 8, 28]. Both lan-
guages were defined and developed at the Institute of Applied Mathematics at the
University of Karlsruhe. The first PASCATL SC compiler was implemented for 780
processors in 1980). Because of the small memory of the Zilog machine, an interpreter
was used, which slowed down the execution time. This compiler was ported to DOS
machines in the early 80’s [24]. Three years later a PASCATL SC compiler generating
machine code for Motorola-68000 processors was developed [23]. This system is much
faster, but it lacks portability, running only on Motorola-68000 processors. The new
PASCAT, XSC system is now available for personal computers, workstations, main-
frames, and supercomputers by means of a portable compiler which translates to ANSI
C.

The main goal of the system is portability. For that purpose, it is necessary
e to provide easy porting of the compiler and the runtime system

e to avoid the necessity to retarget the compiler for every new computer

e to provide porting of the generated code (cross-compilation)

e to provide consistency of results for all installations

The ANSI C language (as defined in [5]) was chosen as the implementation language
and the target language. The main reason for this choice was the extremely wide
range of computers for which one or more C compilers are available. Besides the C
language allows the programming of portable code. The ANSI C language standard
will impel the producers of C compilers to construct the compilers that correspond
to the standard and impel them to unify the existing compilers. This makes porting
easier. Special compiler options exist to provide cross-compilation. The O language
is highly modular. Small overhead for function calls results in high efficiency of the
target code.

There are great semantic differences between the PASCATL-XSC and the C language.
Since PASCAT-XSC allows dot precision expressions, nested subroutine declarations,
overloading of subroutines, dynamic arrays and subarrays, sets and strings, it becomes
necessary to simulate these concepts in the target code. Partly this task can be solved
using the appropriate functions in the runtime library, but some problems, such as the
simulation of nested subroutines, have to be solved inside the compiler.
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3.1

Different Real Arithmetics

A special feature of the new compiler is that the basic operations of the real arith-

metic are exchangeable to support different applications which may require different

properties of the arithmetic (portability, speed or accuracy). See [12] for details.

Supported arithmetics are:

3.2

Software emulation of the TEEE 754 standard arithmetic. A complete floating-
point arithmetic for the double format of the IEEE binary floating-point standard
[4] is simulated in software. All requirements of the standard are fulfilled includ-
ing directed roundings, handling of infinity, and exception handling. No special
properties of the hardware nor support from the C runtime system are required.

The hardware arithmetic of the computer in use. The arithmetic operations are
supported by the C runtime system. The data format and the accuracy of the
operations need not necessarily satisfy the TEEE standard. This arithmetic is
intended to be used by programs that shall be “fast”.

Multiple precision arithmetic. It is intended for programs implementing high-
precision numerical algorithms. The arithmetic operations are based on the spe-
cial multiple precision data type. Variables of this type may hold values with a
varying number of mantissa digits during the execution of the program.

Decimal arithmetic. The BCD version with decimal real and longreal formats
is intended to avoid the conversion errors occurring during input and output of
numerical data.

A user-defined arithmetic. Standard real arithmetic can be replaced by a user-
defined real arithmetic in a very simple manner (see [2], [3]). The user must
ensure that all features defined for standard real arithmetic will be also available

for this new arithmetic.

The PASCAL XSC Development System

The PASCAT XSC system [3] includes:

The manager.

The PASCAT, XSC to C compiler.
The listing generator.

The runtime library.

The configuration program.

The main purpose of the manager is to make the program development cycle more user-

friendly and to reduce the number of accidental errors. It is achieved by freeing the user

from having to supply the information about directory conventions and options of the
PASCAT XSC compiler, C-compiler, and linker in use. The manager offers a “make”
facility by linking automatically all the modules that the current program depends on.
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The dependencies and connections of modules are completely checked for consis-
tency using interface files associated with the modules that are mentioned in the “use”
clause, if any. The number and the types of actual arguments are checked for confor-
mity to the formal parameters. A module may import other modules. In general, the
module dependencies in an executable program can be described by a directed acyclic
graph.

