R. Klatte, U. Kulisch, M. Neaga, D. Ratz, Ch. Ullrich

PASCAL-XSC

Language Reference
with Examples

The programming language PASCAL-XSC (PASCAL eXtension for Scientific Computation) significantly simplifies programming in the area of scientific and technical computing. PASCAL-XSC provides a large number of predefined data types with arithmetic operators and predefined functions of highest accuracy for real and complex numbers, for real and complex intervals, and for the corresponding vectors and matrices. Thus PASCAL-XSC makes the computer more powerful concerning the arithmetic.
Through an implementation in C, compilers for PASCAL-XSC are available for a large variety of computers such as personal computers, workstations, mainframes, and supercomputers. PASCAL-XSC provides a module concept, an operator concept, functions and operators with general result type, overloading of functions, procedures, and operators, dynamic arrays, access to subarrays, rounding control by the user, and accurate evaluation of expressions. The language is particularly suited for the development of numerical algorithms that deliver highly accurate and automatically verified results. A number of problem-solving routines with automatic result verification have already been implemented. PASCAL-XSC contains Standard PASCAL. It is immediately usable by PASCAL programmers. PASCAL-XSC is easy to learn and ideal for programming education. The book can be used as a textbook for lectures on computer programming. It contains a major chapter with sample programs, exercises, and solutions. A complete set of syntax diagrams, detailed tables, and indices complete the book.

R. Klatte U. Kulisch M. Neaga
D. Ratz Ch. Ullrich

PASCAL-XSC

Language Reference with Examples

Translated by

G. F. Corliss
R. Klatte
U. Kulisch
D. Ratz
C. Wolff

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

(C) 1991 by Springer-Verlag/Heidelberg Printed in Germany

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even in the former are not especially identified, it is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Disclaimer

Springer-Verlag and the authors make no representation or warranty with respect to the adequacy of this book or the programs which it describes for any particular purpose or with respect to its adequacy to produce any particular result. In no event shall Springer-Verlag or the authors be liable for special, direct, indirect or consequential damages, losses, costs, charges, claims, demands or claim for lost profits, fees or expenses of any nature of kind.

Preface

This manual describes a PASCAL extension for scientific computation with the short title PASCAL-XSC (PASCAL eXtension for Scientific Computation). The language is the result of a long term effort of members of the Institute for Applied Mathematics of Karlsruhe University and several associated scientists. PASCALXSC is intended to make the computer more powerful arithmetically than usual. It makes the computer look like a vector processor to the programmer by providing the vector/matrix operations in a natural form with array data types and the usual operator symbols. Programming of algorithms is thus brought considerably closer to the usual mathematical notation. As an additional feature in PASCAL-XSC, all predefined operators for real and complex numbers and intervals, vectors, matrices, and so on, deliver an answer that differs from the exact result by at most one rounding.

Numerical mathematics has devised algorithms that deliver highly accurate and automatically verified results by applying mathematical fixed point theorems. That is, these computations carry their own accuracy control. However, their implementation requires arithmetic and programming tools that have not been available previously. The development of PASCAL-XSC has been aimed at providing these tools within the PASCAL setting.

Work on the subject began during the 1960's with the development of a general theory of computer arithmetic. At first, new algorithms for the realization of the arithmetic operations had to be developed and implemented. The design and development of appropriate programming languages began around 1975 with preliminary implementation studies first on the basis of PASCAL and also as an extension of FORTRAN. As the next step, complete compilers for the extended language had to be developed. Since about 1980, algorithms for standard problems of numerical analysis with automatic result verification and for many applications have been systematically developed.

Many colleagues and scientists closely related with the Institute have contributed to the project by useful discussions, by a long term collaboration, or other kinds of support. The main participants of this developement are: U. Allendörfer, J. H. Bleher, H. Böhm, G. Bohlender, K. Braune, D. M. Claudio, D. Cordes, G. F. Corliss, A. Davidenkoff, H. C. Fischer, S. Geörg, K. Grüner, R. Hammer, E. Kaucher, R. Kelch, R. Kirchner, R. Klatte, W. Klein, W. Krämer, U. Kulisch, R. Lohner, M. Metzger, W. L. Miranker, M. Neaga, L. B. Rall, D. Ratz, S. M. Rump, R. Saier, L. Schmidt, G. Schumacher, D. Shiriaev, Ch. Ullrich, W. Walter, M. Weichelt, H. W. Wippermann, and J. Wolff von Gudenberg. The authors would like to ex-
press sincere and cordial thanks to each one for his cooperation. Thanks are also due to the many students who used and applied PASCAL-XSC in an early stage of the development and thus helped to stabilize both the language and the compiler.

This manual provides a complete description of PASCAL-XSC. The part dealing with ISO Standard PASCAL is only briefly discussed, while the extensions marked by $\square^{\text {PASCAL-XSC }}$ are presented in full detail. A detailed chapter with exercises and solutions is included in this manual to help the reader to get familiar with the new language constructs. A full set of syntax diagrams, appendices, and indices complete the book.

Finally, we would like to mention that a programming language is never complete. Improvements are always possible and often necessary. The main concern developing this language was to provide a useful and appropriate tool for numerical applications in the field of engineering and scientific computation. Benevolent and critical comments for improvements of the language are very welcome.

This book is a translation of a German version also published by Springer-Verlag. The authors are very grateful to George Corliss who helped to polish the text and the contents.

The Realization of this Book

This manual was completely written in the text system $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ or $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. Co-Author Dietmar Ratz gathered the text, designed the necessary macros and environments, developed the syntax diagrams, carried out corrections, and drew up the final version including the appendices and indices. He was also responsible for the final layout of this book.

Contents

1 Introduction 1
1.1 Typography 1
1.2 Historical Remarks and Motivation 2
1.3 Advanced Computer Arithmetic 4
1.4 Connection with Programming Languages 7
1.5 Survey of PASCAL-XSC 8
1.5.1 Universal Operator Concept and Arbitrary Result Type 9
1.5.2 Overloading of Procedures, Functions, and Operators 11
1.5.3 Module Concept 11
1.5.4 Dynamic Arrays and Subarrays 12
1.5.5 String Concept 13
1.5.6 Arithmetic and Rounding 14
1.5.7 Accurate Expressions 14
2 Language Reference 15
2.1 Basic Symbols 17
2.2 Identifiers 18
2.3 Constants, Types, and Variables 20
2.3.1 Simple Types 21
2.3.2 Structured Types 25
2.3.2.1 Arrays 25
2.3.2.2 Subarrays 27
2.3.2.3 Access to Index Bounds 28
2.3.2.4 Dynamic Arrays 28
2.3.2.5 Strings 30
2.3.2.6 Dynamic Strings 30
2.3.2.7 Records 31
2.3.2.8 Records with Variants 32
2.3.2.9 Sets 33
2.3.2.10 Files 34
2.3.2.11 Text Files 35
2.3.3 Structured Arithmetic Standard Types 36
2.3.3.1 The Type complex 36
2.3.3.2 The Type interval 37
2.3.3.3 The Type cinterval 37
2.3.3.4 Vector Types and Matrix Types 38
2.3.4 Pointers 38
2.3.5 Compatibility of Types 40
2.3.5.1 Compatibility of Array Types 41
2.3.5.2 Compatibility of Strings 43
2.4 Expressions 44
2.4.1 Standard Expressions 44
2.4.1.1 Integer Expressions 46
2.4.1.2 Real Expressions 47
2.4.1.3 Boolean Expressions 51
2.4.1.4 Character Expressions 52
2.4.1.5 Enumeration Expressions 53
2.4.2 Accurate Expressions (\#-Expressions) 54
2.4.3 Expressions for Structured Types and Pointer Expressions 57
2.4.3.1 Array Expressions 57
2.4.3.2 String Expressions 58
2.4.3.3 Record Expressions 59
2.4.3.4 Set Expressions 59
2.4.3.5 Pointer Expressions 60
2.4.4 Extended Accurate Expressions (\#-Expressions) 60
2.4.4.1 \#-Expressions for the Arithmetic Types 61
2.4.4.2 \#-Expressions for Vectors 63
2.4.4.3 \#-Expressions for Matrices 64
2.4.4.4 List of the Operands in \#-Expressions 66
2.4.4.5 Review of General \#-Expressions 69
2.5 Statements 71
2.5.1 Assignment Statement 71
2.5.2 Input/Output Statements 72
2.5.3 Empty Statement 76
2.5.4 Procedure Statement 76
2.5.5 goto-Statement 77
2.5.6 Compound Statement 78
2.5.7 Conditional Statements 78
2.5.7.1 if-Statement 78
2.5.7.2 case-Statement 78
2.5.8 Repetitive Statements 79
2.5.8.1 while-Statement 79
2.5.8.2 repeat-Statement 80
2.5.8.3 for-Statement 80
2.5.9 with-Statement 81
2.6 Program Structure 83
2.7 Subroutines 85
2.7.1 Procedures 85
2.7.2 List of Predefined Procedures and Input/Output Statements 88
2.7.3 Functions 89
2.7.4 Functions with Arbitrary Result Type 90
2.7.5 List of Predefined Functions 91
2.7.6 Operators 93
2.7.7 Table of Predefined Operators 97
2.7.8 forward- and external-Declaration 98
2.7.9 Modified Call by Reference for Structured Types 98
2.7.10 Overloading of Procedures, Functions, and Operators 100
2.7.11 Overloading of read and write 102
2.7.12 Overloading of the Assignment Operator := 105
2.8 Modules 107
2.9 String Handling and Text Processing 111
2.9.1 Input of Characters and Strings 115
2.10 How to Use Dynamic Arrays 120
3 The Arithmetic Modules 125
3.1 The Module C_ARI 131
3.2 The Module I_ARI 135
3.3 The Module CI_ARI 140
3.4 The Module MV_ARI 146
3.5 The Module MVC_ARI 151
3.6 The Module MVI_ARI 156
3.7 The Module MVCI_ARI 162
3.8 The Hierarchy of the Arithmetic Modules 171
3.9 A Complete Sample Program 172
4 Problem-Solving Routines 179
5 Exercises with Solutions 183
5.1 Test of Representability 184
5.2 Summation of Exponential Series 186
5.3 Influence of Rounding Errors 188
5.4 Scalar Product 190
5.5 Boothroyd/Dekker Matrices 192
5.6 Complex Functions 194
5.7 Surface Area of a Parallelepiped 197
5.8 Parallelism and Intersection of Lines 200
5.9 Transposed Matrix, Symmetry 203
5.10 Rail Route Map 206
5.11 Inventory Lists 209
5.12 Complex Numbers and Polar Representation 212
5.13 Complex Division 215
5.14 Electric Circuit 217
5.15 Alternating Current Measuring Bridge 221
5.16 Optical Lens 224
5.17 Interval Evaluation of a Polynomial 227
5.18 Calculations for Interval Matrices 230
5.19 Differentiation Arithmetic 233
5.20 Newton's Method with Automatic Differentiation 237
5.21 Measurement of Time 239
5.22 Iterative Method 241
5.23 Trace of a Product Matrix 245
5.24 Calculator for Polynomials 248
5.25 Interval Newton Method 253
5.26 Runge-Kutta Method 255
5.27 Rational Arithmetic 258
5.28 Evaluation of Polynomials 263
A Syntax Diagrams 269
B Indices and Lists 297
B. 1 Syntax Diagrams 297
B. 2 Reserved Words 300
B. 3 Predefined Identifiers 301
B. 4 Operators 303
B.4.1 Basic Operators 303
B.4.2 Arithmetic Operators 304
B.4.3 Relational Operators for the Arithmetic Types 305
B.4.4 Assignment Operators 306
B. 5 Predefined Functions 308
B. 6 Transfer Functions 321
B. 7 Predefined Procedures 324
B. 8 \#-Expressions 329
B.8.1 Real and Complex \#-Expressions 329
B.8.2 Real and Complex Interval \#-Expressions 330
Bibliography 331
Index 335

Chapter 1

Introduction

This book describes the language PASCAL-XSC. The core of the language description consists of three chapters: language description, arithmetic modules, and exercises.

In chapter 1 (Introduction), we describe the notation used in this book. We sketch the historical development of PASCAL-XSC, the axiomatic definition of computer arithmetic, and its embedding in programming languages. The last section is a short survey of the language PASCAL-XSC.

Chapter 2 (Language Reference) comprises the formal language definition. The ISO PASCAL Standard is only touched upon. The extensions of PASCAL-XSC are described in detail.

PASCAL-XSC supports arithmetic on real, complex, interval, or complex interval objects, as well as on vectors and matrices over these types. Chapter 3 (The Arithmetic Modules) describes the modules supporting these types with their operators, functions, and procedures. The succeeding chapter 4 (Problem Solving Routines) summarizes the routines which have been developed in PASCAL-XSC for solving frequently occurring numerical problems.

The closing chapter 5 (Exercises with Solutions) encourages the reader to apply the new language elements to easy exercises to extend his or her knowledge. Solutions are provided.

Finally, the Appendix contains the syntax diagrams of PASCAL-XSC, as well as complete lists of reserved words, predefined identifiers, operators, functions, and procedures of the language core and the arithmetic modules.

This book does not deal with implementation details of the language. For all implementation-dependencies in the following chapters, we refer to the corresponding user manual supplied with the special compiler version.

1.1 Typography

To mark or emphasize certain words, names, or paragraphs, we use the following type faces:
italics serves to emphasize certain words in the text.
boldface is used to mark reserved words of PASCAL-XSC (e.g. begin, module) in the text or in excerpts of programs.
slanted characterizes predefined identifiers of PASCAL-XSC (e.g. integer, real) and identifiers from programming examples when they appear in the body of the text.
typewriter is used for listings and run-time outputs of programs that are directly copied from a file or from printer output.

References are always indicated as [nr]. The number nr corresponds to an entry in the bibliography.

1.2 Historical Remarks and Motivation

In general, electronic computers for engineering and scientific computations are equipped with a floating point arithmetic to approximate mathematical operations with real numbers. All higher programming languages permit these operations to be denoted with the usual operation symbols so that the programmer is able to write down simple expressions, formulas, or functions in their usual mathematical notation. In mathematics and the natural sciences, the concept of the arithmetic operation or function is by no means restricted to real numbers. For example, operations in vector spaces and even vector-valued functions occur. It is not at all efficient to program these concepts on the computer using basic floating point operations and then realize them via clumsy procedure calls, since this may result in many unnecessary computing errors.

Therefore, intensive research in the field of computer arithmetic has been conducted at Professor Kulisch's Institute for Applied Mathematics at the University of Karlsruhe since the 1960's. To achieve satisfactory results in many applications, the computer must support an arithmetic which is much more powerful than the usual floating-point arithmetic. That is, every computer, whether large or small, used for scientific computation should be a vector computer ${ }^{1}$ in the mathematical sense. Its arithmetic should support operators in the common mathematical vector spaces such as real numbers, complex numbers, intervals of real and complex numbers, or vectors and matrices with elements of these types. The results of these operations should be provided with higher accuracy than can be achieved using the usual floating-point arithmetic. By 1976, a complete mathematical analysis of these demands led to the publication of two books ([24], [28]).

To realize these demands, algorithms and fast hardware circuits have been developed and implemented completely. Today, a variety of realizations is available for all kinds of computers, e.g. personal computers, workstations, general-purpose computers, mainframes, as well as supercomputers. The new operations, e.g. the product of two matrices, always deliver a result which differs from the exact result

[^0]by at most one single rounding in each component. Assuming that the same technology (software, microcode, hardware, pipeline technique) is used, the new operations are not only more accurate, but also faster in general than those simulated via the traditional floating point arithmetic. Gradually, the manufacturers have realized the correctness and usefulness of this procedure. Thus, over the years, more and more products that support the new demands of arithmetic have appeared on the market.

Immediately, however, difficulties arose concerning the programming languages. Traditional programming languages as ALGOL, FORTRAN, PL/1, PASCAL, or MODULA do not allow access to a hardware-supported matrix product, a multiplication of complex numbers with maximum accuracy, or an interval operation via the traditional operation symbols. Thus, a further development of programming languages was necessary to support the requirements of high quality arithmetic. Between 1976 and 1979, two institutes from the Universities of Karlsruhe and Kaiserslautern (Prof. Kulisch and Prof. Wippermann) cooperated to develop and implement a PASCAL extension called PASCAL-SC (PASCAL for Scientific Computation). In the following years, in cooperation with IBM, a corresponding FORTRAN 77 extension was developed and implemented for IBM/370 computers at the Institute for Applied Mathematics at the University of Karlsruhe. Today, the result is available as an IBM program product under the name of ACRITH-XSC.

ACRITH-XSC contains some constructs such as dynamic arrays and overloading of function names which were not considered in PASCAL-SC. So the language PASCAL-XSC was developed in parallel with the development of ACRITH-XSC. PASCAL-XSC is implemented using a PASCAL-XSC-to-C preprocessor (itself written in C) and a run-time system written in C. Hence, PASCAL-XSC may be installed and used in a nearly identical way on almost any computer system which supports C. In particular, PASCAL-XSC runs on nearly all UNIX systems. Thus, the programmer may develop PASCAL-XSC programs on a personal computer or a workstation and run them on a mainframe or a supercomputer.

Mathematicians have used PASCAL-SC, ACRITH-XSC, and PASCAL-XSC to solve a variety of problems. Easy access to interval operations played a major role. We can use intervals to represent bounds for the solution of the problem or to represent a continuum of the real or complex numbers. A single evaluation of a function over an interval may be sufficient to state in a strict mathematical sense that the function does not possess a zero in this interval. In continuation of these ideas, mathematical fixed point theorems of the Brouwer or Schauder type may be applied to obtain statements on existence and uniqueness concerning numerical problems by the computer itself or to have the correctness of a computed result automatically verified by the computer. Thus, program packages have been developed for the solution of boundary value and eigenvalue problems of ordinary differential equations and systems of linear and nonlinear integral equations. These programs verify the existence as well as uniqueness, and compute narrow bounds for the solution itself (see [27]). The new tools are applied in many fields of application, including mechanics, chemistry, chaos theory, or in the search for periodic solutions of differential equations. Moreover, researchers have been able to discover surprising solutions to
problems not previously solvable. For further information, see the References.

1.3 Advanced Computer Arithmetic

When the programming languages ALGOL and FORTRAN were developed in the 1950's, specification of the arithmetic was left to the manufacturer. As a consequence, the programmer does not know what happens when the symbols,,$+- *$, or / are applied. Besides that, two computers from different vendors may also differ in the properties of arithmetic. Consequently, numerical analysis could not be based on universally valid axioms of computer arithmetic.

The increasing efficiency and speed of computers requires a more precise definition of the arithmetic. Since a computer may represent only a finite set of numbers, the set \mathbb{R} of the real numbers has to be mapped onto a subset R, called floating point numbers. This mapping $\square: \mathbb{R} \rightarrow R$ is called a rounding if it satisfies the properties:

$$
\begin{array}{lr}
\text { (R1) } \square a=a, \quad \text { for all } a \in R, \text { and } & \text { (projection) } \\
\text { (R2) } a \leq b \Rightarrow \square a \leq \square b, \quad \text { for all } a, b \in \mathbb{R} . & \text { (monotonicity) }
\end{array}
$$

A rounding possessing the property

$$
\text { (R3) } \square(-a)=-\square a, \quad \text { for all } a \in \mathbb{R} \quad \text { (antisymmetry) }
$$

is called antisymmetric. The commonly used antisymmetric roundings are rounding to zero, rounding away from zero, or rounding to the nearest floating point number. The approximating operations $\boxplus, \boxminus, \square$, and \square for floating point numbers are required to satisfy

$$
\text { (RG) } a \bowtie b=\square(a \circ b), \quad \text { for all } a, b \in R \text {, and } \circ \in\{+,-, \cdot, /\} \text {. }
$$

Here,,$+- \cdot$, and / denote the operations for real numbers.
If a mapping satisfies the properties (R1), (R2), (R3), and (RG), we call it a semimorphism.

All operations defined by (RG), (R1), and (R2) are of maximum accuracy in the sense that there is no element of R lying between the exact result $a \circ b$ executed in \mathbb{R} and its approximation $a \square b$ executed in R. To realize this, we assume that α and β are adjacent elements of R with the property

$$
\alpha \leq a \circ b \leq \beta
$$

Applying (R2), (R1), and (RG) we get:

$$
\alpha \leq a \text { Ø } b \leq \beta .
$$

That is, a 回 b is either equal to α or to β.
For special applications, a programming language should also provide the directed roundings ∇ and \triangle which are defined by the properties (R1), (R2), and
(R4) $\nabla a \leq a \quad$ or $\quad a \leq \triangle a, \quad$ for all $a \in \mathbb{R}$.

These roundings, as well as the operations defined by (RG)

$$
a \oslash b:=\nabla(a \circ b)
$$

or

$$
a \triangleq b:=\triangle(a \circ b)
$$

are determined unique ([24], [28]).
Besides the real numbers, vectors and matrices over the real numbers frequently appear in scientific computation. We denote these sets by $V I R$ and $M \mathbb{R}$, respectively. Occasionally, the complex numbers \mathbb{C}, vectors $V \mathbb{C}$ and matrices $M \mathbb{C}$ over the complex numbers are used. All these spaces are ordered according to the order relation \leq, which is defined componentwise in the product spaces. Intervals may be defined via this relation. Numerical algorithms often use intervals in the above-mentioned spaces. If we denote the set of intervals over an ordered set by a preceding I, the spaces $I R R, I V \mathbb{R}, I M \mathbb{R}$, and $I \mathbb{C}, I V \mathbb{C}$, and $I M \mathbb{C}$ occur. All these spaces are listed in the first column of the following table. Their subsets, which may be represented on a computer, are described by the symbols listed in the second column of the following table.

Basic Spaces of Scientific Computation	Subsets Representable on the Computer
\mathbb{R}	R
$V \mathbb{R}$	$V R$
$M \mathbb{R}$	$M R$
$I \mathbb{R}$	$I R$
$I V I R$	$V I R$
$I M \mathbb{R}$	$M I R$
\mathbb{C}	$C R$
$V \mathbb{C}$	$V C R$
$M \mathbb{C}$	$M C R$
$I \mathbb{C}$	$C I R$
$I V \mathbb{C}$	$V C I R$
$I M \mathbb{C}$	$M C I R$

Table 1: Vector Spaces for Scientific Computation
Next, we define the arithmetic for a vector processor (in our mathematical sense) for all inner and outer operations occurring in the second column of Table 1. We demand that all these operations fulfill the properties of semimorphism. Since these operations in the product spaces differ essentially from the operations executed traditionally on a computer, we would like to briefly repeat their definition here.

Let S be an element of the left column of Table 1, and let T be the corresponding subset in the right column. Furthermore, let a rounding

$$
\square: S \rightarrow T
$$

be given that rounds the elements of S into those of T. Again, this rounding is assumed to satisfy
(R1) $\square a=a, \quad$ for all $a \in T$, and
(projection)
(R2) $a \leq b \Rightarrow \square a \leq \square b, \quad$ for all $a, b \in S$.
(monotonicity)
This rounding is called antisymmetric, if it also satisfies

$$
\begin{equation*}
\square(-a)=-\square a, \quad \text { for all } a \in S \tag{R3}
\end{equation*}
$$

The operations in T are defined by

$$
\text { (RG) } \quad a \text { 凹 } b:=\square(a \circ b), \quad \text { for all } a, b \in T, \text { and } \circ \in\{+,-, \cdot, /\} \text {, }
$$

with o denoting the exact operations in S in the mathematical sense, if they exist.
The operations defined in the product spaces (e.g. for complex matrices) are again of maximum accuracy in the sense that there is no element of T lying between the exact result $a \circ b$ executed in S and its approximation a ■ b in T.

In case of the interval spaces occurring in Table 1, the order relation \leq in (R2) is replaced by the inclusion relation \subseteq. The rounding $\square: I S \rightarrow I T$ is assumed to satisfy the additional property
(R4) $a \subseteq \square a, \quad$ for all $a \in I S . \quad$ (upwardly directed)
The theory developed in [24] and [28] shows that this rounding is uniquely defined.
The usual definition of computer arithmetic differs considerably from our definition. Traditionally, computer arithmetic comprises only the operations in R. All other operations in the second column of Table 1 have to be implemented by the user. In general, this is done by procedures where every operation occurring in an algorithm requires its own procedure call. This procedure is cumbersome, inefficient for both programmers and computers, and often subject to inaccuracies. Let us consider the example of the matrix multiplication $C=A \cdot B$, requiring the execution of a scalar product for each component of C. This is usually done on the basis of real floating point operations of the form

$$
C=\left(c_{i j}\right)=\left(a_{i 1} \boxtimes b_{1 j} \boxplus a_{i 2} \square b_{2 j} \boxplus \ldots \boxplus a_{i n} \square b_{n j}\right)
$$

with $2 n-1$ roundings. By contrast, the formula (RG) requires an implementation of the rule $C=A \boxminus B$ with

$$
C=\left(c_{i j}\right)=\left(\square\left(a_{i 1} \cdot b_{1 j}+a_{i 2} \cdot b_{2 j}+\ldots+a_{i n} \cdot b_{n j}\right)\right)
$$

with only one rounding for each component. A computer which satisfies our axioms calculates this formula for arbitrary n with one single rounding. This optimal scalar
product plays a significant part in all product spaces of Table 1. In addition, the scalar product is very often used in numerical algorithms to achieve high accuracy.

A vector processor in the mathematical sense, as we define it here, is required to provide all inner and outer operations in the spaces of the right column of Table 1 by semimorphism. In PASCAL-XSC, the sets in the right column of Tabel 1 are predefined types. Variables and values of these types may be combined by means of the usual operator symbols,,$+- *$, and /. In PASCAL-XSC, the operator symbols denote the operations $\boxplus, \boxminus, \square, \square$ used above and defined by means of semimorphism. Expressions of these types may be written down easily and clearly. All inner and outer operations fulfill the demands of the semimorphism. The arithmetic we are describing can be implemented in hardware, in firmware, or in software. If the basic hardware of the processor in use supports these requirements, the operations are even faster than those traditionally implemented and executed via operations in R. In case an appropriate support by the hardware is lacking, the operations according to semimorphism in the spaces of the second column of Table 1 are simulated in software via the run-time system of PASCAL-XSC. The software arithmetic of PASCAL-XSC is realized using integer arithmetic. In case an IEEE arithmetic coprocessor is available, its operations can be used. However, a software simulation of the optimal dot product for accumulation of numbers and products is still necessary. The latter is the most useful operation for automatic verification of computed results.

Of course, a software simulation of the arithmetic increases the execution time. On the other hand, the user has a well defined and comprehensive arithmetic. He can fully rely on its properties and build upon them in numerical algorithms. From the perspective of arithmetic and programming languages, PASCAL-XSC is an ideal vector language. Programming of algorithms in engineering and scientific computation is facilitated by the language extensions. PASCAL-XSC is particularly suited for the development of numerical algorithms that deliver highly accurate and automatically verified results.

1.4 Connection with Programming Languages

The demands of a high quality computer arithmetic lead quite naturally to the concepts of a programming language for vector processors like PASCAL-XSC or ACRITH-XSC. Usual programming languages like ALGOL, FORTRAN, PASCAL, MODULA, or PL/1 possess only the integer, real, and (perhaps) complex arithmetic as elementary operations. All other arithmetic operations, especially those in the product spaces shown in the second column of Table 1, have to be based upon the integer and real arithmetic.

In contrast, PASCAL-XSC provides all operations in the product spaces for predefined types via the usual operator symbols. Each of these operations calls elementary operations which are implemented directly and with maximum accuracy. In general, the operations in the product spaces could even be carried out in parallel. Unlike the other languages listed above, PASCAL-XSC provides the following
language elements and features:

- Explicit language support for the directed roundings ∇ and \triangle.
- Explicit language support for the corresponding operations ∇ and 0 for all $\circ \in\{+,-, \cdot, /\}$.
- An optimal scalar product for vectors of arbitrary length.
- Interval types with appropriate operators.
- Functions with arbitrary result type.
- A universal operator concept.
- Overloading of function identifiers and operators.
- Dynamic and structured numerical types
- A large number of mathematical functions with high accuracy for the numerical types real, complex, interval, and complex interval.

