
U. Allend�orfer D. Cordes

PASCAL{XSC

User's Guide

Numerik Software GmbH

Baden-Baden, Germany

c 1991 Numerik Software GmbH, Baden-Baden
Printed in Germany

All rights reserved. No part of this book may be translated or reproduced in any form without

written permission from Numerik Software GmbH.

The use of general descriptive names, trade names, trademarks, etc. in this publication is

not specially identi�ed. It is not to be taken as a sign that such names, as understood by the

Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Disclaimer

Numerik Software GmbH and the authors make no representation or warranty with respect

to the adequacy of this book or the programs which it describes for any particular purpose or

with respect to their adequacy to produce any particular result. In no event shall Numerik

Software GmbH or the authors be liable for special, direct, indirect or consequential damages,

losses, costs, charges, claims, demands or claims for lost pro�ts, fees or expenses of any nature

of kind.

PASCAL{XSC

User's Guide

The programming language PASCAL{XSC (PASCAL eXtension for Scienti�c Computa-
tion) signi�cantly simpli�es programming in the area of scienti�c and technical computing.
PASCAL{XSC provides a large number of prede�ned data types with arithmetic operators
and prede�ned functions of highest accuracy for real and complex numbers, for real and
complex intervals, and for the corresponding vectors and matrices. Thus, PASCAL{XSC
makes your computer much more powerful at the arithmetic level.
Through an implementation in C, compilers for PASCAL{XSC are available for a large
variety of computers such as personal computers, workstations, mainframes and supercom-
puters. PASCAL{XSC provides modules, an operator concept, functions and operators of
arbitrary result type, overloading of functions, procedures and operators, dynamic arrays,
access to subarrays, rounding control by the user, and accurate evaluation of expressions.
The language is particularly suited for the development of numerical algorithms which deliver
highly accurate and automatically veri�ed results. A number of problem-solving routines
with automatic result veri�cation have already been implemented. PASCAL{XSC contains
Standard PASCAL. It is immediately usable by PASCAL programmers. PASCAL{XSC is
easy to learn and ideal for programming education.

Address: Numerik Software GmbH
P.O. Box 2232
W-7570 Baden-Baden
Federal Republic of Germany

Contents

1 Introduction 1

1.1 Typography : 1

1.2 The PASCAL{XSC System : 1

1.3 The PASCAL{XSC Language : 2

2 Installation 3

2.1 Installation on a UNIX System : 3

2.2 Environment Variables : 7

2.3 Testing the Installation : 7

3 Compiling a PASCAL{XSC Program 9

3.1 First Try : 9

3.2 PASCAL{XSC Batch Manager : 11

3.3 PASCAL{XSC Interactive Manager : 12

3.3.1 Single Program Development : : : : : : : : : : : : : : : : : : : 12

3.3.2 Multiple File Development : 14

3.3.3 Further Tools : 15

3.4 PASCAL{XSC Listing : 17

3.5 PASCAL{XSC Compiler : 20

3.6 PASCAL{XSC Compiler Options : 20

3.6.1 Display Options : 21

3.6.2 Code Generation Options : 22

3.6.3 Debug Options : 22

3.7 PASCAL{XSC Con�guration : 23

3.7.1 Search Algorithm : 23

3.7.2 Con�guration Program : 24

3.8 The Module Concept : 27

3.9 Summary of File Usage : 28

i

ii CONTENTS

4 Running PASCAL{XSC Programs 31

4.1 PASCAL{XSC File Variables : 31

4.2 PASCAL{XSC Runtime Options : 34

5 PASCAL{XSC Implementation 39

Headings marked by * do not contain additional text

5.1 Basic Symbols : 39

5.2 Identi�ers : 39

5.3 Constants, Types, and Variables : 40

5.3.1 Simple Types : 41

5.3.1.1 integer : 41

5.3.1.2 real : 42

5.3.1.3 boolean : 45

5.3.1.4 char : 45

5.3.1.5 Enumeration Types : : : : : : : : : : : : : : : : : : : 45

5.3.1.6 dotprecision : 45

5.3.2 Structured Types : 46

5.3.2.1 Arrays : 46

5.3.2.2 Subarrays* : 46

5.3.2.3 Access to Index Bounds* : : : : : : : : : : : : : : : : : 46

5.3.2.4 Dynamic Arrays : 46

5.3.2.5 Strings* : 47

5.3.2.6 Dynamic Strings : 47

5.3.2.7 Records* : 49

5.3.2.8 Records with Variants : : : : : : : : : : : : : : : : : : 49

5.3.2.9 Sets : 49

5.3.2.10 Files : 49

5.3.2.11 Text Files : 49

5.3.3 Structured Arithmetic Standard Types : : : : : : : : : : : : : : 49

5.3.3.1 The Type complex : 49

5.3.3.2 The Type interval : 50

5.3.3.3 The Type cinterval : 50

5.3.3.4 Vector Types and Matrix Types : : : : : : : : : : : : : 50

5.3.4 Pointers : 51

5.3.5 Compatibility of Types : 52

5.3.5.1 Compatibility of Array Types* : : : : : : : : : : : : : 52

CONTENTS iii

5.3.5.2 Compatibility of Strings* : : : : : : : : : : : : : : : : 52

5.4 Expressions : 53

5.4.1 Standard Expressions : 53

5.4.1.1 Integer Expressions : 53

5.4.1.2 Real Expressions : 53

5.4.1.3 Boolean Expressions : : : : : : : : : : : : : : : : : : : 56

5.4.1.4 Character Expressions : : : : : : : : : : : : : : : : : : 56

5.4.1.5 Enumeration Expressions : : : : : : : : : : : : : : : : 56

5.4.1.6 Subrange Expressions : : : : : : : : : : : : : : : : : : 56

5.4.2 Accurate Expressions (#-Expressions)* : : : : : : : : : : : : : : 56

5.4.3 Expressions for Structured Types and Pointer Expressions : : : 56

5.4.3.1 Array Expressions* : 56

5.4.3.2 String Expressions* : : : : : : : : : : : : : : : : : : : 56

5.4.3.3 Record Expressions* : : : : : : : : : : : : : : : : : : : 56

5.4.3.4 Set Expressions* : 56

5.4.3.5 Pointer Expressions : : : : : : : : : : : : : : : : : : : 57

5.4.4 Extended Accurate Expressions (#-Expressions)* : : : : : : : : 57

5.5 Statements : 57

5.5.1 Assignment Statement* : 57

5.5.2 Input/Output Statements : 57

5.5.3 Empty Statement* : 63

5.5.4 Procedure Statement* : 63

5.5.5 goto-Statement : 63

5.5.6 Compound Statement* : 63

5.5.7 Conditional Statements* : 63

5.5.8 Repetitive Statements* : 63

5.5.9 with-Statement : 63

5.6 Program Structure* : 63

5.7 Subroutines : 63

5.7.1 Procedures* : 63

5.7.2 List of Prede�ned Procedures and I/O Statements : : : : : : : : 63

5.7.3 Functions : 63

5.7.4 Functions with Arbitrary Result Type* : : : : : : : : : : : : : : 64

5.7.5 List of Prede�ned Functions : 64

5.7.6 Operators : 64

5.7.7 Table of Prede�ned Operators* : : : : : : : : : : : : : : : : : : 64

iv CONTENTS

5.7.8 forward- and external-Declaration : : : : : : : : : : : : : : : 64

5.7.9 Modi�ed Call by Reference for Structured Types : : : : : : : : : 65

5.7.10 Overloading of Procedures, Functions, and Operators : : : : : : 66

5.7.11 Overloading of read and write* : : : : : : : : : : : : : : : : : : 66

5.7.12 Overloading of the Assignment Operator :=* : : : : : : : : : : : 66

5.8 Modules* : 66

5.9 String Handling and Text Processing* : : : : : : : : : : : : : : : : : : : 66

5.10 How to Use Dynamic Arrays* : 66

6 PASCAL{XSC Modules 67

6.1 Module stdmod : 67

6.2 Arithmetic Modules : 67

6.2.1 Module i ari : 67

6.2.2 Module c ari : 69

6.2.3 Module ci ari : 70

6.3 Module iostd : 71

6.4 Module x intg : 72

6.5 Module x real : 74

6.5.1 Classi�cation of real values : 74

6.5.2 Composition and Decomposition of real Values : : : : : : : : : : 75

6.5.3 Mathematical Functions : 75

6.5.4 Formatted Input/Output for real Values : : : : : : : : : : : : : 78

6.5.5 IEEE Exception Handling Routines : : : : : : : : : : : : : : : : 78

6.6 Module x strg : 80

6.7 Modules lss, ilss, clss, cilss : 81

A Deviations 83

A.1 Deviations from Standard PASCAL : 83

A.2 Deviations from PASCAL{XSC : 85

B Syntax Diagrams 87

C Runtime Messages 88

C.1 Descriptive Messages : 89

C.2 List of Values : 93

C.3 Function Trace Back : 93

D IEEE Exception Handling Environment 95

CONTENTS v

E ASCII Collating Sequence 98

References 99

Index 100

List of Figures

3.1 Command syntax of the batch manager call : : : : : : : : : : : : : : : 11

3.2 Notation of data types in listings : 18

3.3 Command syntax of PASCAL{XSC compiler call : : : : : : : : : : : : 20

4.1 Example for the association of �le variables with command line arguments 33

5.1 PASCAL{XSC simple types and related C types : : : : : : : : : : : : : 41

5.2 integer data format : 41

5.3 IEEE double oating-point format : 42

5.4 real constants minreal and maxreal : 43

5.5 Structure of a quiet NaN : 43

5.6 Special real values : 44

5.7 Example for invalid and correct de�nitions of �le types with strings : : 48

5.8 PASCAL{XSC vector and matrix types and related C types : : : : : : 50

5.9 Example for invalid de�nitions of types with pointers : : : : : : : : : : 51

5.10 Example for use of subrange types : 52

5.11 Domains of real functions with a priori error estimation : : : : : : : : : 54

5.12 Equivalent notations for procedure write with string arguments : : : : 62

5.13 Example for a type conversion function : : : : : : : : : : : : : : : : : : 64

5.14 Example for the selection of subroutines : : : : : : : : : : : : : : : : : 66

6.1 Domains of interval functions : 68

6.2 Output format for structured arithmetic types : : : : : : : : : : : : : : 70

6.3 Additional named operators in module x intg : : : : : : : : : : : : : : 73

6.4 Domains of real functions with a posteriori error estimation : : : : : : 77

C.1 Example for an exception message : 88

C.2 Short text used in list of values : 94

E.1 ASCII collating sequence : 98

vi

Chapter 1

Introduction

1.1 Typography

Throughout this document the following typing conventions are applied in order to
emphasize and distinguish certain words, names, or paragraphs.

italic types are used for emphasized terms within the text.
"quoted italic types" are used for C names within the text.
bold-faced types are used for PASCAL{XSC word symbols like begin

and module within the text.
slanted types are used for PASCAL{XSC standard names like in-

teger and real within the text.
typescript is used for PASCAL{XSC program listings, options,

and input and output protocols.

Citations are always given in the form [nr] where nr is the corresponding entry number
in the reference list.

1.2 The PASCAL{XSC System

The complete PASCAL{XSC system consists of

the PASCAL{XSC con�guration program,
the PASCAL{XSC manager programs,
the PASCAL{XSC compiler,
the PASCAL{XSC standard modules, and
the PASCAL{XSC runtime system library.

The PASCAL{XSC compiler does not contain a code generator for machine speci�c
code. Instead of this, readable C code (conforming to the ANSI C standard [1]) is

1

2 CHAPTER 1. INTRODUCTION

generated. The idea is to withdraw the high-level language PASCAL{XSC compiler
from machine dependencies as far as possible and to rely on the capabilities of existing
C compilers to be generators of e�cient machine code which take into account low-level
routines of operating systems and machine dependent properties.

The required C compiler for the compilation of the generated C code as well as the
linker for the generation of an executable program are not part of the PASCAL{XSC
system.

Both the PASCAL{XSC compiler and the PASCAL{XSC runtime system are com-
pletely implemented in C. Due to di�ering linkage conventions and di�ering methods
of argument passing, the PASCAL{XSC runtime system library must be compiled with
the same C compiler which is applied to the C code generated by the PASCAL{XSC
compiler.

In this document, the PASCAL{XSC system and its default settings are described.
Local installations may di�er from the described PASCAL{XSC system in altered
default settings and speci�c hardware dependencies. These di�erences are gathered in
local con�guration guides. Possible changes in the default values are marked in this
document by a reference to the appropriate local con�guration guide which applies to
the individual installation.

1.3 The PASCAL{XSC Language

The programming language PASCAL{XSC is completely described in [4] and will not
be presented in this manual.

The current implementation of a PASCAL{XSC compiler comprises the complete lan-
guage PASCAL{XSC with some minor exceptions described in Appendix A Deviations.
On the other hand, some additional features are introduced for the sake of general-
ization of concepts. The description of these extensions can be found in Chapter 5
PASCAL{XSC Implementation.

Chapter 2

Installation

The process of installing the PASCAL{XSC system depends on the operating system
which is available on the target machine. Thus, a general guide for installation is not
possible. Nevertheless, the installation of the PASCAL{XSC system on a multi-user
operating system gives an impression on the tasks that have to be done. Due to its
wide distribution, the operating system UNIX is selected for a demonstration of the
process of installation in section 2.1. The following sections 2.2 and 2.3 do not depend
on a speci�c operating system.

2.1 Installation on a UNIX System

This chapter describes, how to install the PASCAL{XSC system on a machine with
operating system UNIX1. For details about the installation for other operating systems
refer to your local con�guration guide.

Goals of the installation are

� to provide easy access to the PASCAL{XSC system for all users who have access
to the target machine,

� to enable each user to create and modify his individual PASCAL{XSC con�gu-
ration, and

� to establish copy protection and write protection for the PASCAL{XSC system.

The following steps shall be performed in the stated order.

1. Create directories for the PASCAL{XSC system.

� Create a main directory for the installation of the complete PASCAL{XSC
system, for example:

1UNIX is a registered trade mark of Bell Laboratories

3

4 CHAPTER 2. INSTALLATION

mkdir /pxsc

� Create a subdirectory for the executable programs of the PASCAL{XSC
system, for example:

mkdir /pxsc/bin

� Create a subdirectory for all remaining �les of the PASCAL{XSC system,
for example:

mkdir /pxsc/sys

In this document, this subdirectory will be called "system directory" or
synonymously $PXSC SYS.

All the created directories must have execution permission for all users. This can
be established by using system commands, for example:

chmod go=x /pxsc /pxsc/bin /pxsc/sys

2. De�ne environment variables.
Add the path of the subdirectory for the executable programs of PASCAL{XSC
to the PATH variable of all authorized users.

De�ne an environment variable called PXSC SYS which holds the path name of
the "system directory" of the PASCAL{XSC system for all users.

� The value of PXSC SYS must end with a path delimiter character "/".

� The name PXSC SYS must by written with upper case letters.

For example using the bourne shell:

PXSC_SYS=/pxsc/sys/

export PXSC_SYS

For example using the C shell:

setenv PXSC_SYS /pxsc/sys/

For example on DOS:

set PXSC_SYS=\pxsc\sys\

Place the appropriate commands for the de�nition of the environment variables
PATH and PXSC SYS in a general pro�le or the pro�le of each user.

2.1. INSTALLATION ON A UNIX SYSTEM 5

3. Copy executable programs.
All executable programs of the PASCAL{XSC system must be copied to the
created subdirectory for executable programs. The following table lists the exe-
cutable program �les of the PASCAL{XSC system.

executable programs

pxsc PASCAL{XSC compiler
mxsc batch manager
dxsc interactive manager
exsc short listing generator
psclist long listing generator
l2p listing to source �le conversion
pxsccfg con�guration program
dismod discompiler for interface �les
splitmod program to split a PASCAL{XSC module
mod2lib shell-procedure to create a library from a module
mvmod shell-procedure to move a PASCAL{XSC module

All these �les must have execution permission and should be read and write
protected. This can be established by using system commands, for example:

chmod go=x $PXSC SYS../bin/*

4. Copy all other �les.
All other �les of the PASCAL{XSC system must be copied to the subdirectory
$PXSC SYS. The following table lists the remaining �les of the PASCAL{XSC
system.

help �les, include �les, libraries

cxsc.hlp help �le of the con�guration program
dxsc.hlp help �le of the interactive manager
errtext.hlp compiler messages
info.txt runtime help �le
o msg1.h runtime messages
p88.env con�guration �le
p88rts.ii runtime include �le
p88rts.h runtime interface �le
rts.a runtime library of PASCAL{XSC

compiled standard modules

stdmod.o stdmod.h stdmod.mod
iostd.o iostd.h iostd.mod
x intg.o x intg.h x intg.mod
x real.o x real.h x real.mod
x strg.o x strg.h x strg.mod

6 CHAPTER 2. INSTALLATION

compiled arithmetic modules

i ari.o i ari.h i ari.mod
c ariaux.o c ariaux.h c ariaux.mod
c ari.o c ari.h c ari.mod
ci ari.o ci ari.h ci ari.mod
mv ari.o mv ari.h mv ari.mod
mvi ari.o mvi ari.h mvi ari.mod
mvc ari.o mvc ari.h mvc ari.mod
mvci ari.o mvci ari.h mvci ari.mod

compiled problem solving modules

lss aprx.o lss aprx.h lss aprx.mod
lss.o lss.h lss.mod
ilss.o ilss.h ilss.mod

All these �les must have read permission and should be write and execution
protected. This can be established by using system commands, for example:

chmod go=r $PXSC SYS*

5. Create p88rts.i
If the runtime include �le "p88rts.i" does not exist (this may be possible for the
�rst installation), rename "p88rts.ii" to "p88rts.i":

cd $PXSC_SYS

mv p88rts.ii p88rts.i

6. Set write protection.
Establish write protection on the �les "p88rts.i" and "p88.env", for example by
means of the system command

chmod -w p88rts.i p88.env

in order to protect them against accidential deleting.

All the following sections and chapters are not restricted to UNIX systems.

2.2. ENVIRONMENT VARIABLES 7

2.2 Environment Variables

The environment variable PXSC SYS holds the path name of the "system directory"
and should be the same for all users. Nevertheless, it may be altered locally by each
user in order to switch to an alternate installation of the PASCAL{XSC system.

Further environment variables may be de�ned locally by each user of the PASCAL{
XSC system.

PXSC SYS holds the name of the"system directory" of
the installed PASCAL{XSC system (usu-
ally the value of this environment variable
is not changed by users)

PXSC USR holds the name of a directory bearing an
individual con�guration �le "p88.env" and
further modules (must end with a path de-
limiter character!)

PXSC EDIT holds the command string for the invoca-
tion of the favorite editor program, the user
prefers to use

PXSC LIB holds a su�x string for the link command
containing linker options, object �le names,
and library names

All names of these environment variables must be written in capital letters.

The variables PCSC SYS and PXSC USR are investigated by the PASCAL{XSC com-
piler, the subroutines of the PASCAL{XSC runtime system library, the interactive
manager, and the batch manager. PXSC EDIT and PXSC LIB are used by the inter-
active manager and the batch manager only.

2.3 Testing the Installation

If you have installed the PASCAL{XSC system on a multi-user operating system, for
instance on a UNIX system, then you must be logged in as a user other than the owner
of the PASCAL{XSC system, in order to test the correct access to the system.

If you have installed the PASCAL{XSC system on a single-user operating system, for
instance on a DOS system, then switch to a test directory, e.g.,

cd \test

in order to test the correct access to the system.

8 CHAPTER 2. INSTALLATION

De�ne the environment variable PXSC EDIT with your favorite editor command, e.g.,

set PXSC_EDIT=c:\dos\edit.exe

Enter the command

dxsc hello.p

If you get an answer like

command not found

from the operating system, make sure that the command path which is usually repre-
sented by the environment variable PATH contains the name of the directory holding
the executable programs of the PASCAL{XSC system. If you get the answer

Help file ...dxsc.hlp not found.

enter the letter 'q' followed by the RETURN key to quit the interactive manager. Make
sure that the environment variable PXSC SYS is de�ned (see 2.1) and that all �les in
this directory have read permission.

Otherwise, you will see the main menu of the interactive manager "dxsc" of the
PASCAL{XSC system.

In order to test the on-line-help facility of the manager, enter the command 'h'. You
will get information about all available commands of the program "dxsc".

Enter 'q' to quit the program. For additional testing perform the actions described in
section 3.1.

Chapter 3

Compiling a PASCAL{XSC

Program

3.1 First Try

This section describes, how to compile and run a simple PASCAL{XSC program.

When working on a DOS system, de�ne the environment variable PXSC EDIT with
your favorite editor command, e.g.,

set PXSC_EDIT=c:\dos\edit.exe

Enter the command

dxsc hello.p

You will see the main menu of the interactive manager "dxsc" of PASCAL{XSC.

Each command of the interactive manager must be terminated by the RETURN key.

Enter the letter 'e' in order to start the editor program and then enter the following
PASCAL{XSC program by means of the editor.

program hello (output) ;

begin

writln ('Hello') ;

end.

In order to see what happens in case of errors, misspell the procedure name writeln as
shown above.

Leave the editor by typing the appropriate editor command.

Enter the command 'c' to compile and link program "hello.p".

9

10 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

You see the error message

3: writln ('Hello') ;

1

Error at 1: Identifier not declared.