The compiler offers a comprehensive error-checking facility including lexical, syn-
tactical and semantical checking and error recovery. If a module is changed, it is quite
natural that it must be recompiled before the modules which “use” it are compiled.
The compiler checks this condition automatically and generates an error message if the
time-compatibility of modules is violated. The listing generator is called after compil-
ing a program or module containing errors. It produces a readable listing with error
messages and pointers to the exact positions of the errors: the line and the column. It
is possible to correct errors by editing the listing. There exists a program that reads
the listing and reconstructs the source file from the listing.

After the installation of the compiler, the user may change some system dependen-
cies such as path names and filetype names as well as default values for the compiler
options. These modifications are done by means of the configuration program.

3.3 The Current State of Implementation

The conformity of the PASCAT XSC compiler to standard PASCAL [10] was tested
using “The PASCAT validation suite” of the Tasmania University [33]. Extensive tests
have been carried out concerning different PASCAT, XSC extensions. The system is
widely spread and used for educational purposes and for software development.

Until now the PASCAT XSC system has been successfully installed and thoroughly
tested on many computers (see table 6). On some systems hardware arithmetic is
supported, making the generated programs faster.

Computer Operating System | C compiler
PC MS-DOS/Windows| GNU C++
PC 0S/2 3.0 GNU C++
PC LINUX GNU C
HP 9000/700 Series UNTX HP C
Sun SPARC Station SunOS 5.x SUN C
Sun SPARC Station SunQOS 4.1 Standard C
ITBM RS/6000 ATX ANSI C
Silicon Graphics IRIX GNU C
CONVEX C2-C4 UNTX Convex CC

Table 6:  Availability of the PASCAT, XSC System

Along with the commercial versions several free versions of the PASCAT, XSC compiler
(for DOS, 0S/2, LINUX, etc.) are available. The software and further information

can be found on the homepage
http://www.xsc.de

of Numerik Software GmbH (ema,ﬂ: numerik_software@csi.com).
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4 PASCAL- XSC Sample Programs

In the following, some PASCAT, XSC programs are listed, demonstrating the use of
the arithmetic modules and various concepts of PASCAT, XSC.

Well-known algorithms were intentionally chosen so that a brief explanation of the
mathematical background will suffice. Since the programs are largely self-explanatory,
comments are kept to a minimum.

1. Interval Newton Method

2. Runge-Kutta Method
3. Trace of a Product Matrix
4. Verified Solution of a linear System

4.1 Interval Newton Method

An inclusion of a zero of the real-valued function f(x) is computed. It is assumed that
f'(x) is a continuous function on the interval [a,b], where 0 &€ {f'(2) : @ € [a,b]} and
fla)- f(b) < 0. If an inclusion X, for the zero of such a function f(x) is already known,
a better inclusion X,y may usually be computed by the iteration formula:

Xog1 = (m(X,) — M) Nnx, ,

J1(X0)

where m(X') is some point in the interval X (for example the midpoint). For this
example, the function f(x) =/ + (# + 1) - cosx is used. In PASCAT XSC, interval
expressions are written in mathematical notation. Generic function names are used for
the interval square root and interval sine and cosine functions. For the mathematical
theory, see [1].

program inewt (input, output);

use

i_ari; { interval arithmetic }

var
X, y : lnterval;

{—— T 3
function f (r: real): interval;
var
X : interval;
begin
x :=r; { converts r to type interval to obtain a verified inclusion }
f = sqrt(x) + (x + 1) * cos(x)
end;
{—— T 3
function deriv (x: interval): interval;
begin
deriv := 1 / (2 * sqrt(x)) + cos(x) - (x + 1) * sin(x)
end;
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function criter (x : interval) : boolean;
begin

criter := (sup(f(inf(x)) * f(sup(x))) < 0) and not (0 in deriv(x));
end;

)

begin { main program }
{ The interval notation for I/0 in PASCAL-XSC is [ inf , sup ] }
{ mid(x) is a function returning the midpoint of the interval x }

write (’Please enter starting interval : ’); read (y);

while inf(y) <> sup(y) de
begin
if criter(y) then
repeat
X =y,
writeln (x);
y = ( mid(x) - f(mid(x))/deriv(x) ) ** x;
until x =y
else
writeln (’Criterion not satisfied !’);

writeln;
write (’Please enter starting interval : ’); read (y);
end;
end.