A library of problem solving routines with results of highest accuracy and automatic result verification (see also [27]) for many standard problems of numerical mathematics has been implemented in PASCAL-XSC. Via interval input data the accuracy of the elementary functions becomes immediately visible to the user.

PASCAL-XSC is a true vector language in the mathematical sense. The vector notation of the operations in the product spaces is already expressed in the programming language. An additional vectorization of programs by the compiler is often superfluous. The execution of these operations may be essentially accelerated by parallel processing and pipeline techniques.

1.5 Survey of PASCAL-XSC

The programming language PASCAL-XSC was developed to supply a powerful tool for the numerical solution of scientific problems based upon a properly defined and implemented computer arithmetic in the usual spaces of numerical computation (see [24], [28]). The main concepts of PASCAL-XSC are

- ISO Standard PASCAL
- Universal operator concept (user-defined operators)
- Functions and operators with arbitrary result type
- Overloading of procedures, functions, and operators
- Module concept
- Dynamic arrays
- Access to subarrays
- String concept
- Controlled rounding
- Optimal (exact) scalar product
- Predefined type dotprecision (a fixed point format to cover the whole range of floating-point products)
- Additional arithmetic built-in types such as complex, interval, rvector, rmatrix, etc.
- Highly accurate arithmetic for all built-in types
- Highly accurate elementary functions
- Exact evaluation of expressions within accurate expressions (\#-expressions)

Interval arithmetic, complex arithmetic, complex interval arithmetic, and the corresponding vector and matrix arithmetics are provided.

Application modules have been implemented in PASCAL-XSC for solving common numerical problems, such as

- Linear systems of equations
- Matrix inversion
- Nonlinear systems of equations
- Eigenvalues and eigenvectors
- Evaluation of arithmetic expressions
- Evaluation of polynomials and zeros of polynomials
- Numerical quadrature
- Initial and boundary value problems in ordinary differential equations
- Integral equations
- Automatic differentiation
- Optimization problems

All these problem-solving routines provide automatically verified results.
In the subsequent sections, the most important new concepts are considered briefly. The details are described in chapter 2 .

1.5.1 Universal Operator Concept and Arbitrary Result Type

PASCAL-XSC makes programming easier by allowing the programmer to define functions and operators with arbitrary result type. The advantages of these concepts are illustrated by the simple example of polynomial addition. Define the type polynomial by

```
const maximum_degree = 20;
type polynomial = array [0..maximum_degree] of real;
```

in Standard PASCAL, the addition of two polynomials is implemented as a procedure

```
procedure add (a, b: polynomial; var c: polynomial);
    { Computes c = a + b for polynomials }
    var i: integer;
    begin
        for i:= 0 to maximum_degree do
        c[i]:= a[i] + b[i];
    end;
```

Several calls of add have to be used to compute the expression $z=a+b+c+d$:

```
add (a,b,z);
add (z,c,z);
add (z,d,z);
```

In PASCAL-XSC, we define a function with the result type polynomial

```
function add (a, b: polynomial): polynomial;
    { Delivers the sum a + b for polynomials }
    var i: integer;
    begin
        for i:= 0 to maximum_degree do
        add[i]:= a[i] + b[i];
    end;
```

Now, the expression $z=a+b+c+d$ may be computed as

```
z:= add(a,add(b,add(c,d))).
```

Even clearer is the operator in PASCAL-XSC

```
operator + (a, b: polynomial) result_polynomial : polynomial;
    { Delivers the sum a + b for polynomials }
    var i: integer;
    begin
        for i:= 0 to maximum_degree do
        result_polynomial[i]:= a[i] + b[i];
    end;
```

Now, the expression may be written in the common mathematical notation

$$
z:=a+b+c+d .
$$

A programmer may also define a new name as an operator. A priority is assigned in a preceding priority declaration.

1.5.2 Overloading of Procedures, Functions, and Operators

PASCAL-XSC permits the overloading of function and procedure identifiers. A generic name concept allows the programmer to apply the identifiers \sin , \cos , \exp , \ln, arctan, and sqrt not only for real numbers but also for intervals, complex numbers, or elements of other mathematical spaces. Overloaded functions and procedures are distinguished by number, order, and type of their parameters. The result type is not used for distinction.

As illustrated above, operators may also be overloaded. Even the assignment operator (:=) may be overloaded so that the mathematical notation may be used for assignments:

```
var
    c: complex;
    r: real;
operator := (var c : complex; r: real);
    begin
        c.re := r;
        c.im := 0;
    end;
    r:= 1.5;
    c:= r; {complex number with real part 1.5 and imaginary part 0}
```


1.5.3 Module Concept

The module concept allows the programmer to separate large programs into modules and to develop and compile them independently of each other. The control of syntax and semantics may be carried out beyond the bounds of the modules. Modules are introduced by the reserved word module followed by a name and a semicolon. The body of a module is built up quite similarly to that of a common PASCAL program. The significant exception is that the objects to be exported from the module are characterized by the reserved word global directly in front of the reserved words const, type, var, procedure, function, and operator and directly after use and the equality sign in type declarations. Thus, private types as well as non-private types can be declared and exported.

Modules are imported into other modules or programs via a use-clause. The semantics of the use-clause are that all objects declared global in the imported module are also known in the importing module or program.

The example of a polynomial arithmetic module illustrates the structure of a module:

```
module poly;
    use {other modules}
```

```
    {local declarations}
    {global declarations}
    global type polynomial = ...
    global procedure read (...
    global procedure write (...
    global operator + (...
    global operator * (...
begin
    {initialization part of the module}
end. {module poly}
```


1.5.4 Dynamic Arrays and Subarrays

The concept of dynamic arrays enables the programmer to implement algorithms independently of the length of the arrays used. The index ranges of dynamic arrays are not to be defined until run-time. Procedures, functions, and operators may be programmed in a fully dynamic manner, since allocation and release of local dynamic variables are executed automatically. Hence, the memory is used optimally.

For example, a dynamic type polynomial may be declared in the following form:

```
type polynomial = dynamic array [*] of real;
```

When declaring variables of this dynamic type, the index bounds have to be specified:

```
var p, q : polynomial [0..2*n];
```

where the values of the expressions for the index range are computed during program execution. To get access to the bounds of dynamic arrays which are specified only during execution of the program, the two functions lbound(...) and ubound(...) and their abbreviations $l b(\ldots)$ and $u b(\ldots)$ are supplied. The multiplication of two polynomials may be realized dynamically as follows:

```
operator * (a, b: polynomial)
        product: polynomial[0..ubound(a)+ubound(b)];
    { Delivers the product a * b of two polynomials a, b }
    var i, j : integer;
        result : polynomial[0..ubound(a)+ubound(b)];
    begin
        for i:= 0 to ubound(a)+ubound(b) do
            result[i]:= 0;
```

```
    for i:= O to ubound(a) do
        for j:= 0 to ubound(b) do
            result[i+j]:= result[i+j] + a[i] * b[j];
    product:= result;
end;
```

A PASCAL-XSC program using dynamic arrays for polynomials follows the template

```
program dynatest (input, output);
type polynomial = dynamic array [*] of real;
var maximum_degree : integer;
operator * (a, b:polynomial)...
procedure write (var f : text; p: polynomial);
procedure main (degree : integer);
    var
            p,q : polynomial[0..degree];
            r : polynomial[0..2*degree];
        begin
        r:= p * q;
        writeln ('p*q = ', r);
    end;
begin {main program}
    read (maximum_degree);
    main (maximum_degree);
end. {main program}
```

The following example demonstrates that it is possible to access a row or a column of dynamic arrays as a single object. This is called slice notation.

```
type vector = dynamic array [*] of real;
type matrix = dynamic array [*] of vector;
var v : vector[1..n];
    m : matrix[1..n,1..n];
    v := m[i]; { i-th row of m }
    m[*,j] := v; { j-th column of m }
```


1.5.5 String Concept

A string concept is integrated into the language PASCAL-XSC to handle character strings of variable length. Declaration, input, and output of strings are simpli-
fied extensively compared to the facilities of Standard PASCAL. Special predefined functions and operators enable the programmer to formulate and manipulate string expressions.

1.5.6 Arithmetic and Rounding

Compared with Standard PASCAL, the set of operators for real numbers is extended by the directed-rounding operators $\circ<$ and $\circ>$ with $\circ \in\{+,-, *, /\}$. These symbols denote the operations with upwardly and downwardly directed rounding. In the arithmetic modules, the common operators are also provided for complex numbers, intervals, complex intervals, and also for vectors and matrices over these spaces.

1.5.7 Accurate Expressions

The implementation of inclusion algorithms with high accuracy requires the exact evaluation of scalar products. For this purpose, the new type dotprecision was introduced into PASCAL-XSC representing a fixed-point format covering the whole range of floating-point products. This format allows scalar results - especially sums of floating-point products - to be stored exactly.

Furthermore, scalar product expressions (dot product expressions) with vector and matrix operands with only one rounding per component can be computed via exact evaluation within accurate expressions (\#-expressions).

Chapter 2

Language Reference

PASCAL-XSC is based on the programming language PASCAL defined in the report of Jensen and Wirth [13]. Since PASCAL-XSC is an extension of PASCAL, we do not give a detailed description of the complete language (for this purpose see [9], [13], or [14] for example). Instead, we give a concise description of the standard elements of PASCAL and a rather more detailed introduction into the additional language elements of PASCAL-XSC.

The syntax is specified in an easy readable, simplified Backus-Naur-Form, very similar to usual program code. It is marked by a black bar at the margin. The representation of the syntax consists of

- basic symbols written according to the typographical notation of section 2.1,
- syntax variables,
- predefined identifiers,
- repetition symbols ..., and
- comments enclosed in braces $\}$.

Syntax variables are English nouns or composite nouns which serve as abbreviations for other syntactical units. If a syntax variable denotes a list, then it stands for a non-empty sequence of corresponding objects separated by commas. Predefined identifiers are written in slanted characters. The repetition symbol ... denotes an arbitrary number of repetitions of a part of the syntax, i.e. the preceding group of language elements within the same line. This group may occur zero or more times if no comment to the contrary (enclosed in braces) is given.

To generate PASCAL code by means of this syntax representation, we have to read line after line from left to right and note the basic symbols, the predefined identifiers, and the syntax variables in the suitable number of repetitions. Then to eliminate the syntax variables, we must successively replace them by their own definitions. This process ends when all syntax variables are eliminated.

An example for a syntax description is

```
var
    IdentifierList: Type; ... { not empty }
```

Assuming that we know what to replace for Type and what kind of Identifiers are allowed, we consider an example:

Example 2.0.1:

The syntax for variable declarations in the example above allows the following source code:

```
var i, j, k : integer;
    x, y : real;
    m : array [1..10, 1..10] of real;
```

The extensions provided by PASCAL-XSC beyond ISO Standard PASCAL are highlighted in this chapter by a box:
PASCAL-XSC

All extensions provided by PASCAL-XSC beyond the ISO Standard PASCAL are enclosed in frames like this!

A concise survey of the complete syntax of the language PASCAL-XSC is given by the syntax diagrams in Appendix A starting from 269.

For all implementation-dependencies mentioned in this chapter and in the following chapters, we refer to the corresponding user manual supplied with the special compiler version.

2.1 Basic Symbols

The source code of a program consists of the following basic symbols:

Letters may be used in either upper or lower case, but they are treated as equivalent. For example, the identifiers PASCAL and Pascal are identical. A reserved word may be written in any mixture of upper case or lower case letters. PASCAL-XSC is not case sensitive as C is.

Reserved words may not be used as identifiers.

Additional basic symbols

letters: - (underscore)
special characters: \$

$\$$	$\#$		\#
$\# *$	$\#<$	$\#>$	$\# \#$
$><$	$+*$	$* *$	
$+>$	$->$	$*>$	$1>$
$+<$	$-<$	$*<$	$/<$

reserved words: dynamic, external, global, module,
operator, priority, sum, use

2.2 Identifiers

Identifiers are names denoting different objects like constants, variables, types, functions, procedures, modules etc. occurring within a program.

An identifier consists of an arbitrary sequence of letters and digits beginning with a letter.

Example 2.2.1:

variable1, NorthWest, extreme, ab
Two identifiers are considered to be identical if they both consist of the same sequence of characters, ignoring the case of letters.

Reserved words may not be used as identifiers. When defining a new identifier, note that the following identifiers have predefined meanings:

abs	eof	ln	pred	round	trunc
arctan	eoln	maxint	put	sin	write
boolean	exp	new	read	sqr	writeln
char	false	odd	readln	sqrt	
chr	get	ord	real	succ	
cos	input	output	reset	text	
dispose	integer	page	rewrite	true	

These identifiers can be used in their predefined meaning without being declared explicitly. If they are given a new meaning by an explicit declaration, any occurrence of such an identifier refers to the new meaning. The usual meaning provided by the language becomes invisible.

The underscore (_) may occur at any position of an identifier.

Example 2.2.2:

variable_1, north_west, _extreme_, a__b, _, _-
The maximum length of an identifier is the logical line length.
Upper case and lower case letters are not distinguished within identifiers. This means that north_west and North_West denote the same identifier.

Additional predefined identifiers:

arccos	cmatrix	im	$\log 2$	setlength
arccot	comp	image	$\log 10$	sign
arcsin	complex	imatrix	mant	sinh
arcosh	cosh	inf	mark	string
arcoth	cot	interval	maxlength	substring
arctan2	coth	ivector	pos	sup
arsinh	cvector	ival	re	tan
artanh	dotprecision	lb	release	tanh
cimatrix	expo	lbound	rmatrix	ub
cinterval	exp2	length	rvector	ubound
civector	$\exp 10$	loc	rval	

The predefined identifiers of procedures and functions may be overloaded. By this device, they may be used in the predefined meaning as well as in the new meaning (see section 2.7.10). However, if they are declared in a manner identical to the predefined declaration, then the predefined meaning becomes invisible, and the new meaning is used.

When using a module by means of a use-clause, all identifiers declared in the used module via global become predefined identifiers in the using module or program (see section 2.8).

Identifiers are also used to denote operators (see section 2.7.6).

2.3 Constants, Types, and Variables

In ISO Standard PASCAL, the types integer, real, boolean, and char are predefined together with corresponding operators (see section 2.4). In addition, an enumeration type may be declared which defines a set of entirely new values and introduces constant identifiers to denote these values. The values of such simple types are called (literal) constants. Their syntax is precisely defined (see section 2.3.1). Except for string constants (in the case of a one dimensional array with char as component type), there are no literal constants for the structured types array, set, record, and file. A literal constant of a string is a sequence of characters enclosed in single quotes.

Identifiers for constants (named constants) may be introduced by a constant definition:

```
const
    Identifier = Constant; ... { not empty }
```

The constant on the right-hand side must be a literal constant or a previously defined named constant.

Example 2.3.1:

```
const
    \(\mathrm{n}=50\);
    eps \(=10 \mathrm{e}-13\);
    \(\mathrm{k} \quad=\mathrm{n}\);
    zf \(=\) 'charactersequence';
```

Named constants may be used like literal constants within a program. During execution of a program, they are unchangeable.

Identifiers for types (named types) may be fixed by a type definition:

```
type
    Identifier = Type; ... { not empty }
```

The type on the right-hand side is either an explicitly defined type or a previously defined type. All types mentioned above are always predefined.

Example 2.3.2:

$$
\text { type } \begin{aligned}
& \text { color }=\text { (red, blue, yellow); } \\
& \text { logical }=\text { boolean; } \\
& \text { vector }=\text { array }[1 . .20] \text { of real; }
\end{aligned}
$$

Identifiers for variables may be fixed by a variable declaration :

```
var
    IdentifierList: Type; ... { not empty}
```

The listed identifiers denote variables with the type of the right-hand side. A variable may therefore be interpreted as a symbolic address of a corresponding storage space.

Example 2.3.3:

```
var i, j, k : integer;
        x, y : real;
            f : color;
        vec1, vec2 : vector;
            m : array [1..20] of vector;
```

 PASCAL-XSC
 The following additional standard types are available: dotprecision, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix, and string.

A dynamic array type within a variable declaration must specify the index bounds by corresponding expressions (see section 2.3 .2 concerning dynamic array types).

A variable is called of anonymous type if there is no related type identifier in the corresponding declaration (e.g. component variable).

Example 2.3.4:

var $\operatorname{vec} 1$, vec 2	$:$	vector;	$\{$ known type \}
a	$:$	array $[1 . .10]$ of real;	$\{$ anonymous type $\}$
m	$:$	array $[1 . .20]$ of vector;	$\{$ anonymous type $\}$

2.3.1 Simple Types

The simple types in PASCAL are the types integer, real, boolean, char, enumeration types, and subrange types. They are defined as follows:
integer Implementation-dependent subset of the whole numbers. The predefined constant maxint denotes the implementationdependent maximum integer number. A literal constant of type integer is a digit sequence (of decimal digits) with or without a sign + or - . See page 23 for PASCAL-XSC extensions of type integer.

Example 2.3.5:

$$
\begin{array}{cccc}
128 & -30 & +4728 & 007
\end{array}
$$

Implementation-dependent subset R of the real numbers \mathbb{R}. A literal constant of type real has the representation

$$
\pm \text { mantissa E exponent }
$$

The mantissa is a sequence of digits with or without a decimal point, and the exponent is an integer value (with implementation depended bounds). The notation

$$
\pm \text { mantissa }
$$

without an exponent part is permitted as well. As a matter of principle, at least one digit must occur in front of and behind the decimal point.

Example 2.3.6:

$$
3.1726 \mathrm{E}-2 \quad-0.08 \mathrm{E}+5 \quad+1 \mathrm{E} 10 \quad 3.1415
$$

We have to bear in mind that the value of the decimal representation in PASCAL is not always a member of the implementation-dependent set R of type real. For example, the decimal floating-point number 1.1 is not exactly representable as binary floating-point number. Thus, the literal constant 1.1 used within a program represents a real value different from the value 1.1. This problematic nature of conversion we have to bear in mind every time we use literal constants as operands within expressions, as parameters in function and procedure calls, or as input parameters. See page 24 for the PASCAL-XSC extensions of type real.

The range consists of the logical constants true and false with false $<$ true .

The range is an implementation-dependent set of characters. Literal constants are enclosed in single quotes. The order relation satisfies

$$
{ }^{\prime} 0^{\prime}<{ }^{\prime} 1^{\prime}<\ldots<{ }^{\prime} 9^{\prime}
$$

and

$$
{ }^{\prime} a^{\prime}<{ }^{\prime} b^{\prime}<\ldots<{ }^{\prime} z^{\prime}
$$

enumeration types The range consists of constants listed in the type definition (ordered sequence of identifiers). The order relation is defined by the order of the enumeration. An enumeration type is defined by the programmer in a type definition. The literal constants which are the elements of an enumeration type must not collide with any value of another enumeration type.

Example 2.3.7:

The type definition
type Color $=($ red, blue, yellow $) ;$
specifies the enumeration type Color with the values red, blue, yellow. Another type

SpecialColor $=$ (yellow, orange);
is not permitted since the value yellow already occurs in type Color.
subrange types
Subrange types of each of the predefined types integer, boolean, char, and all enumeration types (base types) may be defined by specifying the lower and upper bound by
constant .. constant

The set of values of a subrange consists of the lower and upper bound and all values of the base type between them. The important thing here is that the order relation is inherited from the base type. The lower bound must be less than or equal to the upper bound, and both must be of the same base type.

Example 2.3.8:

$$
\begin{array}{llr}
\text { type } & & \\
\begin{array}{llr}
\text { Subrange } & = & 1 . .100 ; \\
\text { SubColor } & = & \text { blue..yellow; } \\
\text { Letters } & = & \text { 'a'..'z'; } \\
\text { OctalDigits } & = & 0 . .7 ;
\end{array}
\end{array}
$$

PASCAL-XSC

PASCAL-XSC allows some additional notations for the types integer and real. Furthermore, we introduce the new type dotprecision.
integer A value of type integer may also be written as a hexadecimal constant beginning with the character $\$$ and followed by a hexadecimal digit sequence consisting of the digits $0,1, \ldots, 9$ and the letters $\mathrm{A}, \mathrm{B}, \ldots, \mathrm{F}$ and $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{f}$.

PASCAL-XSC

Example 2.3.9:

\$12AFB2 represents the value 1224626
real
$(>+$ Mantissa E Exponent)
respectively. The E and Exponent may be omitted as usual, in which case Mantissa must contain a decimal point. The parentheses are mandatory.

Example 2.3.10:

$$
\begin{array}{ll}
(<1.1) & \text { round down } \\
(>-1.0 \mathrm{E}-1) & \text { round up }
\end{array}
$$

dotprecision
The type dotprecision is based on the type real and permits the representation of products of two arbitrary real numbers and the exact summation of an arbitrary number of such products in a fixed point format of suitable size. If the internal real format is fixed by the mantissa length l and the minimum and maximal exponents emin and emax (see also section 2.4.1.2), then a dotprecision variable occupies storage space of the form

The total length is $L=g+2 e \max +2 \mid$ emin $\mid+2 l$ digits. Here, g denotes the implementation-dependent number of guard digits for accumulating carries during summation (see [28] and [29] for details).

Values of type dotprecision typically occur during multiplication of vectors or matrices. These scalar products can be represented exactly, i.e. without rounding errors, in the format of this type independent of the dimensions of the vectors or matrices. A Value of type dotprecision can only be generated by an \#-expression (see section 2.4.2) in the form
\# (ExactExpression)
There are no constants of this type.

2.3.2 Structured Types

There are four composite data types in ISO Standard PASCAL:

- arrays
- files
- records
- sets

They differ in their manner of combining elements of the predefined types into a higher structure and accessing their components. Composite types of arbitrary complexity may be built up by using components of arbitrary composite types.

Any type definition may start with the reserved word packed which causes the components to be stored in a compact fashion. The storage pattern is implementation-dependent. The reserved word packed has no semantic effect.

2.3.2.1 Arrays

An array consists of a fixed number of components having the same type. Each component is indicated by one or more indices which are values of index expressions. The type definition of an array must specify index types and the component type:
array [IndexTypeList] of ComponentType
An index type is a subrange type of type integer, boolean, char, or an enumeration type, or of one of the last three types itself. The component type may be of any type. Note that the use of the component type dotprecision may be very memoryconsuming.

Example 2.3.11:

array [1..10] of real	\{ real vector with
	\{ 10 components
array [1..10, 1..20] of real	\{ real matrix with
	\{ 10 rows and 20 columns
array ['a'..'z'] of boolean	\{ logical vector with
	\{ 26 components
array [1..10] of array ['a'..'z'] of boolean	\{ logical matrix with
	\{ 10 rows and 26 columns
array [(red, yellow, blue, black)] of 0.. 10	\{ subrange type vector with
	\{ 4 components

The components of an array themselves may be used as variables (component variables). The access to these component variables is done by

| ArrayIdentifer [IndexExpressionList]

or

ArrayIdentifier[IndexExpressionList]

[IndexExpressionList] ...
The relation of index expressions (indices) and index ranges works from left to right. The indices must be contained in the corresponding index range.

Example 2.3.12:

declaration	component variables
var v: array [1..10] of real;	v[1], ..., v[10]
var m: array [1..10,1..20] of real;	$\mathrm{m}[1,1], \ldots, \mathrm{m}[1,20]$
	$\mathrm{m}[2,1], \ldots, \mathrm{m}[2,20]$
	$\stackrel{\vdots}{\mathrm{m}}[10,1], \ldots, \mathrm{m}[10,20]$
	also possible:
	$\mathrm{m}[1][1], \ldots$
$\begin{aligned} \text { var x: } & \text { array }[1 . .10] \text { of } \\ & \text { array ['a'..'z'] of boolean; } \end{aligned}$	$\mathrm{x}[1]\left[{ }^{\prime} \mathrm{a}^{\prime}\right], \ldots, \mathrm{x}[1][\mathrm{z}$ '],
	$\mathrm{x}[10]\left[\mathrm{C}^{\prime}\right], \ldots, \mathrm{x}[10]\left[\mathrm{z}^{\prime}\right]$
	also possible
	$\mathrm{x}\left[1,{ }^{\prime} \mathrm{a}^{\prime}\right], \ldots$
	$\mathrm{x}[1, \mathrm{a}]$ only works if a is a vari-
	able of type char.

2.3.2.2 Subarrays

If the number k of specified indices of a component variable of an array is less than the number n of index ranges of the corresponding array (n dimensional array), then the component variable is an $n-k$ dimensional subarray. The specified indices refer to the first k index ranges within the array declaration.

PASCAL-XSC

A component variable is called of anonymous type if there is no corresponding explicit type identifier (see also section 2.3.5 referring to compatibility of types).

Example 2.3.13:

Let the variable m be a two-dimensional array declared by
var m: array $[1 . .10,1 . .20]$ of real;
Then the component variable $m[5]$ is a one-dimensional subarray of anonymous type, i.e. a vector of 20 components consisting of the row of the matrix m.

Arbitrary subarrays (component variables) of an array may be accessed by specifying corresponding index ranges by placing the character $*$ within the index expression list. If there is no index expression following a $*$, then it may be omitted.

Example 2.3.14:

According to the declaration

```
var m: array [1..10, 1..20] of real;
```

the component variable $m[*, 1]$ denotes an array variable, i.e. a vector with 10 elements, where the elements correspond to the elements of the first column of the matrix m.

The notations

$$
\begin{array}{lllll}
\mathrm{m}[1, *] & \text { and } & \mathrm{m}[1] & & \text { as well as } \\
\mathrm{m} & \text { and } & \mathrm{m}[*]
\end{array} \text { and } \mathrm{m}[*, *]
$$

are equivalent.

2.3.2.3 Access to Index Bounds

PASCAL-XSC

The access to index bounds without using the quantities of the array declaration (absolutely necessary in case of using dynamic arrays) is provided by two standard functions
lbound (ArrayVariable, IntegerConstant) and ubound (ArrayVariable, IntegerConstant).

Their result is the lower and upper bound of the i-th index range ($i=$ value of the integer constant) of the array variable. In case the integer constant is missing, the first index range is addressed implicitly. The access to index ranges that do not exist is not allowed.

The notations $l b$ (instead of lbound) and $u b$ (instead of ubound) may be used as short forms.

Example 2.3.15:

```
type matrix \(=\) array \([1 . . n, 1 . . k]\) of real;
function sum(var m: matrix): real;
var
        i, j: integer;
        s: real;
begin
        \(\mathrm{s}:=0\);
        for \(\mathrm{i}:=\operatorname{lbound}(\mathrm{m})\) to ubound \((\mathrm{m})\) do
            for \(\mathrm{j}:=\mathrm{lb}(\mathrm{m}, 2)\) to \(\mathrm{ub}(\mathrm{m}, 2)\) do
            \(\mathrm{s}:=\mathrm{s}+\mathrm{m}[\mathrm{i}, \mathrm{j}] ;\)
        sum: \(=\mathrm{s}\);
end;
```


2.3.2.4 Dynamic Arrays

ISO Standard PASCAL does not provide dynamic arrays. A certain dynamic capability is given in level 1 of the standard (see [9]) by conformant array schemes as specification of array parameters within functions and procedures (see section 2.7.1). Thus, the call of the corresponding procedures and functions is possible with actual parameters which need not necessarily be of a definite type.

PASCAL-XSC

PASCAL-XSC provides the dynamic array declaration, similar to that provided by other well-known programming languages (e.g. ALGOL 60, ALGOL 68 [49], ADA [15]). This means that within subroutines, array variables need not be declared statically as in Standard PASCAL.

The index bounds may be given by expressions which result in new index bounds at each subroutine call. Especially, the dynamic array concept and its use in the specification of formal parameters includes the complete functionality of the conformant array scheme of Standard PASCAL using only a slightly different syntactical notation.

A dynamic array type may be declared similar to the declaration of a static array type:

\| dynamic array [DimensionList] of ComponentType

Every index range within the dimension list is marked by the character $*$.
A dynamic array type must not occur as component type of a structured type, except in a dynamic array type itself. The dynamic array type definition specifies only the number of the index ranges and the component type.

Example 2.3.16:
type DynPolynomial $=$ dynamic array [*] of real;
DynVector $\quad=$ dynamic array [$*$] of real;
DynMatrix $=$ dynamic array $[*, *]$ of real;
Not allowed is
type WrongType $=$ dynamic array [1..n,*] of real;
Dynamic array types may occur within a variable declaration by specifying corresponding index expressions either by using a previously declared type identifier or by explicitly denoting the dynamic type.