Enter the editor again, correct the error by inserting the missing letter 'e', and recom-
pile the program with the 'c' command.

If you see the message

Linkage complete.

you may enter the command 'rr' to run the linked program without command line
arguments.

The output string

Hello

is displayed on your terminal screen.

3.2. PASCAL{XSC BATCH MANAGER 11

3.2 PASCAL{XSC Batch Manager

The batch manager may be used to compile a single PASCAL{XSC module or to
compile and link a single PASCAL{XSC program. As the batch manager does not
request any user input, this manager may be used in background processes.

The command syntax of the batch manager call is given in Figure 3.1.

.

....
mxsc
�
�

�

j +j compileroption

-j compileroption

j manageroption j

�lename . . j.

Figure 3.1: Command syntax of the batch manager call

Compiler options are pre�xed by a '+' or '-' and are passed to the PASCAL{XSC
compiler. See 3.6 PASCAL{XSC Compiler Options for a detailed description.

Manager options are pre�xed by the underscore character '_'. Manager options are:

_c C compiler option add a further C compiler option
_e edit the source �le before compilation
_x run the compiled program after linkage

If the '_e' option is applied, the value of the environment variable PXSC EDIT is used
to call the editor. So each user may use his favorite editor. In case of the manager
option '_e', the PASCAL{XSC source �le speci�ed by �lename need not exist, but it
must exist after leaving the editor.

If the '_x' option is applied, the program will be called immediately after linkage
without any program parameters. See 4 Running PASCAL{XSC Programs for an
alternative call of PASCAL{XSC programs with program parameters.

The �lename immediately following the 'mxsc' command must be the �le name of
a PASCAL{XSC source �le. The �le name extension of the source �le name (nor-
mally '.p') may be omitted. The �le name must not start with any of the symbols '+',
'-', or '_'.

12 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

3.3 PASCAL{XSC Interactive Manager

The interactive manager "dxsc" improves the development cycles of PASCAL{XSC
programs allowing repeated calls of the editor, the PASCAL{XSC compiler, and the
compiled and linked PASCAL{XSC programs. Therefore, this manager is called

PASCAL{XSC development system.

The interactive manager communicates with the user. Since the interactive manager
is a portable program written in ANSI C, each manager command must be terminated
by an end-of-line character (normally generated by pressing the RETURN key), and
the manager does not allow the use of any unportable features such as cursor keys,
function keys, or mouse control.

All manager commands may be written in lower case letters as well as in upper case
letters.

3.3.1 Single Program Development

Enter the command 'dxsc' followed by a �le name. If a PASCAL{XSC source �le does
not exist, you must specify the �le name with extension (normally '.p'), in contrast to
the batch manager. If the PASCAL{XSC source �le already exists, then the extension
may be omitted.

If you do not specify a �le name, you are requested to do so. Subsequently, the current
�le name of the "dxsc" command is denoted by �lename.

e Edit

After the main menu of the interactive manager appeared on the screen, enter 'e' to
start the editor for �lename. If you prefer another editor, you may change or add
the de�nition of the environment variable PXSC EDIT in your pro�le, see your local
con�guration guide and your operating system manual. The value of PXSC EDIT must
be the command name of the editor call and will be concatenated with the �le name
before it is passed to the command interpreter.

After editing the current PASCAL{XSC source �le, leave the editor with the appro-
priate editor command.

Press RETURN, if you are requested to do so.

c Compile

Enter 'c' to start the PASCAL{XSC compiler for �lename.

Let us assume, the PASCAL{XSC source �le contains errors that can be detected by
the compiler.

3.3. PASCAL{XSC INTERACTIVE MANAGER 13

The PASCAL{XSC compiler reports errors in a short form by providing an error num-
ber, a line number, and a column number indicating the position of the error in the
PASCAL{XSC source �le. This information may be used, whenever the listing gener-
ator fails for some reason.

After the message

Pascal compilation unsuccessful.

the short listing generator is called automatically by the interactive manager. The
listing is displayed on the terminal. See 3.4 PASCAL{XSC Listing for an explanation
of the listing.

You may now enter the editor with the 'e' command and correct the error in the
PASCAL{XSC source �le. Leave the editor and recompile your program using the
'c' command. Repeat this cycle until you see the message

linkage complete

or the message

�lename is module: no linker call.

l List edit

If the error listing is too long to �t on the screen, you may use the 'l' command
to correct the errors. The 'l' command calls the long listing generator. The long
listing contains the full text of the PASCAL{XSCsource �le with interspersed error
messages. The editor will be called automatically to edit the listing �le and to revise
the PASCAL{XSC source.

In the long listing, all PASCAL{XSC source lines start with a blank character and
all message lines start with an exclamation mark '!'. In order to �nd error messages,
search for lines starting with '!' by means of an appropriate editor command. When
revising PASCAL{XSC source lines, do not type a '!' at the beginning of a line. Do
not delete a '!' from the beginning of a line.

After leaving the editor, a new PASCAL{XSC source �le may be constructed from the
listing �le by deleting all lines starting with '!'. You are asked, whether you want to
do this. The reconstruction of a PASCAL{XSC source �le from a listing �le is done
by the executable program "l2p".

Due to some strange handling of the tabulator character, the indentation of the original
PASCAL{XSC source �le may be damaged, when using the 'l' command.

r Run

Enter the 'r' command of the manager to execute the PASCAL{XSC program. The
letter 'r' may be followed by program parameters, see 4.1 PASCAL{XSC File Vari-
ables and 4.2 PASCAL{XSC Runtime Options. If no program parameters are speci�ed

14 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

immediately after the letter 'r', you are requested by the interactive manager program
to enter the program parameters. Enter an empty line, if the program needs no pa-
rameters. Enter the 'rr'command (re-run), if you want to run the program with the
same parameters as speci�ed in a previous run of the program in the actual session of
the interactive manager.

q Quit

Enter the 'q' command to leave the interactive manager program "dxsc".

3.3.2 Multiple File Development

You may specify several �le names in the command line on calling "dxsc". On a UNIX
system you may use "wild cards", for example:

dxsc *.p

The last �le name speci�ed will be the current �le name. The current �le is the �le,
that will be edited, compiled, and executed. The other �le names are stored by the
manager. The manager "dxsc" can handle at most 10 �le names. You may switch
between �le names by means of the 'f' command of the manager.

f File name

Enter the letter 'f' followed by the end-of-line character (pressing the RETURN key).
You will see a sub-menu with the �le names stored by "dxsc". These �le names are
identi�ed by digits and letters. The letter 'p' identi�es the last main program, the
letter 'm' identi�es the last PASCAL{XSC module, and the letter 'o' identi�es a �le
not known to be a module or a main program (others).

Entering 'f' followed by a letter or a digit suppresses the sub-menu. With the 'fn'
command of "dxsc" you may add a �le name to the list of �le names stored by the
interactive manager.

If you specify more than 10 �le names, you are requested to drop previously speci�ed
�le names. A sub-menu will appear and by entering digits you can specify �le names
which shall be dropped.

e Edit

You may edit a �le other than the current �le by entering the letter 'e' followed by the
�le name. This does not change the setting of the current �le.

3.3. PASCAL{XSC INTERACTIVE MANAGER 15

3.3.3 Further Tools

h Help

The interactive manager contains an on-line-help facility that informs the user about
all manager commands. Enter 'h' or '?' for further help.

d Display toggle

If you are tired of repeatedly looking at the main menu and the

<<< Press the RETURN key to continue >>>

prompt, enter the 'd' command of "dxsc". To display the main menu again, enter the
'd' command a second time.

The 'd' command toggles between displaying and suppressing the main menu.

y sYstem

The system command 'y' of the interactive manager allows processing of commands
of the operating system without leaving the manager. Enter the letter 'y' followed by
a system command to execute the system command. Enter the letter 'y' followed by
the end-of-line character to enter a command line interpreter; for example the bourne
shell in UNIX or "COMMAND.COM" in DOS. Use an appropriate system command
to return to the interactive manager program.

c Compile

Compiler options for the PASCAL{XSC compiler and the C compiler may be provided
with the 'c' command immediately following the letter 'c'. See 3.6 for an explanation
of PASCAL{XSCcompiler options. More details about changing the default options of
the PASCAL{XSC compiler can be found in 3.7 PASCAL{XSC Con�guration.

Options for the C compiler in use must be separated from PASCAL{XSC compiler
options by a semicolon ';' in the 'c' command. Refer to the manuals of your C compiler
for an explanation of C compiler options.

For example, if you want to merge the text of the PASCAL{XSC source �le into the
generated C code (compiler option '+m') and you want to add symbolic information to
the generated object code produced by the C compiler (C compiler option '-g'), use
the "dxsc" command

c +m;-g

If you want to change linker options, you have to use the 'b' command.

16 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

b Batch

The 'b' command creates a batch �le (DOS) or shell procedure �le (UNIX) which can
be used for the C compilation and the linkage of a PASCAL{XSCprogram.

The generated �le is called "lxsc.bat" and may be used

� to display the C compiler call and the linker call being used, or

� to modify the C compiler call or the linker call, or

� to recompile a program, whenever the compilation with the PASCAL{XSC or
C compiler fails, because of insu�cient memory.

In order to modify a call, the following steps must be performed:

1. Run the PASCAL{XSC compiler by means of the 'c' command. You may abort
the C compilation or the linkage by means of an appropriate break key (if avail-
able) since the results of these steps are not needed.

2. Enter the 'b' command of the interactive manager program.

3. Edit the generated batch �le "lxsc.bat" by means of the manager command

e lxsc.bat

4. Run the batch �le by means of the manager command

y lxsc.bat

In order to compile a program in case of insu�cient memory, perform the following
steps:

1. Leave the manager with the 'q' command.

2. Start the PASCAL{XSC compiler separately, see 3.5 PASCAL{XSC Compiler.

3. Enter the interactive manager "dxsc" again.

4. Enter the 'b' command of "dxsc".

5. Run the generated batch �le by means of the manager command

y lxsc.bat

or leave "dxsc" and run the batch �le separately.

3.4. PASCAL{XSC LISTING 17

In order to compile a module in case of insu�cient memory, you have to call the
PASCAL{XSC compiler and the C compiler separately.

Since the 'b' command is intended to create a link command, the 'b' command fails
after compiling a module.

The 'b' command may also fail after compiling a main program. In order to avoid this
error either

� switch o� the 'rm' option, see 3.7.2 Con�guration Program, or

� abort the C compilation or the linkage by means of an appropriate break key, or

� use the "dxsc" command

y pxsc options �lename

for the compilation, see 3.5 PASCAL{XSC Compiler, or

� enter the 'b' command before the compilation. Ignore the warning message of
the manager program. Compile the program with the 'c' command. Enter the
'b' command a second time.

m Make

In the current implementation the 'm' command is identical with the 'c' command.

p Print

The 'p' command may be used to print a �le on a printer. Entering 'p' followed by
end-of-line prints the current �le. Typing 'p' followed by a �le name prints the speci�ed
�le without changing the current �le.

The 'p' command depends on the current installation and the operating system. Refer
to your local con�guration guide.

3.4 PASCAL{XSC Listing

The short listing generator is called "exsc". After a PASCAL{XSC compilation "exsc"
may be called without program parameters. The listing is displayed on the terminal.
The short listing contains only the source lines in which errors are detected. The source
lines are preceded by their line numbers.

The long listing generator is called "psclist". The long listing contains all source lines.
They are not preceded by line numbers. The long listing is intended to be edited. See
the 'l' command of "dxsc" in 3.3.1.

18 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

Under each erroneous source line, there is a line with position digits, that indicate
positions in the preceding line of source text. Position digits, that are not separated
by spaces, must not be interpreted as numbers. For example in the listing

4: x:= a+b ;

12 34

the symbols 'x', ':=', '+', and 'b' caused some kind of error. Do not read 12 as "twelve"
and 34 as "thirtyfour".

The corresponding error messages of the PASCAL{XSC compiler are listed below the
line of position digits. For example

Error at 1: Identifier not declared.

refers to the symbol 'x' in line 4, not to line 1 or column 1.

Error messages starting with 'Check at' are internal compiler errors. The error text is
meaningless for users. If such an error message still occurs after correcting all PASCAL{
XSC errors, you should inform the compiler development group about this error.

In some of these internal error messages, the data type of an actual parameter or an
actual operand is given. The notations used to represent these data types are listed in
Figure 3.2.

Notation Description
typename named data type
ARRAY unnamed static array type
DYNAMIC unnamed dynamic array type
RECORD unnamed record type
FILE unnamed �le type
SET unnamed set type
^typename unnamed pointer type with the name of the refered

data type
^ data type of NIL
(name,...) unnamed enumeration type with the name of the

�rst constant
.. unnamed subrange type
,... indicates that only the data types of the �rst four

parameters are listed
unknown indicates that an error occurred in the declaration

of the actual parameter or operand

Figure 3.2: Notation of data types in listings

3.4. PASCAL{XSC LISTING 19

In order to get more evident error messages, use named data types, e.g., by introducing
type de�nitions in your PASCAL{XSC source �le.

In some cases, the type name is succeeded by a level number, indicating the static level
of the de�nition of the type name:

Level Description
0 a predeclared name such as real or char
1 an imported name,
2 a name declared on program level or a non-global name de-

clared on module level,
3 a name declared on subroutine level, or
4,: : : an inner subroutine level name.

The compiler has to split calls of read, readln, write, and writeln into several individual
calls. If a position digit is placed below read, readln, write, or writeln, then the
error message refers to the �rst parameter group. If a position digit is placed below
a comma, then the error message refers to the parameter group immediately following
the comma.

20 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

3.5 PASCAL{XSC Compiler

Warning: The PASCAL{XSC compiler should not be called directly by the user, be-
cause it is a frequent error to forget the required call of the C compiler.

The name of the PASCAL{XSC compiler is "pxsc". A call of "pxsc" without any pro-
gram parameters displays explanations of all PASCAL{XSCcompiler options and their
current default settings, which are de�ned in the con�guration �le, see 3.7 PASCAL{
XSC Con�guration.

The command syntax of the PASCAL{XSC compiler call is given in Figure 3.3.

.

....
pxsc
�
�

�

j +j compileroption

-j compileroption j

�lename . . j.

Figure 3.3: Command syntax of PASCAL{XSC compiler call

Compiler options are pre�xed by a '+' or '-'. See 3.6 PASCAL{XSC Compiler Options
for a detailed description.

The optional argument �lename is the name of the PASCAL{XSC source �le with or
without extension (normally '.p'). The �le name must not start with '+' or '-'. If
several �le names are speci�ed, only the last one will be used.

If options are speci�ed but no �le name is given, the PASCAL{XSC source is read from
standard input. In this case the merge option '+m' is disabled and a PASCAL{XSC
listing cannot be produced.

3.6 PASCAL{XSC Compiler Options

PASCAL{XSC compiler option are formed by one of the symbols '+' or '-' followed by
an option name without intervening blank characters.

In the current implementation only the �rst letter of an option name is signi�cant. The
'+' character switches the compiler option "on"; the '-' character switches the compiler
option "o�". This overrides the default setting of the option in the con�guration �le,
see 3.7 PASCAL{XSC Con�guration.

3.6. PASCAL{XSC COMPILER OPTIONS 21

Note to UNIX users: the PASCAL{XSC compiler options must not be collected since,
e.g., '-vw' is equivalent to '-v' and not to '-v -w'.

3.6.1 Display Options

v Verbose

'+v' displays useful information:

� the version number of the PASCAL{XSC compiler

� the name of the PASCAL{XSC source �le

� the path name of the con�guration �le being used

� the path name of imported modules

� whether or not the interface of a module has changed

� the name and line number of the subroutine just being compiled

Compiling subroutine name at line line number

'-v' (quiet) suppresses all the information listed above. Warnings and error messages
will still be displayed.

If neither '+v' nor '-v' is speci�ed, all the information listed above will be displayed
except for the subroutine information.

l List �le

'+l' directs all error messages and warnings of the PASCAL{XSCcompiler to the listing
�le (default �le name extension '.lst'). Do not use this option when using the batch
manager or interactive manager, because both the short and long listing generator
rewrite the listing �le.

Using the options '-v +l' suppresses all terminal output, except for the number of
errors, if any.

w Warnings

'-w' suppresses all warnings given by the compiler. Only a message

n warnings suppressed

will indicate that a total number of n warnings are suppressed.

22 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

3.6.2 Code Generation Options

x indeX check

'+x' enables the generation of runtime checks, such as index checks, range checks, and
pointer checks.

'-x' suppresses the generation of runtime checks, thus improving the processing speed.
Use '-x' only if you are sure, that the program will not raise any error that may be
detected by a runtime check.

n line Numbers

'+n' supports source line information in the generated program. In case of a runtime
error, a dynamic function trace back and line number information refering to PASCAL{
XSC source �les may be given by the runtime system.

'-n' suppresses the generation of line number and trace back information, thus improv-
ing the processing speed.

c Code generation

'+c' forces code generation, even if compilation errors occurred. A subsequent C com-
pilation of the generated C code may fail in case of detected compilation errors.

'-c' suppresses code generation and interface �le generation.

If neither '+c' nor '-c' is speci�ed, code will be generated, if the PASCAL{XSC compiler
does not detect any errors.

s Source directory

'+s' directs the compiler output to the directory where the source �le is found.

'-s' directs the compiler output to the current directory.

3.6.3 Debug Options

t Terminal

'+t' directs the generated C code to standard output instead of to the output �le with
default extension '.c'.

m Merge

'+m' merges the lines of the PASCAL source �le as C comment lines into the generated
C code.

3.7. PASCAL{XSC CONFIGURATION 23

r Rename

'-r' (not rename) preserves the PASCAL{XSC identi�er names. This improves debug-
ging and readability of the generated C program, because the original PASCAL{XSC
names are used in the C source �le. The C compilation and the linkage may fail when
using '-r'.

d Dump

'+d' (internal dump) produces a lot of output, that is meaningless to normal users.

3.7 PASCAL{XSC Con�guration

When a compilation is started, the PASCAL{XSC compiler reads the PASCAL{XSC
con�guration �le "p88.env", which contains default settings and system dependencies.

The con�guration �le contains

� default settings of compiler options,

� non-command-line compiler options,

� �le name extensions, and

� path names of interface �les.

In the "system directory" $PXSC SYS, a general con�guration �le is available for all
users.

Each user may create individual con�guration �les without inuencing other users.
This can be done by generating an individual con�guration �le in the "user directory"
PXSC USR for general access to a user-de�ned con�guration, or by placing a con�gu-
ration �le in the current directory. Thus, in each directory an individual con�guration
of the PASCAL{XSC system is possible. For details refer to the following section.

3.7.1 Search Algorithm

The PASCAL{XSC compiler searches for the con�guration �le "p88.env" in several
directories according to the following sequence of steps:

Step 1: Search for the con�guration �le in the current directory. If the con�guration
�le is not found, then the search is continued with the next step.

24 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

Step 2: If the environment variable PXSC USR is de�ned, search in the directory
given by the value $PXSC USR. The value of PXSC USR may be de�ned indi-
vidually by each user and must end with a path delimiter character ('/' in UNIX,
'\' in DOS). The name PXSC USR must be written in upper case letters. If the
con�guration �le is not found, then the search is continued with the next step.

Step 3: If the environment variable HOME is de�ned, then $HOME is concatenated
with the name of a "�xed user directory", which is de�ned in the executable
programs of the PASCAL{XSC system (for example "/pxsc/"). Refer to the
local con�guration guide for the setting of the default value. The search is done
in the directory which results from the concatenation. If HOME is not de�ned,
then the search is done in the "�xed user directory". If the con�guration �le is
not found, then the search is continued with the next step.

Step 4: If the environment variable PXSC SYS is de�ned, then the search is done in
directory $PXSC SYS. The value of PXSC SYS should be the same for all users.
The value of PXSC SYS must end with a path delimiter character. The name
PXSC SYS must be written in upper case letters. If the con�guration �le is not
found, then the search is continued with the next step.

Step 5: Search is continued in the "�xed system directory" which is de�ned during
the installation of the PASCAL{XSC system (for example '/pxsc/sys/'). Re-
fer to the local con�guration guide for the setting of the default value. If the
con�guration �le is not found, then the search is continued with the next step.

Step 6: Use a default con�guration. This might not �t to the operating system or
C compiler in use.

This algorithm (except for Step 6) is also used, when searching for interface �les
of a PASCAL{XSC module and for runtime �les (see also 3.8 Module Concept and
4.2 PASCAL{XSC Runtime Options).

3.7.2 Con�guration Program

A con�guration �le can be created, displayed, and modi�ed by the con�guration pro-
gram. The name of this program is "pxsccfg".

The program "pxsccfg" is an interactive program, that contains an on-line help facility
similar to "dxsc" described in 3.3 PASCAL{XSC Interactive Manager.

The con�guration program "pxsccfg" is invoked without program parameters. Before
starting "pxsccfg" change the current directory to be the directory, where you want to
store the new con�guration �le.

The program "pxsccfg" searches for an existing con�guration �le as described in 3.7.1.
The modi�ed con�guration �le is always written into the current directory, no matter
where the original con�guration �le was found.