With the starting interval [2,3] the computed inclusions are

L 2.0E+000, 3.0E+000]
L 2.0E+000, 2.3E+000]
L 2.0BE+000, 2.07E+000]
L 2.05903E+000, 2.05906FE+000]
L 2.059045253413E+000, 2.059045253417E+000]
[ 2.059045253415143E+000, 2.059045253415145E+000]

4.2 Runge-Kutta Method

The initial-value problem for a system of differential equations is to be solved. The
Runge-Kutta method to solve one differential equation may be written in standard
PASCAT in an almost mathematical notation. In PASCAT, XSC it is possible to use
the same notation for a system of differential equations. The concept of dynamic
arrays i1s used to make the program independent of the size of the system. Only as
much storage as needed is occupied during runtime. The following system of first-order
differential equations

Y = F(x,Y)

with initial condition Y(29) = Y5 is considered. If the solution Y is known at a point
x, then the approximation Y (2 + h) is computed by

Ky = h-F(2,Y),

Ky = h-F(x+h/2,Y + K,/2),

Ky = h-F(x+h/2,Y + K,/2),
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Ky = h-F(z+h,Y 4+ Ks),
Y(e+h) = V4+(Ki+2%xKy4+ 2% K5+ Ky)/6.

Starting at xg, an approximate solution may be computed at the points x; = x¢ 41 - h.
We supply function F in a module.

module T;

use
mv_ari; { matrix/vector arithmetic }

global const
dim = 3;

)

global function F (x: real; y: rvector): rvector[1..dim];
begin
£[1] = y[11 - y[2];

f[2] := exp(x) * y[3];
£[3] = (y[11 - y[2]) / exp(x);
end;
frm 3
global procedure init (var x, h: real; var y: rvector);
begin
x :=0; h:=0.1; y01I :=0; y[21 =1, y[3] :=1
end;

)

end. { of module £ }

Using module f, we can write the following program.
program runge (input, output);

use
mv_ari, f;

var
1 : integer;
X, h : real;

>

vy, k1, k2, k3, k4 : rvector[1..dim];

begin
init(x, h, y);

{ Classical Runge-Kutta method (10 steps) for a system }
{ of first-order differential equations y’ = F(x, y) }
for 1:=1 to 10 do

begin
k1 := h * f(x, y);
k2 ;= h *x f(x+h / 2, vy + k1l / 2),;
k3 :=h *x f(x+h / 2, vy +k2/ 2),
k4 := h * f(x + h, y + k3);
y =y + (k1 + 2% k2 + 2 % k3 + k4) / 6,
X = x + h;
writeln (’x =7, x);
writeln (’y = 7, y);
end;

end.
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4.3 Trace of a Product Matrix

The following PASCAT, XSC program demonstrates the use of accurate-expressions.
The trace of a product matrix A- B is computed without evaluating the product matrix
itself. The result will be of maximum accuracy, i.e. it is the best possible floating-point
approximation of the exact solution. The trace of the product matrix is given by

T

> D aij b

=1 7=1
A corresponding program is

program trace (input, output);

use
mv_ari; { matrix/vector arithmetic }

procedure main (n: integer);

1, ] : integer;
s, d : real;
A, B : rmatrix [1..n,1..n];
begin
read (A, B);
s := 0;
for i:= 1 to n do
s := s + A[i] * rvector(B[*,1]);
writeln ( ’Trace of A*B computed with scalar product :’, s);

d := #*x( for 1:=1 to n sum( A[i] * rvector(B[*,1]1) ));

writeln ( ’Trace of A*B computed with #-expression 2, d);
end;
L }
begin
read(n); main(n);
end.

With the following starting matrices

1le9 8 126 237
100 2 12 1

A=19e5 10 1er 81
13 3 30 le7
Te8 85 8 6

a_| 12 3 1e3 156

3 14 Tel0 13
2 8332 led le 8

the computed results are
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Trace of A*B computed with scalar product : -9.999999999999999E-016
Trace of A*B computed with #-expression : B5.999999999999999E+000

4.4 Verified Solution of a Linear System of Equations

The example demonstrates a program for the verified solution of a system of linear
equations. The program delivers either a verified solution or a corresponding failure
message.

Employing the module LIN_SOTV, the solution of a system of linear equations is
enclosed in an interval vector by successive interval iterations.