Example 2.3.17:

var mat1: dynmatrix [1..n, $1 . .2 * \mathrm{n}$];
mat2: dynamic array [1..n,1..2*n] of real;
In both cases, the computation of the corresponding index expressions must be determined at the time of processing of the variable declaration. Thus, true dynamic allocation in array declaration is only possible within procedures and functions by using global quantities or formal parameters in the index expressions (see section 2.10).

The declaration part of a program can contain expressions in the index bounds only if they can be evaluated at time of declaration. The reserved word packed must not occur in a dynamic array declaration, i.e. sequences like packed dynamic array or dynamic packed array are not permitted.

2.3.2.5 Strings

The string type of ISO Standard PASCAL is a special static packed array type, a vector with the component type char:

| packed array [1..Length] of char

with the integer constant Length ≥ 1.

Example 2.3.18:

The declaration

```
packed array [1..15] of char
```

defines strings with 15 characters of type char. Examples for constants of this type are
'PASCAL-XSC TOPS' or 'string constant'
with exactly 15 characters occurring between the two quotes.

2.3.2.6 Dynamic Strings

PASCAL-XSC

The declaration of string variables is facilitated by the type specification

```
| string [Length]
```

or just

| string

Length must be a positive integer constant which is bounded by an implementation dependent maximum length, e.g. 255. The maximum length is assumed if the length specification is missing. The range of this dynamic string type consists of all character sequences with $0,1,2, \ldots$ Length-1, Length characters.

The current length of a string variable is called its actual length. It is dynamically managed at run-time of the program and may be accessed to by the function length and changed by the procedure setlength (see section 2.9).

Variables of type string may be indexed. So $s[i]$ denotes the i-th character of the string s and is of type char. Access to components outside the declared length is not permitted. A change of the actual length of a string variable may only be effected by the procedure setlength or an assignment to the string variable.

See string expressions (section 2.4.3.2) and text processing (section 2.9) for the discussion of the use of dynamic strings.

2.3.2.7 Records

A record is a structure consisting of a fixed number of components, called fields. Fields may be of different types and each field is given a name, the field identifier, which is used to select it. The definition has the form:
record FieldList end
A field list is an enumeration of fields of the form

\| FieldIdentifierList: Type; ...

Each field identifier in FieldIdentifierList denotes a component of the record. A field identifier is required to be unique only within the record in which it is defined. A field is referenced by the variable identifier and the field identifier separated by a period:

| RecordIdentifier.FieldIdentifier

Example 2.3.19:

record

hour: 0..23;
minute, second: 0..59;
end;
record
re, im : real;
end;
var date: record month: (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);
day: 1..31;
year : integer;
end;

The component variables of the variable date are accessible by
date.month date.day date.year

2.3.2.8 Records with Variants

A record may be extended by so-called variants, i.e. additional components which are all stored in the same storage space. The programmer has to keep this space under his control. The variants allow the passing of values without the strong type control of PASCAL. In the type definition, the variant part is listed following the fixed components in the form

```
case
    TagField: { may be omitted }
    TagType of
        TagList:(FieldList); ... { not empty }
```

The tag field is actually a fixed component. It is denoted by an identifier. The tag type is the type of the tag field and of the following tag list elements (constants of the tag type). The types integer, boolean, char, enumeration types, and their subrange types are permitted tag types.

An access to a variant should occur only after activation of the desired variant, by the assignment of the corresponding value to the tag field component. If a tag field component is missing, a variant becomes activated by the first access to one of its components.

The components of a variant are accessed like fixed components of a record.

Example 2.3.20:

Let a variant record type TrafficSignType be defined by

```
type
    form \(=(\) circle, rectangle, triangle \() ;\)
    TrafficSignType \(=\) record
                        serialnumber: integer;
                        material: (metal, synthetic);
                    price: real;
    case figure: form of
            circle: (radius : real);
            rectangle:(length, height: real);
            triangle: (baseline, angleleft,
                                    angleright: real);
end;
```

A variable TrafficSign declared by
var TrafficSign : TrafficSignType;
has three variants, the components of which may be accessed by

```
TrafficSign.figure := circle;
TrafficSign.radius := 3.5;
```

or

> TrafficSign.figure $:=$ rectangle;
> TrafficSign.length $:=7.8$;
> TrafficSign.height $:=4.4$;
or

TrafficSign.figure	$:=$ triangle;
TrafficSign.baseline	$:=5 ;$
TrafficSign.angleleft	$:=18.1 ;$
TrafficSign.angleright	$:=45 ;$

PASCAL-XSC

With the exception of the type string, a dynamic array type may not occur as a component of a record.

2.3.2.9 Sets

The range of values of a set type consists of all subsets of a given basetype. Therefore, the type definition of a set should only specify the base type:

| set of BaseType

A base type may be a subrange of integer, boolean, char, and enumeration type or one of the last three types itself. In most implementations, the ordinal values of the base type must be within the range 0 through $255(0 \leq \operatorname{ord}(x) \leq 255)$. An access to elements of a set M corresponding to component variables of arrays and records is not provided. However, a test for $x \in M$ is available

\| x in M

with the result false or true.
The simplest method to generate a set is the enumeration of the desired elements of the base type by

| [ElementList]

The empty set is member of any set type and is denoted by [].

Example 2.3.21:

The values of the set type

```
type digitset = set of 1..3;
```

are the subsets

$$
[],[1],[2],[3],[1,2],[1,3],[2,3], \text { and }[1,2,3] .
$$

Values of the character set

set of char

are for example
['a','b','c'] or ['a'..'z', '0'..'9', 'ப'].

The latter may also be denoted in form of a set expression:

$$
\left[{ }^{\prime} a^{\prime} . .{ }^{\prime} z^{\prime}\right]+\left[{ }^{\prime} 0^{\prime} . .{ }^{\prime} 9^{\prime}\right]+\left[{ }^{\prime} \sqcup^{\prime}\right] .
$$

2.3.2.10 Files

A file consists of a sequence of arbitrarily many components of the same type. Therefore, the type definition of a file only fixes the type of the components:

- file of ComponentType

The component type may be any type except a file type or a dynamic array type.
The number of components in a file (the actual size of a file) is not determined by the definition of the file. It depends on the file operations applied to a file. Random access to the components of a file in the same manner as to the component variables of arrays and records is not available. Instead, a buffer variable of component type is provided which is declared automatically by the declaration of the corresponding file f. This buffer variable $f \uparrow$ facilitates the access to a special component of a file, called the actual component. The actual component is determined by the preceding file operations like reset, rewrite, put, or get:
rewrite (f) initializes f for succeeding output operations. The first component of the file variable f is actual component. The procedure rewrite sets $\operatorname{eof}(f)=$ true, and the buffer variable $f \uparrow$ is undefined.
$\operatorname{put}(f) \quad$ assigns the value of $f \uparrow$ to the actual component, the following component becomes the actual component, and $\operatorname{eof}(f)=$ true. The buffer variable $f \uparrow$ is undefined.
reset (f) initializes f for succeeding input operations. The first component becomes the actual component. If $\operatorname{eof}(f)=$ true, then the file is empty, and it is not possible to read anything. Thus, $f \uparrow$ is undefined. If eof(f) $=$ false, i.e. the file is not empty, then the value of the actual component is assigned to the buffer variable.
get(f) the succeeding component of the actual component becomes the new actual component. If $\operatorname{eof}(f)=$ false, then the value of the actual component is assigned to the buffer variable $f \uparrow$. Otherwise, the buffer variable $f \uparrow$ is undefined.

The logical function eof (end of file) returns false if the actual component is a defined component of the file. Otherwise the result is true.

Input and output using files are sequential processes beginning at the first component of the file. While reading, eof(f) = false must be valid. While writing, eof(f) $=$ true.

Example 2.3.22:

```
program in_and_out;
var f : file of integer;
begin
    rewrite(f); { Initialization for output }
    for i:= 1 to 100 do { File f consists of }
    begin
        f}\uparrow:=\textrm{i};\quad{\mathrm{ values 1 to 100 }
        put(f);
    end;
    reset(f); { Initialization for input }
    while not eof(f) do {The components of f are }
    begin
        writeln (sqr(f f )); { read sequentially and }
        get(f); { the squares of their values are printed }
    end;
end.
```


2.3.2.11 Text Files

A special file type is the predefined text file type text with the component type char. In principle, the handling of text files is the same as for other files. Since text files usually have a line structure, text files may additionally contain end-of-line characters which may be recognized by the logical function eoln ($\underline{\text { end }}$ of line).

If $e o l n(t)=$ true, the value of the actual component of the textfile variable t is the end-of-line character. In this case, the buffer variable $f \uparrow$ has the value \sqcup (blank).

The input/output procedures read, readln, write, and writeln simplify the handling of text file variables. They are used with a parameter for the file variable and with an input/output list (see section 2.5.2). If the file parameter is missing, the standard textfile variables input and output are assumed.

Example 2.3.23:

```
program make_a_copy (original, copy);
{ A text is copied according to its line structure }
var
        original, copy: text;
        ch: char;
begin
    reset (original);
    rewrite (copy);
    while not eof (original) do
```

```
        begin
            while not eoln (original) do
            begin
                read (original, ch);
                write (copy, ch);
    end;
    readln (original);
    writeln (copy);
        end;
end.
```


2.3.3 Structured Arithmetic Standard Types

PASCAL-XSC

PASCAL-XSC provides the additional arithmetic built-in types complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, and cimatrix. They have no constants and no operators within the language itself and therefore no expressions, either. The use of operators and standard functions requires the use of the corresponding arithmetic modules (see chapter 3).

2.3.3.1 The Type complex

PASCAL-XSC

The range of complex numbers

$$
z=x+i y
$$

with the real part x and the imaginary part y (i is the imaginary unit) may be declared in PASCAL by
type complex $=$ record re, im: real end;
In PASCAL-XSC, this type is a predefined type. The variable declaration
var $\mathrm{z}:$ complex;
specifies a complex variable z. The real part and imaginary part of z may be accessed by z.re and z.im, respectively.

2.3.3.2 The Type interval

For real intervals
$a=[\underline{a}, \bar{a}]:=\{x \in \mathbb{R} \mid \underline{a} \leq x \leq \bar{a}\}$
with lower bound \underline{a} and upper bound \bar{a}, PASCAL-XSC provides the predefined type interval declared by
type interval $=$ record inf, sup: real end;
The variable declaration
var a: interval;
specifies an interval variable a. The lower and upper bound of a may be accessed by a.inf and a.sup, respectively:
a.inf $\{$ access to lower bound $\}$
a.sup $\{$ access to upper bound \}

2.3.3.3 The Type cinterval

PASCAL-XSC

Complex intervals are rectangles with sides parallel to the axes in the complex plane. The predefined type cinterval is defined by
type cinterval $=$ record re, im : interval end;
The components of the complex interval variable c, declared by
var c: cinterval;
may be accessed by
c.re $\quad\{$ an interval for the real part $\}$
c.im $\quad\{$ an interval for the imaginary part \}

The component variables are intervals. The access to their real bounds may be done by

```
c.re.inf c.re.sup c.im.inf c.im.sup .
```


2.3.3.4 Vector Types and Matrix Types

PASCAL-XSC

For vectors and matrices with component type real, complex, interval, and cinterval, the following dynamic types are available:

$$
\text { type } \begin{aligned}
& \text { rvector }=\text { dynamic array }[*] \text { of real; } \\
& \text { rmatrix }=\text { dynamic array }[*] \text { of ruector; } \\
& \text { cvector }=\text { dynamic array }[*] \text { of complex; } \\
& \text { cmatrix }=\text { dynamic array }[*] \text { of cvector; } \\
& \\
& \text { ivector }=\text { dynamic array }[*] \text { of interval; } \\
& \\
& \text { imatrix }=\text { dynamic array }[*] \text { of ivector; } \\
& \\
& \text { civector }=\text { dynamic array }[*] \text { of cinterval; } \\
& \\
& \text { cimatrix }=\text { dynamic array }[*] \text { of civector; }
\end{aligned}
$$

2.3.4 Pointers

All data types of ISO Standard PASCAL are static. Variables of these types are allocated at compile time. Their number remains unchanged during execution of the program. However, we frequently need to use a data structure which allows us to generate and discard variables as the need arises. For this purpose, the pointer type is provided.

A pointer variable p is a reference (the value is an address) to a variable $p \uparrow$ of the referenced type. This referenced variable $p \uparrow$ need not to be declared. It is generated by means of the standard procedure new during execution time of the program. The pointer variable itself is declared like any other static variable.

The type definition must specify only the referenced type:

I
 type PointerTypeIdentifer $=\uparrow$ TypeIdentifier

The referenced type may be any Standard PASCAL type. In contrast to the principle that any quantity must be declared before it is used, the definition of the referenced type may follow the declaration of the pointer type. The values of a pointer type are references to variables of the referenced type extended by the value nil (pointer constant) referencing to no variable and belonging to any pointer type. The constant nil is the only value of a pointer type that is explicitly accessible.

Example 2.3.24:

\[

\]

New variables of the referenced type are allocated with the procedure new:
new (PointerVariable);
Given the declarations in Example 2.3.24, then the statement
new (DatePointer);
allocates a referenced variable DatePointer \uparrow of type element. The pointer variable DatePointer points to this referenced variable. The value of DatePointer is not explicitly known.

If the referenced type is a record type with variants, a particular variant may be allocated by
\| new (PointerVariable, TagFieldValue);
Nested variants may be allocated by
\| new (PointerVariable, TagFieldValue , \cdots, TagFieldValue);
The value of a pointer expression may be assigned to a pointer variable by

- PointerVariable $:=$ PointerExpression;
with the pointer expression being the constant nil, a pointer variable, or a function call with a result of pointer type. Functions with a result of pointer type are allowed. Since a pointer can point to any object, functions can return pointers to arbitrary types.

Pointer expressions may be compared by the relational operators $=$ and $<>$, e.g. $p=$ nil or $p<>q$.

When a dynamic pointer variable is no longer required by the program, the procedure
| dispose (PointerVariable);
is used to reclaim the memory occupied by the referenced variable. Afterwards, the value of the pointer variable and all references to the referenced variable are undefined. Referenced variables allocated by

$$
\text { new (p, m1, m2, } \cdots, m k) ;
$$

must be released by
dispose ($\mathrm{p}, \mathrm{m} 1, \mathrm{~m} 2, \cdots, \mathrm{mk}$);
At the call of dispose, the values of $m 1, \ldots, m k$ must be identical with the corresponding values at the call of new.

Example 2.3.25:

```
var
    p: DatePointer;
begin
```

new (p);
$\mathrm{p} \uparrow$.date $:=\{$ value corresponding to type DateType $\} ;$
$\mathrm{p} \uparrow$.successor := nil;
work (p); \{ procedure call for further execution \}
dispose(p); \{ release of memory that is no longer required \}

PASCAL-XSC

A referenced type may be any type except dynamic array types.
In addition to dispose, there is another method available to reclaim memory. The procedure call mark (PointerVariable) assigns the value of the heap pointer to the specified pointer variable. The subsequent procedure call release (PointerVariable) (with the same unchanged pointer variable as used with mark), sets the heap pointer to the address contained in its argument. The call release (PointerVariable) thus discards all dynamically allocated variables above this address. After this, the value of the pointer variable used is undefined, and all references to the released memory range are undefined.

Within a program and all used modules, a programmer may employ either the dispose construct or the mark/release construct, but not both.

2.3.5 Compatibility of Types

Certain operations are only executable if the types of the corresponding operands are compatible. Two types t_{1} and t_{2} are called compatible if
(a) t_{1} and t_{2} are the same type.
(b) t_{1} is a subrange of t_{2}, t_{2} is a subrange of t_{1}, or both t_{1} and t_{2} are subranges of the same base type.
(c) t_{1} and t_{2} both are set types of compatible base types, and both are either packed or unpacked.
(d) t_{1} and t_{2} are (static) string types with the same length.

Moreover, the assignment compatibility of the type t_{1} of the variable on the left-hand side and the type t_{2} of the expression on the right-hand side $\left(t_{1}:=t_{2}\right)$ is defined by:
(a) t_{1} and t_{2} are the same type, except a file type.
(b) t_{1} is type real, t_{2} is type integer.
(c) t_{1} and t_{2} are compatible scalar types (except real), and the value of type t_{2} is contained in t_{1}.
(d) t_{1} and t_{2} are compatible set types, and the elements of the value of type t_{2} are contained in the base type of t_{1}.
(e) t_{1} and t_{2} are compatible (static) string types.

The assignment compatibility is also applied to the formal parameter in connection with a call by value of a function or procedure and the corresponding actual expression in case of a procedure or function call. A formal parameter for call by reference and the corresponding actual parameter must be compatible.

Example 2.3.26:

The declaration

$$
\begin{aligned}
& \text { type } \\
& \begin{aligned}
\operatorname{vec} 1 & =\text { array }[1 . .10] \text { of real; } ; \\
\operatorname{vec} 2 & =\operatorname{array}[1 . .10] \text { of real; } \\
\operatorname{vec} 3 & =\operatorname{vec} 1 ;
\end{aligned}
\end{aligned}
$$

causes the types vec1 and vec3 to be compatible because they are the same type, whereas vec 1 and vec2 are not compatible, although they have the same structure.

PASCAL-XSC

As a consequence of the dynamic types and the dynamic string concept, the compatibility must be extended, too. These extensions are explained in the following section.

Furthermore, a programmer may overload the assignment operator := (see section 2.7.12) in order to explicitly extend assignment compatibility to types which are otherwise not compatible. This "overloaded compatibility" is valid only for the assignment statement but not for the call by value of functions and procedures.

2.3.5.1 Compatibility of Array Types

As in Standard PASCAL, two array types are compatible only if they are the same types, i.e. a dynamic type is not compatible with a static type.

A value of the array type t_{2} is assignment compatible with the variable of array type t_{1} on the left-hand side, if

- both types are compatible, and the lengths of the corresponding index ranges are equal.

PASCAL-XSC

- t_{1} is an anonymous type, and both are structurally equivalent.

A variable is called of anonymous type if there is no related type identifier in the corresponding declaration. This may occur in the case of component variables (subarrays) (see section 2.3.2.2).

Example 2.3.27:

With the declarations

```
type vector = array [1..5] of integer;
    v_matrix = array [1..5] of vector;
    a_matrix = array [1..5,1..5] of integer;
var a : array [1..10] of real;
    b : array [1..10] of rvector[1..10];
    c : rmatrix[1..10, 1..10];
    d : vector;
    e : v_matrix;
    f : a_matrix;
```

the variables (or component variables)

$$
\mathrm{a}, \quad \mathrm{~b}, \quad \mathrm{c}[*, 2], \quad \mathrm{e}[*, 1], \quad \text { and } \quad \mathrm{f}[3]
$$

are of anonymous type, and the variables (or component variables)

$$
\mathrm{b}[3], \quad \mathrm{c}[2], \quad \mathrm{d}, \quad \mathrm{e}[1], \quad \text { and } \quad \mathrm{f}
$$

are of known type.

Two array types are called structurally equivalent if the component types are the same and the index ranges are identical in number, length, and base type. If the index ranges of an array type are not yet specified, the length is always adequate. This is a special case for a formal parameter.

Thus, the assignment statement (see section 2.5.1) is allowed in the following cases:

Type of left Side	Type of right Side	Assignment permitted
anonymous dynamic	arbitrary array type	if structurally equivalent
known dynamic	known dynamic	if the same type
anonymous static	arbitrary array types	if structurally equivalent
known static	known static	if the same type

In all other cases, an assignment is only possible by qualification of the array expression of the right side:
\| ArrayTypeIdentifier (ArrayExpression)

In this case, the array type identifier serves as type conversion function (see section 2.4.3.1). Qualification, however, requires the named type and the type of the array expression to be structurally equivalent.

Example 2.3.28:

The types poly and vec declared by

```
const degree = ...;
type poly = dynamic array [*] of real;
    vec = dynamic array [*] of real;
```

are not compatible. If we have provided a vector addition operator for the type vec, then the polynomials p and q declared by
var $p, q:$ poly [0..degree];
can be added by means of the qualification

$$
\mathrm{p}:=\operatorname{poly}(\operatorname{vec}(\mathrm{p})+\operatorname{vec}(\mathrm{q})) .
$$

2.3.5.2 Compatibility of Strings

In Standard PASCAL, string types (called array-string types in the following) are compatible and assignment compatible only if their lengths coincide.

> PASCAL-XSC

The following rules apply to the new standard type string (called string type in the following):

- Two string types are always compatible. A string type, however, is not compatible with any other type.
- A string value of type t_{2} is assignment compatible with a variable of type t_{1} if t_{1} is a string type and t_{2} is an array-string type, a string type, or a char type.

2.4 Expressions

In this section, we describe the expression concept of PASCAL. For the additional types of PASCAL-XSC, we supply the corresponding details. Moreover, we describe how to create expressions for arbitrary, user-defined types by declaring operators and functions with arbitrary result for these types. This user-defined expression concept is processed according to the usual rules of priority and parenthesizing.

2.4.1 Standard Expressions

Expressions for the types integer, real, boolean, char, enumeration type, and set are composed of operands and operators in the usual manner. All rules and properties described for the types integer, boolean, char, and enumeration type in the following apply in the same way to their subrange types.

The evaluation of an expression is done according to the conventional rules of algebra for left-to-right evaluation of operators and operator precedence. An expression enclosed within parentheses is evaluated independently of preceding and following operators. The type of the expression value is given by the operator which is processed last. An expression is built up by

MonadicOperator

$$
\begin{array}{ll}
\text { Operand } & \{\text { not empty }\} \\
& \text { DyadicOperator Operand } \quad . . .
\end{array}
$$

An operand is given by the alternatives

- constant
- variable
- function call
- expression, enclosed in parentheses
where a function can be predefined or user-defined.

Example 2.4.1:

Let op1, op2, op3 be operands, - a monadic operator, and +, * dyadic operators. Then, we can built up the expression

$$
-\mathrm{op} 1+\mathrm{op} 2 * \mathrm{op} 1 * \mathrm{op} 3
$$

using three repetitions of the third line of the above syntax. Moreover, we can replace op3 by a further expression, for example

$$
\mathrm{op} 2+\mathrm{f}(\mathrm{op} 1)
$$

where f is a function with appropriate result type. Then we get

$$
-\mathrm{op} 1+\mathrm{op} 2 * \mathrm{op} 1 *(\mathrm{op} 2+\mathrm{f}(\mathrm{op} 1))
$$

The operators are defined only for special kind of operands. They denote different operations depending on the operand types:

Monadic Operator	Operand Type	Result Type
,+-	integer, real	integer, real
not	boolean	boolean

Dyadic Operator	Operand Type	Result Type
,,$+- *$, div, mod $/$	integer	integer real
$+,-, *, /$	integer and real	real
$+,-, *, /$	real	real
or, and	boolean	boolean
$+($ set union), $-($ set difference), $*$ (set intersection)	set	set
$=,<>,<,>,<=,>=$	integer, real, char, boolean, enumeration type, string	boolean
$=,<>$, $<=$ (subset inclusion), $>=$ superset inclusion)	boolean	
in (set membership)	left operand: integer, boolean, and enumeration type right operand:	boolean
	serresponding set type	

The priority levels of Standard PASCAL are:

Priority	Dyadic Operators	Monadic Operators
0 (lowest)	$=,<>,<=,>=,<,>$, in	
1	,,+- or	,+-
2	mod, div, $*, /$, and	
3 (highest)	not	

PASCAL-XSC
In contrast to Standard PASCAL, the monadic operators + and - have the highest priority 3 . Several monadic operators can occur in sequence.

MonadicOperator ...
Operand \{ not empty \}
DyadicOperator Operand ...

Several monadic operators in sequence are executed from right to left. In addition to Standard PASCAL, the following operators are available:

Dyadic Operator	Operand Type	Result Type
$+<,-<, *<, /<$	integer or real	real
$+>,->, *>, />$	integer or real	real
+	char or string	string
in	left operand: string or char	boolean
	right operand: string	

Additionally, the dyadic operator symbols $* *,+*$, and $><$ are available. They get their predefined meaning by using the arithmetic modules (see chapter 3). In PASCAL-XSC, the priority levels are:

Priority	Dyadic Operators	Monadic Operators
0 (lowest)	$=,<>,<=,>=,<,>$, in,$><$	
1	or,,$++<,+>,-,-<,->,+*$	
2	$*, *<, *>, /, /<, />, * *$	
3 (highest)	mod, div, and	,,+- not

2.4.1.1 Integer Expressions

An integer expression is composed of integer operands and the operators,,$+- *$, div, and mod. The operators div and mod denote the integer division and the division remainder, respectively. The following intrinsic functions are available:

Function	Definition
trunc (real expression)	Rounding by truncation of the fractional part
round (real expression)	Rounding to the nearest integer number, i.e. $\text { round }(r)= \begin{cases}\operatorname{trunc}(r+0.5) & \text { for } r \geq 0 \\ \operatorname{trunc}(r-0.5) & \text { for } r<0\end{cases}$
ord (O-Type expression)	Ordinal number of the parameter. The elements of these types have the corresponding ordinal numbers $0,1,2, \ldots$
ord (integer expression)	Identity, i.e. $\operatorname{ord}(v)=v$
succ (integer expression)	Successor, i.e. $\operatorname{succ}(\mathrm{v})=\mathrm{v}+1$
pred (integer expression)	Predecessor, i.e. $\operatorname{pred}(\mathrm{v})=\mathrm{v}-1$
abs (integer expression)	Absolute value
sqr (integer expression)	Square, i.e. $\operatorname{sqr}(\mathrm{v})=\mathrm{v}^{2}$

$$
\text { O-Type }=\text { boolean, char }, \text { or enumeration type }
$$

The following additional functions with integer result are available:

Function	Definition
loc (variable)	Implementation-dependent address of the variable
ord (pointer expression)	Implementation-dependent value of the pointer expression
sign (S-Type expression)	Sign, i.e. $\operatorname{sign}(a)=\left\{\begin{aligned}-1 & \text { for } a<0 \\ 0 & \text { for } a=0 \\ +1 & \text { for } a>0\end{aligned}\right.$
lbound (array variable, integer constant)	Lower bound of an index range
lb (array variable, integer constant)	Lower bound of an index range
ubound (array variable, integer constant)	Upper bound of an index range
ub (array variable, integer constant)	Upper bound of an index range
expo (real expression)	Exponential part of the normalized mantissa (see section 2.4.1.2)

S-Type $=$ integer, real, or dotprecision
For an array variable A, the function lbound (A, n) delivers the lower bound of the index range of the n-th dimension. If there is no second parameter, the first dimension is chosen. The functions $l b$ (for lbound) and $u b$ (for ubound) can be used as short forms.

The function
ival
for conversion of a string to an integer value (see section 2.9) is provided.
An integer expression may also include user-defined operators and function calls with integer result type.

2.4.1.2 Real Expressions

A real expression is composed of real or integer operands and the corresponding floating point operators $+,-, *, /$. Using,,$+- *$ with two integer operands causes the integer operation to be executed. The following predefined functions are available:

Function	Definition
abs (real expression)	Absolute value $\|x\|$
sqr (real expression)	Square x^{2}
\sin (real expression)	Sine $\sin x$
\cos (real expression)	Cosine $\quad \cos x$
\arctan (real expression)	Arc Tangent arctan x
\exp (real expression)	Exponential Function e^{x}
\ln (real expression)	Natural Logarithm $\ln x, x>0$
sqrt (real expression)	Square Root $\sqrt{x}, x \geq 0$

Further implementation-dependent information about the domain and the range of the functions can be found in the user manual of the compiler.

Example 2.4.2:

With the declarations

```
var x, y, v, w : real;
    i, j : integer;
```

the expressions

$$
\begin{aligned}
& \operatorname{sqr}(\mathrm{x})+\sin (\mathrm{y}+1.5) / \ln (\mathrm{sqr}(\mathrm{v})+\operatorname{sqr}(\mathrm{w})+1.2) \quad \text { and } \\
& \mathrm{i} \text { div } \mathrm{j}+1 \mathrm{e}-10 \\
& \text { are real expressions. }
\end{aligned}
$$

PASCAL-XSC

PASCAL-XSC provides floating point operations with three different kinds of roundings. The following remarks give a review of the fundamentals for the use of these operations.