3.7. PASCAL{XSC CONFIGURATION 25

After reading an old con�guration �le, "pxsccfg" displays the actual con�guration and
a menu on standard output "stdout". The con�guration may be modi�ed by "pxsccfg"
commands.

h Help

The 'h' command of "pxsccfg" enters the on-line help facility.

d Display

The 'd' command displays the modi�ed con�guration and a menu.

u Update

The 'u' command writes a modi�ed con�guration to the con�guration �le in the current
directory without leaving "pxsccfg".

e Exit

The 'e' command writes a modi�ed con�guration to the con�guration �le in the current
directory and leaves "pxsccfg".

k Kill

Discards the con�guration �le that is found in the current directory. Do not apply this
command to the system directory.

q Quit

The 'q' command leaves "pxsccfg" without saving the con�guration �le.

o + { Option

The default settings of command line options may be

set with the '+' command,
reset with the '-' command,
toggled with the 'o' command.

See 3.6 PASCAL{XSC Compiler Options for a description of command line options.

The following default settings should not be changed:

-l c +x -d -t +r

The "pxsccfg" commands '+c', '-c', 'oc', '+v', '-v', 'ov' disable the normal usage of
the code and verbose option, respectively. Use the command 'nc'and 'nv', respectively,
in order to switch to the normal usage of these options (without preceding '+' or '-').

26 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

n Non-command-line

Non-command-line options are options, that can not be controlled via command line
options, but only via the con�guration program.

The non-command-line option '+rm' saves disk space by removing all output �les which
are no longer needed. '-rm' preserves all output �les of the compiler.

The non-command-line option '+src' directs output �les of the compiler to the directory
of the source �le. '-src' directs output �les to the current directory.

The non-command-line option '+proto' should be set, if the C compiler uses new-style
prototypes (see ANSI C standard and your C compiler manual). '-proto' must be
used, if the C compiler does not accept new-style prototypes.

The non-command-line option '+y' uses the path name of the "system directory" in
order to search for the runtime include �le "p88rts.i". If the option '-y' is selected,
the path name of the runtime include �le"p88rts.i" is the path name speci�ed by the
'r' command of the con�guration program.

The setting of these options may be toggled with the 'nr', 'ns', 'np', and 'ny' commands
of "pxsccfg", respectively.

t Type name

The 't' command of "pxsccfg" o�ers the possibility to change the default �le name
extensions. The extension of PASCAL{XSC source �les '.p', the extension of listing
�les '.lst', and the extension of executable program �les may be changed by users
depending on the operating system. Changing other �le name extensions might result
in fatal errors.

i Interface

With the 'i' command the user speci�es a directory path where PASCAL{XSC modules
may be found. See also 3.8 PASCAL{XSC Module Concept.

r Runtime interface

The 'r' command sets the directory path of the runtime include �le "p88rts.i" of the
runtime system. This command automatically sets the non-command-line option '-y'.
A user explicitly de�nes a path name, if he uses his own runtime system or PASCAL{
XSC cross compilations are intended for target machines with di�erent directory hier-
archy.

3.8. THE MODULE CONCEPT 27

3.8 The Module Concept

The PASCAL{XSC language identi�es modules by identi�er names only. These iden-
ti�er names are associated with �le names. Two problems derive from this concept:

1. the distinction between upper case and lower case letters, and

2. the speci�cation of a directory path.

Some operating systems like UNIX distinguish between upper case letters and lower
case letters in �le names. In order to avoid any problems concerning �le names, it is
recommended to the user to use always the same case in typing identi�er names at the
following positions:

� in the module clause of the PASCAL{XSC source �le,

� in the use clause of the PASCAL{XSC source �le, as well as

� in the command line of the compiler call or manager call, and

� in the 'fn' command of the interactive manager program, see 3.3.2.

In the current implementation, module names must di�er within the �rst 6 characters.

The language PASCAL{XSC does not allow any speci�cation of path names in the use
clause, because this would result in unportable PASCAL{XSC programs.

Since it is possible to compile PASCAL{XSC modules in di�erent directories or to
place modules into di�erent directories, the compiler searches several directories for a
module, whenever a use clause occurs. The following search algorithm is performed:

Step 1: Search in the current directory. If not found, continue with the next step.

Step 2: Search in the directory of the PASCAL{XSC source �le just being compiled.
If not found, continue with the next step.

Step 3: Search in the directory, speci�ed in the con�guration �le, see the 'i' command
in 3.7.2 Con�guration Program. If not found, continue with the next step.

Step 4 to 7: The compiler uses Step 2 through Step 5 of the search algorithm for the
con�guration �le described in 3.7.1. If not found, the compilation is aborted.

The compiler "pxsc" searches for interface �les, which normally have the �le name
extension '.mod'. The PASCAL{XSC compiler and the managers "mxsc" and "dxsc"
assume that the accompanying C include �le (with �le name extension '.h') and the
object �le of the compiled module are placed in the same directory. Therefore, it
is mandatory to move the interface �le, the include �le, and the object �le together
whenever a compiled PASCAL{XSC module is moved from one directory to another

28 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

directory. The command "mvmod" may be used to do this. The shell procedure
"mvmod" expects one module name as �rst argument and one target directory as
second argument.

The interface �le of a PASCAL{XSC module contains the global declarations in a
compressed and unreadable form. The program "dismod" displays the contents of an
interface �le. When "dismod" is called without parameters, the program explains its
usage. Normally "dismod" is called with the name of the interface �le to be displayed.
The �le name extension '.mod' may be ommitted.

In order to reduce the size of executable PASCAL{XSC programs, it is necessary to
transform the object �les of some PASCAL{XSC modules into object libraries. The
command "mod2lib" may be used for this. "mod2lib" is a shell procedure and may
not be available for a speci�c operating system.

"mod2lib" calls the program "splitmod" which splits the C source �le, generated by the
PASCAL{XSC compiler, into several C source �les each containing one PASCAL{XSC
subroutine. All these C �les must be compiled and their object �les must be put into
a library. These actions are done by "mod2lib", if available.

For each PASCAL{XSC module that has been imported by a PASCAL{XSC main
program, the manager "mxsc" or "dxsc" looks for a �le with the �le name extension
'.0' (digit zero) and a �le with the extension of library �les, for example '.a' in UNIX.

If the '.0' �le exists, the object �le of the corresponding module is not linked with
the main program. If the '.0' �le does not exist and a library �le exists, the library is
linked instead of the object �le of the module.

If the �les with extension '.0' and '.a' exist, they must be placed in the directory of
the interface �le ('.mod') of the PASCAL{XSC module.

3.9 Summary of File Usage

This section contains a list of all program and data �les which are used or created by
the executable programs of the PASCAL{XSC system and the C compiler.

"(" indicates an input �le,
")" indicates an output �le,
"," indicates an input/output �le,
"??" indicates check for existence only.

The symbol @ is to be replaced by the name of the program or module just being
compiled. If an explicit path precedes the name of the program or module, then
the target directory for the generation of output �les depends on the setting of the
non-command-line option 'src' and the 's' compiler option. The 's' compiler option
overwrites the non-command-line option 'src'. Refer to 3.7.2 Con�guration Program
and 3.6.2 Code Generation Options.

3.9. SUMMARY OF FILE USAGE 29

The symbol � is to be replaced by the names of imported modules.

./ �le is placed in the current directory
!/ �le is placed in the "system directory"

$PXSC SYS
?/ �le is searched for according to the im-

plemented search algorithms described
in 3.7.1 and 3.8.

Here, the �le name convention of UNIX is used.

pxsccfg con�guration program

, ?/p88.env con�guration �le
(!/cxsc.hlp help �le

pxsc PASCAL{XSC compiler

(?/p88.env con�guration �le
(@.p PASCAL{XSC source �le
(?/�.mod imported interface �les
, @.mod exported interface �le, modules only
) @.c generated code
) @.h C interface �le, modules only
, ./modmod.tmp temporary interface �le
) ./errmess.tmp error message �le, in case of errors or warnings only
) ./linkinfo.tmp linkage information �le, programs only

Due to the usage of "errmess.tmp" and "linkinfo.tmp", it is not possible to run the
compiler more than once concurrently in the same current directory. "modmod.tmp"
is used only, if the C system does not support temporary �les.

mxsc and dxsc manager programs

(?/p88.env con�guration �le
(!/dxsc.hlp help �le of interactive manager
?? @.p PASCAL{XSC source �le
(./linkinfo.tmp linkage information �le
) ./lxsc.opt option �le for link command, not UNIX
) ./lxsc.bat batch �le created by the "b" command
?? ?/�.0 null �le
?? ?/�.a object libraries

exsc and psclist listing generator programs

(./errmess.tmp error message �le
(!/errtext.hlp compiler messages
(@.p PASCAL{XSC source �le
) @.lst PASCAL{XSC listing �le

30 CHAPTER 3. COMPILING A PASCAL{XSC PROGRAM

l2p listing to source �le converter

(@.lst PASCAL{XSC listing �le
) @.p PASCAL{XSC source �le

cc C compiler

(@.c generated C code
(@.h C interface �le, modules only
(?/�.h C include �les
(!/p88rts.i runtime include �le
(!/p88rts.h runtime interface �le
) @.o object �le

cc linkage

(@.o object �le of main program
(?/�.o object �les of modules
(?/�.a object �le libraries
(!/rts.a runtime system library
) @ executable program �le

@ program execution

(!/info.txt runtime help �le
(!/o msg1.h runtime messages

Chapter 4

Running PASCAL{XSC Programs

4.1 PASCAL{XSC File Variables

Names of PASCAL{XSC �le variables need not be listed as program parameters in
the program clause. If there are names of �le variables in the program clause,
then an external �le name may be given for each program parameter as command line
argument. The maximum length of each �le name including an optional directory path
is restricted to 63 characters even though longer �le names may be possible on certain
operating systems. The association of �le names (external devices) with �le variables
in the program parameter list is a three stage process:

� Step 1: Keyword association
All �le variables which are explicitly named as keywords immediately preceding
a �le name and separated by the symbol '=' are associated �rst. If no �le name
is given after the symbol '=', then a subsequent reset will assign to a text �le
variable the standard input device "stdin", a subsequent rewrite will assign to a
text �le variable the standard output device "stdout". A �le variable, which is
not a text �le, must not be assigned to standard input or standard output.

� Step 2: Positional association
The remaining command line arguments which are not runtime options (see
4.2 PASCAL{XSC Runtime Options) are associated from left to right with those
�le variables listed in the program clause which have not been assigned an ex-
ternal �le name yet.

� Step 3: Association by prompting
By default, there is no immediate prompting for an external �le name if a program
parameter has not been associated with a command line argument.

If you want prompting at the beginning of the processing of a program, specify
the runtime option '-pr', see 4.2 PASCAL{XSC Runtime Options. In this case,
a prompt is displayed for each �le variable that has not been assigned an external

31

32 CHAPTER 4. RUNNING PASCAL{XSC PROGRAMS

�le name in Step 1 or Step 2. The prompt is displayed on the standard output
device "stdout" which demands the input of an external �le name from standard
input device "stdin". There will be no prompting for standard �le variables
input and output which, by default, are associated with the standard devices
"stdin" and "stdout", respectively. The prompting devices "stdout" for message
displaying and "stdin" for input of �le names may be altered. Refer to the local
con�guration guide for current settings.

Runtime options are interpreted separately from the association of program param-
eters with command line arguments. All runtime options are identi�ed by a special
symbol (the default symbol is '-') in order to avoid mix-up with �le name conventions.
Refer to the local con�guration guide for the currently implemented special symbol in
use.

In Figure 4.1, examples for the association of external �le names in the command line
with �le variables in the program parameter list are given.

An association of an external �le name with a �le variable is also possible during a
PASCAL{XSC reset or rewrite. The following strategy is applied:

1. If a string specifying a �le name is explicitly given as a second argument to
reset or rewrite, then the �le variable is associated with the external �le speci�ed
by the string. If the �le variable is of type text, then an empty string as second
argument assigns the standard input device "stdin" or the standard output device
"stdout" in reset and rewrite, respectively.

2. If no string is given as a second argument, then a previously assigned external
�le name is reused in reset and rewrite.

3. If there is no �le name available for a �le variable in a reset or rewrite which is
also listed in the program clause, then a prompt is generated on "stdout" which
demands the input of a �le name from standard input "stdin". The process of
prompting is identical to that for command line arguments (see above).

By default, there is no prompting for an external �le name in case of local �le
variables, i.e., �le variables that are not listed in the program clause. If you want
prompting, specify the runtime option '-tf', see 4.2 PASCAL{XSC Runtime
Options.

Local �le variables without a previously assigned �le name in a rewrite are asso-
ciated with a temporary �le.

Temporary �les are generated in a temporary �le directory (by default this is the
current directory). Temporary �le names have a length of 6 characters and are
completed by the �le name extension '.tmp'. The �le name is constructed by the
letter 't' and a 5 digit number padded with leading zeros. Temporary �les will
be removed if the program terminates without a PASCAL{XSC error message.
Otherwise, they will be closed before leaving the program, thus freezing the �le

4.1. PASCAL{XSC FILE VARIABLES 33

contents just before processing has been aborted by the PASCAL{XSC runtime
system.

Note: In the current implementation, there is no mechanism which prevents
multiple write operations by simultaneously running PASCAL{XSC programs.

A local �le variable without a previously assigned �le name in a reset causes a
runtime error.

PROGRAM PROG(DATA,INPUT,OUTPUT,COPY);

VAR DATA : FILE OF INTEGER;

COPY : TEXT;

BEGIN END.

PROG file1 file2 file3 file4

2. DATA is associated with file1

2. INPUT is associated with file2

2. OUTPUT is associated with file3

2. COPY is associated with file4

PROG COPY=file4 file1

1. COPY is associated with file4

2. DATA is associated with file1

3. INPUT is associated with "stdin"
3. OUTPUT is associated with "stdout"

PROG -pr INPUT=file1 COPY=

1. INPUT is associated with file1

1. COPY is associated with "stdin" in reset
"stdout" in rewrite

3. DATA is prompted for a �le name
3. OUTPUT is associated with "stdout"

PROG

3. DATA association done in reset or rewrite
3. INPUT is associated with "stdin"
3. OUTPUT is associated with "stdout"
3. COPY association done in reset or rewrite

Figure 4.1: Example for the association of �le variables with command line arguments

34 CHAPTER 4. RUNNING PASCAL{XSC PROGRAMS

4.2 PASCAL{XSC Runtime Options

The PASCAL{XSC runtime system provides certain options for debugging purposes
and documentation. This section describes all runtime options which may be activated
in an installation of the PASCAL{XSC system. Refer to the local con�guration guide
for further runtime options.

Runtime options are given as command line arguments. They should be distinguish-
able from �le names according to the local �le name conventions in order to avoid
misinterpretations. Thus, names of runtime options contain a special character symbol
at the �rst position of the option which is inconvenient in �le name notations. The
default symbol is a single dash '-' immediately preceding the option.

If an unknown runtime option is used as command line argument, then the argument
string is assumed to be a �le name. In order to avoid program break-down due to an
invalid �le name, the existence of the used runtime options should be checked, e.g., by
using runtime option -info.

The following list explains all possible runtime options and what they do.

-cc Constant Conversion

Displays a warning message in case of an inexact conversion of real constant data or
real input data from the decimal format to the internal oating-point number repre-
sentation. No warning message is displayed for conversions with directed rounding.

-ieee IEEE trap handling

Toggles the default setting for the enabled status of IEEE exception handlers. Each of
the �ve IEEE exceptions is characterized by one letter:

d DIVISION BY ZERO
i INVALID OPERATION
o EXPONENT OVERFLOW
u EXPONENT UNDERFLOW
x INEXACT RESULT

If one or more letters are immediately following the header part -ieee of the option,
the default status of the exception handler is toggled from 'enabled' to 'disabled' or
from 'disabled' to 'enabled'. For instance, the runtime option -ieeedu toggles both
the enabled status of the DIVISION BY ZERO and EXPONENT UNDERFLOW
exception handlers. The default enabled status of the IEEE exception handlers in the
PASCAL{XSC system is given in the following list.

4.2. PASCAL{XSC RUNTIME OPTIONS 35

DIVISION BY ZERO enabled
INVALID OPERATION enabled
EXPONENT OVERFLOW enabled
EXPONENT UNDERFLOW disabled
INEXACT RESULT disabled

Note that this setting is valid only before processing the �rst PASCAL{XSC statement
which may be placed in the initialization part of a module. Refer to Appendix D
IEEE Exception Handling Environment for explicitly changing status settings within
a PASCAL{XSC program.

-info runtime INFOrmation

Displays information about the PASCAL{XSC system and the currently processed
PASCAL{XSC program on standard output device "stdout". The information is either
explicitly stored in the runtime system or will be read from the default �le "info.txt"
which is assumed to reside in the "system directory" of the PASCAL{XSC system
(refer to 2 Installation). Program processing is terminated after displaying all available
information.

Instead of the runtime option -info, the following alternative notations may be used:

?, -?, -help, -h, /h, and /help.

Note, that the character ? in a command line argument may have special meaning in
certain operating systems.

Extended notations for the runtime option -info are available:

-info:
-info:key
-info@�le
-info:key@�le

Here, key stands for the leading part of a keyword, and �le stands for a �le name to
be searched for instead of "info.txt". There must be no intervening blank characters
in the extended runtime option.

Keywords in �le are consecutive sequences of characters which do not contain blank
characters and are preceded by a colon ':'. Each keyword must be left-adjusted on a
single line in �le. For each matching keyword, all lines in �le up to the next keyword
(or the end of the �le) are displayed. The argument string key matches with keywords
if it coincides to full length with the leading characters of keywords in �le. If there is
no key after the colon ':' in the runtime option, then all keywords de�ned in �le are
listed.

36 CHAPTER 4. RUNNING PASCAL{XSC PROGRAMS

-nn Normalized Numbers

The value determined by the predecessor and successor routines pred and succ for real
oating-point numbers is forced to be a normalized value. The default setting allows
the generation of denormalized oating-point number values. Refer to 5.3.1.2 REAL
for an explanation of terms.

-pp Program Parameters

Display the names of the PASCAL{XSC �le variables which are listed in the program
parameter list of the program statement of the activated program. Program pro-
cessing is terminated after displaying the names of the �le variables in the program
parameter list.

-pr parameter PRompting

Enables the prompting for external �le names for program parameters at the beginning
of the processing of a program if there are less �le names as command line arguments
than there are names of �le variables in the program parameter list.

-sd System Directory

Displays the path of the "�xed system directory" that is set during the installation of
the runtime system.

The extended syntax of the runtime option

-sd:path

can be used to alter the path of the "�xed system directory" to path for the time
of processing of the program. The colon ':' immediately following the option name is
ignored and is no part of path. The length of string path is restricted to 63 characters.

-sz Signed Zero

Enables the generation of a minus sign if the IEEE value for a negative zero is detected
in an output operation.

-tb Trace Brief

The output caused by activating runtime option -tr is reduced in case of recursive

4.2. PASCAL{XSC RUNTIME OPTIONS 37

functions if this runtime option is used. Moreover, there will be no function tracing for
PASCAL{XSC runtime routines.

-tf no Temporary Files

Enables the prompting for �le names for local �le variables in reset and rewrite if there
is no �le name explicitly speci�ed as second argument and no previous association of
an external �le name has been done.

-tr TRace

Enables the generation of a function trace during the processing of the PASCAL{XSC
program, provided the PASCAL{XSC compiler option '+n' (see 3.6.2 Code Genera-
tion Options) was activated. Any available information about entering and leaving a
PASCAL{XSC procedure, function, and operator is displayed on the standard error
device "stderr". The nesting level of the procedure, function, and operator calls is
shown by "indentation". The number of lines of output may be reduced in case of
recursive functions when runtime option -tb is activated too.

program tr_test(output);

function fak(n : integer) : integer;

begin

if n<=1 then fak:=1 else fak:=n*fak(n-1);

end;

begin

writeln('fak(5) = ',fak(5));

end.

After compilation of program tr_test with compiler option '+n', the processing of

tr_test -tr

yields the following output on a terminal screen if "stderr" is redirected to stdout".

38 CHAPTER 4. RUNNING PASCAL{XSC PROGRAMS

--- FAK in tr_test.p entered.

--- +FAK in tr_test.p entered.

--- +.FAK in tr_test.p entered.

--- +..FAK in tr_test.p entered.

--- +...FAK in tr_test.p entered.

--- +...FAK in tr_test.p terminated.

--- +..FAK in tr_test.p terminated.

--- +.FAK in tr_test.p terminated.

--- +FAK in tr_test.p terminated.

--- FAK in tr_test.p terminated.

fak(5) = 120

-ud User Directory

Displays the path of the "�xed user directory" that is set during the installation of the
runtime system.

The extended syntax of the runtime option

-ud:path

can be used to alter the path of the "�xed user directory" to path for the time of
processing of the program. The colon ':' immediately following the option name is
ignored and is no part of path. The length of string path is restricted to 63 characters.

-vn Version Number

Displays the version identi�cation of the PASCAL{XSC runtime system on standard
output device "stdout" before the processing of the PASCAL{XSC program starts.

Chapter 5

PASCAL{XSC Implementation

In this chapter, technical details about the implementation of the PASCAL{XSC lan-
guage are described. Section headings and section numbering are chosen analogously
to Chapter 2 of the language reference [4]. Thus, section 5.3.2.4 in this document refers
to section 2.3.2.4. Dynamic Arrays in [4]. Section headings marked by * are given for
completeness but do not contain any additional text.