The procedure main, which is called in the body of lin_sys, is only used for reading
the dimension of the system and for allocation of the dynamic variables. The numerical
method itself is started by the call to procedure linear_system_solver defined in module
lin_solv. This procedure may be called with arrays of arbitrary but matching dimension.

For detailed information on iteration methods with automatic result verification,

see [14], [17], [18], [27], or [31], for example.

module 1in_solv;

use i_ari, { interval arithmetic 3}
mv_ari, 1 matrix/vector arithmetic 3}
mvi_ari; { matrix/vector interval arithmetic }

operator inflated (a: ivector; eps: real) infl: ivector[1..ub(a)];
{ Computes the so-called epsilon inflation of an interval vector. }

var
1 : integer;
X : interval;

begin
for i:= 1 to ub(a) do
begin
x := alil;
if (diam(x) <> 0) then
alil := (1+eps)*x — eps*x
else
ali]l := intval( pred (inf(x)), succ (sup(x)) );
end; {for}
infl := a;
end; { operator inflated }

function approximate_inverse (A: rmatrix): rmatrix[1..ub(A),1..ub(A)];

{ Computation of an approximate inverse of the (n,n)-matrix A }
{ by application of the Gaussian elimination method. F

var
i, J, k, n : 1integer;



Peter Januschke, Dietmar Ratz

factor : real;
R, Inv, E : rmatrix[1..ub(A),1..ub(A)];
begin

n := ub(A); { dimension of A }
E id(E); { identity matrix }
R := A;

)

{ Gaussian elimination step with unit vectors as F
{ right-hand sides. Division by R[1,1]=0 indicates }
{ that matrix A is probably singular . F

for i:= 1 to n do

for j:= (i+1) to n do

begin
factor := R[j,11/R[1,1];
for k:= 1 to n do

R[j,k] := #x(R[j,k] - factor*R[i,k]);

E[j] := E[j] - factorxE[i];

end; { for j:= ... }

{ Backward substitution delivers the rows of the inverse of A. }

for i:= n downto 1 do
Inv[i] := #*(E[1] - for k:= (i+1) to n sum(R[1,kI*Inv[k]))/R[1,1];

approximate_inverse := Inv;
end; { function approximate_inverse }

global procedure linear_system_solver (A: rmatrix; b: rvector;
var x: ivector; var ok: boolean);

{ Computation of a verified enclosure vector for the solution of the 2}
{ linear system of equations. If an enclosure is not achieved after  }
{ a certain number of iteration steps, the algorithm is stopped and F

{ the parameter ok is set to false. F
const
epsilon = 0.25; { Constant for the epsilon inflation }
max_steps = 10; { Maximum number of iteration steps F
var
1 :  1nteger;
y, z : ivector[1..ub(A)];
R : rmatrix[1..ub(A),1..ub(A)];
C : dmatrix[1..ub(A),1..ub(A)];
begin
R := approximate_inverse(A);
{ R*b is an approximate solution of the linear system F
{ and z is an enclosure of this vector. However, it does }
{ not usually enclose the true solution. F

z := R * intval(b);

{ An enclosure of T - R*A is computed with maximum accuracy. F
{ The (n,n) identity matrix is generated by the function call id(4). }

C := ##(1d(A) — RxA);
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X :=z; 1 := 0;
repeat
i =1+ 1;
y := x inf/lated epsilon; { To obtain a true enclosure, the interval }
{ vector ¢ is slightly enlarged. b
X = z + Cxy; { The new iterate is computed. F
ok := x in y; { Is ¢ contained in the interior of y? F
until ok or (i = max_steps);
end; { procedure linear_ system_solver }
{—— T 3

end. 1 module lin_solv }

The following program can be used to apply the routine supplied by module lin_solv.

program lin_sys (input, output);

use lin_solv, { linear system solver F

mv_ari, { matrix/vector arithmetic 3}

mvi_ari; o{ matrix/vector interval arithmetic }
var n : 1integer;
- F

procedure main (n : integer);

{ The matrix A and the vectors b, x are allocated dynamically with F
{ this subroutine being called. The matrix A and the right-hand side }