A floating point system R is characterized by a base b (for instance 2 or 10), a finite number n of mantissa digits (for instance 13), and an exponent range with the smallest exponent emin and the largest exponent emax (see also chapter 1). A normalized floating point number x can be represented by

$$
x= \pm 0 . d_{1} d_{2} \ldots d_{n} \cdot b^{e x}
$$

where $d_{1} \neq 0,0 \leq d_{i} \leq b-1$, and emin $\leq e x \leq e m a x$. We denote a floating point system by $R=R(b, n$, emin, emax).

A floating point system (see also [28] and [24]) is not closed with respect to the arithmetic operations $+,-, *, /$. That means that the mathematical operation applied to two operands in R does not always produce a result which lies in R. Using $R(10,2,-10,10)$ for example, $x+y$ with $x=0.58$ and $y=0.47$ delivers 1.05. This number is not an element of R, so it must be rounded to a number in R. The best we can do is to round the exact result to one of the adjacent numbers in R, either 1.0 or 1.1. So the result of the rounded operation is correct up to one ulp (unit in the last place).

The smallest local error is produced by using the rounding to the nearest floating point number ($1 / 2 \mathrm{ulp}$). In PASCAL-XSC, this implementation-dependent rounding is accessed by the usual operations $+,-, *, /$. The operations with downwardly directed rounding and with upwardly directed rounding are denoted by the symbols $+<,-<, *<, /<$, and $+>,->, *>, />$, respectively.

We need directed roundings if we want to compute guaranteed bounds for the exact value of a real expression. To get a valid bound, we must be careful to use the correct rounding mode for each operation. We must also take care to round literal constants correctly.

Directed roundings are also used to implement an interval arithmetic. In each interval operation, the lower bound must be rounded downward, and the upper bound must be rounded upward.

Example 2.4.3:

In $R(10,4,-5,5)$, the real expressions

$$
1 / 3,1 /<3, \text { and } 1 />3
$$

deliver the values $0.3333,0.3333$, and 0.3334 ,
respectively.

If we want to compute a lower and an upper bound for the real expression

$$
\mathrm{x} \cdot \mathrm{y}-\mathrm{v} \cdot \mathrm{w},
$$

we can do this in PASCAL-XSC by evaluating

$$
\mathrm{x} *<\mathrm{y}-<\mathrm{v} *>\mathrm{w}
$$

and

$$
\mathrm{x} *>\mathrm{y}->\mathrm{v} *<\mathrm{w} .
$$

The result of $v \cdot w$ must be rounded the opposite direction as the result of $x \cdot y$ because of the intervening subtraction operator.

PASCAL-XSC provides the built-in functions succ and pred for both integer and real arguments.

Function	Definition
succ (real expression)	Next larger floating point number
pred (real expression)	Next smaller floating point number

The following additional mathematical functions are provided:

Function	Definition
exp2 (real expression)	Power function, base 22^{x}
exp10 (real expression)	Power function, base $1010{ }^{x}$
log2 (real expression)	Logarithm, base $2 \log _{2} x$
$\log 10$ (real expression)	Logarithm, base $10 \quad \log _{10} x$
tan (real expression)	Tangent $\tan x$
cot (real expression)	Cotangent $\cot x$
arcsin (real expression)	Arc Sine $\arcsin x$
\arccos (real expression)	Arc Cosine $\quad \arccos x$
arccot (real expression)	Arc Cotangent $\operatorname{arccot} x$
arctan2 (real expression, real expression)	$\arctan 2(\mathrm{r} 1, \mathrm{r} 2)=\arctan (\mathrm{r} 1 / \mathrm{r} 2)$
sinh (real expression)	Hyperbolic Sine $\sinh x$
cosh (real expression)	Hyperbolic Cosine $\cosh x$
tanh (real expression)	Hyperbolic Tangent $\tanh x$
coth (real expression)	Hyperbolic Cotangent $\operatorname{coth} x$
arsinh (real expression)	Inverse Hyperbolic Sine $\operatorname{arsinh} x$
arcosh (real expression)	Inverse Hyperbolic Cosine $\operatorname{arcosh} x$
artanh (real expression)	Inverse Hyperbolic Tangent $\operatorname{artanh} x$
arcoth (real expression)	Inverse Hyperbolic Cotangent $\operatorname{arcoth} x$

All real arithmetic functions available in PASCAL-XSC deliver a result of maximum accuracy in the sense that there is no other floating-point number between the exact result and the computed floating-point number (1 ulp accuracy). Further implementation-dependent information about the domain and the range of the functions can be found in the user manual of the compiler.
The function
rval
converts strings into real values (see section 2.9 for details). For decomposing and composing of real numbers, PASCAL-XSC provides the functions mant and comp (see also expo in section 2.4.1.1).

Function	Definition
mant (real expression)	Normalized mantissa m of r. The range of m is implementation-defined. comp (real expression, integer expression)
Composition of a mantissa (type R) and an exponent (type I) to a real number. The ranges of the real and integer expres- sions are implementation-defined.	

Example 2.4.4:

The functions mant, expo, and comp satisfy the identities

$$
\begin{aligned}
& \mathrm{x}=\operatorname{comp}(\operatorname{mant}(\mathrm{x}), \operatorname{expo}(\mathrm{x})), \\
& \mathrm{e}=\operatorname{expo}(\operatorname{comp}(\mathrm{m}, \mathrm{e})) \\
& \mathrm{m}=\operatorname{mant}(\operatorname{comp}(\mathrm{m}, \mathrm{e}))
\end{aligned}
$$

Depending on the implementation, we might get

$c \mid$	Statement	
m	$:=\operatorname{mant}(100)$	$\mathrm{m}=0.1$
e	$:=\operatorname{expo}(100)$	$\mathrm{e}=3$
x	$:=\operatorname{comp}(\mathrm{m}, \mathrm{e})$	$\mathrm{x}=100=0.1 \mathrm{E}+03$

A real expression may also include user-defined operators and function calls with real result type.

2.4.1.3 Boolean Expressions

Permissible operands in a boolean expression are the literal constants true and false, variables, boolean functions, comparisons, expressions in parentheses, and the following boolean functions:

Function	Definition
pred (boolean expression)	Predecessor according to false < true succ (boolean expression) odd (integer expression)
eof (file variable)	Successor according to false $<$ true Returns true if the argument is an odd number, and false if it is an even one. eoln (text file variable)
Returns true if the end of the file is reached, and false if not. Returns true if the end of the line is reached, and false if not.	

If one of the operands is a comparison, then it has to be put in parentheses. The symbol $<>$ stands for \neq (not equal to). The relational operators $<=$ and $>=$ denote the logical implication \rightarrow and \leftarrow, respectively. The symbol $=$ denotes the logical equivalence.

Additional built-in functions:

Function	Definition
lbound (array variable, integer constant)	Lower bound of an index range
lb (array variable, integer constant)	Lower bound of an index range
ubound (array variable, integer constant)	Upper bound of an index range
ub (array variable, integer constant)	Upper bound of an index range

For an array variable A with index type boolean, $\operatorname{lbound}(A, n)$ delivers the lower bound of the index range of the n-th dimension. If there is no second parameter, the first dimension is chosen. This rule also holds for ubound. $1 b$ (for lbound) and $u b$ (for ubound) can be used as short forms.

Comparisons for values of the arithmetic types
complex, interval, cinterval
and

$$
\begin{array}{llll}
\text { rvector, } & \text { cvector, } & \text { ivector, } & \text { civector, } \\
\text { rmatrix, } & \text { cmatrix, } & \text { imatrix, } & \text { cimatrix }
\end{array}
$$

are defined in the corresponding arithmetic modules. A detailed description is given in chapter 3 (Arithmetic Modules).

It is not possible to compare dotprecision values directly. Two dotprecision values can be compared by subtracting them and then using the sign function:

$$
\operatorname{sign}(\mathrm{d}):=\left\{\begin{array}{rll}
1 & \text { for } & \mathrm{d}>0 \\
0 & \text { for } & \mathrm{d}=0 \\
-1 & \text { for } & \mathrm{d}<0
\end{array}\right.
$$

where d is an expression of type dotprecision.
A boolean expression may also include user-defined operators and function calls with boolean result type.

2.4.1.4 Character Expressions

A character expression is given by a constant, a variable, or a function call. There are no character operators. Predefined functions with result type char are:

Function	Definition
pred (char expression)	Predecessor
succ (char expression)	Successor
chr (integer expression)	Returns the character with the ordi- nal value of the integer expression

The results of these char functions depend on the implementation.

Additional predefined functions:

Function	Definition
lbound (array variable, integer constant)	Lower bound of an index range
lb (array variable, integer constant)	Lower bound of an index range
ubound (array variable, integer constant)	Upper bound of an index range
ub (array variable, integer constant)	Upper bound of an index range

For an array variable A with its index type char, $\operatorname{lbound}(A, n)$ delivers the lower bound of the index range of the n-th dimension. If there is no second parameter, the first dimension is chosen. This rule also holds for ubound. lb (for lbound) and $u b$ (for ubound) can be used as short forms.

A char expression may also include user-defined operators and function calls with char result type.

2.4.1.5 Enumeration Expressions

The enumeration expression consists of enumeration constants, variables, and function calls of the built in functions pred and succ.

Function	Definition
pred (enumeration expression)	Predecessor in the enumeration type
succ (enumeration expression)	Successor in the enumeration type

PASCAL-XSC
Additional predefined functions:

Function	Definition
lbound (array variable, integer constant)	Lower bound of an index range
lb (array variable, integer constant)	Lower bound of an index range
ubound (array variable, integer constant)	Upper bound of an index range
ub (array variable, integer constant)	Upper bound of an index range

For an array variable A with an enumeration type as its index type, $\operatorname{lbound}(A, n)$ delivers the lower bound of the n-th dimension. If there is no second parameter, the first dimension is chosen. This rule also holds for ubound. lb (for lbound) and $u b$ (for ubound) can be used as short forms.

Example 2.4.5:

```
type precipitation = (rain, hail, snow);
var p: precipitation;
    pset: array [precipitation] of real;
            \vdots
    p:= succ (rain); { the value hail is assigned to p }
    p:= ubound (pset); { the value snow is assigned to p }
```

An enumeration expression may also include user-defined operators and function calls with enumeration result type. There are no predefined operators available.

2.4.2 Accurate Expressions (\#-Expressions)

PASCAL-XSC

The usual real expressions of almost every programming language are simply evaluated by executing each operation and immediately rounding the result to the given real format. The problem with this kind of evaluation is that the influence of the roundings may falsify the final result. To avoid such uncontrollable effects, PASCAL-XSC provides the dotprecision expressions and accurate expressions. Accurate expressions (\#-expressions) are marked by the preceding \#-symbol. There are three different forms of basic accurate expressions: the dotprecision expression

\| \# (real ExactExpression) \{ exact dotprecision result \}

the real accurate expression
\#* (real ExactExpression) \{ rounded to the nearest real number \}
$\#<($ real ExactExpression $)$ \{ rounded to the next smaller real number \}
\#> (real ExactExpression) \{ rounded to the next larger real number \}
and the interval accurate expression
\| \#\# (real ExactExpression) \{ rounded to the smallest enclosing interval \}
The exact expression enclosed in parentheses is always evaluated exactly without any rounding. An exact expression must be mathematically equivalent to a scalar product (dot product) $\sum u_{i} \cdot v_{i}$. It is built up according to the following syntactic structure:
\pm Summand
Operator Summand ...
Only the operators + and - can be used in the exact expression. They denote the exact (errorless) addition and subtraction of operands (summands) of one or more of the following forms:

Summand	Definition
dotprecision variable real operand	dotprecision-variable real operand with the alternatives integer variable integer constant real variable real constant
real operand $*$ real operand (real exact expression)	exact double length product of two real operands exact expression enclosed in parentheses
for $\mathrm{i}:=\mathrm{s}$ to e sum (real exact expression)	for-statement for summation, with i an integer variable and s, e integer expressions
for $\mathrm{i}:=\mathrm{s}$ downto e sum (real exact expression)	for-statement for summation, with i an integer variable and s, e integer expressions

Notice: Within the exact expression, the operators,+- , denote the exact operations in the mathematical sense without any rounding. Therefore, they can not be overloaded by user-defined operators.

The for-statement with sum is a short form for summation. In this statement, the exact expression enclosed in parentheses may depend on the control variable i. An expression of the form

$$
\mathrm{EE}_{s}+\mathrm{EE}_{s+1}+\ldots+\mathrm{EE}_{e-1}+\mathrm{EE}_{e}
$$

with exact expressions EE_{i} can be abbreviated by

$$
\text { for } i:=s \text { to } e \operatorname{sum}\left(\mathrm{EE}_{i}\right)
$$

(see also section 2.5.8.3 for-statement).

PASCAL-XSC

An empty loop (for-statement) corresponds to a summand with the value zero. The same applies to downto.
The integer expressions s (start index) and e (end index) themselves must not contain explicit \#-expressions.

Example 2.4.6:

The value of the scalar product

$$
s:=\sum_{i=1}^{10} a_{i} * b_{i}
$$

can be computed with only one rounding. Assuming the declarations

```
var a, b : array [1..10] of real;
    s : real;
    d : dotprecision;
    i : integer;
```

this can be realized via

$$
\begin{aligned}
& \mathrm{d}:=\#(0) ; \\
& \text { for } \mathrm{i}:=1 \text { to } 10 \text { do } \mathrm{d}:=\#(\mathrm{~d}+\mathrm{a}[\mathrm{i}] * \mathrm{~b}[\mathrm{i}]) ; \\
& \mathrm{s}:=\# *(\mathrm{~d}) ;\{\text { rounding to the nearest real number }\}
\end{aligned}
$$

Using the short form, this can be done by

$$
\mathrm{s}:=\# *(\text { for } \mathrm{i}:=1 \text { to } 10 \operatorname{sum}(\mathrm{a}[\mathrm{i}] * \mathrm{~b}[\mathrm{i}]))
$$

Example 2.4.7:

To compute the nearest, the next smaller, and the next larger floating point number of the value of the expression $E=x * y-v * w$, we can write

$$
\begin{aligned}
& \mathrm{E}_{\text {nearest }}:=\# *(\mathrm{x} * \mathrm{y}-\mathrm{v} * \mathrm{w}), \\
& \mathrm{E}_{\text {smaller }}:=\#<(\mathrm{x} * \mathrm{y}-\mathrm{v} * \mathrm{w}), \text { and } \\
& \mathrm{E}_{\text {larger }}:=\#>(\mathrm{x} * \mathrm{y}-\mathrm{v} * \mathrm{w}),
\end{aligned}
$$

respectively. The results satisfy

$$
\operatorname{pred}\left(\mathrm{E}_{\text {larger }}\right)=\mathrm{E}_{\text {smaller }} \leq \mathrm{E}_{\text {nearest }} \leq \mathrm{E}_{\text {larger }}=\operatorname{succ}\left(\mathrm{E}_{\text {smaller }}\right) .
$$

Notice: If literal constants are used as real operands within an \#-expression, the programmer should understand that these constants are converted into the internal data format first. Thus, depending on the implementation, inevitable errors may arise with the necessary conversions.

For example, with an internal binary representation, the expression

$$
\text { \#\# (} 0.1 \text {) }
$$

does not deliver an interval inclusion of the real number 0.1 , but a point interval corresponding to the value of the converted constant. An inclusion for the real value 0.1 may be computed by

```
intval ((<0.1),(>0.1))
```

(see also section 3.2).

2.4.3 Expressions for Structured Types and Pointer Expressions

The set type is the only structured type of Standard PASCAL for which expressions can be built up in the usual manner with operations. There are no operators in array or record expressions. There are no file expressions or text file expressions.

PASCAL-XSC

The operator concept of PASCAL-XSC (see section 2.7.6) enables us to declare operators for arbitrary predefined types and user-defined types. Thus, we can define expressions of any type.

The syntax of a general expression in PASCAL-XSC is identical to the syntax described in section 2.4.1 on page 45 for standard expressions.

PASCAL-XSC provides expressions for the arithmetic types complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, and cimatrix. It also provides many operators and functions for these types. A detailed description of these features is given in chapter 3 (Arithmetic Modules) in the corresponding sections describing the modules C_ARI, I_ARI, CI_ARI, MV_ARI, MVC_ARI, MVI_ARI, and MVCI_ARI.

2.4.3.1 Array Expressions

An array expression comprises no operators. It consists only of variables.

PASCAL-XSC

In PASCAL-XSC, an array expression can be composed of user-defined operators, variables, function calls and qualification (similar to the casting in C).

The qualification has the form

| ArrayTypeIdentifier (ArrayExpression)

where the array type identifier serves as a type converting function. If the array expression is structurally equivalent, then it is converted into the type named by the identifier.

There are no predefined operators for operands of an array type.

Example 2.4.8:

```
type
        vector \(=\) array \([1 . .8]\) of real;
        polynomial \(=\) array \([0 . .7]\) of real;
    var
        v: vector;
        p : polynomial;
        \(\mathrm{p}:=\) polynomial (v);
        \(\mathrm{v}:=\) vector (p);
```

The type converting function or qualification is used in connection with dynamic arrays and with operators (see section 2.7.6).

A dynamic array expression has the same syntactical structure as the array expression, except that dynamic array operands can be used.

2.4.3.2 String Expressions

There are no predefined operators or functions for strings in Standard PASCAL. A string expression is either a string constant or a string variable.

The operator + defined by

$$
\text { operator }+ \text { (a, b : string) conc: string; }
$$

concatenates two dynamic string operands. The strings are concatenated in the order a followed by b. The current length of the result is the sum of the current lengths of a and b. If the maximum length of the type string is exceeded, then the result is implementation-defined.

The operands of + may be string constants and variables, string function calls (for the predefined functions, see section 2.9), and string expressions enclosed in parentheses. A character expression can be used as special kind of a string operand.

Example 2.4.9:

```
var s1, s2: string [6];
    s3: string [11];
        \vdots
    s1 := 'PASCAL';
    s2:= '-XSC';
    s3:= s1 + s2; { the value 'PASCAL-XSC' is assigned to s3 }
```


2.4.3.3 Record Expressions

PASCAL-XSC

A record expression may include user-defined operators, record variables, and function calls with record result type. There are no predefined operators available.

2.4.3.4 Set Expressions

A set can be given by a set constructor of the form

| [ExpressionList]

The expressions in the expression list are element specifications. Such an element specification is an expression of the base type of the set or a subrange expressed by

Expression .. Expression.
An empty expression list is permitted, so that [] defines an empty set.
Set constructors, set variables, set function calls, and set expressions enclosed in parentheses can be operands in set expressions.

The operators,+- , and $*$ denote the set union, set difference, and set intersection, respectively.

Example 2.4.10:

var set_of_vowels, set_of_consonants : set of 'a'..'z';
set_of_vowels $:=$ ['a', 'e', 'i', 'o', 'u'];
set_of_consonants := ['a'..'z'] - set_of_vowels;

2.4.3.5 Pointer Expressions

A pointer expression consists of the constant nil, a pointer variable, or a pointer function call. There are no predefined operators for pointer operands.

PASCAL-XSC

If the function ord is applied to an argument of pointer type, it delivers the value of the pointer, i.e. the implementation-dependent address of the object which the pointer references. If p is a pointer, then

$$
\operatorname{ord}(\mathrm{p})=\operatorname{loc}(\mathrm{p} \uparrow)
$$

2.4.4 Extended Accurate Expressions (\#-Expressions)

PASCAL-XSC

The concept of real accurate expressions (\#-expressions) based upon the type dotprecision can be extended to the arithmetic types complex, interval, and cinterval using the predefined operators,+- , and $*$. Moreover, it is possible to form accurate expressions for vectors and matrices over the types real, interval, complex, and cinterval. The corresponding exact expressions must be mathematically equivalent to scalar products (dot products).

Notice: To use these extended \#-expressions, it is necessary to include the corresponding arithmetic module (see section 3) via a use-clause.
Within the exact expression, the operators,+- , and $*$ denote the exact operations in the mathematical sense without any rounding. Therefore, they can not be overloaded by user-defined operators.
The for-statement with sum can be used within the extended \#expression. An expression of the form

$$
\mathrm{EE}_{s}+\mathrm{EE}_{s+1}+\ldots+\mathrm{EE}_{e-1}+\mathrm{EE}_{e}
$$

where the EE_{i} are exact expressions, can be abbreviated by

$$
\text { for } i:=s \text { to } e \operatorname{sum}\left(\mathrm{EE}_{i}\right)
$$

(see also section 2.5.8.3, for statement). An empty loop (for-statement) corresponds to a summand with the value zero. The same applies to downto. The integer expressions s and e themselves must not contain \#-expressions.

2.4.4.1 \#-Expressions for the Arithmetic Types

PASCAL-XSC

A real accurate expression can use scalar products of two real vectors as summands. For example, with a and b of type rvector, we can evaluate $a * b$ and store the exact result in a dotprecision variable. Within the accurate expression, the operator $*$ which is provided in the arithmetic module MV_ARI denotes the exact computation of the scalar product.

Furthermore, accurate expressions are useful to program operations on the types interval, complex, and cinterval (complex interval). The syntax of accurate expressions of type interval, complex, and cinterval has the following form: The interval accurate expression (with rounding to the smallest enclosing interval):

```
## (real ExactExpression)
## (interval ExactExpression)
```

The complex accurate expression (with componentwise rounding to the nearest, the next smaller, or the next larger complex number):
\#* (complex ExactExpression)
\#< (complex ExactExpression)
\#> (complex ExactExpression)
The cinterval accurate expression (with rounding to the smallest enclosing interval):

```
| ## (complex ExactExpression)
\#\# (cinterval ExactExpression)
```

The exact expressions within these accurate expressions are of the same syntactical structure as the real exact expression, except that there are no interval-, complex-, or cinterval-dotprecision types or variables. In general, an exact expression has the syntactical form
\pm Summand
Operator Summand ...
where only + and - are permitted as operators.

Summands which can be combined by the operators + and - are (with $\tau, \sigma \in$ \{real, interval, complex, cinterval\}):

Summand	Definition
dotprecision variable	dotprecision variable
τ operand	constant, variable, function call
τ operand $* \sigma$ operand	exact product of double length
τ vector operand $*$ vector σ operand	exact scalar product of two vectors
$(\tau$ exact expression $)$	exact expression enclosed in paren-
for $\mathrm{i}:=\mathrm{s}$ to e sum	theses
$\quad(\tau$ exact expression $)$	for-statement for summation, with
i in integer variable and s, e integer	
for $\mathrm{i}:=\mathrm{s}$ downto e sum	expressions
$\quad(\tau$ exact expression $)$	for-statement for summation, with
	i an integer variable and s, e integer
	expressions

Not all the summands must be of the same type. Within a cinterval accurate expression, mixed summands of type real, complex, or interval can be used as well. The type of the exact expression is specified by the type combination of the summands that occur. The allowed τ - or σ-operands are listed in section 2.4.4.4.

Example 2.4.11:

Assuming the declarations

$$
\begin{array}{lll}
\text { var } & \text { a, b } & \text { : real; } \\
& \text { ca } & \text { : complex; } \\
& \text { cib } & \text { : cinterval; } \\
& \text { v, w } & \text { : rvector }[1 . .10] ; \\
& \text { cv, cw } & : \text { cvector }[1 . .10] ; \\
& \text { civ } & \text { : civector }[1 . .10] ;
\end{array}
$$

the following accurate expressions are syntactically correct:

Acccurate Expression		Result Type
$\#<$	$(\mathrm{b}+\mathrm{v} * \mathrm{w}+$ for $\mathrm{i}:=1$ to 10 sum $(\mathrm{v}[\mathrm{i}]))$	real
$\# *$	$(\mathrm{ca}+\mathrm{a} * \mathrm{~b}+\mathrm{a} * \mathrm{ca}+\mathrm{cv} * \mathrm{w}+\mathrm{cv}[3] * \mathrm{cw}[5])$	complex
$\# \#$	$(\mathrm{~b}+\mathrm{a} * \mathrm{~b}+\mathrm{v} * \mathrm{w})$	interval
$\# \#$	$(\mathrm{ca}+\mathrm{a} * \mathrm{~b}+\mathrm{ca} * \mathrm{cib}+\mathrm{cv} * \mathrm{civ})$	cinterval

2.4.4.2 \#-Expressions for Vectors

PASCAL-XSC

For vectors over the arithmetic types real, complex, interval, and cinterval, accurate expressions can be formed analogously:

Accurate Expression Type		Syntax
rvector accurate expression	$\# *$	(rvector ExactExpression)
	$\#<$	(rvector ExactExpression)
	$\#>$	(rvector ExactExpression)
ivector accurate expression	$\# \#$	(rvector ExactExpression)
	$\# \#$	(ivector ExactExpression)
cvector accurate expression	$\# *$	(cvector ExactExpression)
	$\#<$	(cvector ExactExpression)
	$\#>$	(cvector ExactExpression)
civector accurate expression	$\# \#$	(cvector ExactExpression)
	$\# \#$	(civector ExactExpression)

The exact expression has the form
\pm Summand
Operator Summand ...
where only + and - are permitted as operators.
Summands which can be combined by the operators + and - are (with $\tau, \sigma \in$ \{real, interval, complex, cinterval\}):

Summand	Definition
τ vector operand τ operand $* \sigma$ vector operand τ vector operand $* \sigma$ operand τ matrix operand $* \sigma$ vector operand (τ vector exact expression) for $\mathrm{i}=\mathrm{s}$ to e sum (τ vector exact expression) for $\mathrm{i}:=\mathrm{s}$ downto e sum (τ vector exact expression)	variable, function call exact product of double length (componentwise) exact product of double length (componentwise) exact matrix/vector product (with exact scalar product for each component) exact expression enclosed in parentheses for-statement for summation, with i an integer variable and s, e integer expressions for-statement for summation, with i an integer variable and s, e integer expressions

Not all the summands must be of the same type. Within a civector accurate expression, mixed summands of type rvector, cvector, or ivector can be used as well. The type of the exact expression is specified by the type combinations of the summands that occur. The allowed τ - or σ-operands are listed in section 2.4.4.4.

Example 2.4.12:

Assuming the declarations

```
var a, b : real; M : rmatrix[1..10,1..10];
    ca : complex; cM : cmatrix[1..10,1..10];
    v, w : rvector[1..10]; iM : imatrix[1..10,1..10];
    cv : cvector[1..10]; ciM : cimatrix[1..10,1..10];
    civ : civector[1..10];
```

the following accurate expressions are syntactically correct:

Accurate Expression		Result Type
$\# *$	$($ for $\mathrm{i}:=1$ to $10 \operatorname{sum}(\mathrm{M} * \mathrm{v}+\mathrm{a} * \mathrm{M}[*, \mathrm{i}]))$	rvector
$\#>$	$(\mathrm{cv}+\mathrm{v} * \mathrm{~b}+\mathrm{a} * \mathrm{cv}+\mathrm{cM} * \mathrm{w}+\mathrm{cM} * \mathrm{cv})$	cvector
$\# \#$	$(\mathrm{v}+\mathrm{a} * \mathrm{v}+\mathrm{iM} * \mathrm{v})$	ivector
$\# \#$	$(\mathrm{cv}+\mathrm{M} * \mathrm{v}+\mathrm{ca} *$ civ $+\mathrm{ciM} * \mathrm{cv})$	civector

2.4.4.3 \#-Expressions for Matrices

PASCAL-XSC

For the arithmetic matrix types, accurate expressions can be formed analogously:

Accurate Expression Type		Syntax
rmatrix accurate expression	$\# *$	(rmatrix ExactExpression)
	$\#<$	(rmatrix ExactExpression)
	$\#>$	(rmatrix ExactExpression)
imatrix accurate expression	$\# \#$	(rmatrix ExactExpression)
	$\# \#$	(imarrix ExactExpression)
cmatrix accurate expression	$\# *$	(cmatrix ExactExpression)
	$\#<$	(cmatrix ExactExpression)
	$\#>$	(cmatrix ExactExpression)
cimatrix accurate expression	$\# \#$	(cmatrix ExactExpression)
	$\# \#$	(cimatrix ExactExpression)

The exact expression again has the form
\pm Summand
Operator Summand ...
where only + and - are permitted as operators.
Summands which can be combined by the operators + and - are (with $\tau, \sigma \in$ \{real, interval, complex, cinterval\}):

Summand	Definition
τ matrix operand τ operand $* \sigma$ matrix operand τ matrix operand $* \sigma$ operand τ matrix operand $* \sigma$ matrix operand (τ matrix exact expression) for $\mathrm{i}:=\mathrm{s}$ to e sum (τ matrix exact expression) for $\mathrm{i}:=\mathrm{s}$ downto e sum (τ matrix exact expression)	variable, function call exact product of double length (componentwise) exact product of double length (componentwise) exact matrix product (with exact scalar product for each component) exact expression enclosed in parentheses for-statement for summation, with i an integer variable and s, e integer expressions for-statement for summation, with i an integer variable and s, e integer expressions

Not all the summands have to be of the same type. Within a cimatrix accurate expression, mixed summands of type rmatrix, cmatrix, or imatrix can be used as well. The type of the exact expression is specified by the type combination of the summands that occur. The allowed τ-or σ-operands are listed in section 2.4.4.4.