All statements and default values in this chapter refer to the hardware-independent
version of the PASCAL{XSC system. Speci�c details on hardware dependencies and
altered default settings are explained in individual local con�guration guides available
for each installation.

5.1 Basic Symbols

The length of PASCAL{XSC source �le lines may be unlimited. However, all symbols
and comments must start within the �rst 255 positions of a source line in order to get
correct positional information for error messages.

Neither identi�er names nor literal constants must be longer than 255 characters.

The character '$' is no basic symbol. The notation of hexadecimal integer constants
is not implemented. The keyword global must be written global, GLOBAL, or Global
when used after the keyword use.

5.2 Identi�ers

Identi�ers must not be longer than 255 characters. The PASCAL{XSC compiler does
not distinguish lower and upper case letters in identi�ers. All lower case letters are
converted to upper case letters. Exceptions are those identi�ers which are preceded by
the keywords module, use, use global, and external.

39

40 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

There are two reasons for these exceptions:

1. The names of PASCAL{XSC modules are associated with �le names. Since oper-
ating systems like UNIX distinguish lower and upper case letters, the PASCAL{
XSC compiler must distinguish lower and upper case letters in names of modules.

2. After the keyword external the entry name of a C function may be speci�ed.
Since the programming language C distinguishes between lower and upper case
letters, the PASCAL{XSC compiler must distinguish lower and upper case letters
in external entry names.

The length of module names may be restricted by the maximal length of �le names
that can be handled by the operating system. In the current implementation, module
names must di�er within the �rst 6 characters.

The length of external entry names may be restricted by the maximal length of entry
names that can be distinguished by the linker. Note, that external entry names of
user-de�ned routines must not coincide with entry names and global variables used by
the PASCAL{XSC and C runtime systems. All entry names and global variable names
of the PASCAL{XSC runtime system are constructed as indicated by the following
summary:

one lower case letter a,: : :,z
the underscore character _

2 to 4 characters from a,: : :,z, 0,: : :,9, _

Thus, PASCAL{XSC runtime entry names and global variable names are formed by
4 to 6 characters. A complete list of external names may be obtained by scanning
the object �les of the runtime system. It is not recommended to use runtime routines
without setting up a correct PASCAL{XSC runtime environment.

5.3 Constants, Types, and Variables

The maximal length of string constants is restricted to 255 and by the length of a
source line, i.e., the maximal length of a string constant depends on the editor which
is used to generate the PASCAL{XSC source �le.

The address of variables as well as the address of components of records depend on
the alignment conventions of the C compiler which is used for the compilation of the
generated C code. The keyword packed is ignored in the current implementation of
the PASCAL{XSC compiler.

5.3. CONSTANTS, TYPES, AND VARIABLES 41

PASCAL{XSC type names C type names

boolean "a bool"
char "a char"

dotprecision "d otpr"
integer "a intg"
real "a real"
string "s trng"

Figure 5.1: PASCAL{XSC simple types and related C types

5.3.1 Simple Types

Every PASCAL{XSC simple data type is represented by an individual C data type.
The C type names are de�ned by "typedef" statements in �le "p88rts.h". The relations
between PASCAL{XSC simple types and C data type names are given in Figure 5.1.

In the following additional sections, some notes are made on the data formats used to
implement the PASCAL{XSC simple types. It must be emphasized that the described
data formats in this document are used by the default implementation which may be
altered in an individual installation that uses hardware support. Refer to the local
con�guration guide for hardware dependencies.

5.3.1.1 integer

31 30 0 bit number

Figure 5.2: integer data format

The data type integer consists of all values from a consecutive sequence of integers.
There is only one signed integer format supported by PASCAL{XSC. For an object n
of type integer there holds

�maxint � 1 � ord(n) � maxint.

The corresponding C data type is named "a intg". A variable of type integer is 32 bits
long and requires four bytes of storage.

The largest positive integer value representable by the data type integer is denoted by
maxint.

maxint = 231 � 1 = 2147483647.

42 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

The representation of values of type integer is in two's complement notation. Figure 5.2
sketches the bit ordering of an integer value.

The notation of hexadecimal integer constants is not implemented.

Unsigned integer operations are not supported by the PASCAL{XSC compiler. The
PASCAL{XSC module x intg provides operators and functions for the manipulation
of bits of an object of type integer. Refer to 6.4 Module x intg .

5.3.1.2 real

The data type real consists of all oating-point numbers and special values which are
speci�ed by the IEEE standard [3] for the double oating-point number format. The
corresponding C data type is named "a real". A variable of type real is 64 bits long and
requires eight bytes of storage. In Figure 5.3, a sketch of the IEEE double oating-point
data format is given.

1 11 52 bit count

(r) s e m

63 62 52 51 0 bit number

r =

8>>>>>><
>>>>>>:

(�1)s � 1:m � 2e�1023 1 � e � 2046 normalized
(�1)s � 0:m � 2�1022 e = 0; m 6= 0 denormalized
(�1)s � 0 e = 0; m = 0 signed zero
(�1)s � 1 e = 2047; m = 0 signed in�nity
NaN e = 2047; m 6= 0 not a number

Figure 5.3: IEEE double oating-point format

The largest and the smallest positive real value representable by the data type real are
denoted by maxreal and minreal, respectively. The constants maxreal and minreal are
de�ned in module x real.

The oating-point number format uses a binary representation (base B=2) of the man-
tissa digits. There is one implicitly de�ned hidden bit in the representation of nor-
malized and denormalized numbers, thus making a total length of the mantissa m of
53 bits. The exponent �eld e occupies 11 bits. For normalized oating-point num-
bers according to the notation in Figure 5.3, the range of exponent values is speci�ed
by the maximum exponent emax = 2046 � 1023 = 1023 and the minimum exponent
emin = 1� 1023 = �1022. The sign �eld s occupies 1 bit.

Special values named "not a number" (NaN) may be signaling or quiet. By default
the PASCAL{XSC runtime assumes that a signaling NaN is identi�ed by bit 51 of the

5.3. CONSTANTS, TYPES, AND VARIABLES 43

Hexadecimal Representation Decimal Value

0000000000000001 4:9406564584124654 � 10�324

minreal Shortest decimal number which yields the speci�ed hexadec-

imal value with rounding to the nearest oating-point value.

Decimal to binary conversion of this number with rounding

towards �1 yields 0.0.

7FEFFFFFFFFFFFFF 1:7976931348623158 � 10308

maxreal Shortest decimal number which yields the speci�ed hexadec-

imal value with rounding to the nearest oating-point value.

Decimal to binary conversion of this number with rounding

towards +1 yields +1.

Figure 5.4: real constants minreal and maxreal

representation of the oating-point number being set. A quiet NaN is identi�ed by bit
51 of the representation of the oating-point number being not set. The sign of a NaN
is ignored. The described interpretation of bit 51 is the default setting and may be
altered when hardware operations are used for the current installation. Refer to the
local con�guration guide for the actual setting.

A quiet NaN is generated instead of a real value if an exception occurred in an operation
that does not produce any reasonable arithmetic result due to the exception (invalid
operation) and the trap handler is disabled for this exception. The structure of a
generated quiet NaN is given in Figure 5.5.

bit 63 = 0 or 1 (sign is ignored)
bit 62-52 = 2047 (all bits are set)
bit 51 = 0 (identi�es quiet NaN)
bit 32-50 = 0 (reserved)
bit 0-31 = integer (exception code)

Figure 5.5: Structure of a quiet NaN

Representations of special values of the real data format are listed in Figure 5.6.

The order in which the bytes of a real value are stored depend on the storage conven-
tions used by the hardware. This is most important in those cases where hardware
support for arithmetic operations is used. Refer to the local con�guration guide for
details.

Refer to 6.5 Module x real for additional real routines.

44 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

Hexadecimal representation Decimal value

FFF0000000000000 �1
FFEFFFFFFFFFFFFF �1:7976931348623158 � 10308

Shortest decimal number which yields the speci�ed hexadec-

imal value with rounding to the nearest oating-point value.

Decimal to binary conversion of this number with rounding

towards �1 yields �1.

BFF0000000000000 �1:0
8010000000000000 �2:2250738585072013 � 10�308

Shortest decimal number which yields the speci�ed hexadec-

imal value with rounding to the nearest oating-point value.

Decimal to binary conversion of this number with rounding

towards +1 yields the smallest denormalized number.

8000000000000001 �4:9406564584124654 � 10�324

Shortest decimal number which yields the speci�ed hexadec-

imal value with rounding to the nearest oating-point value.

Decimal to binary conversion of this number with rounding

towards +1 yields -0.0.

8000000000000000 �0:0
0000000000000000 0:0
0000000000000001 4:9406564584124654 � 10�324

minreal Shortest decimal number which yields the speci�ed hexadec-

imal value with rounding to the nearest oating-point value.

Decimal to binary conversion of this number with rounding

towards �1 yields 0.0.

0010000000000000 2:2250738585072013 � 10�308

Shortest decimal number which yields the speci�ed hexadec-

imal value with rounding to the nearest oating-point value.

Decimal to binary conversion of this number with rounding

towards �1 yields the largest denormalized number.

3FF0000000000000 1:0
7FEFFFFFFFFFFFFF 1:7976931348623158 � 10308

maxreal Shortest decimal number which yields the speci�ed hexadec-

imal value with rounding to the nearest oating-point value.

Decimal to binary conversion of this number with rounding

towards +1 yields +1.

7FF0000000000000 +1

Figure 5.6: Special real values

5.3. CONSTANTS, TYPES, AND VARIABLES 45

5.3.1.3 boolean

The data type boolean consists of the values false and true with

ord(false)=0 and ord(true)=1.

The corresponding C type is named "a bool". A variable of type boolean requires one
byte of storage.

5.3.1.4 char

The data type char consists of all values from a prescribed collating sequence (see for
instance the ASCII collating sequence in Figure E.1 on page 98). For an object h of
type char there holds

0 � ord(h) � 255.

The corresponding C type is named "a char". A variable of type char is 8 bits long
and requires one byte of storage.

5.3.1.5 Enumeration Types

The maximal number of enumeration constants is restricted by the maximal value for
"enum" values of the C compiler in use, i.e., for an ANSI C compiler this number is
restricted by the value of "INT MAX" de�ned in "limits.h".

5.3.1.6 dotprecision

The values that can be represented by the data type dotprecision consist of all real
values which may be generated by exact dot product evaluations

nX
i=1

ai � bi

for real values ai and bi which are not NaNs, and any number n within the range

1 � n � maxint.

The corresponding C data type is named "d otpr". Throughout an installation of the
runtime system, the variables of type dotprecision for the evaluation of dot products
with real operands in the IEEE binary double format (refer to 5.3.1.2 real) have a �xed
length with at least

2� emax + dlog2(maxint)e + 2 � (mantissa length� emin) =
2� 1023 + 31 + 2 � (53 + 1022) =

2077 + 2150 = 4227 bits.

46 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

The term dlog2(maxint)e results from the maximum number of carry bits that may oc-
cur during the evaluation of a dot product of vectors with at most maxint components.

Additional information like invalid operands and technical ags (temporary value indi-
cator, signed zero indicator) may be stored within an object of type dotprecision which
will increase the number of reserved bits by a �xed amount.

The component of a �le type and the components of the variant part of a record must
not contain a component of type dotprecision neither directly nor indirectly.

5.3.2 Structured Types

The keyword packed is ignored in type speci�cations and declarations.

5.3.2.1 Arrays

In PASCAL{XSC static and dynamic arrays may be de�ned. The element with smallest
index has the smallest address of all elements of an array. For multiple dimensional
arrays, the elements of the last dimension occupy consecutive storage positions. The
maximal number of indices for a static array may be restricted by the C compiler in
use.

The component type of an array type must not be a �le type.

5.3.2.2 Subarrays*

5.3.2.3 Access to Index Bounds*

5.3.2.4 Dynamic Arrays

The maximum number of indices (dimension) of a dynamic array is restricted to 255.
There is no error message in case of violating this upper bound.

Dynamic arrays are represented by a C structure which contains administrative infor-
mation and a C pointer to the allocated array of elements of the dynamic array. The
administrative information needed for the implementation of a dynamic array consists
of

� the dimension of the array,

� the size of one array element in bytes,

� the total number of array elements,

� the lower bound of each index range,

� the upper bound of each index range,

5.3. CONSTANTS, TYPES, AND VARIABLES 47

� the stride value of each index range,

� the "subarray" indicator, and

� the "temporary array" indicator.

The stride value of the nth dimension is the distance between array elements with con-
secutive index values in the nth dimension. Thus, according to the storage convention
of PASCAL the stride of the last dimension of a main array is always 1.

5.3.2.5 Strings*

5.3.2.6 Dynamic Strings

The PASCAL{XSC data type string consists of a (possibly empty) sequence of char-
acters of type char. Two kinds of variables of type string are distinguished.

(A) string variables with a speci�ed maximum length, e.g.,

VAR f : string[9];

Variables of this type can hold at most the speci�ed number of characters. The
standard function maxlength returns the speci�ed maximum length in the vari-
able de�nition (maxlength(f) is 9). The standard function length yields the
length of the actually stored string of characters which may be set explicitly
by standard procedure setlength within the range from 0 to maxlength(f), or
by string assignment. An ALLOCATION exception may occur if the requested
storage space is not available when the string variable is de�ned.

(B) string variables with an unspeci�ed maximum length, e.g.,

VAR v : string;

Variables of this type have a default maximum length of maxint which, of course,
stands for a virtually reserved amount of storage. The standard function max-
length always returns maxint (maxlength(v) is 2147483647). The standard func-
tion length yields the length of the actually stored string of characters which may
be set explicitly by standard procedure setlength within the range from 0 to max-
int. An ALLOCATION exception may occur if the requested storage space is not
available during a string operation. The size of the actually used storage space
increases during processing, if

� a "longer" string value is assigned to the string variable,

� an indexed access to a character of a string variable is done with an index
greater than the value returned by length, or

48 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

� standard procedure setlength is used with an argument value which is greater
than the value returned by length.

There will be no loss of information unless string positions are explicitly changed.
Refer to 6.6 Module x strg for additional routines.

The corresponding C type is named "s trng". A value of type string is represented by
a structure and a su�ciently large amount of storage space to hold the characters of
the actual string value. The administrative information in "s trng" consists of

� the size of the allocated array holding the string characters,

� the actual length of the string value that is stored in the allocated array,

� the "�xed length" indicator,

� the "substring" indicator, and

� the "temporary string" indicator.

The components of a �le type and the components of the variant part of a recordmust
not contain (dynamic) string components neither directly nor indirectly. Examples for
invalid and correct de�nitions of �le types are given in Figure 5.7. The component type
STRING[10] denotes a dynamic type of at most 10 characters but not a static string
type of exactly 10 characters.

{ Example for invalid FILE types }

FILE OF STRING [10];

FILE OF RECORD R : REAL;

S : STRING [10];

END

{ Example for a correct FILE type }

FILE OF RECORD

string_length : INTEGER;

string_char : ARRAY [1..10] OF CHAR;

END;

Figure 5.7: Example for invalid and correct de�nitions of �le types with strings

5.3. CONSTANTS, TYPES, AND VARIABLES 49

5.3.2.7 Records*

5.3.2.8 Records with Variants

A variant part of a record must not contain components of type string , dotprecision,
and dynamic array neither directly nor indirectly.

5.3.2.9 Sets

The ordinal numbers of the set elements and the bounds of set types must be within
the range from 0 to 255. The upper bound for the range of variables of set type may
be altered in the current installation. Refer to the local con�guration guide for the
actual value of the upper bound of set types.

5.3.2.10 Files

File types are not allowed as component types and must not be referenced by pointers.
The component type of a �le type must not be of type string , dotprecision, and
dynamic array neither directly nor indirectly.

5.3.2.11 Text Files

The standard �le variables input and output are predeclared variables and, thus, may
be used within a PASCAL{XSC module.

If output is missing in the program parameter list, then it is automatically associated
with the standard output device "stdout". If input is missing in the program parameter
list, then it is automatically associated with the standard input device "stdin". After
a reset for text �les associated with "stdin" the standard function eoln for these �les
yields true and the bu�er variable of the �le has the value ' ' which stands for a blank
character.

Output written to text �les should always be terminated by a call of procedure writeln,
thus generating an end-of-line delimiter at the end of an output line. Otherwise, only
a partial line may be written to the text �le.

5.3.3 Structured Arithmetic Standard Types

5.3.3.1 The Type complex

The corresponding C data type is called "a cmpx" and is implemented as a structure
with two "a real" components "RE" and "IM" representing the real part and the
imaginary part of a complex number, respectively.

50 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

5.3.3.2 The Type interval

The corresponding C data type is called "a intv" and is implemented as a structure
with two "a real" components "INF" and "SUP" representing the in�mum (lower
bound) and the supremum (upper bound) of a real interval, respectively.

5.3.3.3 The Type cinterval

The corresponding C data type is called "a cinv" and is implemented as a structure
with two "a intv" components "RE" and "IM" representing the real part and the
imaginary part of a complex interval, respectively.

5.3.3.4 Vector Types and Matrix Types

The dynamic array data types rvector, cvector, ivector, civector, rmatrix, cmatrix,
imatrix, and cimatrix in PASCAL{XSC are associated with the names of C data types
de�ned in "p88rts.h" according to Figure 5.8.

PASCAL{XSC type name C type name

rvector "a rvty"
cvector "a cvty"
ivector "a ivty"
civector "a civt"
rmatrix "a rmty"
cmatrix "a cmty"
imatrix "a imty"
cimatrix "a cimt"

Figure 5.8: PASCAL{XSC vector and matrix types and related C types

5.3. CONSTANTS, TYPES, AND VARIABLES 51

5.3.4 Pointers

Procedures mark and release are not implemented.

The pointer constant nil has the value "NULL" as de�ned by the C compiler in use.

Forward declared types must be record types as demonstrated in Figure 5.9. For-
ward declared data type names are those type names that occur immediately after the
symbol '^' and before their de�nition.

{ Example for invalid declared types }

TYPE RPTR = ^RTYP;

RTYP = REAL;

TYPE APTR = ^ATYP;

ATYP = ARRAY[1..9] OF RECORD n : APTR END;

{ Example for correctly declared types }

TYPE RTYP = REAL;

RPTR = ^RTYP;

TYPE APTR = ^ATYP;

ATYP = RECORD

a : ARRAY[1..9] OF RECORD n : APTR END;

END;

Figure 5.9: Example for invalid de�nitions of types with pointers

52 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

5.3.5 Compatibility of Types

The rules of type compatibility as de�ned by Standard PASCAL may process ambi-
guities in connection with the concept of overloading of subroutines. Therefore, the
PASCAL{XSC compiler restricts the compatibility of types:

� Di�erent set types are not compatible. But, a set constructor with elements of
type T is compatible with all types set of T.

� Di�erent subrange types are not compatible. But every subrange type is com-
patible with its base type. The correct use of subrange types is illustrated in
Figure 5.10.

{ Example for invalid use of subrange types }

TYPE range = 1..10;

VAR y : 1..20;

PROCEDURE p (VAR x : range);

BEGIN {...} END;

BEGIN

p (y);

END.

{ Example for correct use of subrange types }

TYPE range = 1..10;

VAR y : 1..20;

PROCEDURE p (VAR x : range);

BEGIN {...} END;

BEGIN

p (range(y));

END.

Figure 5.10: Example for use of subrange types

5.3.5.1 Compatibility of Array Types*

5.3.5.2 Compatibility of Strings*

5.4. EXPRESSIONS 53

5.4 Expressions

Any type identi�er may be used explicitly as the name of a type conversion function
which is predeclared.

If T1 is a type identi�er
and T2 is a PASCAL{XSC data type
and X is an expression of type T2
and T1 and T2 are assignment compatible

then T1(X) is a legal expression of type T1

Nevertheless, if a function T1 with one argument of type T2 is declared, then the
declared function is used, because the predeclared type conversion function has been
rede�ned.

5.4.1 Standard Expressions

5.4.1.1 Integer Expressions

The operators div and mod are de�ned according to the speci�cations of standard
PASCAL. The integer operations +, -, and * as well as the standard functions succ,
pred, and sqr are passed directly to the C compiler and usually will not cause runtime
exceptions. In module x intg described in 6.4 Module x intg, the integer operations
+, -, and * and the standard functions succ, pred, and sqr are rede�ned by runtime
routines which perform an overow checking. In case of an integer overow, a runtime
exception is signaled by these routines.

The standard function ival causes a runtime exception if the leading non-blank char-
acters of the string argument are not part of a valid representation of an integer value.

5.4.1.2 Real Expressions

Exception handling for real operations +, -, *, and / is done according to the spec-
i�cations of the IEEE standard [3]. Refer to Appendix D IEEE Exception Handling
Environment for more details about default settings.

Standard function rval causes a runtime exception if the leading non-blank characters
of the string argument are not part of a valid representation of a real value.

A set of 25 mathematical functions with real arguments are part of the PASCAL{XSC
runtime system with a guaranteed accuracy of less than 2 ulp (1 ulp = one unit in the
last place of the mantissa).

The supported domains of the mathematical functions are listed in Figure 5.11. Do-
main intervals marked by * are smaller than the maximum domain intervals which are
possible due to the real data format in use.