{ b are read in and linear_system_solver is called. F
var
ok : Dboolean;
b rvector[1..n];
x ivector[1..n];
A rmatrix[1..n,1..n];
begin
writeln(’Please enter the matrix A:’);
read(A);
writeln(’Please enter the right—hand side b:’);
read(b);

linear_system_solver(A,b,x,ok);

if ok then
begin
writeln(’The given matrix A is non-singular and the solution ’);
writeln(’of the linear system is contained in:’);
write(x);
end
else
writeln(’No solution found !’);
end; { procedure main }

begin
write(’Please enter the dimension n of the linear system: ’);
read(n);
main(n);

end. { program lin_sys }
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Appendix

Peter Januschke, Dietmar Ratz

A Review of #-Expressions

A.1 Real and Complex #-Expressions

Syntax:

#-Symbol ( Exact Expression )

| #£-Symbol ||

Result Type |

Summands Permitted in the Exact Expression

dotprecision

variables, constants, and special function calls of type
integer, real, or dotprecision

products of type integer or real

scalar products of type real

real

variables, constants, and special function calls of type
integer, real, or dotprecision

products of type integer or real

scalar products of type real

complex

variables, constants, and special function calls of type
integer, real, complex, or dotprecision

products of type integer, real, or complex

scalar products of type real or complex

F*
#<
#>

rvector

variables and special function calls of type rvector

products of type rvector (e.g. rmatrix x rvector, real *
rvector etc.)

cvector

variables and special function calls of type rvector or
cvector

products of type rvector or cvector (e.g. ematrix * rvec-
tor, real x cvector etc.)

rmatrix

variables and special function calls of type rmatrix

products of type rmatrix

cmatrix

variables and special function calls of type rmatrix or
cmatrix

products of type rmatrix or ematrix




A Survey of PASCAIL XSC and a

A.2 Real and Complex

Syntax:

Language Reference Supplement

Interval #-Expressions

#4# ( Fxact Expression )

| #£-Symbol || Result Type |

Summands Permitted in the Exact Expression

##

variables, constants, and special function calls of type
integer, real, interval, or dotprecision

interval . .
e products of type integer, real, or interval
e scalar products of type real or interval
e variables, constants, and special function calls of
type integer, real, complex, interval, cinterval, or
dotprecision
cinterval e products of type integer, real, complex, interval, or
cinterval
e scalar products of type real, complex, interval, or cin-
terval
e variables and special function calls of type rvector or
ivector 1vector
e products of type rvector or ivector
e variables and special function calls of type rvector,
civector cvector, 1vector, or civector
e products of type rvector, cvector, ivector, or civector
e variables and special function calls of type rmatrix or
imatrix mmatrix
e products of type rmatrix or imatrix
e variables and special function calls of type rmatrix,
cimatrix cmatrix, imatrix, or cimatrix

products of type rmatrix, cmatrix, imatrix, or cimatrix
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B Dynamic and Flexible Arrays - A Language
Reference Supplement

This section describes the current concept of dynamic and flexible arrays, which is not
part of early compiler versions (< 3.0). First, a summary of the basic concept (see
[22]) is given. Then, the new features are discussed. Since this section is intended
to be a supplement to the Language Reference [22], we use the notation from [22] for
describing the syntax of the new constructs. It is a simplified Backus-Naur-form which
looks similar to usual program code. Syntax descriptions are marked by a vertical
black bar at the left margin.

B.1 Dynamic Arrays

The basic characteristic of this concept is the possibility of using dynamic entities
within subroutines. lLocally declared dynamic array variables are automatically allo-
cated and deallocated during the execution of the subroutine they belong to. Moreover,
it is possible to access subarrays.

The type declaration for a dynamic array is similar to the declaration of a static
array type. One only has to insert the keyword dynamic and to replace the index
ranges by asterisks.

Example: Type declaration for a real vector.

type vector = dynamic array [*] of real;

The index ranges can be declared individually for each dynamic array variable.

Example: Declaration of a real vector variable.

var v : vector [1..10];

The main application of dynamic arrays is their use within subroutines. Consider the
following schematic example of the procedure do_something:

procedure do_something (n: integer);
var

local : vector [1..n];
begin
. { do something }
end;

)

Here, the procedure is declared with an integer parameter n. By means of this pa-
rameter the index bounds of the local variable 1ocal are specified. This means, that
local may hold a different number of elements upon different calls of do_something.
The disadvantage of this method is that it is not possible to reallocate 1ocal while the
procedure is being executed. In practice, however, it is desirable to be able to use a
structured variable' with a different number of elements for different purposes within
the same subroutine. This could be realized by declaring several dynamic array vari-
ables with different element numbers. However, to minimize memory usage it should
be possible to reuse variables, i.e. to reallocate them, whenever this is appropriate.
This is the motivation for the extension to the concept of dynamic arrays we discuss
in the next section.