Example 2.4.13:

Assuming the declarations of example 2.4.12, the following \#-expressions are syntactically correct:

Accurate Expression	Result Type	
$\#>$	$($ for $\mathrm{i}:=1$ to $10 \operatorname{sum}(\mathrm{M} * \mathrm{M}))$	rmatrix
$\#<$	$(\mathrm{cM}+\mathrm{b} * \mathrm{cM}+$ for $\mathrm{i}:=1$ to $10 \operatorname{sum}(\mathrm{cM} * \mathrm{M}))$	cmatrix
$\# \#$	$(\mathrm{M}+\mathrm{a} * \mathrm{M}+\mathrm{iM} * \mathrm{iM})$	imatrix
$\# \#$	$(\mathrm{cM}+\mathrm{M} * \mathrm{i} M+\mathrm{ca} * \mathrm{i} \mathrm{M}+\mathrm{cM} * \mathrm{cM})$	cimatrix

2.4.4.4 List of the Operands in \#-Expressions

PASCAL-XSC

The definition of the functions mentioned in the following list and their declarations are given in chapter 3 and in a short form in the appendix.
real operand:
integer variable
integer constant
real variable
real constant
inf (interval operand)
\{lower bound of the interval\}
sup (interval operand)
re (complex operand) \{upper bound of the interval\} \{real part \}
im (complex operand)
\{imaginary part\}
interval operand:
interval variable
intval (real operand) \{transfer function\}
intval (real operand, real operand) \{transfer function\}
re (complex operand)
\{real part $\}$
im (cinterval operand)
\{imaginary part\}
complex operand:
complex variable
conj (complex operand)
compl (real operand)
compl (real operand, real operand)

$$
\{z=x+i y\}
$$

inf (cinterval operand)
\{lower bound of the complex interval\}
sup (cinterval operand)
\{upper bound of the complex interval\}
cinterval operand:
cinterval variable
conj (cinterval operand)
intval (complex operand)
intval (complex operand, complex operand)
intval (real operand, complex operand)
intval (complex operand, real operand)
compl (interval operand)
compl (interval operand, interval operand)
compl (real operand, interval operand)
compl (interval operand, real operand)
rvector operand:
rvector variable
rvector (array variable) \{qualification\}
inf (ivector operand)

```
rvector operand: (continued)
    sup (ivector operand)
    re (cvector operand)
    im (cvector operand)
```

ivector operand:
ivector variable
ivector (array variable)
intval (rvector operand)
intval (rvector operand, rvector operand)
re (civector operand)
im (civector operand)
cvector operand:
cvector variable
cvector (array variable)
conj (cvector operand)
compl (rvector operand)
compl (rvector operand, rvector operand)
inf (civector operand)
sup (civector operand)
civector operand:
civector variable
civector (array variable) \{qualification\}
conj (civector operand)
intval (cvector operand)
intval (cvector operand, cvector operand)
intval (rvector operand, cvector operand)
intval (cvector operand, rvector operand)
compl (ivector operand)
compl (ivector operand, ivector operand)
compl (rvector operand, ivector operand)
compl (ivector operand, rvector operand)
rmatrix operand:
rmatrix variable
rmatrix (array variable)
id (rmatrix operand)
id (rmatrix operand, rmatrix operand)
transp (rmatrix operand)
inf (imatrix operand)
sup (imatrix operand)
re (cmatrix operand)
im (cmatrix operand)

```
                                    PASCAL-XSC
imatrix operand:
    imatrix variable
    imatrix (array variable) {qualification}
    id (imatrix operand)
    id (imatrix operand, imatrix operand)
    transp (imatrix operand)
    intval (rmatrix operand)
    intval (rmatrix operand, rmatrix operand)
    re (cimatrix operand)
    im (cimatrix operand)
cmatrix operand:
    cmatrix variable
    cmatrix (array variable) {qualification}
    id (cmatrix operand)
    id (cmatrix operand, cmatrix operand)
    transp (cmatrix operand)
    herm (cmatrix operand) {Hermitian matrix}
    conj (cmatrix operand)
    compl (rmatrix operand)
    compl (rmatrix operand, rmatrix operand)
    inf (cimatrix operand)
    sup (cimatrix operand)
cimatrix operand:
    cimatrix variable
    cimatrix (array variable) {qualification}
    id (cimatrix operand)
    id (cimatrix operand, cimatrix operand)
    transp (cimatrix operand)
    herm (cimatrix operand)
    conj (cimatrix operand)
    intval (cmatrix operand)
    intval (cmatrix operand, cmatrix operand)
    intval (rmatrix operand, cmatrix operand)
    intval (cmatrix operand, rmatrix operand)
    compl (imatrix operand)
    compl (imatrix operand, imatrix operand)
    compl (rmatrix operand, imatrix operand)
    compl (imatrix operand, rmatrix operand)
```


2.4.4.5 Review of General \#-Expressions

PASCAL-XSC

The following tables give a complete review of \#- expressions. By "special functions", we mean those listed in section 2.4.4.4.

Real and Complex Accurate Expressions

Syntax: \#-Symbol (Exact Expression)

\#-Symbol	Result Type
$\#$	Summands Permitted in the Exact Expression
	- variables, constants, and special function calls of type integer, real, or dotprecision
• products of type integer or real	
- scalar products of type real	

Real and Complex Interval Accurate Expressions

Syntax: \#\# (Exact Expression)

\#-Symbol	Result Type	Summands Permitted in the Exact Expression
\#\#	interval	- variables, constants, and special function calls of type integer, real, interval, or dotprecision - products of type integer, real, or interval - scalar products of type real or interval
	cinterval	- variables, constants, and special function calls of type integer, real, complex, interval, cinterval, or dotprecision - products of type integer, real, complex, interval, or cinterval - scalar products of type real, complex, interval, or cinterval
	ivector	- variables and special function calls of type rvector or ivector - products of type rvector or ivector
	civector	- variables and special function calls of type rvector, cvector, ivector, or civector - products of type rvector, cvector, ivector, or civector
	imatrix	- variables and special function calls of type rmatrix or imatrix - products of type rmatrix or imatrix
	cimatrix	- variables and special function calls of type rmatrix, cmatrix, imatrix, or cimatrix - products of type rmatrix, cmatrix, imatrix, or cimatrix

2.5 Statements

In PASCAL, we distinguish between simple and structured statements. Simple statements are the assignment statement, the input/output statement, the empty statement, the procedure statement, and the goto-statement. Structured statements are the compound statements, the conditional statements, the repetitive statements, and the with-statement.

2.5.1 Assignment Statement

An assignment statement assigns the value of an expression to a variable:

| Variable := Expression

The type of the expression on the right-hand side of the assignment operator must be assignment compatible with the variable on the left-hand side (see section 2.3.5). The expression is first evaluated, and this value is assigned to the variable, i.e. the value is stored into the memory location referenced on the left-hand side. The order of access to the variable on the left-hand side and the evaluation of the expression on the right-hand side of the statement depends upon the implementation.

Within a function, the resulting value must be assigned to the function name. The function name is used like a variable of the result type on the left-hand side of the assignment statement.

Example 2.5.1:

```
var
    r, x : real;
    i, k : integer;
i := k div 3 + 1;
r := i div k;
r:= x * x + sin (x);
i := r * x; { !! not allowed !! }
```

In PASCAL-XSC, a program may overload the assignment operator to assign a value to a variable of noncompatible type. This assignment overloading is done by programming the corresponding algorithm within a subroutine (see section 2.7.12).

2.5.2 Input/Output Statements

The input and output statements read, readln, write, and writeln use data files for input and output. These statements handle general files of type file of ..., text files of type text, and the standard files input and output. If no file name is specified in the corresponding statement, the standard files input (for reading) and output (for writing) are used. In this case, input and/or output must be defined in the program header as program parameters (see section 2.6). PASCAL files corresponding to external files must be listed in the program parameter list.

File Opening

The standard text files input and output are automatically opened when needed. All other files must be explicitly opened.
reset (t) The file t is opened for reading. After reset (t), $t \uparrow$ contains the first element of the file. If this does not exist, then $\operatorname{eof}(t)$ is set to true. After the program starts, a reset(input) is automatically executed, eoln(input) is set to true, and input \uparrow contains a blank.

The file t is opened for writing. $t \uparrow$ represents the first actual position to which data can be written.

Input Statements

$\operatorname{read}(t, v 1, \ldots, v n)$
readln (t) or readln

The values for the variables v1, ..., vn are entered in this order from the file t. This statement corresponds to the statements

$$
\operatorname{read}(\mathrm{t}, \mathrm{v} 1) ; \ldots \operatorname{read}(\mathrm{t}, \mathrm{vn}) ;
$$

Every read (t, v) for the general file type (file of ...) is defined as
begin $\mathrm{v}:=\mathrm{t} \uparrow$; get (t); end;
This applies also to text files (text), when v is a variable of type char. However, for integer or real variables, a sequence of characters is entered from the text file. This sequence must correspond to the syntax of literal constants described in section 2.3.1, and it is converted into a number. Leading blanks or end-of-line characters are ignored. The reading ends when $t \uparrow$ cannot be a part of the number to be read (see section 2.9).

The remaining characters of the current line are read, and the buffer is set to the beginning of the
next line (for text files only!). The procedure readln (t) is defined as:

```
begin
    while not eoln ( t ) do
        get ( t );
    get ( t );
end;
```

readln (t, v1, ..., vn) corresponds to the compound statement

```
begin
    read (t, v1, ..., vn);
    readln (t);
end;
```


Output Statements

write ($t, e 1, \ldots$, en) The values of the expressions e1, e2, ..., en are evaluated and written to the file t in this order. This statement is equivalent to
write (t , e1) ; ... write (t , en) ;
Every write (t, e) for the general file type (file of ...) is defined as
begin $\mathrm{t} \uparrow:=\mathrm{e}$; put (t); end;
This applies also to text files (text) when e is an expression of type char. For an integer, real, or boolean expression, a sequence of characters that represents the corresponding value is written to the text file in a standard format arranged in the necessary number of lines.
An integer value is represented as a decimal number without leading zeros. A sign is given only for negative values. A real value is represented as a decimal floating point number with one significant digit in front of the decimal point and leading minus for a negative value or blank for a positive value, and an exponential part with leading character E.
The logical values are written as true or false. For char values, the character itself (without single quotes) is written. For a character string, the sequence of characters in the string is written using the necessary number of positions.
writeln (t) or writeln
writeln (t, e1, ..., en) corresponds to the compound statement

```
begin
    write (t, e1, ..., en);
    writeln(t);
end;
```

All successive output is put on a new page (for text files only!).

Format Specifications

The form in which an integer expression e is printed to a text file by write or writeln can be controlled by a control expression $w>0$ following the output parameter e in the form

```
write (e : w);
```

The value of the integer expression w is called the minimum field width and indicates the number of characters to be written. In general, w characters are used to write e (with preceding blanks if necessary).
For output parameters of type real, the programmer can specify a minimum field width $w>0$ and a fractional length $f>0$:
write (e : w : f);

The value of the integer expression f determines the digits in the fractional part (after the decimal point).

PASCAL-XSC

The procedures reset and rewrite can be called with a second parameter s of type string

```
reset ( \(\mathrm{t}, \mathrm{s}\) )
```

rewrite (t, s)
which assigns the external (physical) file name s to the file variable t.

The overloading principle available in PASCAL-XSC (see section 2.7.10) applies also to the procedures read and write. They may be overloaded to allow calling with an arbitrary number of parameters and format controls for built-in types or for user defined types (see section 2.7.11).

For the input and output of real values, PASCAL-XSC provides the procedures read and write (or readln and writeln) with an additional format control parameter r. This integer parameter specifies the rounding of the real value during the input or output process.

Sometimes, the value of a variable v of type real is entered in a form which is not exactly representable in the internal representation. The use of the statement

\| $\quad \operatorname{read}(\mathrm{v}: r)$

rounds the quantity entered according to the value of the rounding parameter r into the internal real format. The statement

$$
\boldsymbol{\|} \quad \text { write (e:w:f:r) }
$$

causes the value of a real expression e to be rounded to f fractional places during output. For both reading and writing, the parameter r has the following meanings:

r	Rounding Mode
none	to the nearest representable number
0	to the nearest representable number
<0	to the next-smaller representable number
>0	to the next-larger representable number

A rounding parameter can also be used for the conversion of real values into strings (see section 2.9).

In order to make it possible to use the floating point output format in connection with a rounding parameter, $f=0$ may be used as the second format control parameter. Furthermore, $w=0$ indicates that the default floating point output format should be used.

The rounding parameter should be used for the output of values that were computed by directed-rounding operators to reflect the implementationdependent conversion into the decimal output format.

Example 2.5.2:

var x : real;
begin
read (x : +1);
writeln (x: 11: 0: $-1,{ }^{\prime}, \quad \mathrm{x}: 9: 3: 1$);
end.
$\begin{array}{ll}\text { Input: } & \llcorner 4730281356200104 \mathrm{E}-12 \\ \text { Value of } x: & 4.7302813562002 \mathrm{E} 3 \quad \text { \{ mantissa length } 14\} \\ \text { Output: } & \left\llcorner 4.7302 \mathrm{E}+03_{\sqcup \sqcup} 4730.282\right.\end{array}$
For the numeric types interval, complex, cinterval, rvector, ivector, cvector, civector, rmatrix, imatrix, cmatrix, and cimatrix, the overloading of read and write is predefined in the arithmetic modules (see chapter 3). For new user-defined data types, read and write can be overloaded by explicit declarations (see section 2.7.11).

2.5.3 Empty Statement

The empty statement can be used at places where syntactically a statement is necessary, but no action is intended by the programmer. There is no special symbol for the empty statement. It is recognized from context, for example, between two symbols

$$
; \text { or } \quad \text { end } \text { or then else etc. }
$$

The empty statement is meaningfully used in connection with the goto-statement when branching to the end of a block.

Example 2.5.3:
goto 100;

100: \{ empty statement \}
end;
In this book, we include an empty statement before each end so that statements can be added to the end of a block without requiring the programmer to add a ; to the end of the existing code.

2.5.4 Procedure Statement

A procedure statement causes the call of the named procedure with the actual parameters replacing the formal parameters:

ProcedureIdentifier

```
(ActualParameterList) { may be omitted }
```

If the procedure is declared without formal parameters, then the procedure must be called without an actual parameter list. Otherwise, the actual parameters must be consistent with the formal parameters in the same order. With a call by reference, the actual parameter must be a variable of compatible type. With a call by value, the actual parameter must be an expression that is assignment compatible to the formal parameter. Further details are found in 2.7.1.

PASCAL-XSC

PASCAL-XSC allows a modified call by reference in connection with structured data types (see section 2.7.9).

Example 2.5.4:

quicksort ($\mathrm{x}, \mathrm{i}, \mathrm{j}$); $\quad\{$ call of a sort procedure $\}$
primenumber $(\mathrm{m}) ; \quad$ \{ call of a prime number generating procedure $\}$

2.5.5 goto-Statement

The goto-statement indicates that further processing should continue at another part of the program. The sequential execution of the program is broken, and processing is continued at a labeled statement.

All statement labels must be declared in the declaration part of the corresponding block. The declaration is:

label

LabelList; \{ not empty \}
The goto-statement has the form:

| goto Label

The label is an unsigned integer with a maximum of four digits. The labeled statement has the form:

| Label: Statement

A goto-statement may only branch to a label that marks a statement of the same or a higher level according to the block structure of the program.

The goto-statement should be used with caution!

2.5.6 Compound Statement

A compound statement combines a sequence of statements into a single statement:

```
begin
    Statement; ...
end
```

The execution of a compound statement is analogous to the execution of the statement part of a program.

Example 2.5.5:

```
while \(\mathrm{i}<=\mathrm{n}\) do
begin
    \(\mathrm{s}:=\mathrm{s}+\mathrm{a}[\mathrm{i}] ;\)
    \(\mathrm{i}:=\mathrm{i}+1\);
end;
```


2.5.7 Conditional Statements

2.5.7.1 if-Statement

The if-statement allows the selective execution of two statements:

```
if LogicalExpression then Statement
else Statement \(\{\) may be omitted \(\}\)
```

The execution of the if-statement causes the evaluation of the logical expression. If the value of the expression is true, the statement after then (1st alternative) is executed. Otherwise the statement after else (2nd alternative) is executed. The else alternative may be omitted. This situation is handled as if the else alternative were an empty statement.

Example 2.5.6:

$$
\begin{array}{lll}
\text { if } \mathrm{x}<=\mathrm{y} & \text { then } & \mathrm{z}:=\mathrm{y}-\mathrm{x} \\
& \text { else } & \mathrm{z}:=\mathrm{x}-\mathrm{y} ; \quad\{\text { positive difference of } \mathrm{x} \text { and } \mathrm{y}\} \\
\text { if } \mathrm{x}>=0 & \text { then } & \mathrm{y}:=\operatorname{sqrt}(\mathrm{x}) ;
\end{array}
$$

In nested if-statements, the rule applies that every else goes with the closest if.

2.5.7.2 case-Statement

While the if-statement handles only two alternatives, the case-statement allows the execution of a statement which is chosen from arbitrarily many alternatives:

```
case IndexExpression of
    ConstantList: Statement; ... { not empty }
end
```

The first operation of the case statement is the evaluation of the index expression. If the value of this expression is contained in one of the constant lists, the corresponding statement is executed. If the value of the expression is not in a constant list, an error message is given.

The index expression may be of type integer, boolean, char, or an enumeration type. The constants in all of the constant lists must be of the same type. Successive constants of a constant list may be abbreviated in the form of a subrange according to the ordering of the basic types.

| Constant .. Constant

All constant lists must be disjoint.

PASCAL-XSC

The case statement may contain an else-alternative immediately before end. This alternative covers all constants which are not listed in the constant lists of the case-statement:

| else: Statement

This else alternative is executed when the value of the index expression is not listed in one of the constant lists.

Example 2.5.7:

```
case trunc (phi/90) + 1 of
```

 1: f:= phi \(*\) r;
 2: \(\mathrm{f}:=90 * \mathrm{r}\);
 3: \(\mathrm{f}:=-(\mathrm{phi}-180) * \mathrm{r}\);
 4: f:=-90*r;
 else f:=0;
 end;

2.5.8 Repetitive Statements

2.5.8.1 while-Statement

The while-statement allows the repetitive execution of a statement under the control of a beginning condition:
| while LogicalExpression do Statement
The statement following do is executed as long as the logical expression has the value true. Hence, the logical expression is evaluated before each execution of the statement. If the value of the expression is false, the while-statement is terminated. This can happen before the execution of Statement for the very first time.

Example 2.5.8:

```
i := n;
while i >= 1 do
begin
        s:= s + a[i];
        i := i - 2;
end;
```


2.5.8.2 repeat-Statement

The repeat-statement executes a series of statements until an end condition is fulfilled.

```
repeat
    Statement;
until LogicalExpression
```

The statements between repeat and until are executed repeatedly until the logical expression evaluates to true. The logical expression is evaluated after every execution of the series of statements. This means that the sequence is executed at least once.

Example 2.5.9:

```
i := n;
repeat
    s:= s + a[i];
    i := i - 2;
until i < 1
```

The two statements between repeat and until are executed at least once, no matter what the value of n. For $n=0$, the statements $s:=s+a[0]$; and $i:=-2$ are executed.

2.5.8.3 for-Statement

The for-statement allows the repetitive execution of a statement for a known number of repetitions:

> for ControlVariable $:=$ InitialValue to FinalValue do
> Statement
or
for ControlVariable := InitialValue downto FinalValue do
Statement

The first action of the for-statement is to evaluate the expressions for the initial and final value. If the final value is smaller (or, in the case of downto, larger) than the initial value, the execution of the for statement is ended. This situation is referred to as an empty loop. Otherwise, the control variable is set to the starting value and the statement is executed. If the control variable is not equal to the final value, it is incremented (or, in the case of downto, decremented), and the statement is executed repeatedly until the final value is reached. The control variable may be of types integer, boolean, char, or enumeration type and must be declared in the same block as the for-statement. The initial and final values must be of compatible types.

The expressions for the initial and the final values are only evaluated once at the beginning of the execution of the for-statement. However, it is considered poor programming practice to change the initial or the final value within the loop.

Within the statement after the do, the control variable may not occur

- on the left-hand side of an assignment statement,
- as an actual parameter for a formal var-parameter of a subroutine call,
- as an input parameter of a read statement, or
- as a control variable in a further for-statement.

On exit from the for-statement, the value of the control variable is considered undefined.

Example 2.5.10:

$$
\begin{aligned}
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{n} \text { do } \mathrm{s}:=\mathrm{s}+\mathrm{a}[\mathrm{i}] \\
& \text { for } \mathrm{i}:=\mathrm{n} \text { downto } 1 \text { do } \mathrm{s}:=\mathrm{s}+\mathrm{a}[\mathrm{i}] ;
\end{aligned}
$$

A variation of the step length can only be accomplished through additional and explicit programming.

Example 2.5.11:

for $\mathrm{i}:=1$ to n do $\mathrm{s}:=\mathrm{s}+\mathrm{a}[2 * \mathrm{i}] ;$

2.5.9 with-Statement

The with-statement facilitates working with records by allowing an abbreviated notation for the record components. The with-statement has the form

| with RecordVariableList do Statement

The list can contain more than one variable after the reserved word with, for example:

$$
\text { with r1, r2, } \ldots, \text { rn do statement; }
$$

This corresponds to the nesting of the with-statements
with r1 do with r2, \ldots, rn do statement;
So, it suffices to explain the execution of the with-statement
with r do statement;
which is equivalent to the execution of the statement after the do using the record components of r. The advantage of the with-statement is that the components of r can appear without the prefix r. in this statement.

Example 2.5.12:

type date $=$ record day: $1 . .31 ;$
month: (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);
year: integer;
end;
var birthday: date;
begin
with birthday do
begin
day $:=4 ;$
month := Dec;
year $:=1960$;
end;
end.

2.6 Program Structure

A program consists of a program header, a declaration part, and a statement part (body) between begin and end. The program header contains the name of the program that is specified after the reserved word program, and optionally the program parameters, i.e. the names of the external files used (especially input and output).

```
program Name
    (ProgramParameterList) { may be omitted }
    ;
    Declaration; ...
begin
    Statement; ...
end.
```

The statement part describes the processing steps (algorithm) which are executed by the computer. All objects appearing in this part that are not predefined standard objects must be defined in the declaration part. In Standard PASCAL, the order of the declaration sections is: label declaration part, constant declaration part, type declaration part, variable declaration part, and finally the procedure and function declaration part.

When coding the program, note the following rules for the use of separating symbols:

- No separating symbol may occur within a name, number, reserved word, or a two-character symbol (e.g. $<=,:=$).
- Identifiers, numbers, or reserved words immediately following one another must be separated by at least one separating symbol.

The separating symbols are the blank space (\sqcup), a tab character, a new line, or a comment, which appears within braces "\{", "\}".

The execution of the program causes the processing of the declarations in the given order. Then, the execution of the statements begins with the physically first statement. After each statement, the following statement is executed. Normally, this is the physically next statement, but this is not necessarily the case in goto and structured statements.

An executable program consists of a main program, as in Standard PASCAL, and possibly of a number of modules, which are introduced by a use-clause in the main program itself or in a used module.

In the main program, objects can appear that are

- predefined,
- defined or declared in the main program, or
- globally defined in used modules.

A main program has the form:

```
program Name
    (ProgramParameterList) { may be omitted }
    ;
    UseClause; ...
    Declaration; ...
begin
    Statement; ...
end.
```

A program first executes the used modules. Then, the processing continues with the execution of the declarations in the main program and finally, the execution of the statements, as in Standard PASCAL.

The declarations preceded by label, const, type, var, function, procedure, priority, or operator may appear more than once and in any order. An identifier must be declared or defined before it is used (except see pointers, section 2.3.4).

2.7 Subroutines

Special parts of algorithms in PASCAL may be declared and called as procedures or functions. The purpose of a function is to execute an algorithm and return a single result of type integer, real, boolean, char, an enumerated type, or a pointer type. A procedure is an algorithm which can return any number of parameters with each of them possibly having a different type. The declaration of procedures and functions occurs immediately before the statement part of a program.

$$
P A S C A L-X S C
$$

As a further extension to subroutines, PASCAL-XSC has the option to declare operators whose result, like that of a function, can be of any type. Procedures, functions, and operators can be declared anywhere within the declaration part of a program.

2.7.1 Procedures

The form of a procedure declaration is very similar to that of a program:

```
procedure Name
    (FormalParameterList) { may be omitted }
    ;
    Declaration; ...
begin
    Statement; ...
end;
```

The formal parameter list describes those objects of the procedure which serve as input and output parameters. Formal parameters can be variables, procedures, or functions. The specification of parameters has the form:

```
var { may be omitted }
    IdentifierList: TypeSpecification
```

If the reserved word var precedes an identifier or an identifier list, then the listed variables are used for a call by reference (variable parameters) when the procedure is called. Otherwise, the variables are used for a call by value (value parameters).

The specification of procedures and functions is given by a corresponding procedure or function header along with the formal parameters and the type of the function. The sections of the formal parameter list are each separated with a semicolon (;). There are no limits to the length and the order of the list.

In contrast to declarations, the type specification for formal parameters may contain a conformant array scheme:

| array [IndexRangeList] of TypeSpecification

with index ranges of the form
| Identifier..Identifier: Type
and the separating symbol ; in the index range list. A conformant array scheme leaves the index bounds of the formal argument indeterminate until the procedure is called. The identifiers that are specified in this scheme can be used to access to the index bounds inside the procedure.

The statement part of the procedure contains the program statements that implement the algorithm. These statements can be formulated using

- formal parameters,
- local objects of the procedure (i.e. objects declared within the procedure), and
- non-local objects of the procedure (i.e. objects of the encompassing program or procedure).

Example 2.7.1:

type

fraction $=$ record $\mathrm{N}, \mathrm{D}:$ integer end;
procedure readfraction (var b: fraction);
begin
write ('Numerator $=$ '); read (b.N);
write ('Denominator $=$ '); read (b.D);
end;
procedure addfraction (a, b: fraction; var g: fraction);
begin
g. $\mathrm{N}:=\mathrm{a} . \mathrm{N} * \mathrm{~b} . \mathrm{D}+\mathrm{b} . \mathrm{N} * \mathrm{a} . \mathrm{D} ;$
$\mathrm{g} . \mathrm{D}:=\mathrm{a} . \mathrm{D} * \mathrm{~b} . \mathrm{D} ;$
end;
The call of a procedure is given by a procedure statement:

ProcedureIdentifier

(ActualParameterList) \{ may be omitted \}
A procedure statement handles the parameter list in the manner described below and then executes the statement part of the called procedure.

- The actual parameters are related to the formal parameters in the given order. With a call by reference, the rules of type compatibility are applied. With a call by value, the rules of assignment compatibility are applied (see 2.3.5).
- The formal parameters representing variables for a call by reference are used to access the corresponding actual parameters during the execution of the procedure.
- For the formal parameters representing variables for a call by value, memory is allocated, and the values of the actual parameters (expressions) are assigned to them before the statement part of the procedure is executed.
- During the execution of the procedure, formal procedure and function parameters serve as names for the corresponding actual procedures and functions.