54 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

Function Domain of valid real arguments

sqr(r) [�sqrmax; sqrmax]
sqrt(r) [0;maxreal]
exp(r) [�maxreal; expmax]
exp2(r) [�maxreal; exp2max]
exp10(r) [�maxreal; exp10max]
ln(r) [minreal;maxreal]
log2(r) [minreal;maxreal]
log10(r) [minreal;maxreal]
sin(r) [�trimax; trimax]*
cos(r) [�trimax; trimax]*
tan(r) [�trimax; trimax]*
cot(r) [�trimax;�cotmin]* or [cotmin; trimax] *
arcsin(r) [�1; 1]
arccos(r) [�1; 1]
arctan(r) [�maxreal;maxreal]
arctan2(r1,r2) r1 = r2 = 0 not allowed
arccot(r) [�maxreal;maxreal]
sinh(r) [�hypmax; hypmax]
cosh(r) [�hypmax; hypmax]
tanh(r) [�maxreal;maxreal]
coth(r) [�maxreal;�cotmin] or [cotmin;maxreal]
arsinh(r) [�maxreal;maxreal]
arcosh(r) [1;maxreal]
artanh(r) [�(one{eps); (one{eps)]
arcoth(r) [�maxreal;�(one+eps)] or [(one+eps);maxreal]

Figure 5.11: Domains of real functions with a priori error estimation

5.4. EXPRESSIONS 55

The term maxreal stands for the largest �nite real value, and the term minreal stands
for the smallest positive real value. Refer to Figure 5.6 for details about special real
values of the IEEE double data format.

The decimal values of named constants in Figure 5.11 are listed in the following table.

Constant decimal hexadecimal

hypmax 7:104 758 600 739 439 �102 408633ce8fb9f87d

sqrmax 1:340 780 792 994 259 6�10154 5fefffffffffffff

trimax 9:223 372 036 854 776 �1018 43e0000000000000

expmax 7:097 827 128 933 84 �102 40862e42fefa39ef

exp2max 1:023 999 999 999 999 9�103 408fffffffffffff

exp10max 3:082 547 155 599 167 �102 40734413509f79fc

cotmin 5:562 684 646 268 008 �10�309 0004000000000001

maxreal 1:797 693 134 862 315 8�10308 7fefffffffffffff

minreal 4:940 656 458 412 465 4�10�324 0000000000000001

(one{eps) 0:999 999 999 999 999 9 3fefffffffffffff

(one+eps) 1:000 000 000 000 000 2 3ff0000000000001

The implementation of real mathematical functions with a posteriori error estimations
and maximum domain intervals is available by using the de�nitions in module x real.
Refer to 6.5 Module x real.

Standard function mant yields the signed mantissa of a given real value. In case of a
non-zero value, the mantissa is normalized such that for the base 2 of the implemented
IEEE oating-point number system holds:

0:5 � jmantissaj < 1

If the real value is zero, then the mantissa is zero. If the real value is in�nity, then the
mantissa is in�nity.

Standard function expo yields the integer exponent of a given real value with respect
to the base 2 of the implemented oating-point number system. In case of a non-zero
�nite value, the exponent of a real number for the implemented IEEE double format
satis�es:

�1021 � exponent � 1024

If the real value is zero, then �maxint is returned. If the real value is in�nity, then
maxint is returned.

For non-zero �nite oating-point numbers x the following identity holds:

x = comp(mant(x); expo(x))

Alternative functions with normalization according to the IEEE standard are available
in module x real via procedure x comp and functions x mant and x expo.

56 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

Standard functions succ and pred return the "next" oating-point number which is
larger or smaller than the actual argument. They cause a runtime exception if the
symmetric range of oating-point numbers from {maxreal tomaxreal is left. By default,
all normalized and denormalized oating-point numbers are considered by the standard
functions succ and pred. A restriction to normalized oating-point numbers is possible
by using runtime option -nn. Refer to 4.2 PASCAL{XSC Runtime Options.

5.4.1.3 Boolean Expressions

Standard functions succ and pred cause a runtime exception if the range false..true is
left.

5.4.1.4 Character Expressions

Standard function chr causes a runtime exception if the actual argument of type integer
is not within the range from 0 to 255.

Standard functions succ and pred cause a runtime exception if the range from chr(0)
to chr(255) is left.

5.4.1.5 Enumeration Expressions

Standard functions succ and pred cause a runtime exception if the range of the enu-
meration type is left.

5.4.1.6 Subrange Expressions

The standard functions succ and pred return their argument type as result type. It is
not an error, if the result of these functions exceeds the range of the subrange type but
not the range of the base type.

5.4.2 Accurate Expressions (#-Expressions)*

5.4.3 Expressions for Structured Types and Pointer Expres-
sions

5.4.3.1 Array Expressions*

5.4.3.2 String Expressions*

5.4.3.3 Record Expressions*

5.4.3.4 Set Expressions*

5.5. STATEMENTS 57

5.4.3.5 Pointer Expressions

If the PASCAL{XSC source was compiled with the '+x' option (see 3.6.2), then the
runtime system checks any pointer access for the pointer value nil. Dereferencing other
invalid pointers can not be checked by the runtime system. A memory violation error
may occur, which can not be handled by the runtime system. Consequently, there is
no positional information available by the runtime system.

5.4.4 Extended Accurate Expressions (#-Expressions)*

5.5 Statements

5.5.1 Assignment Statement*

5.5.2 Input/Output Statements

The PASCAL{XSC default procedure write is overloaded for di�erent data types and
for di�erent format speci�cations. The formal procedure headers of the default write
procedures are listed without the required keyword procedure.

1. WRITE (VAR f: TEXT; n: INTEGER);

WRITE (VAR f: TEXT; n: INTEGER; w: INTEGER);

2. WRITE (VAR f: TEXT; h: CHAR);

WRITE (VAR f: TEXT; h: CHAR; w: INTEGER);

3. WRITE (VAR f: TEXT; b: BOOLEAN);

WRITE (VAR f: TEXT; b: BOOLEAN; w: INTEGER);

4. WRITE (VAR f: TEXT; r: REAL);

WRITE (VAR f: TEXT; r: REAL; w: INTEGER);

WRITE (VAR f: TEXT; r: REAL; w, f: INTEGER);

WRITE (VAR f: TEXT; r: REAL; w, f, m: INTEGER);

5. WRITE (VAR f: TEXT; s: STRING);

WRITE (VAR f: TEXT; s: STRING; w: INTEGER);

For each of these routines a brief description is given. Procedures for positive arguments
'w' and 'f' that are already available in Standard PASCAL are unchanged. An inter-
pretation for negative arguments 'w' and 'f' as well as for the rounding argument 'r'
is added.

58 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

1. write integer value
If �eld width w is not speci�ed or w is greater than or equal to zero, then
standard PASCAL (right-adjusted) output is generated. If w is less than zero,
then left-adjusted output is generated, i.e., trailing blanks are generated instead
of preceding blanks.

Example: The PASCAL{XSC write statements

WRITELN (1234:6,',', 1234:-6,',', 1234);

WRITELN (-1234:6,',', -1234:-6,',', -1234);

produce the following output with blank characters represented by .

 1234, 1234 ,1234

 -1234,-1234 ,-1234

2. write character value
If �eld width w is not speci�ed, then w is assumed to be one. If �eld width w is
greater than zero, then (w�1) blanks are preceding the character value according
to standard PASCAL. If �eld width w is zero, then nothing is output. If w is less
than zero, then left-adjusted output is generated, i.e., (�w � 1) trailing blanks
are generated instead of preceding blanks.

Example: The PASCAL{XSC write statement

WRITELN ('a':-3, 'b', 'c', 'd':3);

produces the following output with blank characters represented by .

a bc d

3. write boolean value
If �eld width w is not speci�ed, then the complete text strings representing
the boolean values true and false are output, respectively. If �eld width w is
greater than zero, then the appropriate text beginning with its �rst character is
right-adjusted in a �eld of width w. If �eld width w is less than zero, then the
appropriate text beginning with its �rst character is left-adjusted in a �eld of
width (�w). If �eld width w is zero, then no characters are output.

The default text for the boolean value true is 'TRUE '. The default text for
the boolean value false is 'FALSE'. The default text may be altered in certain
installations. Refer to the local con�guration guide for details.

Example: The PASCAL{XSC write statements

WRITELN (TRUE,',', TRUE:-7,',', TRUE:7,',', TRUE:1);

WRITELN (FALSE,',', FALSE:-7,',', FALSE:7,',', FALSE:1);

5.5. STATEMENTS 59

produce the following output with blank characters represented by .

TRUE ,TRUE , TRUE ,T

FALSE,FALSE , FALSE,F

4. write real value
If �eld width w is not speci�ed, i.e., the write statement is of the form write(r),
then an equivalent notation is write(r:23:0:0). If the number of fraction dig-
its f is not speci�ed, i.e., the write statement is of the form write(r:w), then an
equivalent notation is write(r:w:0:0). If rounding mode m is not speci�ed, i.e.,
the write statement is of the form write(r:w:f), then an equivalent notation is
write(r:w:f:0).

If �eld width w is greater than or equal to zero, then the output is right-adjusted
according to standard PASCAL with a minimum �eld width of w = 9 in case
of a oating-point number representation (f = 0). The minimum �eld width is
composed of

{ one character for the minus sign '-' (or blank ' ')

{ one digit before the decimal point

{ one character for the decimal point '.'

{ one digit after the decimal point

{ one character for the exponent delimiter 'E'

{ one character for the sign of the exponent '+' or '-'

{ three digits for the exponent eventually padded with leading zeros (value
0.0 has exponent 'E+000').

If w is less than zero, then the output is left-adjusted in case of a �xed-point
number representation. In case of a oating-point number representation the
�eld width is set to (�w).

If the number of fraction digits f is zero, then a oating-point number represen-
tation is output. If the number of fraction digits f is less than zero, then f is set
to (�f). If the number of fraction digits f is greater than zero, then a �xed-point
number representation with f digits in the fraction part is output in a �eld of
minimum width (f + 2). The minimum �eld width is composed of

{ one digit before the decimal point

{ one character for the decimal point '.'

{ f digits after the decimal point.

The rounding mode used for the representation of real values is identi�ed by the
sign of m. If m is negative, then the decimal representation of the real value

60 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

is rounded towards �in�nity. If m is positive, then the decimal representation
of the real value is rounded towards +in�nity. If m is zero, then the decimal
representation of the real value is rounded to the nearest decimal number with
respect to the exact value. In case of a tie, the decimal representation of the real
value has an even least signi�cant decimal digit.

Example: The PASCAL{XSC write statements

WRITELN (1.250001: 9:0:-1, 1.250001: 9, 1.250001:9:0:1, 1.25:9);

WRITELN (1.250001:20:0:-1, 1.250001:20:0:1);

WRITELN (1.250001:30);

produce the following output with blank characters represented by .

 1.2E+000 1.3E+000 1.3E+000 1.2E+000

 1.250000999999E+000 1.250001000000E+000

 1.2500009999999999177334E+000

Note: The value of the decimal number 1:250001 cannot be represented exactly
using IEEE double format. The string '1.250001' is converted to an IEEE double
value using the rounding to the nearest IEEE oating-point number representa-
tion before the write procedure starts. For the decimal number 1:250001 the
converted IEEE double value is smaller than the exact decimal value but still
greater than 1:25.

5. write string value
For the default write procedures the actual argument for the string argument
may be
A) an "array [] of char" with arbitrary but �xed index range
B) a "string []" with arbitrary but �xed length
C) a "string" of default size

Subsequently, the corresponding actual arguments are denoted by a, b, and c.
The notations lb and ub stand for the lower bound and the upper bound of the
index range speci�ed in the de�nition of an "array [] of char", respectively.

For each of the argument types in A), B) and C) the output is (slightly) di�erent.

If the �eld width w is not speci�ed, then all of the characters in the declared
array a and all of the characters from 1 to the value determined by standard
function length of b or c are displayed. If length(b)=0 or length(c)=0, then
no characters are output.

If the �eld width w is greater than or equal to zero, then q blank characters with

5.5. STATEMENTS 61

A) q :=

(
w � ub + lb� 1 if w > ub� lb + 1

0 otherwise

B) q :=

(
w �maxlength(b) if w > maxlength(b)

0 otherwise

C) q :=

(
w � length(c) if w > length(c)

0 otherwise

are output followed by r characters with

A) r := w � q
B) r := minflength(b), w � qg
C) r := w � q

of the actual argument beginning with the �rst character. In case B), an addi-
tional number of (w � q � r) trailing blank characters are output.

If the �eld width w is negative, then the output is left adjusted. If number q

A) q:= ub � lb + 1
B) q:= length(b)
C) q:= length(c)

is greater than or equal to (�w), then (�w) characters of the actual argument
beginning with the (q+w�1)th character (relative to the beginning of the string)
are output followed by s = �w � q blanks if s is greater than zero.

In Figure 5.12, a summary of equivalent PASCAL notations for the PASCAL{
XSC procedure write with string arguments are given.

Example: For variables a, b, and c de�ned by

var a : packed array [1..10] of char;

b : string[10];

c : string;

the PASCAL{XSC statements

a := 'PASCAL-XSC';

b := 'PASCAL-XSC system';

c := 'PASCAL-XSC system';

WRITELN ('a : ',a:6,',',a:-6,',',a:20,',',a);

WRITELN ('b : ',b:6,',',b:-6,',',b:20,',',b);

WRITELN ('c : ',c:6,',',c:-6,',',c:20,',',c);

b := 'PASCAL';

WRITELN ('b : ',b:6,',',b:-6,',',b:20,',',b);

62 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

produce the following output with blank characters represented by ' '.

a : PASCAL,AL-XSC, PASCAL-XSC,PASCAL-XSC

b : PASCAL,AL-XSC, PASCAL-XSC,PASCAL-XSC

c : PASCAL,system, PASCAL-XSC system,PASCAL-XSC system

b : PASCAL,AL , PASCAL ,PASCAL-XSC

A) var a : array [lb..ub] of char;

size := ub-lb+1;

write(a) =) write(a:size)

write(a:w)=)
size<w : write(' ':w-size, a:size) right adjusted

0�w�size : FOR i:=0 TO w-1 DO write(a[lb+i]) leading characters

-size�w��1 : FOR i:=w+1 TO 0 DO write(a[ub+i]) trailing characters

w<-size : write(a:size, ' ':-w-size) left adjusted

B) var b : string[size];

len := LENGTH(b);

write(b) =) write(b:len)

write(b:w)=)
size<w : write(' ':w-size,b:len,' ':size-len) right adjusted

len<w�size : write(b:len,' ':size-w) leading characters

0�w�len : FOR i:=1 TO w DO write(b[i])

-len�w��1 : FOR i:=w+1 TO 0 DO write(b[len+i]) trailing characters

w<-len : write(b:len,' ':-w-len) left adjusted

C) var c : string;

len := LENGTH(c);

write(c) =) write(c:len)

write(c:w)=)
len<w : write(' ':w-len, c:len) right adjusted

0�w�len : FOR i:=1 TO w DO write(c[i]) leading characters

-len�w��1 : FOR i:=w+1 TO 0 DO write(c[len+i]) trailing characters

w<-len : write(c:len, ' ':-w-len) left adjusted

Figure 5.12: Equivalent notations for procedure write with string arguments

5.6. PROGRAM STRUCTURE* 63

5.5.3 Empty Statement*

5.5.4 Procedure Statement*

5.5.5 goto-Statement

The destination of a goto statement must not be outside of the current block. In order
to terminate the processing of a PASCAL{XSC program, the procedure exit may be
used which is declared in module iostd. Refer to 6.3 Module iostd.

5.5.6 Compound Statement*

5.5.7 Conditional Statements*

5.5.8 Repetitive Statements*

5.5.9 with-Statement

Between the keyword with and the matching keyword do a maximum of 15 names of
variables is allowed. Nested with-statements may be used to remove this restriction.

5.6 Program Structure*

5.7 Subroutines

5.7.1 Procedures*

5.7.2 List of Prede�ned Procedures and I/O Statements

The standard procedures new and dispose ignore all tag marks in connection with
variant-records. The standard procedures mark and release are not implemented.

5.7.3 Functions

The assignment of a value to the result variable of a function (function name) must
be within the statement part of the function and not an inner procedure, function, or
operator.

The name of a function may be any type name. If the result type of a function is
identical with the name of the function and the function has exactly one argument,
then a coersion is de�ned. A coersion is a type conversion function that is automatically
generated by the compiler. Even though coersions may be de�ned without restriction,

64 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

it is recommended that coersions should not be used, since the concept of coersions
conicts with the concept of overloading.

{Example for coersion }

PROGRAM PROG;

TYPE T1 = ...;

TYPE T2 = ...;

FUNCTION T2 (x : T1) : T2;

BEGIN T2 := ...; END;

PROCEDURE P (arg : T2);

BEGIN END;

VAR y : T1;

BEGIN

P (y);

END.

Figure 5.13: Example for a type conversion function

Let T2 be the function name and T1 the argument type. Then the function T2 is
called automatically, if an expression of type T1 is passed to a formal value argument
of type T2. In the sample program given in Figure 5.13, the PASCAL{XSC compiler
automatically produces the procedure call P(T2(y)).

5.7.4 Functions with Arbitrary Result Type*

5.7.5 List of Prede�ned Functions

Function loc is not implemented.

5.7.6 Operators

The priority de�nition for an operator is valid until the end of the PASCAL{XSC
source code, i.e., it is even valid outside the de�ning block. Thus, there will be a
warning message for local priority de�nitions.

5.7.7 Table of Prede�ned Operators*

5.7.8 forward- and external-Declaration

In PASCAL{XSC the keyword external is used to declare entry names of subroutines
which have been implemented in another programming language. Subsequently it is

5.7. SUBROUTINES 65

assumed, that the programming language C has been used.

After the keyword external the entry name of an external C function is speci�ed. This
speci�cation either is a PASCAL name according to the syntax of PASCAL or a string
constant. Lower and upper case letters in the identi�er name are distinguished after the
keyword external. The entry name given after the keyword external should contain
at least one lower case letter in order to avoid name conicts with PASCAL{XSC
names. Name conicts with entry names used by the PASCAL{XSC runtime system
and the C runtime system must not occur. Usually the C compiler and the linker will
give adequate warnings or error messages in case of name conicts. If there is no name
listed after the keyword external, then the PASCAL{XSC subroutine name is taken
as the entry name of an externally de�ned subroutine. Note, that lower case letters in
PASCAL{XSC names are always converted to upper case letters.

5.7.9 Modi�ed Call by Reference for Structured Types

The modi�ed reference call is allowed for all data types. If the modi�ed reference call
is applied to scalar types and pointer types, then the PASCAL{XSC compiler gives a
warning message pointing out that this construction is not valid in Standard PASCAL.

66 CHAPTER 5. PASCAL{XSC IMPLEMENTATION

5.7.10 Overloading of Procedures, Functions, and Operators

The rules of type compatibility have been changed. Refer to 5.3.5 Type Compatibility .

The assignment compatibility is extended to user-de�ned coersions. Refer to section
5.7.3 Functions for more details.

The rules of selecting subroutines have been changed:

The PASCAL{XSC compiler detects an error, if there is more than
one subroutine with the same minimum number of applicable coer-
sions in the same block. The position of subroutine arguments is not
taken into account. This is di�erent to the language description [4].

The example in Figure 5.14 is taken from [4] and di�ers in the third assignment state-
ment due to this restriction.

OPERATOR +* (a : INTEGER; b : REAL) ir_res : REAL;

...

OPERATOR +* (a : REAL; b : INTEGER) ri_res : REAL;

...

VAR i : INTEGER;

r,res : REAL;

...

res := i +* r; { first operator is applied }

res := r +* i; { second operator is applied }

res := i +* i; { statement is not possible, two operators available }

res := r +* r; { statement is not possible, no operator available }

...

Figure 5.14: Example for the selection of subroutines

5.7.11 Overloading of read and write*

5.7.12 Overloading of the Assignment Operator :=*

5.8 Modules*

5.9 String Handling and Text Processing*

5.10 How to Use Dynamic Arrays*

Chapter 6

PASCAL{XSC Modules

6.1 Module stdmod

The module stdmod is imported automatically without an explicit use clause. This
module contains de�nitions of identi�ers and operators that are predeclared in the
language PASCAL{XSC.

6.2 Arithmetic Modules

The implementation dependent parts of the arithmetic modules are concerned with
output operations and the domains of mathematical functions. Output operations for
vectors and matrices as speci�ed in the modules mv ari, mvc ari, mvi ari, and mvci ari
are mapped to the output operations of the corresponding component types real, com-
plex, interval, and cinterval, respectively. There are no mathematical functions de�ned
for vectors and matrices.

6.2.1 Module i ari

The supported domains of the mathematical functions for arguments of type interval
are listed in Figure 6.1.

The arcus tangent of the quotient of two interval arguments is not included in module
i ari but is implemented separately in a module named iatan2.

The decimal values of named constants in Figure 6.1 are listed in the following table.