"TIn our example this is a real vector
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B.2 Flexible Arrays

We call an array flexible if it can be reallocated with new index bounds and new size
at any time during its lifetime.
The realization of this concept led to the following basic ideas:

e The syntax and semantics for declaring dynamic array types and dynamic array
variables is extended.

e The use of flexible arrays according to the previous rules for dynamic arrays does

not result in different behaviour of PASCAT, XSC programs.

e Standard procedures for memory allocation and deallocation for flexible arrays
are provided.

o Assignment of a flexible array to another flexible array implicitly allocates the
destination array, if it has not been allocated before.

e The semantics of type declarations is extended: flexible arrays may be used as
components of other composite data types.

B.2.1 Declaring a Flexible Array Type

The syntax for specifying a flexible array type (FlexTypeSpecification) in a type dec-
laration is as follows:

I dynamic array [DimensionList] of Typeldentifier

A DimensionList is either a list? of asterisks (*) or a list of index types. An index type
is specified by either the type identifier of an integer subrange type or by explicitly
specifying the index bounds in the usual way:

I IntegerExpression .. IntegerExpression

Thus, there are two possibilities of declaring flexible array types. The first possibility
simply is the adaption of the old declaration rules,

type vector = dynamic array [*] of real;

i.e. every dynamic array is also a flexible array. The second possibility is to provide
default index ranges by

type vec = dynamic array [1..10] of real;

or by
type vec = vector [1..10];

for flexible array variables. In practice, a program often uses many array variables of
the same array type with identical index bounds and only a few variables of the same
type but with other index bounds. For this situation, the extended rules for array
declaration allow the specification of default index ranges.

When declaring flexible array types with more than one index ranges it is not
allowed to mix asterisks with default index ranges. Thus the semantics for using
flexible arrays is kept simple.

?A list always consist. of at least one element. If more than one element is to be specified then the
elements have to be separated by commas.



36 Peter Januschke, Dietmar Ratz

B.2.2 Declaring Flexible Array Variables

The syntax for the declaration of a dynamic array variable has been extended according
to the changes for type declarations in Section B.2.1. Tt is possible to use a type
identifier by

var [dentifierlist : FlexTypeldentifier
[DimensionList] { may be omitted }

or an explicit type specification by
I var [dentifierlist : FlexTypeSpecification

Again, these rules allow several possibilities of declaring flexible array variables. With
the type identifiers from Section B.2.1, we can

e specify index ranges by
var v : vector [1..10];
or by
var v : dynamic array [1..10] of real;

and the variables declared in this way are automatically allocated and deallocated
on entry and exit of the subroutine they belong to. But those variables may also
be reallocated during the execution of the subroutine they belong to.

e omit index ranges by
var v @ vector;
or by
var v : dynamic array [*] of real;

and we must explicitly allocate v by ourselves. Nevertheless, it will be automat-
ically deallocated on exit of the subroutine it belongs to.

e use a flexible array with default index range by
var v : vec;
or by
var v : vec [1..20];

where in both cases automatic memory allocation and deallocation will be carried
out, but the allocation process is different. In the first case the index bounds for
v are the the default index bounds of vec, in the second case the specified index
bounds replace the default bounds.
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The variable v may be reallocated by the user in any case.

The concept of flexible arrays is an extension to that of dynamic arrays. Programs
developed by exclusively using the previous dynamic array features can be compiled
with current (flexible) compiler versions without change.

In the following descriptions of further language extensions it is no longer necessary
to distinguish between dynamic and flexible arrays. These features apply to both.
Consequently we only speak of dynamic arrays from now on.