PASCAL-XSC

PASCAL-XSC allows a modified call by reference in connection with structured data types (see 2.7.9).

Example 2.7.2:

var
$\mathrm{a}, \mathrm{b}, \mathrm{g}:$ fraction;
begin
readfraction (a);
readfraction (b);
addfraction (a, b, g);
end.

In the statement part of a procedure, local and non-local subroutines may be called. A procedure may call itself (recursion). This recursive call may occur directly or indirectly. Fundamentally, the called procedure must be declared before it is called. This declaration can be accomplished incompletely by the use of a forward declaration (see section 2.7.8).

Instead of the conformant array scheme, the more powerful concept of dynamic arrays is available (see section 2.3.2). Through the use of a dynamic type for a formal parameter, the index range remains indeterminate until the procedure is called with actual parameters. The access to the index bounds within the procedure body is managed through the use of the functions lbound and ubound.

Example 2.7.3:

```
type dynvector = dynamic array [*] of real;
procedure vecadd (var x, y, res: dynvector);
    { equal index bounds for x, y, res are assumed }
    var i: integer;
    begin
        for i:= lbound(x) to ubound(x) do
        res[i]:=x[i] + y[i]
    end;
```

The call of the procedure vecadd can only occur with vectors of type dynvector. Using this implementation, the index ranges of the actual parameters x and y must match with the index range of the actual parameter res.

In this example, x and y are specified as var parameters to save the storage which would be required for copying a call-by-value parameter (see section 2.7.9).

If a function which returns a result of a dynamic type appears as a formal parameter in a procedure, then the function header may only contain the name of the dynamic type without the index bounds.

2.7.2 List of Predefined Procedures and Input/Output Statements

The following predefined procedures and input/output statements are available in Standard PASCAL:

Allocation and Release of Referenced Variables:

```
new (PointerVariable)
new (PointerVariable, TagFieldValue, ..., TagFieldValue)
dispose (PointerVariable)
dispose (PointerVariable, TagFieldValue, ..., TagFieldValue)
```


Reading and Writing on File Variables:

```
reset (FileVariable)
get (FileVariable)
read (FileVariable, Variable, ..., Variable)
readln (TextFileVariable, Variable, ..., Variable)
rewrite (FileVariable)
put (FileVariable)
```

```
write (FileVariable, Variable, ..., Variable)
writeln (TextFileVariable, Variable, ..., Variable)
page (TextFileVariable)
```

The PASCAL-XSC extensions are:

Allocation and Release of Referenced Variables:

mark (PointerVariable)
release (PointerVariable)

Reading and Writing on File Variables:

reset (FileVariable, StringExpression)
rewrite (FileVariable, StringExpression)

Changing the Actual Length of String Variables:

setlength (StringVariable, IntegerExpression)

2.7.3 Functions

A partial algorithm that delivers only one result of a simple type (integer, real, boolean, char, an enumeration type, or a pointer type) can be formulated as a function in place of a procedure:

```
function Identifier
    (FormalParameterList) { may be omitted }
    : Type;
Declaration; ...
begin
        Statement; ...
end;
```

The result of a function is returned by the name of the function, and not by a formal parameter. The type of the function (or of the function result) is specified following the formal parameter list after the colon (:). The function value must be assigned to the name of the function in the statement part of the function. Thus, the function name may appear on the left-hand side of the assignment statement.

The appearance of the function name on the right hand side of an assignment statement is a recursive call of the function. All other rules for the declaration of functions are analogous to those for procedures.

The calling of a function has the form

FunctionIdentifier
and serves as an operand in an expression. The evaluation of the expression is interrupted, parameters are handled as described for procedures on page 86, the statement part of the function is executed, and the value computed within the function is assigned to the function identifier. Then, the evaluation of the expression is continued by using the function result in place of the function call.

PASCAL-XSC

PASCAL-XSC allows a modified call by reference in connection with structured data types (see section 2.7.9).

In the statement part of a function, local and non-local subroutines may be called. The use of the function itself is a recursive execution of the function. The recursive call can occur either as a direct call or as an indirect call from another function. Fundamentally, the called function must be declared before it is called. This declaration can be accomplished incompletely by the use of a forward declaration (see section 2.7.8).

2.7.4 Functions with Arbitrary Result Type

PASCAL-XSC

PASCAL-XSC removes the restriction of function result types to integer, real, boolean, char, an enumeration type, or a pointer type. A function result may be of any structured type. The assignment to the function result may be done componentwise or by assigning the entire structure as a unit. For a record type, the use of the with-statement for the function result is also possible.

Example 2.7.4:

```
type mycomplex \(=\) record re, im : real end;
function mycompladd (y, w: mycomplex) : mycomplex;
    begin
        mycompladd.re := y.re + w.re;
        mycompladd.im \(:=\) y.im + w.im;
        end;
```

Furthermore, a dynamic type can be used for the function result. The index bounds of the dynamic result are specified by expressions that must be able to be evaluated before the execution of the function body.

Example 2.7.5:

$$
\text { type dynvector }=\text { dynamic array }[*] \text { of real; }
$$

function vecadd (x, y : dynvector) :
dynvector [lbound(x)..ubound(x)]; \{function type\}
\{ the same index bounds for x and y are assumed $\}$
var i: integer;
begin
for $\mathrm{i}:=\operatorname{lbound}(\mathrm{x})$ to ubound(x) do
$\operatorname{vecadd}[\mathrm{i}]:=\mathrm{x}[\mathrm{i}]+\mathrm{y}[\mathrm{i}]$;
end;
If a function with a dynamic result appears as a formal parameter of a procedure, then the function header may only contain the name of the dynamic type without the index bounds.

2.7.5 List of Predefined Functions

Here are the predefined functions of Standard PASCAL, grouped according to the allowed parameter types. The types of the function results are given in braces.
Parameter type integer, boolean, char, enumeration type
ord (Expression)
succ (Expression)
pred (Expression)
Parameter type integer
odd (Expression)
chr (Expression)
Parameter type integer, real
abs (Expression)
sqr (Expression)
sqrt (Expression)
exp (Expression)
ln (Expression)
\arctan (Expression)
sin (Expression)
cos (Expression)
round (Expression)
trunc (Expression)
Parameter type File
eof (FileVariable) or eof $\quad\{$ boolean $\}$
eoln (TextFileVariable) or eoln \{boolean $\}$

The PASCAL-XSC extensions are:

Arbitrary parameter type

```
loc (Variable)

Parameter type Pointer
ord (P Expression) \{ integer \}
Parameter type integer, real, dotprecision
sign (Expression) \(\quad\{\) integer \(\}\)
Parameter type real \(\quad\{\) Result type real \(\}\)
succ (R Expression)
pred (R Expression)
exp2 (R Expression)
exp10 (R Expression)
log2 (R Expression)
log10 (R Expression)
tan (R Expression)
cot (R Expression)
\(\arcsin\) ( R Expression)
\(\arccos\) (R Expression)
arccot (R Expression)
arctan2 (R Expression, R Expression)
sinh (R Expression)
cosh (R Expression)
tanh (R Expression)
coth (R Expression)
arsinh (R Expression)
arcosh (R Expression)
artanh (R Expression)
arcoth (R Expression)
Parameter type Array
\{ Result type: Array index type \}
lbound (ArrayVariable, I Constant)
lb (ArrayVariable, I Constant)
lbound (ArrayVariable)
lb (ArrayVariable)
ubound (ArrayVariable, I Constant)
ub (ArrayVariable, I Constant)
ubound (ArrayVariable)
ub (ArrayVariable)

Parameter Type integer, real
\{ Result type string \}
image (I Expression)
image (I Expression, I Expression)
image (R Expression)
image (R Expression, I Expression)
image (R Expression, I Expression, I Expression)
image (R Expression, I Expression, I Expression, I Expression)
Parameter Type string
ival (ST Expression)
ival (ST Expression, ST Variable) \{integer \}
rval (ST Expression)
\{ real \}
rval (ST Expression, ST Variable)
rval (ST Expression, I Expression)
rval (ST Expression, I Expression, ST Variable)
\{ real \}
length (ST Expression)
\{ integer \}
maxlength (ST Variable)
\{ integer \}
pos (ST Expression, ST Expression)
\{ integer \}
substring (ST Expression, I Expression, I Expression)
\{ string \}
Additional predefined functions for the data types complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, and cimatrix are provided in the modules C_ARI, I_ARI, CI_ARI, MV_ARI, MVC_ARI, MVI_ARI, and MVCI_ARI (see chapter 3).

\subsection*{2.7.6 Operators}

\section*{PASCAL-XSC}

PASCAL-XSC lets the programmer define subroutines in the form of operator declarations. We have two different kinds of operators, i.e. operators with result and operators without result. The assignment operator \(:=\) is the only operator without result. Its definition and overloading is described in detail in section 2.7.12.

A programmer may define unary and binary operators with arbitrary operand type and arbitrary result type. User-defined operators may be used in expressions interchangeably with built-in operators. User-defined operators are declared in a form similar to a function declaration.

The declaration is

\author{
operator MonadicOperator (FormalParameter) \\ ResultIdentifier: TypeSpecification;
}

Declaration; ...
begin
Statement; ...
end;
```

operator DyadicOperator (FormalParameter, FormalParameter)
ResultIdentifier: TypeSpecification;
Declaration; ...
begin
Statement; ...
end;

```

Thus, unary operators have exactly one operand, and binary operators have exactly two operands. The result identifier takes the place of the function identifier. The assignment to the result must occur in the operator body. The formal parameters are listed in the form
```

var { may be omitted }
Identifier: TypeSpecification

```

If both operands have the same type and both are either reference or value parameters, the specification may be shortened to
var \(\{\) may be omitted \(\}\)
Identifier, Identifier: TypeSpecification

The programmer may overload the names of the monadic operators
\[
+,-, \text { not } \quad(\text { priority } 3)
\]
and the dyadic operators
\[
\begin{array}{ll}
=,<>,<=,>=,<,>, \text { in },>< & \text { (priority 0) } \\
+,+<,+>,-,->,-<,+*, \text { or } & \text { (priority 1) } \\
*, *<, *>, /, /<, />, * *, \text { mod, div, and } & \text { (priority 2) }
\end{array}
\]

Furthermore, an
Identifier
defined by the user may be introduced as a new operator symbol. A new operator identifier must first occur in a priority definition:
\| \(\quad\) priority Identifier \(=\) PrioritySymbol; ...
This definition fixes the priority of the new identifier corresponding to the symbols \(=,+, *\), and \(\uparrow\). The priority symbols \(=,+\), and \(*\) correspond to binary operators with priority \(0(=), 1(+)\) and \(2(*)\), whereas the symbol \(\uparrow\) corresponds to a monadic operator with priority 3 .

We speak of overloading of an already existing operator if the declaration is given with alternate operand types. Hence, various overloaded operators can be distinguished by their operands. For example in Standard PASCAL, the operator + is already overloaded (on the one hand for integer addition, on the other hand for real addition). In Example 2.7.6, we overload the operator + to provide addition of vectors. If a given operator becomes redefined with the same operand types (concealment), the existing operator is hidden. In this case, the operator symbol has a new meaning for the same operand types for which it was previously defined. The old meaning is hidden according to the underlying block structure (see section 2.7.10).

\section*{Example 2.7.6:}
type
mycomplex \(=\) record re, im : real end;
dynvector \(=\) dynamic array [*] of real;
operator \(*(\mathrm{z}, \mathrm{w}\) : mycomplex) complmult: mycomplex;
begin
complmult.re := z.re \(*\) w.re - z.im \(*\) w.im;
complmult.im := z.re \(*\) w.im + z.im \(*\) w.re;
end;

PASCAL-XSC
```

operator $+(\mathrm{x}, \mathrm{y}$: dynvector) vecadd: dynvector $[\operatorname{lb}(\mathrm{x}) . . \mathrm{ub}(\mathrm{x})]$;
$\{$ the same index bounds for x and y are assumed \}
var i: integer;
begin
for $\mathrm{i}:=\operatorname{lbound}(\mathrm{x})$ to ubound(x$)$ do
$\operatorname{vecadd}[\mathrm{i}]:=\mathrm{x}[\mathrm{i}]+\mathrm{y}[\mathrm{i}]$;
end;
priority xor $=+; \quad\{$ exclusive or $\}$
operator xor (a, b: boolean) exor: boolean;
begin
exor := a <> b;
end;

```

A monadic operator is used or "called" within an expression by

\section*{| OperatorSymbol ActualParameter}
a dyadic operator by

\section*{| ActualParameter OperatorSymbol ActualParameter}

Like functions, operators can only occur within expressions. The evaluation of the expression containing the operator is interrupted, the actual parameters are handled as described in connetion with procedures on page 86, and the statement part of the operator is executed. Finally, the evaluation of the expression is continued using the result of the operator instead of the operator call.

PASCAL-XSC permits a modified call by reference in connection with structured types (see section 2.7.9).

\section*{Example 2.7.7:}
var
complex_1, complex_2, complex_3, complex_4 : mycomplex; vector_x, vector_y, vector_z : dynvector [1..100]; boolean_1, boolean_2, boolean_3 : boolean;

\section*{begin}
complex_4 := complex_1 \(*\) complex_ \(2 *\) complex_3;
vector_z := vector_x + vector_y; boolean_3 := boolean_1 xor boolean_2;
end.
The statement part of an operator may contain calls to local or non-local subroutines, including the operator itself. This recursive call may be affected either directly or indirectly. An operator always must be declared before it is used. This declaration may also be done incompletely in form of a forward-declaration (see section 2.7.8).

\subsection*{2.7.7 Table of Predefined Operators}

\section*{PASCAL-XSC}

The predefined operators of PASCAL and the extensions of PASCAL-XSC are listed in the following table. The additional operators provided in the arithmetic modules for the arithmetic types complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, and cimatrix are not listed here. The corresponding tables are given in chapter 3 and in appendix B.4.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underbrace{\text { light }}_{\text {left }} \text { Operand }
\] & integer & real & boolean & char & string & set \\
\hline monadic & +, - & +, - & not & & & \\
\hline integer & \begin{tabular}{l}
\(0,0<, 0>\), \\
div, mod, \\
V
\end{tabular} & \[
\left|\begin{array}{c}
0,0<, 0> \\
V
\end{array}\right|
\] & & & & in \\
\hline real & \[
\begin{gathered}
0,0<, 0> \\
\vee
\end{gathered}
\] & \[
\underset{V}{0,0<, 0>} \underset{V}{ }
\] & & & & \\
\hline boolean & & & or, and, \(=,<>\),
\(<=>=\) & & & in \\
\hline char & & & & \[
\begin{aligned}
& + \\
& \text { v }
\end{aligned}
\] & \[
\begin{aligned}
& \hline+ \\
& v \\
& \text { in }
\end{aligned}
\] & in \\
\hline string & & & & \[
\begin{aligned}
& + \\
& \text { v }
\end{aligned}
\] & \[
\begin{aligned}
& + \\
& v \\
& \text { in }
\end{aligned}
\] & \\
\hline set & & & & & & \[
\begin{aligned}
& +,-, *, \\
& =,<>, \\
& <=,>=
\end{aligned}
\] \\
\hline enumeration type & & & & & & in \\
\hline
\end{tabular}

Predefined Operators of PASCAL-XSC
\[
\begin{gathered}
\circ \in\{+,-, *, /\} \\
v \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]

\subsection*{2.7.8 forward- and external-Declaration}

\section*{PASCAL-XSC}

The forward-declaration allows routines to be called mutually or recursively. This incomplete declaration of procedures, functions, or operators is given by the head of the procedure, function, or operator followed by the reserved word forward instead of the body of the procedure, function, or operator. The complete declaration of such a subroutine must occur in the same declaration part. This complete declaration is also introduced with the reserved word procedure, function, or operator and the corresponding identifiers. In contrast to Standard PASCAL, the formal parameter list, the result identifier (for operators), and the result type specification (for functions and operators) must be listed once again.

An external-declaration allows separately compiled procedures, functions, or operators written in a different language or in assembler to be linked. The reserved word external appears instead of the declaration part and body of the routine. Optionally, a string constant may follow. The identifier of the external subroutine is either the identifier of the procedure or function, the result identifier (for operators), or the value of the string constant following the reserved word external. This means that external subroutines may be overloaded, because the same internal name can be used for different external routines. The specification of the formal parameter list only serves for the syntactical control of the subroutine calls. A detailed description of the use of external subroutines in connection with external is given in the implementation-dependent user manual.

\subsection*{2.7.9 Modified Call by Reference for Structured Types}

PASCAL-XSC
Usually, operators and functions are used in a nested way. Within an expression, operators or functions are called repeatedly. Thus, expressions should be permitted as actual operands or as actual parameters. In the strict sense of PASCAL, this means that the formal operands and formal parameters must be declared and used as value parameters, because otherwise no expressions can take the places of the parameters. So, the use of the operator or the call of the function causes local memory to be allocated for the copies of the actual parameters. This is very inefficient with large structured types.

\section*{PASCAL-XSC}

To avoid this, PASCAL-XSC allows a modified call by reference for structured types. The actual parameters corresponding to formal var-parameters may be given by expressions. During execution of the routine, the formal var-parameter is used as an access to the anonymous auxiliary quantity allocated by the compiler during evaluation of the expression and containing the value of the expression.

\section*{Example 2.7.8:}

With the declarations
```

const
$\mathrm{n}=100 ;$
type
matrix $=$ array $[1 . . n, 1 . . n]$ of real;
var
m1, m2, m3, m4, m5 : matrix;
operator + (var a, b: matrix) resplus : matrix;
var i, j : integer;
begin
for $\mathrm{i}:=1$ to n do
for $\mathrm{j}:=1$ to n do
$\operatorname{resplus}[\mathrm{i}, \mathrm{j}]:=\mathrm{a}[\mathrm{i}, \mathrm{j}]+\mathrm{b}[\mathrm{i}, \mathrm{j}] ;$
end;
function component_sqr (var a: matrix) : matrix;
var i, j : integer;
begin
for $\mathrm{i}:=1$ to n do
for $\mathrm{j}:=1$ to n do
component_sqr $[i, j]:=\operatorname{sqr}(a[i, j])$;
end:

```
an assignment statement of the form
\[
\mathrm{m} 1:=\mathrm{m} 1+\mathrm{m} 2+\text { component_sqr }(\mathrm{m} 3+\mathrm{m} 4+\mathrm{m} 5) ;
\]
is permitted.

\subsection*{2.7.10 Overloading of Procedures, Functions, and Operators}

PASCAL-XSC
PASCAL-XSC procedures, function and operators are identified by their names (symbols) and by number, type, and order of parameters. Thus, in contrast to Standard PASCAL, several procedures, functions, and operators with the same name may be defined within a block, as long as the compiler can distinguish them by their parameters. This feature is called overloading of the identifiers. In Standard PASCAL, an exponential function for complex numbers must be declared by the use of a name different from exp, which is used for the predefined real function. In PASCAL-XSC, however, the predefined function identifier exp may be overloaded for use with parameters of user-defined types.

\section*{Example 2.7.9:}
```

type complex = record re, im : real end;
function exp (c : complex) : complex;
begin
exp.re:= exp (c.re) * cos (c.im);
exp.im:= exp (c.re) * sin (c.im);
end;

```

The real function exp is called with the real parameter c.re within the body. Hence, this is not a recursive call of the newly defined function exp.

The following rules apply to the overloading of procedures, functions, and operators (called routines in the following):
- The formal parameter lists of overloaded routines must be different, i.e. the parameters must not agree in number, type, and order simultaneously. In this context, the difference between value- and var-parameter is insignificant. Compatible types are handled as the same types.
- The result type of functions and operators is not significant for the identification.
- Functions may be overloaded only by functions, operators only by operators, and procedures only by procedures.
- Within the same block, a routine identifier may not be used as identifier for a constant, a variable, or a type simultaneously.

The rules of concealment are the same as in Standard PASCAL. An identifier is concealed if the same identifier is declared in an inner block. Routines of the outer block are not concealed if they are overloaded in the inner block with different parameter lists. The following rules apply to the call of an overloaded subroutine:
- A call by reference requires the actual parameters to be compatible with the formal parameters.
- A call by value requires the actual parameters to be assignment compatible with the formal parameters. If no routine with parameters of compatible type is available, then the assignment compatible actual parameters may be converted automatically. This context assumes the strict interpretation of the assignment compatibility, i.e. an overloading of the assignment operator does not make the corresponding types assignment compatible for the automatic conversion (see section 2.3.5 and section 2.7.12).

If a routine call matches several overloaded procedures, functions, and operators, then the ambiguity is resolved as follows. If there is a routine whose formal parameters exactly match with the actual parameters of the call (concerning reference and value parameters), then this one is chosen. If this is not the case, then a routine is chosen that allows assignment of the actual value parameters to formal reference parameters (see also section 2.7.9) without conversion of conforming type. Otherwise, the routine is chosen which has the first parameter whose type is compatible, and not merely conforming.

\section*{Example 2.7.10:}
```

 operator +* (a: integer; b: real) ir_res: real;
 operator +* (a: real; b: integer) ri_res: real;
 var
 i : integer;
 r, res : real;
 res:= i +* r; { 1st operator is used }
 res:= r +* i; {2nd operator is used }
 res:= i +* i; { 1st operator is used }
 res:= r +* r; { assignment not possible }
    ```

In the third assignment statement, neither the first nor the second operator matches exactly. Either one could be used by converting the integer \(i\) to a real number. According to the rule above, we choose the first operator because its first operand is an integer.

\subsection*{2.7.11 Overloading of read and write}

\section*{PASCAL-XSC}

The overloading described in the preceding section also applies to the procedures read and write. Since these procedures have some special features in Standard PASCAL, the concept of overloading has been modified for these input/output routines.

In section 2.5.2, we mentioned that read and write in connection with text files permit
- an optional first parameter of type text,
- an arbitrary number of different parameters, and
- optional format specifications following an input/output element separated by a colon.

By overloading of read and write in PASCAL-XSC, these features are also supported for user-defined input/output procedures. We must consider some rules for the declaration and call.

\section*{Declaration}

The first parameter of a newly declared input/output procedure must be a varparameter of type text or of any arbitrary file type. The second parameter represents the quantity to be input or output, and must not be a file type. All following parameters are interpreted as format specifications for the second parameter.

\section*{Example 2.7.11:}
type interval \(=\) record inf, sup : real end;
procedure write (var f: text; int: interval; m, n: integer);

\section*{Call}

The file parameter may be omitted when calling an overloaded input/output procedure. This corresponds to a call with the standard file input or output. If a file parameter is given, the second actual parameter (otherwise the first) is the input/output object. The format parameters for this parameter follow, separated by a colon.

\section*{Example 2.7.12:}

With int of type interval and \(f\) of type text, the output procedure declared above may be called by
\[
\text { write (int : } 10: 5 \text { ); or write (f, int : } 12: 6 \text { ); }
\]

Several input statements or output statements can be combined to a single statement as in Standard PASCAL.

\section*{Example 2.7.13:}

With a real variable a, the statement
\[
\text { writeln (f, a : } 20: 9 \text {, int : } 50: 10 \text {, true : 4); }
\]
is equivalent to the statements
```

write (f, a : 20:9);
write (f, int : 50:10);
write (f, true : 4);
writeln (f);

```

For each of these write-calls, the compiler is looking for a user-defined procedure with corresponding parameters interpreting every colon as a comma. If there is no such procedure available, the standard input or output procedure is used, if possible.

To supply the input or output for various number of format parameters, the user must implement a procedure for every number of format parameters (see Example 2.7.15).

\section*{Example 2.7.14:}

If we do not want to specify the rounding of real numbers by the integer parameter as usual, we could implement the following procedures for example:
```

procedure write (var f: text; r: real;
w, n : integer; rd: boolean);
begin
if rd then
write (f, r: w : n : +1)
else
write (f, r : w : n : -1);
end;

```

\section*{Example 2.7.15:}

Further variants of the format specification:
```

procedure write (var f: text; r: real;
w: integer; rd: boolean);
begin
write (f, r:w: 0: rd)
end;
procedure write (var f: text; r: real; rd: boolean);
begin
write (f, r:20:0:rd)
end;

```

With these declarations, the output of the real expressions a, b, c can be done by
```

writeln (output, a : 10:5 : true, b : 10: false, c : true);

```

A final example demonstrates the universal applicability of overloading of read and write.

\section*{Example 2.7.16:}

\section*{const}
format1 \(=\) ' [ ]';
format2 \(=\) ' \(<>\) ';
format3 \(=\) ' ( )';
procedure write (var f: text; int: interval; parenth: string);
var l, r: char;
begin
\(1:=\) parenth \([1]\);
r:= parenth[2];
write (f, l, int.inf : \(20: 13,{ }^{\prime}\), , int.sup : \(20: 13\), r);
end;

With these declarations, intervals may be written in different forms:
with write (int: format1); in the form
with write (int: format2); in the form \(<\ldots, \ldots>\)
with write (int: format3); in the form (...,..)
Using the possibilities of overloading, even format specifications similar to those of FORTRAN may be realized.

\subsection*{2.7.12 Overloading of the Assignment Operator :=}

\section*{PASCAL-XSC}

The programmer can overload the assignment operator \(:=\) as an operator with no result. The overloaded assignment operator makes it possible to use a mathematical notation for algorithms or programs. Thus, the assignment may be defined for types that are not assignment compatible.
The declaration has the form
```

operator := (FormalOperand1, FormalOperand2);
Declaration; ...
begin
Statement; ...
end;

```
which is very similar to the declaration of a procedure. The main difference between the above declaration and the declaration of operators described in section 2.7.6 is that there is no result identifier and no type specification. Moreover, the formal operand 1 must be specified by

\section*{| var Identifier: TypeSecification}
whereas the formal operand 2 can be specified by
\(\operatorname{var}\{\) may be omitted \(\}\)
Identifier: TypeSpecification

The algorithm for passing the right side (operand 2) to the left side (operand 1) is usually expressed in the statement part of the assignment operator. In general, the var-parameter operand 1 is the parameter returned from this operator.
An overloaded assignment operator is used in the usual assignment statement:

\section*{| Variable := Expression}

Now, the left and right sides of the assignment statement are to be considered to be assignment compatible according to the type combinations of the overloading (see section 2.3.5).

This new assignment compatibility is not extended to the call by value of subroutines (see section 2.7.10 on page 101).

\section*{PASCAL-XSC}

In the following example dealing with intervals and vectors, we demonstrate how the work with numbers of embedded spaces or the initialization of vectors or matrices is simplified by using overloaded assignment operators.

\section*{Example 2.7.17:}

\section*{var}
x : interval;
iv : ivector[1..n];
im : imatrix[1..n,1..n];
operator :=(var x: interval; r: real); \{ Op1 \}
begin
x.inf \(:=r\);
x.sup \(:=r\);
end;
operator := (var iv: ivector; r: real); \{ Op2 \}
var i: integer;
begin
for \(\mathrm{i}:=\mathrm{lb}\) (iv) to ub (iv) do
iv[i] := r; \{ call of Op1 \}
end;
operator \(:=(\) var im: imatrix; r: real \() ; \quad\{\mathrm{Op} 3\}\)
var i : integer;
begin
for \(\mathrm{i}:=\mathrm{lb}(\mathrm{im})\) to ub (im) do
\(\mathrm{im}[\mathrm{i}]:=\mathrm{r} ;\{\) call of Op2 \}
end;
\(\mathrm{x}:=5.3 ; \quad\{\) call of Op1 delivers point interval \(\}\)
iv \(:=0 ; \quad\{\) call of Op2 delivers interval zero vector \(\}\)
im \(:=0 ; \quad\{\) call of Op3 delivers interval zero matrix \(\}\)

\subsection*{2.8 Modules}

\section*{PASCAL-XSC}

In Standard PASCAL, a program can only be given as one single program text that must be completely written before it can be compiled and executed. In contrast to this, PASCAL-XSC allows the splitting of a program in several parts called modules which can be developed and compiled separately.

Modules are collections of procedures, functions, operators, affiliated constant and type definitions, and variable declarations. Modules are declared similarly to programs, but they are compiled separately. A module has the following syntax:
```

module name;
UseClause; ...
global declaration; ... { global may be omitted }
begin { may be omitted together with the statement part }
statement; ...
end.