67

68 CHAPTER 6. PASCAL{XSC MODULES

Function Domain of valid interval arguments

sqr(i) i � [�sqrmax; sqrmax]
sqrt(i) i � [0;maxreal]
exp(i) i � [�maxreal; expmax]
exp2(i) i � [�maxreal; exp2max]
exp10(i) i � [�maxreal; exp10max]
ln(i) i � [minreal;maxreal]
log2(i) i � [minreal;maxreal]
log10(i) i � [minreal;maxreal]
sin(i) i � [�maxreal;maxreal]
cos(i) i � [�maxreal;maxreal]
tan(i) i � [�maxreal;maxreal] ^ �

2
+ k� 62 i

cot(i) i � [�maxreal;�cotmin] [[cotmin;maxreal] ^ k� 62 i
arcsin(i) i � [�1; 1]
arccos(i) i � [�1; 1]
arctan(i) i � [�maxreal;maxreal]
arctan2(i1,i2) 0 2 i1 and 0 2 i2 not allowed
arccot(i) i � [�maxreal;maxreal]
sinh(i) i � [�hypmax; hypmax]
cosh(i) i � [�hypmax; hypmax]
tanh(i) i � [�maxreal;maxreal]
coth(i) i � [�maxreal;�cotmin] [[cotmin;maxreal]
arsinh(i) i � [�maxreal;maxreal]
arcosh(i) i � [1;maxreal]
artanh(i) i � [�(one{eps); (one{eps)]
arcoth(i) i � [�maxreal;�(one + eps)] [[(one+eps);maxreal]

Figure 6.1: Domains of interval functions

decimal hexadecimal

hypmax 7:104 758 600 739 439 �102 408633ce8fb9f87d

sqrmax 1:340 780 792 994 259 6�10154 5fefffffffffffff

expmax 7:097 827 128 933 84 �102 40862e42fefa39ef

exp2max 1:023 999 999 999 999 9�103 408fffffffffffff

exp10max 3:082 547 155 599 167 �102 40734413509f79fc

cotmin 5:562 684 646 268 008 �10�309 0004000000000001

(one{eps) 0:999 999 999 999 999 9 3fefffffffffffff

(one+eps) 1:000 000 000 000 000 2 3ff0000000000001

maxreal 1:797 693 134 862 315 8�10308 7fefffffffffffff

minreal 4:940 656 458 412 465 4�10�324 0000000000000001

6.2. ARITHMETIC MODULES 69

The output operation for values of type interval

procedure write(var f : text, i : interval);

produces a decimal representation of the lower and upper bounds of the interval value
rounded downwards and upwards, respectively. Only signi�cant digits of the decimal
representations of the lower and upper bound are displayed, i.e., all leading coinciding
digits and a small number of di�ering digits are displayed. The default output format
consists of 52 characters.

1 left bracket
1 blank
23 characters for the lower bound
1 komma
1 blank
23 characters for the upper bound
1 blank
1 right bracket

An example for the described output format is given in Figure 6.2.

6.2.2 Module c ari

Mathematical functions for data type complex based on the IEEE binary double format
and an accuracy of 2 ulps are not yet implemented.

The output operation for values of type complex

procedure write(var f : text, c : complex);

produces a decimal representation of the real and imaginary part of the complex value
rounded to the nearest decimal representation. The default output format consists of
52 characters.

1 left parenthesis
1 blank
23 characters for the real part
1 komma
1 blank
23 characters for the imaginary part
1 blank
1 right parenthesis

An example for the described output format is given in Figure 6.2.

70 CHAPTER 6. PASCAL{XSC MODULES

program p(output);

use i_ari,c_ari,ci_ari;

var i : interval;

c : complex;

z : cinterval;

begin

i.inf := 1.0; i.sup := 1.0; writeln(i);

c.re := 1.0; c.im := 1.0; writeln(c);

z.re := i; z.im := i; writeln(z);

i.inf := 1.235; i.sup := 1.236; writeln(i);

z.re := i; z.im := i; writeln(z);

end.

Output of program p:

[1.0000000000000000E+000, 1.0000000000000000E+000]

(1.0000000000000000E+000, 1.0000000000000000E+000)

([1.0000000000000000E+000, 1.0000000000000000E+000],

[1.0000000000000000E+000, 1.0000000000000000E+000])

[1.235E+000, 1.236E+000]

([1.235E+000, 1.236E+000],

[1.235E+000, 1.236E+000])

Figure 6.2: Output format for structured arithmetic types

6.2.3 Module ci ari

Mathematical functions for data type cinterval based on the IEEE binary double for-
mat and an accuracy of 1 ulp with respect to the evaluation of bounds are not yet
implemented.

The output operation for values of type cinterval

procedure write(var f : text, z : cinterval);

produces a decimal representation of the real and imaginary part of the complex interval
value. Both the real and imaginary part are output via the interval output procedure
described in 6.2.1 Module i ari. The default output format consists of 2 lines separated
by a newline character and a total of 111 displayable characters (55 characters on the
�rst line and 56 characters on the second line).

6.3. MODULE IOSTD 71

1 left parenthsis
1 blank
52 characters for the real part
1 komma immediately followed by a newline character
2 blanks
52 characters for the imaginary part
1 blank
1 right parenthesis

An example for the described output format is given in Figure 6.2.

6.3 Module iostd

The module iostd contains declarations of some additional input and output routines,
and constant de�nitions.

const

stdin = 0 ; { standard input }

stdout = 1 ; { standard output }

stderr = 2 ; { standard error }

stdcon = 3 ; { Terminal, ''/dev/tty'' ? }

stdprn = 4 ; { Printer }

stdrdr = 5 ; { Reader (CPM-device) }

stdpun = 6 ; { Puncher (CPM-device) }

stdtmp = 8 ; { temporary file, will be deleted by close }

stdorg = 9 ; { File, associated originally by command line }

{ use these constant names for the nr parameter

in reset and rewrite }

procedure reset (var t:text; nr:integer);

procedure rewrite(var t:text; nr:integer);

procedure close (var t:text);

procedure flush (var t:text);

function filexists (s:string) : boolean;

function getenv (s:string) : string;

procedure exit (retcode : integer);

After importing module "iostd" the procedures reset and rewrite may be called with
one of the constants

stdin, stdout, stderr, stdcon, stdprn, stdrdr, stdpun, stdtmp, or stdorg

72 CHAPTER 6. PASCAL{XSC MODULES

as second parameter. "stdin", "stdout", and "stderr" are standard devices of C. The
meaning of stdcon, stdprn, stdrdr, and stdpun depends on the operating system.
Refer to the local con�guration guide for details.

The function �lexists returns false, if a call of reset with the same �le name parameter
would fail.

The procedure close deletes a temporary text �le or makes a �le accessible to other
programs and �le variables. Files are closed automatically when leaving the block of
their declaration.

The procedure ush writes the bu�er of a �le. This routine may be used to display
output on the terminal without using calls to writeln.

Function getenv is equivalent to the function "getenv" in ANSI C, i.e., the contents of
an existing environment variable is returned. If the environment variable is not de�ned,
an empty string is returned.

The procedure exit may be used to terminate the processing of a PASCAL{XSC pro-
gram passing a return code to the calling program or shell. The integer value zero
should be returned in order to indicate that no error has occurred.

6.4 Module x intg

Module x intg contains de�nitions of additional integer operators and procedures. In
Figure 6.3, a brief description of the additional named operators is given. The operators
provide a possibility to access and manipulate individual bits of the integer format
described in 5.3.1.1 integer. For these operators the operands of type integer are
interpreted as �elds of 32 bits and not as a single signed integer value.

and { Bitwise logical AND operation.

eqv { Bitwise logical EQV operation.
'a EQV b' is equivalent with 'NOT(a XOR b)'.

not { Bitwise logical NOT operation.

or { Bitwise logical OR operation.

xor { Bitwise logical XOR operation.

bclr { Clear a single bit.

bset { Set a single bit.

btest { Test a single bit to be set.

msb { Bit number of most signi�cant bit that is set.

6.4. MODULE X INTG 73

Operator call Result type Priority
a and b =) integer �
a bclr m =) integer �
a bset m =) integer �
a btest m =) boolean �
a eqv b =) integer +

msb a =) integer ^

not a =) integer ^

ones a =) integer ^

a or b =) integer +
a rotate s =) integer �
a shift s =) integer �
a xor b =) integer +
a integer operand interpreted as �eld of 32 bits.
b integer operand interpreted as �eld of 32 bits.
m integer value within the range from 0 to 31.
s signed integer value for shift and rotate.

Figure 6.3: Additional named operators in module x intg

ones { Number of bits that are set.

shift { Shift bits.
If the right operand is positive, then a bit shift to the left is done. Vacated
bit positions are cleared.

rotate { Rotate bits.

If the right operand is positive, then a bit rotation to the left is done.
Vacated bit positions get the value of the bits that are shifted out.

An output procedure write for the bits of an integer value is available. The write
procedure is declared by

procedure write(var f : text; i : integer;

mode : char;

m,n : integer);

and writes a representation of bits m through n of integer i to the text �le f using
format mode. The values of m and n must be within the range from 0 to 31. Valid mode

characters are 'b' and 'B' for binary representation, and 'x' and 'X' for hexadecimal
representation using lower and upper case letters, respectively. In order to display
bit 5 through bit 2 of integer variable v from left to right the following PASCAL{XSC
statements may be used

74 CHAPTER 6. PASCAL{XSC MODULES

v := 32+8+2+1;

writeln('Bits from ',v,' = ',v:'b':5:2)

writeln('Bits from ',v,' = ',v:'x':5:2)

writeln('Bits from ',v,' = ',v:'X':5:2)

which yield the output lines

Bits from 43 = 1010

Bits from 43 = a

Bits from 43 = A

Module x intg also contains rede�nitions for the arithmetic integer operators +, �, �,
and =. These operators perform an overow checking.

6.5 Module x real

Module x real contains additional constants, types, functions, and procedures for an
extended or alternative processing of real values.

6.5.1 Classi�cation of real values

The speci�cation of the real data type in section 5.3.1.2 suggests a classi�cation of
real values according to the represented value. A total of 10 di�erent classes of real
values can be distinguished. The data type x ccode is introduced which enumerates
the classi�cation codes using enumeration constants.

type x_ccode = (x_sNaN, { signaling NaN }

x_qNaN, { quiet NaN }

x_minf, { minus infinity }

x_mnor, { negative normalized }

x_mden, { negative denormalized }

x_mnul, { minus zero }

x_pnul, { plus zero }

x_pden, { positive denormalized }

x_pnor, { positive normalized }

x_pinf { plus infinity }

);

function x_class (r : real) : x_ccode;

The return code of function x class is the classi�cation code of type x ccode of the
given real value argument.

6.5. MODULE X REAL 75

function x_value (c : x_ccode) : real;

The real value returned by function x_value is a special value corresponding to the
given classi�cation code of type x ccode. The returned value for the classi�cation codes
are listed in the following table.

code hexadecimal value description

x_sNaN 7ff80000ffffffff signaling NaN
x_qNaN 7ff00000ffffffff quiet NaN
x_minf fff0000000000000 minus in�nity
x_mnor ffefffffffffffff negative normalized
x_mden 8000000000000001 negative denormalized
x_mnul 8000000000000000 minus zero
x_pnul 0000000000000000 plus zero
x_pden 0000000000000001 positive denormalized
x_pnor 7fefffffffffffff positive normalized
x_pinf 7ff0000000000000 plus in�nity

Note, that the values returned for x_sNaN and x_qNaN depend on the installation of
your system. Refer to the local con�guration guide.

6.5.2 Composition and Decomposition of real Values

The default functions comp, expo, and mant assume an abstract representation of a
non-zero normalized oating-point number with a normalized mantissa m satisfying
B�1 � jmj < 1. Here, B stands for the base which is used for the representation of the
digits of mantissa m.

In the special case B = 2, the abstract representation of a non-zero normalized oating-
point number with a mantissa m satisfying 1 � jmj < 2 is possible, too. The binary
IEEE data formats are de�ned by such a formulation. The functions x comp, x expo,
and x mant handle real values according to this abstract representation.

function x_comp (m : real; e : integer) : real;

function x_expo (r : real) : integer;

function x_mant (r : real) : real;

6.5.3 Mathematical Functions

Two di�erent implementations of the mathematical functions are provided. The main
reason for two di�erent implementations is the signi�cant loss of performance in case
of a posteriori error estimations as compared with implementations using a priori error
estimations.

76 CHAPTER 6. PASCAL{XSC MODULES

On the other hand, the implementation using a posteriori error estimations can be
applied to other real data formats including multiple presicion formats whereas the
implementation using a priori error estimations is restricted to the real format as
speci�ed in 5.3.1.2 real.

By default, the implementation of real mathematical functions with a priori error esti-
mations is used. The entry names of the alternative implementation of mathematical
functions which uses "a posteriori error" estimations instead of "a priori" error esti-
mations are:

function x_sqrt (r : real) : real;

function x_exp (r : real) : real;

function x_exp2 (r : real) : real;

function x_exp10(r : real) : real;

function x_sin (r : real) : real;

function x_cos (r : real) : real;

function x_tan (r : real) : real;

function x_cot (r : real) : real;

function x_sinh (r : real) : real;

function x_cosh (r : real) : real;

function x_tanh (r : real) : real;

function x_coth (r : real) : real;

function x_arcsin (r : real) : real;

function x_arccos (r : real) : real;

function x_arctan (r : real) : real;

function x_arccot (r : real) : real;

function x_arsinh (r : real) : real;

function x_arcosh (r : real) : real;

function x_artanh (r : real) : real;

function x_arcoth (r : real) : real;

function x_arctan2(x,y : real) : real;

The supported domains of the mathematical functions are listed in Figure 6.4.

The term maxreal stands for the largest �nite real value, and the term minreal stands
for the smallest positive real value. Refer to Figure 5.6 for details about special real
values of the IEEE double data format.

The decimal values of named constants in Figure 6.4 are listed in the following table.

6.5. MODULE X REAL 77

Function Domain of valid real arguments

x sqrt(r) [0;maxreal]
x exp(r) [�maxreal; expmax]
x exp2(r) [�maxreal; exp2max]
x exp10(r) [�maxreal; exp10max]
x ln(r) [minreal;maxreal]
x log2(r) [minreal;maxreal]
x log10(r) [minreal;maxreal]
x sin(r) [�maxreal;maxreal]
x cos(r) [�maxreal;maxreal]
x tan(r) [�maxreal;maxreal]
x cot(r) [�maxreal;�cotmin] or [cotmin;maxreal]
x arcsin(r) [�1; 1]
x arccos(r) [�1; 1]
x arctan(r) [�maxreal;maxreal]
x arctan2(r1,r2) r1 = r2 = 0 not allowed
x arccot(r) [�maxreal;maxreal]
x sinh(r) [�hypmax; hypmax]
x cosh(r) [�hypmax; hypmax]
x tanh(r) [�maxreal;maxreal]
x coth(r) [�maxreal;�cotmin] or [cotmin;maxreal]
x arsinh(r) [�maxreal;maxreal]
x arcosh(r) [1;maxreal]
x artanh(r) [�(one{eps); (one{eps)]
x arcoth(r) [�maxreal;�(one + eps)] or [(one+eps);maxreal]

Figure 6.4: Domains of real functions with a posteriori error estimation

decimal hexadecimal

hypmax 7:104 758 600 739 439 �102 408633ce8fb9f87d

expmax 7:097 827 128 933 84 �102 40862e42fefa39ef

exp2max 1:023 999 999 999 999 9�103 408fffffffffffff

exp10max 3:082 547 155 599 167 �102 40734413509f79fc

cotmin 5:562 684 646 268 008 �10�309 0004000000000001

(one{eps) 0:999 999 999 999 999 9 3fefffffffffffff

(one+eps) 1:000 000 000 000 000 2 3ff0000000000001

maxreal 1:797 693 134 862 315 8�10308 7fefffffffffffff

minreal 4:940 656 458 412 465 4�10�324 0000000000000001

There are two real constants maxreal and minreal de�ned in module x real that hold
the largest and smallest positive real value, respectively.

78 CHAPTER 6. PASCAL{XSC MODULES

6.5.4 Formatted Input/Output for real Values

The representation of real input and output values in a hexadecimal notation is made
available by overloading the procedures read and write for real arguments.

procedure read (var f : text; var r : real; mode : char);

procedure write(var f : text; r : real; mode : char);

Both the input format and the output format is a �xed-format 16 digit hexadecimal
notation. The left-most hexadecimal digit holds bit 63 through bit 60 of the oating-
point number format as speci�ed in Figure 5.3. The right-most hexadecimal digit holds
bit 3 through bit 0.

Procedure read for hexadecimal input does not distinguish between lower case hexadec-
imal digits a, b, c, d, e, f and upper case hexadecimal digits A, B, C, D, E, F. Possible
mode characters are 'x' and 'X'.

Procedure write may be called with mode character 'x' or 'X', which will produce lower
case hexadecimal digits a, b, c, d, e, f or upper case hexadecimal digits A, B, C, D, E,
F, respectively.

The PASCAL{XSC statement

writeln(1.0:'x',' = ',1.0:'X')

yields the following output line:

3ff0000000000000 = 3FF0000000000000

6.5.5 IEEE Exception Handling Routines

In order to manipulate the exception handling environment of IEEE exceptions, a
number of constants are de�ned which can be used together with the PASCAL{XSC
procedures IEEE_environment and IEEE_trap_enable.

IEEE_INV_OP

IEEE_DIV_BY_ZERO

IEEE_OVERFLOW

IEEE_UNDERFLOW

IEEE_INEXACT

IEEE_ALL

IEEE_CONTINUE

The constants IEEE_INV_OP, IEEE_DIV_BY_ZERO, IEEE_OVERFLOW, IEEE_UNDERFLOW,
and IEEE_INEXACT characterize the �ve exceptions speci�ed by the IEEE standard.
The constant IEEE_CONTINUE is used for changing the exception environment.

6.5. MODULE X REAL 79

procedure IEEE_environment(action : integer;

handler : integer;

mode : boolean);

Procedure IEEE_environment transfers an 'action' code to the embedding environ-
ment of an IEEE exception handler which is selected by the integer argument 'handler'.
The 'mode' value activates a characterization if it is true or inactivates a characteriza-
tion if it is false.

The 'action' code

IEEE_CONTINUE

forces the environment to continue processing after the trap handler has terminated.
Other codes may be provided by further releases of the PASCAL{XSC runtime system.
The trap handler is identi�ed by the integer argument 'handler' which may have one
of the values IEEE_DIV_BY_ZERO, IEEE_INEXACT, IEEE_INV_OP, IEEE_OVERFLOW, and
IEEE_UNDERFLOW. The value of mode must be true in order to activate this characteristic
of the exception handling environment. If IEEE_CONTINUE is selected and 'mode' is false,
then processing is aborted after leaving the trap handler. Otherwise the processing of
the program is continued.

procedure IEEE_trap_enable(handler : integer; mode : boolean);

Procedure IEEE_trap_enable sets the enabled status of an IEEE exception han-
dling routine. If the value of mode is true then the trap handler is enabled. If the
value of mode is false, then the trap handler is disabled. The selection of the trap
handler is done by the value of the integer argument handler which may have one
of the values IEEE_DIV_BY_ZERO, IEEE_INEXACT, IEEE_INV_OP, IEEE_OVERFLOW, and
IEEE_UNDERFLOW.

An example for the usage of the procedures IEEE_environment and IEEE_trap_enable
is given in Appendix D IEEE Exception Handling Environment.

function IEEE_test(handler : integer) : boolean;

Function IEEE_test returns the value of the exception ag that is associated with the
IEEE exception identi�ed by 'handler'. The exception ag is not changed by this
function. Exceptions ags stay set until they are explicitly reset via calls to procedure
IEEE_reset.

Before processing the �rst PASCAL{XSC statement all exception ags are reset. Note
that the �rst PASCAL{XSC statement may be placed in an included module and
may a�ect the exception ags before processing the �rst statement of the program
body. Thus, if IEEE exception handling routines are used, it is recommended that all
exception ags are explicitly reset in the program body before processing is started.

80 CHAPTER 6. PASCAL{XSC MODULES

The exception ag is set explicitly by the user via procedure 'IEEE_set' or automati-
cally by all IEEE oating-point operations if the corresponding exceptional conditions
are met. Exception ags are set independent of the enabled status of the related trap
handler. Valid numbers for the integer argument 'handler' are IEEE_DIV_BY_ZERO,
IEEE_INEXACT, IEEE_INV_OP, IEEE_OVERFLOW, and IEEE_UNDERFLOW.

procedure IEEE_set(handler : integer);

Procedure IEEE_set sets the value of the exception ag that is associated with the
IEEE exception identi�ed by 'handler'. Valid numbers for the integer argument
'handler' are IEEE_ALL, IEEE_DIV_BY_ZERO, IEEE_INEXACT, IEEE_INV_OP, IEEE_-
OVERFLOW, and IEEE_UNDERFLOW. If IEEE_ALL is selected, then all IEEE ags are set.

procedure IEEE_reset(handler : integer);

Procedure IEEE_reset resets the value of the exception ag that is associated with
the IEEE exception identi�ed by 'handler'. Valid numbers for the integer argument
'handler' are IEEE_ALL, IEEE_DIV_BY_ZERO, IEEE_INEXACT, IEEE_INV_OP, IEEE_-
OVERFLOW, and IEEE_UNDERFLOW. If IEEE_ALL is selected, then all IEEE ags are reset.

procedure IEEE_save(var x : integer);

Procedure IEEE_save saves the setting of all IEEE exception ags and all IEEE trap
enabled ags as value of the integer variable 'x'. The complete ag settings saved in
variable 'x' may be restored by calling IEEE_restore with argument 'x'

procedure IEEE_restore(x : integer);

Procedure IEEE_restore restores the setting of all IEEE exception ags and all IEEE
trap enabled ags from the integer value 'x'.