B.2.3 Memory Management Subroutines

This section introduces a set of subroutines for handling dynamic arrays, in particular
for memory management. The first routine is the procedure allocate which allows the
explicit allocation of a dynamic array with the specified index bounds. Tt is called in
the form:

I allocate ( DynamicArrayVariable , IndexRangeslist );

Its first parameter is a dynamic array variable which is followed by a list of index
ranges. Index ranges are specified in the usual way by specifying the index bounds:

I IntegerExpression .. IntegerExpression

The number of index ranges specified must be the same as the number of index ranges
in the declaration of the corresponding dynamic array type of the first parameter. If
the array variable passed to allocate is not allocated yet, it will be allocated with
the specified index bounds. Tf an array variable is already allocated, it first will be
deallocated. The latter allows the user to reallocate an array with new index bounds
and new size.

A further procedure provides the possibility of freeing memory occupied by a dy-
namic array variable, i.e. a dynamic array may explicitly be deallocated. Tt is called

by
I free ( DynamicArrayVariable );

free has only a single parameter which must be a dynamic array variable. After a call
of free the index bounds of the array parameter are undefined as long as the array
is not allocated again. free will have no effect if an array is not allocated when it is
passed as a parameter.

Access to an array which is not allocated may have undesirable consequences such
as a runtime error (see B.2.4). Therefore, PASCAT, XSC provides a function for testing
the accessibility of dynamic arrays. It is called by

I allocated ( DynamicArray Variable )

and delivers a boolean result. allocated yields the value true, if the dynamic array
variable which has to be passed as the only parameter is allocated, and false otherwise.
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Example: In Section B.1, procedure do_something was an example of how to use
dynamic arrays within subroutines. It contained a declaration of the local variable
local the size of which was specified by the integer parameter of the procedure.

Now, let us assume that we want to double the size of 1local within the procedure.
By means of the new standard subroutines described in Section B.2.3, we may change
do_something as follows:

type vector = dynamic array [*] of real;

procedure do_something (n: integer);
var
local : vector;
begin
allocate (local, 1..n);
.. { do something }
free (local); { might be omitted }
allocate (local, 1..2%n);
{ do something else }
end;

The first call to allocate sets up the variable local with indices ranging from 1 to n.
After some further statements we deallocate local by calling free. In this example,
this would not be necessary because the following call of allocate first deallocates local
automatically. However, if the program was in danger to run out of memory and local
was not be used in the remaining statements of the procedure, it would surely be useful
to deallocate the array here. Finally, the second call to allocate sets up local once
more, this time with an index range from 1 to 2n.

B.2.4 Access to and Assignment of Dynamic Arrays

Compared to the present implementation (see [22]), the semantics of an assignment
statement

A := B;

where A and B are assignment compatible dynamic arrays, will not change with the
following exceptions.

1. A runtime error will be issued if B is not allocated.
2. 1f A is not allocated, it will be allocated before assignment will be carried out. A

will have the same size and index bounds as B.

A runtime error is issued if a dynamic array which is not allocated is accessed in an
expression and if array indices are to be checked. Otherwise, if array indices are not
checked then the effect of accessing a dynamic array which is not allocated is undefined.?

3The checking of array indices is controlled by compiler options.
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B.2.5 Dynamic Arrays as Components of Other Types

Dynamic arrays may now be components of other structured data types like static
arrays or records. They may also be referenced by pointers. This is not a syntax
extension but an extension to the semantics of type declarations. The declaration of a
dynamic array type as the component type of a composite data type follows the rules
for dynamic array type declarations given in Section B.2.1. In particular, default index
ranges may be specified.

Examples:
type
rec = record
a, b : real;
v : dynamic array [*] of real
end;
type
rec = record
a, b : real;
v : dynamic array [1..5] of real
end;

The rules for allocation and deallocation of dynamic components are the same as for
dynamic array variables.

Special care has to be taken when a program uses pointers to dynamic arrays.
Consider the following

Example:

type
dyn = dynamic array [*] of integer;
dyn2 = dynamic array [1..10] of integer;

var
pl = tdyn;
p2 = Tdyn2;

begin
new (p2); { automatic allocation of p271 }
new (p1); { allocation of a runtime descriptor only *

allocate (pit, 1..10); { explicit allocation of pit }
.. { do something }

end.
As you can see p2 points to a dynamic array with default index range from 1 to 10.
Therefore, the call of new automatically allocates the dynamic array p2 points to. This
is not the case for the second call of new. Since p1 points to a dynamic array which

has no default index ranges new only creates a runtime descriptor for the array. The
array itself has to be explicitly allocated with a call of allocate.
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