```

The module identifier follows the reserved word module.
Declarations have the same form as defined in the declaration part of a program. If a declaration is introduced by the reserved word global, then all objects declared in this module are global quantities of this module, i.e. they are available to be exported into other modules or into the main program. All other declared objects are local quantities of the module.

In the definition of a global type, the reserved word global may occur on the right-hand side of the equal sign. In this case, the structure of the global type can also be exported. The type definition
global type complex \(=\) record re, im: real end;
exports the type complex, but does not export its structure. Thus, access to the components of the data structure is only possible within the module containing the type definition itself. The declaration
global type complex \(=\) global record re, im: real end;
exports both the type identifier complex and also the record component identifiers re, im.

\section*{Example 2.8.1:}

A simple module definition to provide a complex arithmetic may have the following form:
```

module ComplexArithmetic;
global type complex $=$ global record re, im: real end;
global operator $+(\mathrm{z}, \mathrm{w}$: complex) res: complex;
begin
res.re := z.re + w.re;
res.im := z.im + w.im;
end;
global operator * (z, w: complex) res: complex;
begin
res.re := z.re * w.re - z.im * w.im;
res.im $:=$ z.re $*$ w.im + z.im $*$ w.re;
end;
end.

```

A program or another module employs a use-clause to make visible objects exported from the used modules (import of objects). If the reserved word global occurs in a use-clause, then all objects being imported by this clause are available for export as well. A use-clause is defined by:
| use global ModuleIdentifierList \{ global may be omitted \}

\section*{Example 2.8.2:}

The following module provides an addition for complex vectors on the basis of the module ComplexArithmetic:
module ComplexVectorArithmetic; use global ComplexArithmetic; global type
complexvector \(=\) global dynamic array [*] of complex; global operator + ( \(\mathrm{x}, \mathrm{y}\) : complexvector) res: complexvector [lbound(x)..ubound(x)];
var i: integer;
begin
for \(\mathrm{i}:=\operatorname{lbound}(\mathrm{x})\) to ubound \((\mathrm{x})\) do
res \([\mathrm{i}]:=\mathrm{x}[\mathrm{i}]+\mathrm{y}[\mathrm{i}] ;\)
end;
end.

If another program or module includes the use-clause
use ComplexVectorArithmetic;
then the type complexvector and the appropriate operator + are visible. The type complex and the appropriate operators + and \(*\) are also available, since the defining module is globally linked via
use global ComplexArithmetic;
That is, the program or module does not need to include the module ComplexArithmetic in order to have objects from the ComplexArithmetic module visible. However, if the module ComplexVectorArithmetic included only the clause
use ComplexArithmetic;
then this clause would also be necessary in the module or in the main program that imports ComplexVectorArithmetic.

The use-clauses build up a module hierarchy among the individual modules and the main program. The modules may be represented in an acyclic graph that is similar to a tree structure whose root is represented by the main program. The modules imported into the main program are given as the children.


This is not strictly a tree structure since one module (basic module in this figure) can be used by more than one other module. The use-clauses impose a strict partial order. A mutual or cyclic importation is not allowed, not even indirectly. The module hierarchy determines the order of the compilation of the modules. A module may not be compiled until all imported modules have been compiled. In every module which has to be compiled, at least the exported quantities have to be declared or defined, although their implementation does not need to be complete. In the case of procedures for example, empty statement parts are sufficient.

\section*{PASCAL-XSC}

Thus, after the first planning stage determining the structure of the individual modules and checking their interfaces, the complete implementation of the modules may be executed in parallel by possibly different teams.

If no more changes are made in the definition part of the modules, i.e. at the declarations of objects being available to be exported, the compilation of the modules is sufficient. Otherwise, all modules which depend on the altered module must be recompiled along with the main program.

A module may contain a statement part after the declaration part. The statement part is executed just once at the beginning of program execution. The statement parts of several modules are executed in an order consistent with the partial ordering of the module hierarchy. In the statement part of a module, the local and global variables can be initialized by using an arbitrary set of statements using the quantities of the module. In the module hierarchy shown in the preceding figure, the statement part of the basic module has to be executed before the statement part of the module A2 which has to occur before the statement part of module A.

\subsection*{2.9 String Handling and Text Processing}

Standard PASCAL offers only poor features for processing files of type text, characters (char), and strings (packed array [1..n] of char). Except of the lexical comparisons of strings or characters, there are no expressions involving these types. Manipulation of strings or an input statement for a string variable is not supported.

\section*{PASCAL-XSC}

The dynamic string type (section 2.3.2), the string expression (section 2.4.3.2), and the string functions, comparisons, assignment statements, and input/output of strings support convenient text processing.

The following functions and procedures are provided for the operations which are normally used for text processing:
function image (i: integer) : string;
Converts the numerical value \(i\) into a string. Similar to the result from write (i) with a current length like the default output format for integer values.
function image (i, len: integer) : string;
Converts the numerical value \(i\) into a string with a current length len (possibly filled by leading blanks). Similar to the output of integer values.
function image (r: real) : string;
Converts the numerical value \(r\) into a string with a current length like the default output format for real values.
function image (r: real; width: integer) : string; Converts the numerical value \(r\) into a string with a current length width (possibly filled by leading blanks). Similar to the output of real values.
function image (r: real; width, fracs: integer) : string; Converts the numerical value \(r\) into a string with current length width (possibly filled with leading blanks) and with fracs places after the decimal point. Similar to the output of real values.

PASCAL-XSC
function image (r: real; width, fracs, round: integer) : string;
Converts the numerical value \(r\) into a string with a current length width and fracs places after the decimal point. The value is rounded according to round:
round \(\left\{\begin{array}{ll}<0 & \text { rounded downwardly directed } \\ =0 & \text { rounded to the nearest } \\ >0 & \text { rounded upwardly directed }\end{array}\right\}\)
function substring (s: string; p, l: integer) : string;
Returns a substring containing \(l\) characters from \(s\) starting at position \(p\).
function length (s: string) : integer;
Returns the current length of \(s\).
function maxlength (var s: string) : integer;
Returns the maximum length of the variable \(s\).
function pos (sub, s: string) : integer;
Scans the string \(s\) to find the first occurrence of sub in \(s\). If the pattern is not found, pos returns the value 0 .
function ival (s: string) : integer;
Converts the first part of the string \(s\), which represents a numeric value according to the rules of integer constants, into an integer value. Leading blanks as well as trailing characters are neglected.
function ival (s: string; var rest: string) : integer;
Converts the first part of the string \(s\), which represents a numeric value according to the rules of integer constants, into an integer value. Leading blanks are neglected, whereas trailing characters are passed back in the string rest.
function rval (s: string) : real;
Converts the first part of the string \(s\), which represents a numeric value according to the rules of real constants, into a real value. Leading blanks as well as trailing characters are neglected.
function rval (s: string; var rest: string) : real;
Converts the first part of the string \(s\), which represents a numeric value according to the rules of real constants, into a real value. Leading blanks are neglected, whereas trailing characters are passed back in the string rest.
function rval (s: string; round: integer) : real;
Converts the first part of the string \(s\), which represents a numeric value according to the rules of real constants, into a real value rounded according to round (see image). Leading blanks as well as trailing characters are neglected.
function rval (s: string; round: integer; var rest: string) : real;
Converts the first part of the string \(s\), which represents a numeric value according to the rules of real constants, in a real value rounded according to round (see image). Leading blanks are neglected, whereas trailing characters are passed back in the string rest.
procedure setlength (var s: string; len: integer);
Sets the current length of the string variable \(s\) to len. The value len must lie within the range 0 ..maxlength(s).

\section*{Example 2.9.1:}
```

image (4728,5) delivers ', 4728'
image (3.14159,7,4,1) delivers ' 3.1416'
substring ('AAABB',3,3) delivers 'ABB'
length ('abcde') delivers 5
pos ('AB','AAABB') delivers 3
ival ('512') delivers }51
rval ('-1.5E6') delivers -1.5E+06

```

The relational operators
\[
=, \quad<>, \quad<=, \quad<, \quad>=, \quad>
\]
applied to strings have their usual meaning derived from lexical ordering. For a string s1 with the length \(n\) and a string \(s 2\) with a length \(m>n\), both coinciding on the first \(m\) positions, the comparison \(s 1<s 2\) is true.

The additional operator

\section*{in}
for two string operands tests substrings. The expression s1 in s2 delivers true if \(s 1\) is a substring of \(s 2\) and false otherwise.

\section*{Example 2.9.2:}
\(\begin{array}{lll}\text { Let } & \mathrm{s} 5:=\text { 'AAABB'; } & \\ \text { then } & \text { 'A' in s5 } & \text { delivers true } \\ \text { and } & \text { 'BBA' in } \mathrm{B} 5 & \text { delivers false. }\end{array}\)
The use of assignment statement
| StringVariable \(:=\) StringExpression
is always possible if the string variable is of type string and if the string expression is of type string or of any array string type.

If the actual length of the string expression exceeds the maximum length of the variable, the extra characters on the end of the string expression are truncated.

\section*{Example 2.9.3:}

The following types and variables are given:
```

type string_10 = string[10];
string_20 = string[20];
var s5 : string[5];
s10 : string_10;
s20 : string_20;
s : string; { length implementation-dependent }

```

Then it is possible to write:
```

s5 := 'ABCDE';
s10 := s5;
s20 := 'AABBCC';
s5 := s20; { s5 contains the value 'AABBC' }
s20 := '';{ empty string }
s5 := 'AAA' + 'BBB' { s5 contains the value 'AAABB' }

```

\subsection*{2.9.1 Input of Characters and Strings}

While the output of characters and strings in PASCAL is processed according to the programmer's intention, the entering of these types from the console very often produces unexpected results.
To read in a char variable \(c\) using the statement
\[
\text { read }(\mathrm{c}) ;
\]
the statements
\[
\begin{aligned}
& \mathrm{c}:=\text { input } \uparrow ; \\
& \text { get (input); }
\end{aligned}
\]
are executed according to the definition of read (see section 2.5.2). With the first read on input, a blank is assigned to the variable \(c\). This blank corresponds to the end-of-line character, since immediately after the start of the program, eoln (input) \(=\) true .

\section*{Example 2.9.4:}

The program
```

program testread1 (input, output);
var c : char;
begin
read (c);
writeln (c);
end.

```
would input the end-of-line character and output a blank without accepting any input via the user's console.

Hence, we have to take special care of the end-of-line character while reading characters, in contrast to the input of integer or real numbers which neglects the end-of-line character as it neglects a blank. Appropriate use of readln or get (see section 2.5.2) is necessary.

If we use a procedure read_char declared by
```

procedure read_char (var f: text; var c: char);
begin
if eoln (f) then
readln (f);
read (f, c);
end;

```
we can read a character (not equal to the end-of-line character) without having to worry about end-of-line arrangements or unexpected effects.

\section*{Example 2.9.5:}

The following program enables the user to enter a character, which is printed immediately afterwards.
```

program testread2 (input, output);
var c : char;
procedure read_char ...
{ same procedure declaration as above }

```
```

begin
read_char (input, c);
writeln (c);
end.

```

\section*{PASCAL-XSC}

The particularity of PASCAL concerning the input of characters also applies to the input of strings in PASCAL-XSC. In the following tables, some examples illustrate this fact. In these tables, \(\hookleftarrow\) denotes the Return key for input from the console or the end-of-line character for input from a file, and \(\sqcup\) denotes the blank character. The variables \(S 5\) and \(S 10\) are defined as strings with a maximum length 5 and 10 , respectively. The file variable \(f\) is of type text.

String Input from Console
\begin{tabular}{|c|c|c|}
\hline Statements & Input & Output \\
\hline \begin{tabular}{l}
read (S5, S10) \\
writeln (S5); \\
writeln (S10);
\end{tabular} & not possible & \[
\begin{array}{r}
\sqcup \\
\sqcup \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
readln (S5, S10) \\
writeln (S5); \\
writeln (S10);
\end{tabular} & ABCDEFGHIJKLMNO \(\hookleftarrow\) & \[
\begin{array}{r}
\sqcup \\
\sqcup \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
readln; \\
read (S5, S10); \\
writeln (S5); \\
writeln (S10);
\end{tabular} & ABCDEFGHIJKLMNO \(\hookleftarrow\) & \begin{tabular}{l}
ABCDE \\
FGHIJKLMNO
\end{tabular} \\
\hline ```
readln;
readln (S5, S10);
writeln (S5);
writeln (S10);
``` & \(\mathrm{ABCDE} \hookleftarrow\) FGHIJKLMNO \(\hookleftarrow\) & \begin{tabular}{l}
ABCDE \\
\(\sqcup\)
\end{tabular} \\
\hline \begin{tabular}{l}
readln; \\
read (S5); \\
readln; \\
read (S10); \\
writeln (S5); \\
writeln (S10);
\end{tabular} & \begin{tabular}{l}
ABCDE \(\hookleftarrow\) \\
FGHIJKLMNO \(\hookleftarrow\)
\end{tabular} & \begin{tabular}{l}
ABCDE \\
FGHIJKLMNO
\end{tabular} \\
\hline
\end{tabular}

String Input from File
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Statements } & \multicolumn{1}{c|}{ File Contents } & \multicolumn{1}{c|}{ Output } \\
\hline \hline read (f, S5, S10); & ABCDEFGHIJKLMNO & \\
writeln (S5); & & \begin{tabular}{l}
ABCDE \\
writeln (S10);
\end{tabular} \\
\hline read (f, S5, S10); & ABCDE & \\
writeln (S5); & FGHIJKLMNO & \\
writeln (S10); & & ABCDE \\
\hline \begin{tabular}{l}
readln (f, S5); \\
readln (f, S10); \\
writeln (S5); \\
writeln (S10);
\end{tabular} & ABCDE & \(\sqcup\) \\
\hline
\end{tabular}

For the type string, the appropriate use of readln avoids the unexpected input of the end-of-line character. For instance, we can use an overloaded procedure read (see section 2.7.11) declared by:
```

procedure read (var f : text; var s: string);
var c : char;
begin
if eoln (f) then
readln (f);
$\mathrm{s}:={ }^{\prime} ; ;\{$ empty string $\}$
while not eoln (f) do
begin
read (f, c);
$\mathrm{s}:=\mathrm{s}+\mathrm{c}$;
end;
end;

```

For an arbitrary text file \(f\) and a string variable \(s\), this procedure can be applied in the forms
```

read (s); read (input, s); read (f, s);

```
to read in dynamic strings line by line (due to overloading of read and write as described in section 2.7.11).

\section*{Example 2.9.6:}

Let us write a PASCAL-XSC program to convert German text written in lower-case letters containing the strings (umlauts) ae, oe, and ue, into a form which can serve as input for the text system \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) using the document style option german. It is necessary to replace:
```

ae by "a
oe by "o
ue by "u

```

For simplicity, special cases like aee may be neglected. Furthermore, the word PASCAL should be changed into Pascal and marked for typing in boldface by enclosing the word in the form:
\{\bf Pascal\}
The following PASCAL-XSC program enters the text from the text file texin.txt, processes the changes, writes the changed text to the text file texout.txt, and terminates.
program umlauts (output, infile, outfile);
operator ** (line, umlaut: string) res : string;
\{ Replaces the umlauts contained in the \}
\{ line by the corresponding TeX sequence. \}
var
p: integer;
begin
\(\mathrm{p}:=\operatorname{pos}(\) umlaut, line);
while (\(\mathrm{p}>0\)) do
begin
line \([\mathrm{p}]:={ }^{\prime}{ }^{\prime}\);
line[p+1]:= umlaut[1];
\(\mathrm{p}:=\operatorname{pos}(\) umlaut, line);
end;
res := line;
end;
var
line, help1, help2 : string;
infile, outfile : text;
len, position : integer;
```

begin
reset (infile, 'texin.txt');
rewrite (outfile, 'texout.txt');
while not eof (infile) do
begin
readln (infile, line);
line := line ** 'ae';
line := line ** 'oe';
line := line ** 'ue';
len := length (line);
position := pos ('PASCAL', line);
while (position > 0) do
begin
help1:= substring (line, 1, position-1) + '{\bf Pascal}';
help2:= substring (line, position+6, len-position-5);
line:= help1 + help2;
len:= length (line);
position:= pos ('PASCAL', line);
end;
writeln (outfile, line);
end;
end.

```

\subsection*{2.10 How to Use Dynamic Arrays}

PASCAL-XSC
True dynamic allocation of array lengths can only occur when declaring dynamic array variables within procedures or functions as described in section 2.3.2. In the declaration part of these routines, global quantities or formal parameters are used in the expressions for the index bounds of the arrays. In the body of the main program, only constants, imported variables, or expressions that can be evaluated at the point of the declaration may be used in the index expressions.

An experienced programmer might be able to realize full dynamic array lengths in the main program by using a special module initialization part or function calls for the index bounds. Nevertheless, in this section we discuss the usual manner of working with dynamic arrays. Usually, the original main program, which works with dynamic arrays, is moved into a procedure or function. The body of the new main program then consists only of the entering of values which are necessary for the calculation of the index bounds and of the call of the new "main procedure" or "main function".
The template of a PASCAL-XSC program which uses dynamic arrays is
```

program dynprog (input, output);
type
dyntype = dynamic array [*] of comptype;
{further declarations }
...
var
low, upp: integer;
{ further declarations }
procedure main (low, upp: integer);
var
a, b, c: dyntype [low..upp];
{ further declarations}
begin
{ main program, moved into the procedure }
end;
begin { new main program}
read (low,upp);
main (low,upp);
end.

```

In the new main program, the procedure main could also be called within a loop, within which new index bounds low and upp are entered. This might be useful in an algorithm which improves a computed result by enlarging the dimension of the dynamic arrays employed.

\section*{Example 2.10.1:}
```

program longnumber (input, output);
type
long $=$ dynamic array $[*]$ of real;
var
len: integer;
function ok (len: integer) : boolean;
var
lz1, lz2, lz3: long [1..len];
erg: real;
begin
\{ algorithm \}
writeln ('result using length ', len:1, ': ', erg);
if $\{$ precision of res ok $\}$ then
ok := true
else
ok := false;
end;
begin
repeat
write ('length of type long: ');
read (len);
until ok (len);
end.

```

As a final example for the handling of dynamic arrays, we list a program to compute the transposed matrix for arbitrary (square or rectangular) matrices of arbitrary dimension.

\section*{Example 2.10.2:}
program transpose (input,output);
type
matrix \(=\) dynamic array \([*, *]\) of real;
function transp (var a: matrix) :
matrix [lbound(a,2)..ubound(a,2), lbound(a,1)..ubound(a,1)];
var
i, j: integer;
begin
for \(\mathrm{i}:=1\) bound \((\mathrm{a}, 1)\) to ubound \((\mathrm{a}, 1)\) do
for \(\mathrm{j}:=1\) bound \((\mathrm{a}, 2)\) to ubound \((\mathrm{a}, 2)\) do
transp[j,i] :=a[i,j];
end;
procedure main (no_of_rows, no_of_columns: integer);
var
i, j: integer;
A: matrix [1..no_of_rows,1..no_of_columns];
T: matrix [1..no_of_columns,1..no_of_rows];
begin
writeln ('Enter the matrix elements of A (row by row) ');
for \(\mathrm{i}:=1\) to no_of_rows do
for \(\mathrm{j}:=1\) to no_of_columns do
\(\operatorname{read}(\mathrm{A}[\mathrm{i}, \mathrm{j}])\);
writeln ('Transposed matrix of A:');
\(\mathrm{T}:=\operatorname{transp}(\mathrm{A})\);
for \(\mathrm{i}:=1\) to no_of_columns do
begin
for \(\mathrm{j}:=1\) to no_of_rows do
write (T[i,j]);
writeln;
end; end;
var
no_of_rows, no_of_columns: integer;
begin
writeln ('Size of A:');
write ('Number of rows: ');
read (no_of_rows);
write ('Number of columns: ');
read (no_of_columns);
while (no_of_rows \(>0\)) and (no_of_columns \(>0\)) do begin
main (no_of_rows,no_of_columns);
writeln ('Size of A:');
write ('Number of rows: ');
read (no_of_rows);
write ('Number of columns: ');
read (no_of_columns);
end;
end.

\section*{Chapter 3}

\section*{The Arithmetic Modules}

Numerical methods require computations not only in the space of real numbers, but also with complex numbers, and vectors and matrices over these numbers (see [1], [2], [19], or [33]). To fulfill all these requirements, PASCAl-XSC provides the corresponding types with the necessary operators and functions.

All arithmetic operators are of maximum accuracy as described in section 1.3 or for real operations in section 2.4.1.2. The result is computed to at least 1 ulp accuracy.

PASCAL-XSC provides a complete expression concept for the additional numerical types
\begin{tabular}{lll}
complex & for & complex numbers \\
interval & for & real intervals \\
cinterval & for & complex intervals \\
rvector & for & real vectors \\
cvector & for & complex vectors \\
ivector & for & interval vectors \\
civector & for & complex interval vectors \\
rmatrix & for & real matrices \\
cmatrix & for & complex matrices \\
imatrix & for & interval matrices \\
cimatrix & for & complex interval matrices
\end{tabular}

This expression concept is not restricted to operands of the same type. Moreover, almost every operation which is usually applied to different operand types in the mathematics is provided. Therefore, more than 1000 arithmetic operators are provided. In addition, PASCAL-XSC enables the user to form logical expressions with these types by providing a comparably large number of relational operators. This large number of operators and functions makes it possible to transfer mathematical computations of engineering and science into a clearly structured programming code.

In most cases, the original theoretical formulas or algorithms can be used as program parts with only few changes. This fact is supported by predefined overloadings of the assignment operator \(:=\).

The following table 1 is a survey of the predefined arithmetic operators for the arithmetic types.

Table 1: Predefined Arithmetical Operators
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underbrace{\text { operand }}_{\text {left }}
\] & \[
\begin{aligned}
& \text { integer } \\
& \text { real } \\
& \text { complex }
\end{aligned}
\] & interval cinterval & rvector cvector & ivector civector & rmatrix cmatrix & imatrix cimatrix \\
\hline \({ }^{1}\)) & +, - & +, - & +, - & +, - & +, - & +, - \\
\hline \[
\begin{gathered}
\hline \text { integer } \\
\text { real } \\
\text { complex } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 0,0<, o>, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
+,-, *, /, \\
+*
\end{gathered}
\] & *,*<,*> & * & *, *<, *> & * \\
\hline interval cinterval & \[
\begin{gathered}
+,-, *, /, \\
+*
\end{gathered}
\] & \[
\underset{+,-, *, /,}{+*, * *}
\] & * & * & * & * \\
\hline rvector cvector & \[
\begin{aligned}
& *, *<, *> \\
& \mid, /<, />
\end{aligned}
\] & *,/ & \[
\begin{gathered}
0,0<, o>, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
\left.{ }^{4}\right)^{\prime},-,, \\
+*
\end{gathered}
\] & & \\
\hline ivector civector & *,/ & *,/ & ,\(\left.+-{ }^{4}\right)\)
\(+*\) & \[
\begin{gathered}
\left.{ }^{4}{ }^{2}\right) \\
+,-,,{ }_{2} \\
+*, * *
\end{gathered}
\] & & \\
\hline rmatrix cmatrix & \[
\begin{aligned}
& *, *<, *> \\
& \mid, /<, />
\end{aligned}
\] & *,/ & *,*<,*> & * & \[
\begin{gathered}
0,0<, o>, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
\left.+,{ }^{4}\right) \\
+,{ }^{2},
\end{gathered}
\] \\
\hline \begin{tabular}{l}
imatrix \\
cimatrix
\end{tabular} & *,/ & *,/ & * & * & \[
\begin{gathered}
\left.{ }^{4}\right) \\
+,-,{ }^{2}, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
\left.{ }^{4}\right) \\
+,-,, * \\
+*, * *
\end{gathered}
\] \\
\hline
\end{tabular}
\({ }^{1}\)) The operators of this row are monadic (i.e. there is no left operand).
\(\left.{ }^{2}\right) \circ \in\{+,-, *, /\}\)
\(\left.{ }^{3}\right) \circ \in\{+,-, *\}\), where \(*\) denotes the scalar or matrix product.
\({ }^{4}\)) The \(*\) denotes the scalar or matrix product.
\(+*\) : Interval hull (smallest interval enclosing both operands)
** : Interval Intersection

Remark: The block of table 1 which is marked by \({ }^{2}\)) contains the operators for real and integer operands of Standard PASCAL. The operators * (scalar product), \(+*\) (interval hull), and \(* *\) (interval intersection) are provided in the corresponding matrix/vector modules and interval modules, respectively.

Table 2 gives an overview of the relational operators for the arithmetic types available in PASCAL-XSC.

Table 2: Predefined Relational Operators
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\underbrace{\text { right }}_{\text {operand }}\) & & interval cinterval & rvector cvector & \begin{tabular}{l}
ivector \\
civector
\end{tabular} & \begin{tabular}{l}
rmatrix \\
cmatrix
\end{tabular} & \begin{tabular}{l}
imatrix \\
cimatrix
\end{tabular} \\
\hline \[
\begin{gathered}
\hline \text { integer } \\
\text { real } \\
\text { complex } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline=,<>, \\
& <=,<, \\
& >=,>
\end{aligned}
\] & \[
\begin{gathered}
\text { in } \\
=,<>
\end{gathered}
\] & & & & \\
\hline interval cinterval & \(=,<>\) & \[
\begin{aligned}
& \text { in },><, \\
& =,<>, \\
& <=,<, \\
& >=,>
\end{aligned}
\] & & & & \\
\hline rvector cvector & & & \[
\begin{aligned}
& \hline=,<>, \\
& <=,<, \\
& >=,> \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { in } \\
=,<>
\end{gathered}
\] & & \\
\hline ivector civector & & & \(=,<>\) & \[
\begin{aligned}
& \text { in, }><,{ }^{1}, \\
& =,<>, \\
& <=,<, \\
& >=,>
\end{aligned}
\] & & \\
\hline rmatrix cmatrix & & & & & \[
\begin{aligned}
& =,<>, \\
& <=,<, \\
& >=,>
\end{aligned}
\] & \[
\begin{gathered}
\text { in } \\
=,<>
\end{gathered}
\] \\
\hline \begin{tabular}{l}
imatrix \\
cimatrix
\end{tabular} & & & & & =, <> & \[
\begin{aligned}
& \text { in },><, \\
& =,<>, \\
& <=, \\
& >=, \\
& >=,>
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{1}\)) The operators \(<=\) and \(<\) denote the "subset" relation;
\(>=\) and \(>\) denote the "superset" relation
\(><\) : Test for disjointedness of intervals
in : Test for membership of a point in an interval or test for strict inclusion of an interval in the interior of an interval

The large number of operators are provided in special arithmetic modules which contain the operators listed above and a set of predefined functions. For the types complex, interval, and cinterval, this set contains all mathematical functions which are provided for type real (see section 2.4.1.2).

Hence, the following modules are available:
\begin{tabular}{ll}
C_ARI & complex arithmetic \\
I_ARI & interval arithmetic \\
CI_ARI & complex interval arithmetic \\
MV_ARI & real matrix/vector arithmetic \\
MVC_ARI & complex matrix/vector arithmetic \\
MVI_ARI & interval matrix/vector arithmetic \\
MVCI_ARI & complex interval matrix/vector arithmetic
\end{tabular}

Each of these modules is described in the following sections. All types, operators, transfer functions, overloadings of \(:=\), predefined arithmetic functions, and input/output procedures are systematically explained. The domains and ranges of the functions are implementation-dependent. The rules of overloading for read and write described in section 2.7.11 apply to the input/output procedures of the modules, i.e. they can be used with an optional file parameter and with an arbitrary number of input/output parameters. Therefore, the description of these procedures is restricted to the explanation of the possible input and output formats.

These shortened module names are chosen due to the implementation-dependent maximum number of significant characters in the module name which must be equal to the corresponding file name. Some systems have special requirements concerning the length of file names or the length of entry names for linker interfaces. With these short names, modules are portable across all systems.

\section*{Definition of the Arithmetic Operators}

The type of the result of scalar arithmetic operations is defined in the mathematical sense according to the following hierarchy of types:

The result is always the lowest type containing both operand types.
For the matrix/vector operations, the structure of the result follows from the structures of the operands:
\[
\begin{aligned}
& \mathrm{v}+\mathrm{v}=\mathrm{v} \quad \mathrm{v} * \mathrm{v}=\mathrm{S} \\
& \mathrm{~m}+\mathrm{m}=\mathrm{m} \quad \mathrm{~s} * \mathrm{v}=\mathrm{v} \\
& \mathrm{v} \quad \mathrm{v} * \mathrm{~s}=\mathrm{v} \\
& \mathrm{v}-\mathrm{v}=\mathrm{v} \quad \mathrm{~m} * \mathrm{v}=\mathrm{v} \\
& \mathrm{~m}-\mathrm{m}=\mathrm{m} \quad \mathrm{~s} * \mathrm{~m}=\mathrm{m} \\
& \mathrm{v} / \mathrm{s}=\mathrm{v} \quad \mathrm{~m} * \mathrm{~s}=\mathrm{m} \\
& \mathrm{~m} / \mathrm{s}=\mathrm{m} \quad \mathrm{~m} * \mathrm{~m}=\mathrm{m}
\end{aligned}
\]

Structure of the Result Type for Matrix/Vector Operations
\[
\mathrm{s}=\text { scalar }, \quad \mathrm{v}=\text { vector }, \quad \mathrm{m}=\text { matrix }
\]

The type of the result follows from the above hierarchy of types depending on the two component types.

All matrix/vector operations assume the number of corresponding components of the operands is equal, i.e. the corresponding index ranges must have the same length. The index ranges themselves may be different as in
```