6.6 Module x strg

procedure x_release (var s : string);

Procedure x_release is only meaningful for actual arguments that are string variables
without static length speci�cation in the declaration. The purpose is to release the
unused portion of a string variable, i.e., the length of the allocated string is reduced to
the length of the currently stored string. The current string may be shorter due to a
call to standard procedure setlength or the assignment of a 'shorter' string. Usually an
allocated string space is not automatically returned to the heap management during
processing since it is not known whether pending information in the string variable is
still relevant.

6.7. MODULES LSS, ILSS, CLSS, CILSS 81

6.7 Modules lss, ilss, clss, cilss

Beyond other application modules delivered with the PASCAL{XSC system, there may
be modules for the solution of linear systems of equations and the inversion of a matrix.

The modules named lss, ilss, clss, and cilss each contain two procedures called LSS and
INV for matrix and vector arguments with component types real, interval, complex,
and cinterval, respectively.

For modules xlss (x=empty, i, c, ci) procedures LSS and INV are declared in the
following form with y=R, I, C, CI and z=I, I, CI, CI according to the choice of x.

procedure LSS (var A : yMATRIX
var B : yVECTOR
var Y : zVECTOR
var ERRCODE : INTEGER)

procedure INV (var A : yMATRIX
var Y : zMATRIX
var ERRCODE : INTEGER)

LSS solves quadratic and over-determined and under-determined linear systems of equa-
tions of the form

A � x = b

with A an m-by-n matrix, b an m-vector, and x an n-vector. The veri�ed enclosure of
the exact solution x is returned by argument Y. The contents of arguments A and B are
not changed.

INV determines the inverse of the m-by-n matrix A if m is equal to n. Otherwise,
the pseudo-inverse (Moore-Penrose-Inverse) is determined. The enclosure of the exact
inverse is returned by argument Y. The contents of argument A are not changed.

Both routines return an exception code via argument ERRCODE. The following states
are distinguished:

� for LSS and INV:

ERRCODE=0 : Everything is o.k. and no exceptions occurred.

ERRCODE=1 : No enclosure determined due to ill-conditioned matrix.

ERRCODE=2 : No enclosure determined since matrix possibly is singular
(if m=n) or does not possess full rank (if m6=n).

� for LSS only:

ERRCODE=3 : Wrong dimensions : number of rows of A is di�erent from
number of elements of B.

82 CHAPTER 6. PASCAL{XSC MODULES

ERRCODE=4 : Wrong dimensions : number of columns of A is di�erent from
number of elements of Y.

� for INV only:

ERRCODE=3 : Wrong dimensions : number of columns of A is di�erent from
number of rows of Y.

ERRCODE=4 : Wrong dimensions : number of rows of A is di�erent from
number of columns of Y.

Note : Both routines are able to deliver exact solutions, i.e., the diameter of all
components of Y are zero. This is the case, if the residual of the approximate solution
is exactly zero, i.e., the approximate solution is the exact solution. Consequently, the
interval iteration process is not performed and the uniqueness of the solution is not
guaranteed. Nevertheless, ERRCODE=0 is returned, since Y represents an exact solution.

Modules lss aprx and clss aprx contain procedures of the following form with y=R or
C, respectively.

procedure MINV (var A : yMATRIX
var ERR : INTEGER)

procedure MINV1 (var W : yMATRIX
var ERR : INTEGER)

These routines are used by all procedures LSS and INV.

MINV determines an approximate inverse of a quadratic matrix A using the Gau�-
Jordan-Algorithm (with column pivots). Argment A is replaced by the determined
approximate inverse. There is no checking for a quadratic matrix.

MINV1 determines an approximate inverse of the quadratic matrix A = I+W using the
Gau�-Jordan-Algorithm (without pivoting). Only the di�erence W = A� I is passed
as argument. Analogously, only the di�erence of the determined approximate inverse
from the unit matrix I is returned. If A�1 denotes the exact inverse of A, Win the input
matrix, and Wout the output matrix of MINV1, then A = I +Win and A�1 � I +Wout.
There is no checking for a quadratic matrix.

Both routines return an exception code by argument ERR.

� for MINV and MINV1:

ERR=0 : Everything is o.k. and no exception occurred.

ERR=1 : No approximate inverse is determined, since the matrix possibly is
singular.

Appendix A

Deviations

A.1 Deviations from Standard PASCAL

This section contains deviations of the current implementation of the PASCAL{XSC
compiler as well as of the PASCAL{XSC language description in [4] from standard
PASCAL. Deviations are those properties, that make programs written in standard
PASCAL be uncompilable with the PASCAL{XSC compiler, or will produce di�erent
results when standard PASCAL programs compiled with the PASCAL{XSC compiler
are executed. This section does not contain PASCAL{XSC extensions and details of
the implementation.

The most important deviation of the language PASCAL{XSC from Standard PASCAL
results from the PASCAL{XSC concept of overloading names of subroutines.

1. rede�nition

A local subroutine may overload a global subroutine instead of rede�ning it. For
example:

procedure p(x:integer) ; begin {...} end ; { outer p }

procedure main ;

procedure p(x:real) ; begin {...} end ; { inner p }

begin { main }

p(1) ; { call of p }

end ;

In standard PASCAL, the inner procedure p is called, because the outer pro-
cedure p is rede�ned and, therefore, is not available when p is called in proce-
dure main. In PASCAL{XSC the inner procedure p overloads the outer proce-
dure p, thus, both procedures (with di�erent lists of arguments) are available.

83

84 APPENDIX A. DEVIATIONS

The outer procedure p is called, because its formal parameter type matches the
type of the actual arguments.

2. forward declaration

When de�ning a forward declared procedure or function, the formal parameter
list must be repeated in order to identify the subroutine uniquely.
Refer to section 2.7.8 in [4].

3. goto statement

A goto statement must not leave the immediately surrounding block.
Refer to 5.5.5 goto-Statement.

4. standard procedures pack, unpack

The standard procedures pack and unpack are not recognized.

5. �le type

A �le type must not be the component type of an array or the type of a record
component. File variables must not be referenced by a pointer.
Refer to 5.3.2.10 Files.

6. set elements

The ordinal numbers of set elements are restricted to the range from 0 through
255.
Refer to 5.3.2.9 Sets.

7. type compatibility

Di�erent subrange types as well as di�erent set types can not be converted au-
tomatically. An explicit type conversion by means of a type name is required.
Refer to 5.3.5 Compatibility of Types.

8. pointers

Forward declared data types must be record types.
Refer to 5.3.4 Pointers.

9. functions

The assignment to a function result must be in the statement part of the function
and not in an inner block.
Refer to 5.7.3 Functions.

10. keywords

New reserved keywords are:
operator, use, dynamic, global, priority, module.
Refer to section 2.1 Basic Symbols in [4].

A.2. DEVIATIONS FROM PASCAL{XSC 85

The identi�er external is not a reserved keyword. sum is reserved only imme-
diately after the keywords to and downto in an accurate expression.

11. unary '+' and unary '-'

The unary operators '+' and '-' have highest priority.
Refer to section 2.4.1 Expressions in [4].

12. read and write

The procedures read and write, readln and writeln may be rede�ned only in a
special way.
Refer to section 2.7.11 Overloading of read and write in [4].

A.2 Deviations from PASCAL{XSC

This section contains deviations of the implemented PASCAL{XSC compiler concern-
ing the language de�nition of PASCAL{XSC. Deviations are those properties, that
make PASCAL{XSC programs, which have successfully been processed by an older
version of the PASCAL{XSC compiler (Atari code generating version), be uncompi-
lable, or will produce di�erent result when processed by the C generating version of
the PASCAL{XSC compiler, or make programs uncompilable that are written strictly
conformant with the language description. This section does not contain extensions
and implementation details. Deviations from Standard PASCAL are listed separately
in the preceding section A.1.

1. �le types
File types must have neither dotprecision nor string components.
Refer to 5.3.2.10 Files.

2. variant part
Variant parts of records must have neither dotprecision nor string components.
Refer to 5.3.2.8 Records with Variants.

3. hexadecimal constants
Hexadecimal constants are not implemented.
Refer to 5.3.1.1 integer.
Character $ is not a basic symbol.
Refer to 5.1 Basic Symbols.

4. standard function loc
The standard function loc is not implemented.
Refer to 5.7.5 List of Prede�ned Functions.

86 APPENDIX A. DEVIATIONS

5. functions mark and release
The functions mark and release are not implemented.
Refer to 5.7.2 List of Prede�ned Procedures and Input/Output Statements.

6. Type compatibility
Refer to 5.3.5 Type Compatibility.

7. Selecting routines
The process of selecting overloaded routines is changed.
Refer to 5.7.10 Overloading of Procedures, Functions, and Operators.

Appendix B

Syntax Diagrams

This section briey summarizes the syntactical di�erences of the current implementa-
tion of the PASCAL{XSC compiler compared with the PASCAL{XSC language de-
scription [4].

P7 CONSTANT

The notation of a hexadecimal integer constant is not implemented. The character '$'
is not a basic symbol.

P21 BODY

After the compiler directive external a syntactically correct PASCAL{XSC identi�er
name is allowed which represents an external entry name.

external

ST CONSTANT

ID
procedure id

P26 STANDARD PROCEDURE CALL

Procedures mark and release are not implemented.

P37 STANDARD FUNCTION CALL

Functions loc is not implemented.

87

Appendix C

Runtime Messages

During the processing of a PASCAL{XSC program unexpected exceptional conditions
may occur. Possible reasons may be, e.g., the occurrence of input/output errors, math-
ematical errors, or errors caused by the operating system. Exceptions detected by the
PASCAL{XSC system are communicated to the user by displaying messages on the
standard error device "stderr". The device for displaying messages may be altered.
Refer to the local installation guide for the actual setting.

--- Division by zero.

--- left operand : 0x3ff0000000000000

--- right operand : 0x0000000000000000

--- result : 0x7ff0000000000000

--- ERROR at line 25 in 'DIVIDE'

--- 'DIVIDE' defined in 'mod1.p' is called in 'mod2.p' at line 53.

--- 'DIVMAT' defined in 'mod2.p' is called in 'mymod.p' at line 20.

--- 'DIVMAT' defined in 'mymod.p' is called in 'prog.p' at line 134.

--- 'DIVISION' defined in 'prog.p' is called in 'prog.p' at line 30.

--- 'PROG' defined in 'prog.p' is called by operating system.

Figure C.1: Example for an exception message

All messages which are caused by the exception handling routines are preceded by
a header string composed of three dashes: '--- '. The symbol stands for a blank
character. A typical reaction on an exceptional condition is composed of three blocks
of messages:

1. A descriptive message text.

2. A list of actual PASCAL{XSC values which were used when the exception oc-
curred.

88

C.1. DESCRIPTIVE MESSAGES 89

3. A function trace back which reects the actual (dynamic) nesting of PASCAL{
XSC subroutines at the moment when the exception occurred.

An example for displayed messages in case of a DIVISION BY ZERO exception is given
in Figure C.1.

C.1 Descriptive Messages

The possible descriptive message text lines of an exception detected by the PASCAL{
XSC runtime system are listed in alphabetic order.

Allocation failed :

Allocation of dynamic storage failed. Additional text speci�es whether an at-
tempt was made to allcoate a dotprecision variable, a dynamic array, a dynamic
string, or a user-de�ned object.

Division by zero

An attempt is made to divide a non-zero value by zero. In case of a real division,
the IEEE exception handling environment is active (refer to Appendix D IEEE
exception handling environment on page 95). The division of zero by zero or
in�nity by in�nity causes an invalid operation exception.

Equal length of dynamic vectors expected.

One-dimensional dynamic arrays with di�erent lengths are used as operands
where equal length is required.

Error in I/O operation :

Input and output errors may be caused by a variety of reasons. Therefore, addi-
tional text describes the individual fact that produced a PASCAL{XSC runtime
exception.

{ Command line errors :
Missing command line argument.

{ Open errors :
Empty string.

Filename too long.

Invalid file name.

Missing variable name.

No file name has previously been assigned.

No device assigned.

Unable to open file for reading.

Unable to open file for writing.

Standard I/O must not be used for binary I/O.

90 APPENDIX C. RUNTIME MESSAGES

{ Read and write errors :
Device not a binary device.

Device not a TEXT device.

Device not opened for reading.

Device not opened for writing.

Error writing data to file.

Invalid read/write mode.

Invalid syntax of hexadecimal value.

Invalid syntax of integer value.

Invalid syntax of real value.

Unexpected End-Of-File.

Unexpected End-Of-Line.

No digits in string.

Evaluation error possibly caused by invalid argument.

A PASCAL{XSC standard function is processed that caused an exception. Most
often one of the actual argument values is invalid.

Exponent range restricted.

The exponent range for real input operations is restricted to the integers in
the interval [-999,999]. Nevertheless, the conversion is processed according to
the speci�ed rounding eventually causing an OVERFLOW or UNDERFLOW
exception.

Exponent too large (infinity returned).

An attempt is made to explicitly generate a real number with a non-representable
large exponent.

Exponent too small (zero returned).

An attempt is made to explicitly generate a real number with a non-representable
small exponent.

Function call with matrices of different column lengths.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Function call with matrices of different row lengths.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Function call with vectors of different lengths.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Index out of range.

An index or element value outside the actually valid range is used.

C.1. DESCRIPTIVE MESSAGES 91

Inexact

The result of an operation is inexact and a rounding operation is applied to the
delivered result. In case of the real operations +, �, �, =, the IEEE exception
handling environment is active (refer to Appendix D IEEE exception handling
environment on page 95).

Inexact conversion of decimal constant.

The result of a conversion routine is inexact and a rounding operation is applied
to the delivered result.

Inexact conversion of decimal input data.

The result of a conversion routine is inexact and a rounding operation is applied
to the delivered result.

Internal buffer too small :

For some internal routines reserved (static) bu�ers of a certain size are used to
handle intermediate data. This error should not occur in a correct PASCAL{
XSC program. Additional text is provided for debugging purposes.

Dynamic variable.

Dynamic mantissa too long.

Reading a dynamic string.

Invalid operation :

In case of the real operations +, �, �, =, the IEEE exception handling environ-
ment is active (refer to Appendix D IEEE exception handling environment on
page 95). Additional text speci�es the details of an invalid operation exception.

0*infinity

0/0

Signaling NaN as operand

infinity-infinity

infinity/infinity

Invalid width of output field.

A formatted write operation is done with an invalid �eld width.

Mantissa bits lost on generating denormalized number.

An attempt is made to explicitly generate a real number with a non-representable
mantissa.

Mantissa out of range (1.0<= jmantissaj <2.0).
An attempt is made to explicitly generate a real number with an invalid mantissa
argument.

Mismatching index ranges.

The index ranges of dynamic arrays do not match.

92 APPENDIX C. RUNTIME MESSAGES

Mismatching inner lengths in a matrix-matrix product.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Mismatching inner lengths in a matrix-vector product.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Mismatching inner lengths of arguments in a function call.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Non-positive modulo value.

A non-positive modulo value is used.

One-dimensional dynamic array expected.

A one-dimensional dynamic array is expected.

Overflow occurred

An overow exception occurred for a real or integer operation. In case of the real
operations +, �, �, =, the IEEE exception handling environment is active (refer
to Appendix D IEEE exception handling environment on page 95).

------ Processing aborted ------

Message displayed by the exception handler when processing is aborted.

Range of integer data type exceeded.

An integer value exceeding the range from -maxint-1 to maxint inclusively results
from an operation.

Scalar product of vectors with different lengths.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Substring destination array shorter than required.

The length of a substring array on the left-hand side of an assignment is smaller
than the length of the string value on the right-hand side.

Summation of matrices with different column lengths.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Summation of matrices with different row lengths.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

C.2. LIST OF VALUES 93

Summation of vectors with different lengths.

Message caused by a mismatching of arguments in a PASCAL{XSC dot product
expression (#-expression).

Undefined device specification.

An invalid device speci�cation is used in an extended open statement.

Underflow occurred

An underow exception occurred for a real operation. In case of the real oper-
ations +, �, �, =, the IEEE exception handling environment is active (refer to
Appendix D IEEE exception handling environment on page 95).

Unexpected infinity operand.

A real operand with value infinity is used in a dotprecision operation.

Unexpected NULL pointer.

A NULL pointer is detected in an operation that requires a pointer value refer-
encing an allocated piece of memory. The term "NULL" stands for the special
pointer value which is de�ned for the C compiler in use.

Unexpected quiet NaN operand.

A real operand with value qNaN is used in a dotprecision operation.

C.2 List of Values

After displaying a descriptive message text an optional list of values is given which is
related to the context in which an exception occurred. Each value is described on one
line by giving

1. a short text which describes the displayed value by its meaning or data type,

2. a hexadecimal representation in case of arithmetic values, and

3. a "readable" representation.

In Figure C.2, the possible short text used for describing the displayed values are
listed. The number sign, #, stands for the number of the displayed value in the current
message.

C.3 Function Trace Back

A complete exception message is terminated by a function trace back. Due to over-
loading of procedure and function names, the application of recursive calls, and the use
of a variety of user-de�ned and standard PASCAL{XSC modules, it may be di�cult

94 APPENDIX C. RUNTIME MESSAGES

char file variable

dot index

integer input data

dynamic left operand

real lower bound

string mantissa

argument result

basis right operand

bit number set element

dimension string length

error code upper bound

exponent vector length

file name

Figure C.2: Short text used in list of values

to analyze the context in which an exception occurred. Only positional information
within the PASCAL{XSC source code may not be su�cient.

The function trace back displays the actual nesting of a routine which caused an excep-
tion. For each routine its name and the name of its de�ning module are listed together
with the name of the calling module. Line number informations are available if the
appropriate PASCAL{XSC compiler option n is speci�ed (refer to 3.6 PASCAL{XSC
Compiler Options).

Appendix D

IEEE Exception Handling

Environment

For the real operations according to the IEEE standard [3], the following �ve classes
of exceptions are de�ned:

� DIVISION BY ZERO

� INVALID OPERATION

� EXPONENT OVERFLOW

� EXPONENT UNDERFLOW

� INEXACT RESULT

Each of these exceptions is handled by its own exception handler which may be en-
abled or disabled. If the exception handler is enabled, then exception messages are
displayed. By default, the exception handlers for the exceptions DIVISION BY ZERO,
EXPONENT OVERFLOW, and INVALID OPERATION are enabled and cause the
termination of the processing of a program after messages are displayed. The exception
handlers for the exceptions EXPONENT UNDERFLOW and INEXACT RESULT are
disabled and a standard corrective action (application of the speci�ed rounding oper-
ation) is taken before processing is continued.

The default settings of the enabled status of the exception handlers may be altered.
Refer to the local con�guration guide for current settings.

The runtime option -ieee is provided for changing the default settings of the en-
abled status of the exception handlers when the processing of a compiled and linked
PASCAL{XSC program is started. Refer to 4.2 PASCAL{XSC Runtime Options for
more details.

95

96 APPENDIX D. IEEE EXCEPTION HANDLING ENVIRONMENT

Another possibility of changing the status of the exception handling environment for
IEEE exceptions is given by additional runtime support procedures de�ned in module
x real. Refer to 6.5 Module x real.

Example for the use of procedures IEEE_trap_enable and IEEE_environment declared
in module x real.

program ieeetest;

use x_real;

begin

IEEE_environment(IEEE_CONTINUE,IEEE_DIV_BY_ZERO,true);

IEEE_trap_enable(IEEE_DIV_BY_ZERO,false);

writeln('Divide 1 by 0 : ',1.0/0.0); writeln;

IEEE_trap_enable(IEEE_DIV_BY_ZERO,true);

writeln('Divide 1 by 0 : ',1.0/0.0); writeln; { line 11 }

IEEE_environment(IEEE_CONTINUE,IEEE_DIV_BY_ZERO,false);

IEEE_trap_enable(IEEE_DIV_BY_ZERO,false);

writeln('Divide 1 by 0 : ',1.0/0.0); writeln;

IEEE_trap_enable(IEEE_DIV_BY_ZERO,true);

writeln('Divide 1 by 0 : ',1.0/0.0); writeln; { line 18 }

end.

If program ieeetest is compiled with compiler option '+n' (see 3.6.2 Code Generation
Options), then the processing of ieeetest yields the following output on a terminal
screen.

Divide 1 by 0 : +infinity

--- Division by zero

--- ERROR at line 11 in 'ieeetest.p'

Divide 1 by 0 : +infinity

Divide 1 by 0 : +infinity

--- Division by zero

--- ERROR at line 18 in 'ieeetest.p'

------ Processing aborted ------

Divide 1 by 0 :

97

Processing is aborted at line 18, since trap handling is enabled for IEEE_DIV_ZERO and
the environment for the exception handler is set up to terminate the execution of the
program after leaving the exception handler.

Appendix E

ASCII Collating Sequence

ORD(x) x ORD(x) x ORD(x) x ORD(x) x

0 NUL 32 SP 64 @ 96 `
1 SOH 33 ! 65 A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ' 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 l
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91] 123 f
28 FS 60 < 92 n 124 j
29 GS 61 = 93] 125 g
30 RS 62 > 94 ^ 126 �
31 US 63 ? 95 127 DEL

Figure E.1: ASCII collating sequence

98

Bibliography

[1] American National Standard for Information Systems, Pogramming Language C,
X3.159-1989, 1989.

[2] G. Bohlender, L. B. Rall, Ch. Ullrich, J. Wol� v. Gudenberg: PASCAL-
SC Wirkungsvoll programmieren, kontrolliert rechnen, Bibliographisches Institut
Mannheim, 1986.

[3] IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985, 1985.

[4] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, Ch. Ullrich: PASCAL-XSC, Sprachbe-
schreibung mit Beispielen, Springer-Verlag, Heidelberg, 1991.
R. Klatte, U. Kulisch, M. Neaga, D. Ratz, Ch. Ullrich: PASCAL-XSC, Language
Reference with Examples, Springer-Verlag, Heidelberg, to be published in 1992.

99

Index

EXTENSIONS
.0 (null �le) 28
.a (library �le) 28
.c (C source �le) 22
.h (C include �le) 27
.lst (listing �le) 21, 26
.mod (interface �le) 27
.p (source �le) 11, 12, 20, 26
.tmp (temporary �le) 32

FILES
c ari.� (module) 6
c ariaux.� (module) 6
ci ari.� (module) 6
cxsc.hlp (�le) 5, 29
dismod (program) 5, 28
dxsc (program) 5, 29
dxsc.hlp (�le) 5, 29
errmess.tmp (�le) 29
errtext.hlp (�le) 5, 29
exsc (program) 5, 17, 29
i ari.� (module) 6
iatan2 (module) 67
ilss.� (module) 6
info.txt (�le) 5, 30, 35
iostd.� (module) 5
l2p (program) 5, 13, 30
linkinfo.tmp (�le) 29
lss.� (module) 6
lss aprx.� (module) 6
lxsc.bat (�le) 16, 29
lxsc.opt (�le) 29
mod2lib (program) 5, 28
modmod.tmp (�le) 29
mv ari.� (module) 6
mvc ari.� (module) 6

mvci ari.� (module) 6

mvi ari.� (module) 6

mvmod (program) 5, 28

mxsc (program) 5, 29

o msg1.h (�le) 5, 30

p88.env (�le) 5, 6, 7, 23, 29

p88rts.h (�le) 5, 30, 41

p88rts.i (�le) 6, 26, 30

p88rts.ii (�le) 5, 6

psclist (program) 29

pxsc (program) 5, 20, 29

pxsccfg (program) 5, 24, 29

pxsclist (program) 5, 17

rts.a (�le) 5

splitmod (program) 5, 28

stdmod.� (module) 5

x intg.� (module) 5

x real.� (module) 5

x strg.� (module) 5

SYMBOLS
$ (basic symbol) 39

= (keyword association) 31

! (long listing) 13

- (compiler option) 11, 20

- (con�guration command) 25

- (runtime option) 32, 34

-? (runtime option) 35

o (con�guration command) 25

+ (compiler option) 11, 20

+ (con�guration command) 25

? (manager command) 15

; (interactive manager) 15

(manager option) 11

100

INDEX 101

A
a bool 41, 45
a char 41, 45
a cimt 50
a cinv 50
a civt 50
a cmpx 49
a cmty 50
a cvty 50
address of variables 40
a imty 50
a intg 41
a intv 50
a ivty 50
ALLOCATION 47
and (bit operation) 72
ANSI C 1, 26
arccos 54, 68
arccot 54, 68
arcosh 54, 68
arcoth 54, 68
arcsin 54, 68
arctan 54, 68
arctan2 54, 68
a real 41, 42
arithmetic modules 6, 67
arithmetic types 49
a rmty 50
arsinh 54, 68
artanh 54, 68
a rvty 50
ASCII 45, 98

B
b (manager command) 16
background process 11
basic symbols 39
batch (manager command) 16
batch �le 16, 29
batch manager 5, 7, 11
bclr (bit operation) 72
binary output

integer 73

bit operation 72
and 72
bclr 72
bset 72
btest 72
eqv 72
msb 72
not 72
ones 72
or 72
rotate 72
shift 72
xor 72

boolean 41, 45
bset (bit operation) 72
btest (bit operation) 72

C
c (compiler option) 22
c (manager command) 9, 12, 15
c (manager option) 11
C compiler 2, 16, 20, 26, 30

options 15
C function name 65
c ari (module) 6, 69
c ariaux (module) 6
case sensitive

command line 27
external clause 39
fn (manager command) 27
module clause 27, 39
use clause 27, 39
use global clause 39

-cc (runtime option) 34
char 41, 45
Check at 18
ci ari (module) 6, 70
cilss (module) 81
cimatrix 50
cinterval 50
civector 50
classi�cation of real 74
close 72

102 INDEX

clss (module) 81
clss aprx (module) 82
cmatrix 50
code generation 22
code generation (compiler option) 22
coersion 63
collating sequence

ASCII 45, 98
command line 27, 31, 34
compatibility of types 52
compile (manager command) 9, 12, 15
compile a program 9
compiler call 27
compiler errors

name conicts 65
compiler messages 5, 13, 18, 19, 21, 29

Check at 18
column number 13
error number 13
line number 13
position digit 18, 19

compiler option (manager option) 11
compiler options 11, 15, 20, 23

c (code generation) 22
code generation options 22
d (dump) 23
debug options 22
display options 21
l (list �le) 21
m (merge) 15, 20, 22
n (line numbers) 22, 94
n (numbers) 37, 96
r (rename) 23
s (source directory) 22, 28
t (terminal) 22
v (verbose) 21
w (warnings) 21
x (index check) 22

compiler warnings 21
complex 49
con�guration command

d (display) 25
e (exit) 25

h (help) 25
i (interface) 26
k (kill) 25
n (non command line) 26
o (option) 25
q (quit) 25
r (runtime interface) 26
t (type name) 26
u (update) 25

con�guration �le 5, 7, 20, 23, 24, 27, 29
path 21
searching 23, 24

con�guration guide 2, 3, 12, 17, 24, 32,
34, 39, 41, 43, 49, 58, 72, 75, 88,
95

con�guration program 29
help �le 29

constants 40
cos 54, 68
cosh 54, 68
cot 54, 68
coth 54, 68
current directory 22, 23, 24, 26, 27, 29,

32
current �le 14
cvector 50
cxsc.hlp (�le) 5, 29

D
d (compiler option) 23
d (con�guration command) 25
d (manager command) 15
data formats 41
data type

a bool 41
a char 41
a cimt 50
a cinv 50
a civt 50
a cmpx 49
a cmty 50
a cvty 50
a imty 50

INDEX 103

a intg 41
a intv 50
a ivty 50
a real 41
a rmty 50
a rvty 50
boolean 41, 45
char 41, 45
cimatrix 50
cinterval 50
civector 50
cmatrix 50
complex 49
cvector 50
d otpr 41
dotprecision 41, 45
imatrix 50
integer 41
interval 50
ivector 50
real 41, 42
rvector 50
rvector 50
simple type 41
string 41, 47
s trng 41
x ccode 74

debug options 22
denormalized 42
deviations

from PASCAL 83
from PASCAL-XSC 85

directories 3
dismod (program) 5, 28
display (con�guration command) 25
display toggle (manager command) 15
dispose 63
div 53
d otpr 41, 45
dotprecision 41, 45
dump (compiler option) 23
dxsc (program) 5, 29
dxsc.hlp (�le) 5, 29

E
e (con�guration command) 25
e (manager command) 9, 12, 13, 14, 16
e (manager option) 11
edit (manager command) 9, 12, 13, 14,

16
edit (manager option) 11
editor 11, 12, 13
environment variable 4, 7, 72

HOME 24
PATH 4, 8
PXSC EDIT 7, 9, 11, 12
PXSC LIB 7
PXSC SYS 4, 5, 7, 8, 24, 29
PXSC USR 7, 24

eoln 49
eqv (bit operation) 72
errmess.tmp (�le) 29
error messages 5, 13, 18, 19, 21, 29, 30,

32, 88
errtext.hlp (�le) 5, 29
exception

ALLOCATION 47
DIVISION BY ZERO 34, 89, 95
header string 88
INEXACT 34, 91, 95
INVALID OPERATION 34, 91, 95
OVERFLOW 34, 92, 95
UNDERFLOW 34, 93, 95

exception handler
default status 34

exception handling 78
executable program 30

path 4
execution permission 4, 5, 6
exit 63, 72
exit (con�guration command) 25
exp 54, 68
exp10 54, 68
exp2 54, 68
expo 55
exponent 42

range 42

104 INDEX

expressions 53
exsc (program) 5, 17, 29
extension

.0 (null �le) 28

.a (library �le) 28

.c (C source �le) 22

.h (C include �le) 27

.lst (listing �le) 21, 26

.mod (interface �le) 27
of �le names 23, 26
.p (source �le) 11, 12, 20, 26
.tmp (temporary �le) 32

external 39, 64
names 40

F
f (manager command) 14
false 45, 58
�le 46, 48
�le name (manager command) 14, 27
�le name prompting 31, 32, 36, 37
�le usage 28
�le variables 31
�lexists 72
oating-point exponent 42
oating-point mantissa 42
oating-point number 34, 42
ush 72
fm (manager command) 14
fn (manager command) 14, 27
fo (manager command) 14
forward 64
fp (manager command) 14

G
getenv 72
global 39

H
-h (runtime option) 35
h (con�guration command) 25
h (manager command) 15
hardware arithmetic 43
header string 88

-help (runtime option) 35
help (manager command) 15
help �le

con�guration program 5
interactive manager 5
runtime system 5

hexadecimal constant 39
hexadecimal input

real 78
hexadecimal output

real 73, 78
hidden bit 42
HOME 24

I
i (con�guration command) 26
i ari (module) 6, 67
iatan2 (module) 67
identi�ers 39
-ieee (runtime option) 34, 95
IEEE double format 42
IEEE exception 89, 91, 92, 93
IEEE ALL (constant) 78
IEEE CONTINUE (constant) 78
IEEE DIB BY ZERO (constant) 78
IEEE environment 79
IEEE INEXACT (constant) 78
IEEE INV OP (constant) 78
IEEE OVERFLOW (constant) 78
IEEE reset 80
IEEE restore 80
IEEE save 80
IEEE set 80
IEEE test 79
IEEE trap enable 79
IEEE UNDERFLOW (constant) 78
ilss (module) 6, 81
imatrix 50
implementation details 39
imported modules

path 21
include �le

runtime 5

INDEX 105

indentation 13
index check 22
index check (compiler option) 22
in�nity 42
-info (runtime option) 35
info.txt (�le) 5, 30, 35
input 49
installation 3

directories 3
testing 7

insu�cient memory 16
integer 41
integer operations

runtime check 53
interactive manager 5, 7, 12

�le names 14
help �le 5
main menu 12, 15

interface (con�guration command) 26
interface �le 21, 22, 28

discompiler 5
runtime 5
searching 24, 27

interval 50
INT MAX 45
I/O statement 57
iostd (module) 5, 63, 71
ival 53
ivector 50

K
k (con�guration command) 25
keyword association 31
kill (con�guration command) 25

L
l (compiler option) 21
l (manager command) 13, 17
l2p (program) 5, 13, 30
length 47
length of source line 39
library linkage 7
limits.h (ANSI C �le) 45
line numbers (compiler option) 22, 94

linker 2, 16, 30, 40
linker options 7
linkinfo.tmp (�le) 29
list edit (manager command) 13, 17
list �le (compiler option) 21
listing �le 5, 13, 21, 29, 30
listing generator 13, 21

long 5, 13, 17
short 5, 17

listing to source �le 5, 13
ln 54, 68
loc 64
log10 54, 68
log2 54, 68
lower case 12, 27, 39
lss (module) 6, 81
lss aprx (module) 6, 82
lxsc.bat (�le) 16, 29
lxsc.opt (�le) 29

M
m (compiler option) 15, 20, 22
m (manager command) 17
main menu 12, 15
make (manager command) 17
manager

dxsc (interactive manager) 12
mxsc (batch manager) 11

manager call 27
manager command 12

b (batch) 16
c (compile) 9, 12, 15
d (display) 15
e (edit) 9, 12, 13, 14, 16
f (�le name) 14
h (help) 15
l (list edit) 13, 17
m (make) 17
p (print) 17
q (quit) 14, 16
r (run) 10, 13
y (system) 15, 16, 17

manager options 11

106 INDEX

c (C option) 11
e (edit) 11
x (run) 11

mant 55
mantissa 42
mark 51, 63
mathematical functions 53, 75

domains 53, 68, 77
matrix types 50
maxint 41, 47, 55
maxlength 47
maxreal 42, 44, 54, 56, 68, 77
memory violation 57
merge (compiler option) 15, 20, 22
minreal 42, 44, 54, 68, 77
mod 53
mod2lib (program) 5, 28
modi�ed reference call 65
modmod.tmp (�le) 29
module 27, 39
module concept 27
module names 27
module to library 5
modules

c ari 6, 69
c ariaux 6
ci ari 6, 70
cilss 81
clss 81
clss aprx 82
i ari 6, 67
iatan2 67
ilss 6, 81
iostd 5, 63, 71
lss 6, 81
lss aprx 6, 82
mv ari 6, 67
mvc ari 6, 67
mvci ari 6, 67
mvi ari 6, 67
stdmod 5, 67
x intg 5, 42, 53, 72
x real 5, 43, 55, 74

x strg 5, 48, 80
move modules 5
msb (bit operation) 72
mv ari (module) 6, 67
mvc ari (module) 6, 67
mvci ari (module) 6, 67
mvi ari (module) 6, 67
mvmod (program) 5, 28
mxsc (program) 5, 29

N
n (compiler option) 22, 37, 94, 96
n (con�guration command) 26
name conicts 65
NaN 42

quiet 42, 43, 75
signaling 42, 75

nc (con�guration command) 25
new 63
nil 51, 57
-nn (runtime option) 36, 56
non-command-line (con�guration com-

mand) 26
normalized 42
not (bit operation) 72
not a number 42
np (con�guration command) 26
nr (con�guration command) 26
ns (con�guration command) 26
NULL 51
null �le 28, 29
nv (con�guration command) 25
ny (con�guration command) 26

O
o (con�guration command) 25
object �le 7, 27, 30
o msg1.h (�le) 5, 30
ones (bit operation) 73
option (con�guration command) 25
or (bit operation) 72
output 49
overloading of subroutines 52

INDEX 107

P
p (manager command) 17
p88.env (�le) 5, 6, 7, 23, 29
p88rts.h (�le) 5, 30, 41
p88rts.i (�le) 6, 26, 30
p88rts.ii (�le) 5, 6
packed 40, 46
PASCAL-XSC compiler 1, 5, 7, 12, 13,

17, 20, 23
internal error 18
options 15, 20, 23

PASCAL-XSC con�guration 3, 23
program 24

PASCAL-XSC con�guration program 1,
5

help �le 5
PASCAL-XSC executable program 4, 5,

8, 12, 13
PASCAL-XSC listing 17, 20

position digit 18
PASCAL-XSC manager program 1
PASCAL-XSC modules 1

arithmetic modules 6
names 27
path 26
problem solving modules 6
searching 27
standard modules 5

PASCAL-XSC runtime 1, 40
PASCAL-XSC source �le 11, 12, 13, 20,

21
PASCAL-XSC system 1, 3, 5, 7
PATH 4, 8
path

con�guration �le 21
executable program 4
imported modules 21
interface �le 23
runtime interface 23
system directory 36
user directory 38

path delimiter character 24
path name speci�cation 27

pointer check 22, 57
pointers 51
position digit 18, 19
positional association 31
-pp (runtime option) 36
-pr (runtime option) 31, 36
pred 53, 56
preserve identi�er names 23
print (manager command) 17
priority 64
problem solving modules 6
pro�le 4
program 31
program parameters 11, 13, 31
prompting for �le name 31, 32, 36, 37
proto (con�guration option) 26
psclist (program) 29
pxsc (program) 5, 20, 29
PXSC EDIT 7, 9, 11, 12
PXSC LIB 7
PXSC SYS 4, 5, 7, 8, 24, 29
PXSC USR 7, 24
pxsccfg (program) 5, 24, 29
pxsclist (program) 5, 17

Q
q (con�guration command) 25
q (manager command) 14, 16
quiet NaN 42, 43, 75
quit (con�guration command) 25
quit (manager command) 14, 16

R
r (compiler option) 23
r (con�guration command) 26
r (manager command) 13

rr 14
rr (re-run) 10

range check 22
read 19, 78
read permission 5, 6
readln 19
real 41, 42
rede�nition 53

108 INDEX

release 51, 63
remove (con�guration option) 26
remove �les 26
rename (compiler option) 23
reset 32, 37, 49, 71
restriction

array dimension 46
array type 46
constants 39
dispose 63
dotprecision 46, 49
�le 48, 49
function 63
global 39
goto 63
hexadecimal constant 39, 42
length of external name 40
length of �le name 31
length of identi�er 39
length of module name 27, 40
length of path name 36, 38
length of source line 39
length of string constant 40
letters in identi�er 39
loc 64
mark 51, 63
names 39
new 63
number of enumeration constants 45
pointer 51
priority 64
record 49
release 51, 63
set 49
string 48, 49
type compatibility 52
use 39
use global 39
with 63

rewrite 31, 32, 37, 71
rm (con�guration option) 26
rvector 50
rotate (bit operation) 73

rts.a (�le) 5, 30
run (manager command) 13

rr 14
rr (re-run) 10

run (manager option) 11
run a program 9, 13, 31
runtime

help �le 5
include �le 5, 30
interface �le 5, 30
source line information 22
trace back 22

runtime check 22
index check 22
integer operations 53
pointer check 57
range check 22

runtime error
memory violation 57

runtime �les
searching 24

runtime include �le 5
searching 26

runtime interface
con�guration command 26

runtime interface �le 5
runtime library

see rts.a (�le)
runtime messages 5, 30, 32, 88, 89
runtime options 32, 34

-cc (constant conversion) 34
-ieee (IEEE trap handling) 34, 95
-info (runtime information) 35
-nn (normalized numbers) 36, 56
-pp (program parameters) 36
-pr (parameter prompting) 31, 36
-sd (system directory) 36
-sz (signed zero) 36
-tb (trace brief) 36
-tf (no temporary �les) 32, 37
-tr (trace) 37
-ud (user directory) 38
-vn (version number) 38

INDEX 109

runtime system library 2, 5, 7, 30
rval 53
rvector 50

S
s (compiler option) 22, 28
-sd (runtime option) 36
searching

con�guration �le 23, 24
interface �le 24, 27
PASCAL-XSC modules 27
runtime �les 24
runtime include �le 26

setlength 47
shell 15, 16
shift (bit operation) 73
signaling NaN 42, 75
signed zero 36, 42
simple types 41
sin 54, 68
sinh 54, 68
source directory (compiler option) 22,

28
source �le 29, 30
source �le (con�guration option) 26, 28
source line information 22
split module 5
splitmod (program) 5, 28
sqr 53, 54, 68
sqrt 54, 68
src (con�guration option) 26, 28
standard error

see stderr
standard input 20

see stdin
standard modules 5
standard output 22, 25

see stdout
stderr 37, 88
stdin 31, 32, 49
stdmod (module) 5, 67
stdout 25, 31, 32, 35, 38, 49
string 41, 47

s trng 41, 48
structured types 46
subroutine selection 66
succ 53, 56
system (con�guration option) 26
system (manager command) 15, 16, 17
system directory 4, 7, 23, 26, 29, 35, 36

path 36
-sz (runtime option) 36

T
t (compiler option) 22
t (con�guration command) 26
tabulator character 13
tan 54, 68
tanh 54, 68
-tb (runtime option) 36
temporary �le 32, 37
terminal (compiler option) 22
text 32, 49
-tf (runtime option) 32, 37
-tr (runtime option) 37
trace back 22
true 45, 58
type compatibility 52
type conversion function 53, 63
type name (con�guration command) 26
types 40
typography 1

U
u (con�guration command) 25
-ud (runtime option) 38
UNIX 3
update (con�guration command) 25
upper case 12, 27, 39
use 27, 39
use global 39
user directory 23, 38

path 38

V
v (compiler option) 21
variables 40

110 INDEX

variant records 63
vector types 50
verbose (compiler option) 21
version number

compiler 21
runtime 38

-vn (runtime option) 38

W
w (compiler option) 21
warnings (compiler option) 21
write 19, 57, 78

boolean 58
char 58
cinterval 70
complex 69
integer 58, 73
interval 69
real 59, 78
default format 59

string 60
write permission 5, 6
writeln 19, 72

X
x (compiler option) 22
x (manager option) 11
x arccos 77
x arccot 77
x arcosh 77
x arcoth 77
x arcsin 77
x arctan 77
x arctan2 77
x arsinh 77
x artanh 77
x ccode (type) 74
x class 74, 75
x comp 55, 75
x cos 77
x cosh 77
x cot 77
x coth 77
x exp 77

x exp10 77
x exp2 77
x expo 55, 75
x intg (module) 5, 42, 53, 72
x ln 77
x log10 77
x log2 77
x mant 55, 75
x mden (constant) 74
x minf (constant) 74
x mnor (constant) 74
x mnul (constant) 74
xor (bit operation) 72
x pden (constant) 74
x pinf (constant) 74
x pnor (constant) 74
x pnul (constant) 74
x qNaN (constant) 74
x real (module) 5, 42, 43, 55, 74
x release 80
x sin 77
x sinh 77
x sNaN (constant) 74
x sqrt 77
x strg (module) 5, 80
x tan 77
x tanh 77

Y
y (con�guration option) 26
y (manager command) 15, 16, 17