var
p : complex;
a : rvector[1..10];
b : cvector[11..20];
p:= a * b;

```

In the definitions of the operators in the following sections, the descriptions given assume that the index ranges are identical. For example, the scalar product \(p=a * b\) is described as
\[
\begin{aligned}
& \# *(\text { for } \mathrm{i}:=\operatorname{lb}(\mathrm{a}) \text { to } \mathrm{ub}(\mathrm{a}) \text { sum } \\
& (\mathrm{a}[\mathrm{i}] * \mathrm{~b}[\mathrm{i}]))
\end{aligned}
\]
but it is implemented as
\[
\begin{aligned}
& \# *(\text { for } \mathrm{i}:=\operatorname{lb}(\mathrm{a}) \text { to } \mathrm{ub}(\mathrm{a}) \text { sum } \\
& (\mathrm{a}[\mathrm{i}] * \mathrm{~b}[\mathrm{i}+\operatorname{lb}(\mathrm{b})-\operatorname{lb}(\mathrm{a})]))
\end{aligned}
\]

\section*{Definition of the Relational Operators}

The relational operators in these modules are based upon the set of relational operators for the type real. This set of operators is used to define the operators \(<=\) and \(=\) for a structured numerical data type SNDT (Structured Numerical Data Type). The operator \(=\) is implemented in such a manner that it delivers true if and only if all components of the SNDT fulfill the equality. The definition of the operator \(<=\) depending on the type of the operands is explained in the corresponding section of the defining modules.
All further relational operators for elements \(a, b \in\) SNDT are defined by:
\[
\begin{align*}
& \mathrm{a}<>\mathrm{b}:=\operatorname{not}(\mathrm{a}=\mathrm{b}) \\
& \mathrm{a}<\mathrm{b}:=(\mathrm{a}<=\mathrm{b}) \text { and }(\mathrm{a}<>\mathrm{b}) \tag{RD}\\
& \mathrm{a}>\mathrm{b}:=\mathrm{b}<\mathrm{a} \\
& \mathrm{a}>=\mathrm{b}
\end{align*}
\]

\section*{Overloading of the Assignment Operator}

The assignment operator is overloaded to provide several basic type conversions and some array type initializations. All type conversions are defined according to the mathematical embedding (for example, the real numbers are embedded in the complex numbers), i.e. the value is invariant. Initializations by means of assignments of scalar types to vector or matrix types are defined componentwise, i.e. the same value is assigned to all components of the array type. For all these overloaded assignment operators, there are no rounding or conversion errors.

Nevertheless, we have to remember the special problematic nature of conversion described in section 2.3.1 in connection with literal constants on the right side of the assignment. For the reasons described in section 2.3.1, a real constant is converted into the internal real format before the assignment is executed.

\section*{Accuracy of the Predefined Functions}

All complex functions deliver results of at least 1 ulp accuracy.
The interval functions always compute a floating-point interval that contains the exact interval result. In most cases, the smallest enclosing interval is computed, but there are some special cases in which the bounds differ by 2 ulp.

The complex interval functions achieve the same accuracies for their real and imaginary parts.

\subsection*{3.1 The Module C_ARI Complex Arithmetic}

This module supplies all operators, functions, and procedures necessary for computations with complex numbers.

\section*{Type}

The type complex defined by
```

type complex = record re, im : real end;

```
is part of the language core of PASCAL-XSC. It is based upon the cartesian representation of a complex number \(z\) in the form
\[
z=x+i y
\]
where \(x\) denotes the real part and \(y\) denotes the imaginary part of \(z\).

\section*{Operators}

All predefined arithmetic operators of this module deliver the result type complex. There are the monadic operators,+- and the four basic operations \(+,-, *, /\), each with three different kinds of rounding. All roundings are interpreted componentwise.

The relational operators \(=,<>,<,<=,>,>=\) are defined on the base of \(=\) and \(<=\) according to (RD) (see page 130). If a and \(b\) are of type complex then
```

a <= b \Longleftrightarrow (a.re <= b.re) and (a.im <= b.im).

```

Comparison with an integer or real operand is allowed as well.
\begin{tabular}{|c||c|c|}
\hline \begin{tabular}{c}
right \\
left \\
operand
\end{tabular} & \begin{tabular}{c}
integer \\
ineal
\end{tabular} & complex \\
\hline \hline monadic & &,+- \\
\hline \begin{tabular}{c}
integer \\
real
\end{tabular} & & 0 \\
\hline complex & \(\circ\) \\
\hline & \(\vee\) & \(\circ\) \\
\hline
\end{tabular}

The Operators of Module C_ARI
\[
\begin{gathered}
\circ \in\{+,+<,+>,-,-<,->, *, *<, *>, /, /<, />\} \\
\vee \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]

\section*{Transfer Functions}

The following transfer functions are provided for type conversions between the types real and complex:
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline compl (r1,r2) & complex & Complex number with real part r1 and imaginary part \(r 2\) \\
\hline compl (r) & complex & Complex number with real part \(r\) and imaginary part 0 \\
\hline re (c) & real & Real part of \(c\) \\
\hline im (c) & real & Imaginary part of \(c\) \\
\hline
\end{tabular}

\section*{Example 3.1.1:}

The imaginary unit \(i\) can be generated using the expression
\[
\operatorname{compl}(0,1) .
\]

\section*{Overloading of the Assignment Operator}

The type conversion real to complex is provided as an overloading of the assignment operator:
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Assignment } \\
\hline \hline \(\mathrm{c}:=\mathrm{r}\) & \(\mathrm{c} \quad:=\) Meaning \\
\hline \multicolumn{4}{c|}{\(\mathrm{c}=\) complex variable \((\mathrm{r})\)} \\
\(\mathrm{r}=\) real expression
\end{tabular}

\section*{Predefined Functions}

All mathematical functions of PASCAL-XSC available for real arguments are also supplied for complex arguments. Moreover, functions for the computations of the angle component \(\varphi\) of the exponential representation \(z=r \cdot e^{i \varphi}\) of a complex number \(z\) and for the conjugation (reflection about the real axis) are provided.
\begin{tabular}{|c|c|c|c|}
\hline Function & Result Type & & Meaning \\
\hline sqr (c) & complex & \(c^{2}=c \cdot c\) & Square \\
\hline sqrt (c) & complex & \(\sqrt{c}\) & Square Root (Real part > 0) \\
\hline \(\exp (\mathrm{c})\) & complex & \(e^{c}\) & Exponential Function \\
\hline \(\exp 2\) (c) & complex & \(2^{\text {c }}\) & Power Function, Base 2 \\
\hline \(\exp 10\) (c) & complex & \(10^{c}\) & Power Function, Base 10 \\
\hline \(\ln (\mathrm{c})\) & complex & \(\ln (c)\) & Natural Logarithm \\
\hline log2 (c) & complex & \(\log _{2}(c)\) & Logarithm, Base 2 \\
\hline \(\log 10\) (c) & complex & \(\log _{10}(c)\) & Logarithm, Base 10 \\
\hline \(\sin (\mathrm{c})\) & complex & \(\sin (c)\) & Sine \\
\hline \(\cos\) (c) & complex & \(\cos (c)\) & Cosine \\
\hline \(\tan\) (c) & complex & \(\tan (c)\) & Tangent \\
\hline cot (c) & complex & \(\cot (c)\) & Cotangent \\
\hline \(\arcsin (\mathrm{c})\) & complex & \(\arcsin (c)\) & Arc Sine \\
\hline \(\arccos (\mathrm{c})\) & complex & \(\arccos (c)\) & Arc Cosine \\
\hline \(\arctan (\mathrm{c})\) & complex & \(\arctan (c)\) & Arc Tangent \\
\hline \(\operatorname{arccot}(\mathrm{c})\) & complex & \(\operatorname{arccot}(c)\) & Arc Cotangent \\
\hline \(\sinh (\mathrm{c})\) & complex & \(\sinh (c)\) & Hyperbolic Sine \\
\hline cosh (c) & complex & \(\cosh (c)\) & Hyperbolic Cosine \\
\hline \(\tanh (\mathrm{c})\) & complex & \(\tanh (c)\) & Hyperbolic Tangent \\
\hline coth (c) & complex & coth (c) & Hyperbolic Cotangent \\
\hline \(\operatorname{arsinh}(\mathrm{c})\) & complex & arsinh (c) & Inverse Hyperbolic Sine \\
\hline \(\operatorname{arcosh}(\mathrm{c})\) & complex & \(\operatorname{arcosh}(c)\) & Inverse Hyperbolic Cosine \\
\hline \(\operatorname{artanh}(\mathrm{c})\) & complex & \(\operatorname{artanh}(c)\) & Inverse Hyperbolic Tangent \\
\hline arcoth (c) & complex & arcoth (c) & Inverse Hyperbolic Cotangent \\
\hline conj (c) & complex & \(\bar{c}=x-i y\) & Conjugation of \(c=x+i y\) \\
\hline \(\arg\) (c) & real & & Argument of \(c=r \cdot e^{i \varphi}\) \\
\hline abs (c) & real & \(r=\sqrt{x^{2}+y^{2}}\) & Absolute value of \(c=r \cdot e^{i \varphi}=\) \(x+i y\) \\
\hline
\end{tabular}

The domains and ranges of the predefined functions are implementation-dependent and are described in the user manual.

\section*{Input/Output Procedures}

This module supplies the procedures
procedure read (var f: text; var a: complex);
procedure write (var f: text; a: complex);
with optional file parameters, arbitrarily many input/output parameters, but without format specifications.
A complex number \(c=x+i y\) must be entered in the form
\[
(x, y)
\]
or in the form

\section*{\(x\).}

In the second case, the imaginary part \(y\) is set to \(0 . x\) and \(y\) are real constants that are rounded to the nearest floating-point numbers. The output of a complex number rounds both the real and imaginary parts to the nearest decimal numbers. It is displayed in the form
\[
(x, y)
\]
with an implementation-dependent default format for the real values \(x\) and \(y\).

\section*{Example 3.1.2:}

If \(c\) is of type complex, then the statements
read (c);
writeln (c);
accept the input data
\[
-1.23456789
\]
and write the complex data
\[
(-1.234567890000 \mathrm{E}+00,0.000000000000 \mathrm{E}+00) .
\]

Another real representation may be used depending on the implementation.

\subsection*{3.2 The Module I_ARI Interval Arithmetic}

This module supplies all operators, functions, and procedures necessary for computations with intervals.

\section*{Type}

The type interval defined by
\[
\text { type interval }=\text { record inf, sup : real end; }
\]
is part of the language core of PASCAL-XSC. It is based upon the representation of a real interval \(x\) in the form
\[
x=\left[x_{\mathrm{inf}}, x_{\mathrm{sup}}\right]
\]
representing the set \(\left\{y \in \mathbb{R} \mid x_{\mathrm{inf}} \leq y \leq x_{\text {sup }}\right\}\). inf denotes the infimum (lower bound), and sup denotes the supremum (upper bound) of \(x\).

\section*{Operators}

All predefined arithmetic and lattice operators deliver the result type interval. There are the monadic operators,+- and the four basic operations \(+,-, *, /\), each with the rounding to the smallest enclosing interval. The relational operators \(=,<\rangle,<\) ,\(<=,>,>=\) are to be interpreted as the corresponding set operators. Their meaning is
\[
\begin{array}{ll}
= & \text { equal } \\
<> & \text { not equal } \\
< & \text { proper subset } \\
<= & \text { subset } \\
> & \text { proper superset } \\
>= & \text { superset }
\end{array}
\]

These operators are defined on the base of \(=\) and \(<=\) according to (RD) (see page 130). If \(x\) and \(y\) are of type interval, then
\[
\mathrm{x}<=\mathrm{y} \Longleftrightarrow \text { (x.inf }>=\mathrm{y} . \inf) \text { and (x.sup }<=\mathrm{y} . \sup) .
\]

Moreover, this module supplies the operator in for the relation "is contained in" or "is contained in the interior" between a real- and an interval operand or between two interval operands. The operator in satisfies
\[
x \text { in } y \Longleftrightarrow \text { (x.inf }>\text { y.inf }) \text { and (x.sup }<\text { y.sup })
\]

The operator \(><\) tests for disjointedness of two intervals. Two intervals \(x\) and \(y\) are disjoint if \(x \cap y=\varnothing\) (empty set). The lattice operators \(+*\) and \(* *\) denote the interval hull and the interval intersection, respectively. The operator \(+*\) delivers the smallest interval enclosing both operands. The operator \(* *\) delivers the intersection. It is an error if the intersection is empty.
\begin{tabular}{|c||c|c|}
\hline \begin{tabular}{l}
right \\
left \\
operand
\end{tabular} & \begin{tabular}{c}
integer \\
real
\end{tabular} & interval \\
\hline \hline monadic & &,+- \\
\hline \begin{tabular}{c}
integer \\
real
\end{tabular} & \(+*\) & \begin{tabular}{c}
\(\diamond\) \\
in, \(=,<>\) \\
\(+*\)
\end{tabular} \\
\hline interval & \begin{tabular}{c}
\(\diamond\) \\
\(=,<>\) \\
\(+*\)
\end{tabular} & \begin{tabular}{c}
\(\diamond\) \\
in, \(\vee,><\) \\
\(+*, * *\)
\end{tabular} \\
\hline
\end{tabular}

The Operators of Module I_ARI
\[
\begin{gathered}
\diamond \in\{+,-, *, /\} \\
\vee \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]

\section*{Example 3.2.1:}

If \(a\) and \(b\) of type interval are defined as
\[
\begin{aligned}
& \mathrm{a}=[-1,3] \\
& \mathrm{b}=[3,4],
\end{aligned}
\]
then the operators \(+,-, *,><,+*\), and \(* *\) yield the results:
\begin{tabular}{lll|l}
\multicolumn{3}{c|}{ Expression } & Result \\
\hline a & + & b & {\([2,7]\)} \\
a & - & b & {\([-5,0]\)} \\
a & \(*\) & b & {\([-4,12]\)} \\
a & \(+*\) & b & {\([-1,4]\)} \\
a & \(* *\) & b & {\([3,3]\)} \\
a & \(><\) & b & false
\end{tabular}

\section*{Transfer Functions}

The following transfer functions are provided for type conversions between the types real and interval:
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Function } & Result Type & \multicolumn{1}{|c|}{ Meaning } \\
\hline \hline intval (r1,r2) & interval & Interval with inf \(=r 1\) and \(\sup =r 2^{(*)}\) \\
intval (r) & interval & Interval with inf \(=\sup =r\) \\
inf (i) & real & Lower bound of \(i\) \\
sup (i) & real & Upper bound of \(i\) \\
\hline
\end{tabular}
\(\mathrm{r}, \mathrm{r} 1, \mathrm{r} 2=\) real expression, \(\quad \mathrm{i}=\) interval expression
\({ }^{(*)}: r 1<=r 2\) is assumed, otherwise an error occurs.

\section*{Overloading of the Assignment Operator}

The type conversion real to interval is provided as an overloaded assignment operator:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Assignment } & Meaning \\
\hline \hline \(\mathrm{i}:=\mathrm{r}\) & \(\mathrm{i} \quad:=\) intval (r) \\
\hline
\end{tabular}
\(\mathrm{i}=\) interval variable
\(\mathrm{r}=\) real expression

\section*{Predefined Functions}

All mathematical functions of PASCAL-XSC available for real arguments are supplied for interval arguments \(i\). These interval functions \(F\) satisfy \(F(i) \supseteq f(i)=\) \(\{f(r): r \in i\}\). Moreover, functions for the computation of the midpoint and diameter of intervals are available. In connection with enclosure methods, the function blow is provided for the epsilon inflation (see [46]).
\begin{tabular}{|c|c|c|c|}
\hline Function & Result Type & \multicolumn{2}{|r|}{Meaning} \\
\hline sqr (i) & interval & \(i^{2}=\left\{r^{2}: r \in i\right\}\) & Interval Square \\
\hline sqrt (i) & interval & \(\sqrt{i}\) & Square Root \\
\hline \(\exp (\mathrm{i})\) & interval & \(e^{i}\) & Exponential Function \\
\hline \(\exp 2\) (i) & interval & \(2^{i}\) & Power Function, Base 2 \\
\hline \(\exp 10\) (i) & interval & \(10^{i}\) & Power Function, Base 10 \\
\hline \(\ln (\mathrm{i})\) & interval & \(\ln (\mathrm{i})\) & Natural Logarithm \\
\hline \(\log 2\) (i) & interval & \(\log _{2}(\mathrm{i})\) & Logarithm, Base 2 \\
\hline \(\log 10\) (i) & interval & \(\log _{10}(i)\) & Logarithm, Base 10 \\
\hline
\end{tabular}
\(\mathrm{i}=\) interval expression
\begin{tabular}{|c|c|c|c|}
\hline Function & Result Type & \multicolumn{2}{|r|}{Meaning} \\
\hline \(\sin (\mathrm{i})\) & interval & \(\sin (i)\) & Sine \\
\hline \(\cos\) (i) & interval & \(\cos (\mathrm{i})\) & Cosine \\
\hline \(\tan\) (i) & interval & \(\tan (\mathrm{i})\) & Tangent \\
\hline cot (i) & interval & \(\cot (\mathrm{i})\) & Cotangent \\
\hline \(\arcsin (\mathrm{i})\) & interval & \(\arcsin (i)\) & Arc Sine \\
\hline \(\arccos (\mathrm{i})\) & interval & \(\arccos (\mathrm{i})\) & Arc Cosine \\
\hline \(\arctan (\mathrm{i})\) & interval & \(\arctan (i)\) & Arc Tangent \\
\hline \(\arctan 2(\mathrm{i} 1, \mathrm{i} 2)\) & interval & \(\arctan (\mathrm{i1} / \mathrm{i} 2)\) & Arc Tangent \\
\hline \(\operatorname{arccot}(\mathrm{i})\) & interval & \(\operatorname{arccot}(\mathrm{i})\) & Arc Cotangent \\
\hline sinh (i) & interval & \(\sinh (i)\) & Hyperbolic Sine \\
\hline \(\cosh (\mathrm{i})\) & interval & \(\cosh (i)\) & Hyperbolic Cosine \\
\hline tanh (i) & interval & tanh (i) & Hyperbolic Tangent \\
\hline coth (i) & interval & coth (i) & Hyperbolic Cotangent \\
\hline \(\operatorname{arsinh}(\mathrm{i})\) & interval & \(\operatorname{arsinh}(i)\) & Inverse Hyperbolic Sine \\
\hline \(\operatorname{arcosh}\) (i) & interval & arcosh (i) & Inverse Hyperbolic Cosine \\
\hline \(\operatorname{artanh}(\mathrm{i})\) & interval & \(\operatorname{artanh}\) (i) & Inverse Hyp. Tangent \\
\hline arcoth (i) & interval & arcoth (i) & Inverse Hyp. Cotangent \\
\hline abs (i) & interval & \(|i|=\{|r|: r \in i\}\) & Absolute Value \\
\hline mid (i) & real & \[
\begin{array}{rl}
m=\# & *(0.5 * \inf (i) \\
& +0.5 * \sup (i))
\end{array}
\] & Midpoint of i \\
\hline diam (i) & real & \(d=\sup (i)->\inf (i)\) & Diameter of i \\
\hline blow (i,r) & interval & \(\ddagger\) & Epsilon Inflation \\
\hline
\end{tabular}

The domains and ranges of the predefined functions are implementation-dependent and are described in the user manual.

\section*{Example 3.2.2:}

If \(a\) and \(b\) of type interval are defined as
\[
\begin{aligned}
& \mathrm{a}:=\text { intval }(-1,3) \\
& \mathrm{b}:=\text { intval }(2)
\end{aligned}
\]
then the functions abs, sqr, mid, and diam deliver the results:
\begin{tabular}{l|l}
Expression & Result \\
\hline abs (a) & {\([0,3]\)} \\
abs (b) & {\([2,2]\)} \\
sqr (a) & {\([0,9]\)} \\
sqr (b) & {\([4,4]\)} \\
mid (a) & 1 \\
diam (a) & 4
\end{tabular}

\section*{Input/Output Procedures}

This module supplies the procedures
procedure read (var f: text; var a: interval);
procedure write (var f: text; a: interval);
with optional file parameters, arbitrarily many input/output parameters, but without format specifications.
An interval \(i=[x, y]\) must be entered in the form
\[
[x, y]
\]
or in the form
\[
x .
\]

In the first case, the values of \(x\) and \(y\) are rounded to the next-smaller and the nextlarger floating-point number, respectively (i.e. rounding to the smallest enclosing interval). The second case is a simplified notation for \(i=[x, x]\). If \(x\) is not exactly representable, the smallest interval enclosing \(x\) is generated.

The output of an interval is done with interval rounding (\(x\) rounded downwardly, \(y\) rounded upwardly) in the form
\[
[x, y]
\]
with an implementation-dependent default format for the real values \(x\) and \(y\).

\section*{Example 3.2.3:}

If int is of type interval, then the statements

> read (int);
writeln (int);
accept the input data
\[
0.245,
\]
and write the interval
[2.4499...99E-001, 2.4500...01E-001],
if 0.245 is not exactly representable. Another real representation may be used depending on the the implementation.

\subsection*{3.3 The Module CI_ARI Complex Interval Arithmetic}

This module supplies all operators, functions, and procedures necessary for computations with complex intervals.

\section*{Type}

The type cinterval defined by
\[
\text { type cinterval }=\text { record re, im : interval end; }
\]
is part of the language core of PASCAL-XSC. It is based upon the usual representation of a complex interval \(z\) in the form
\[
z=\left[x_{\mathrm{inf}}, x_{\mathrm{sup}}\right]+i \cdot\left[y_{\mathrm{inf}}, y_{\mathrm{sup}}\right]
\]
representing a rectangle in the complex plane (rectangular interval).

\section*{Operators}

All predefined arithmetic and lattice operators deliver the result type cinterval. There are the monadic operators,+- and the four basic operations \(+,-, *, /\), each with the rounding to the smallest enclosing complex interval. The relational operators \(=,<>,<,<=,>,>=\) are to be interpreted as the corresponding set operators. Their meaning is
\[
\begin{array}{ll}
= & \text { equal } \\
<> & \text { not equal } \\
< & \text { propper subset } \\
<= & \text { subset } \\
> & \text { propper superset } \\
>= & \text { superset }
\end{array}
\]

These operators are defined on the base of \(=\) and \(<=\) according to (RD) (see page 130). If \(v\) and \(w\) are of type cinterval, then
\[
\mathrm{v}<=\mathrm{w} \Longleftrightarrow \text { (v.re }<=\text { w.re) and (v.im }<=\text { w.im). }
\]

The operators on the right side of the equivalence are the ones for intervals.
Moreover, this module supplies the operator in for the relations "is contained in" and "is contained in the interior" For two complex intervals \(v\) and \(w\), the operator in satisfies
```

v in w \Longleftrightarrow (v.re in w.re) and (v.im in w.im).

```

The operator \(><\) tests for disjointedness of two complex intervals. Two complex intervals \(v, w\) are disjoint if \(v \cap w=\varnothing\). The lattice operators \(+*\) and \(* *\) denote the complex interval hull and the complex interval intersection, respectively. The operator \(+*\) delivers the smallest complex interval enclosing both operands. The operator \(* *\) delivers the intersection. It is an error if the intersection is empty.
\begin{tabular}{|c|c|c|c|c|}
\hline Operand & \begin{tabular}{l}
integer \\
real
\end{tabular} & complex & interval & cinterval \\
\hline monadic & & & & +, - \\
\hline integer real & & +* & & \[
\begin{gathered}
\text { in, }=,<\gg \\
+*
\end{gathered}
\] \\
\hline complex & +* & +* & \[
\begin{gathered}
\text { in, } \\
=, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
\text { in }, \\
=, \\
+*
\end{gathered}
\] \\
\hline interval & & \[
\begin{gathered}
\diamond \\
=,<> \\
+* \\
\hline
\end{gathered}
\] & & \[
\begin{gathered}
\stackrel{\rightharpoonup}{\text { in }, \vee,><} \\
+*, * *
\end{gathered}
\] \\
\hline cinterval & \[
=,<>
\] & \[
\begin{gathered}
\diamond \\
=,<> \\
+*
\end{gathered}
\] & \[
\begin{aligned}
& \stackrel{\diamond}{\vee,><} \\
& +*, * *
\end{aligned}
\] & \[
\begin{gathered}
\text { in }, \vee,>< \\
+*, * * \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

The Operators of Module CI_ARI
\[
\begin{gathered}
\diamond \in\{+,-, *, /\} \\
\vee \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]

\section*{Example 3.3.1:}

If ca of type cinterval is
\[
\mathrm{ca}=[-1,3]+i[3,4],
\]
then the operators,+- , and \(*\) deliver
\begin{tabular}{lll|l}
\multicolumn{2}{c|}{ Expression } & Result \\
\hline ca & + & ca & {\([-2,6]+i[6,8]\)} \\
ca & - & ca & {\([-4,4]+i[-1,1]\)} \\
ca & \(*\) & ca & {\([-19,0]+i[-8,24]\)}
\end{tabular}

\section*{Transfer Functions}

The following transfer functions are provided for type conversions between the types real, complex, interval, and cinterval:
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline compl (i1,i2) & cinterval & Complex interval with real part i1 and imaginary part i2 \\
\hline compl (r,i) & cinterval & Complex interval with real part \(r\) and imaginary part \(i\) \\
\hline compl (i,r) & cinterval & Complex interval with real part \(i\) and imaginary part \(r\) \\
\hline compl (i) & cinterval & Complex interval with real part \(i\) and imaginary part 0 \\
\hline intval (c1, c2) & cinterval & Complex interval with real part [c1.re,c2.re] and imaginary part [c1.im,c2.im] \({ }^{(*)}\) \\
\hline intval (r,c) & cinterval & Complex interval with real part [r,c.re] and imaginary part [0,c.im] \({ }^{\left(*^{\prime}\right)}\) \\
\hline intval (\(\mathrm{c}, \mathrm{r}\)) & cinterval & Complex interval with real part [c.re,r] and imaginary part [c.im, 0\(]^{\left(*^{\prime \prime}\right)}\) \\
\hline intval (c) & cinterval & Complex interval with real part [c.re,c.re] and imaginary part [c.im,c.im] \\
\hline re (ci) & interval & Real part of \(c i\) \\
\hline im (ci) & interval & Imaginary part of ci \\
\hline \(\inf (\mathrm{ci})\) & complex & Complex lower bound \(z\) of \(c i\) with \(z=\) (ci.re.inf,ci.im.inf) \\
\hline sup (ci) & complex & Complex upper bound \(z\) of \(c i\) with \(z=\) (ci.re.sup,ci.im.sup) \\
\hline
\end{tabular}
\(\mathrm{r}=\) real expression, \(\quad \mathrm{i}, \mathrm{i} 1, \mathrm{i} 2=\) interval expression,
\(\mathrm{c}, \mathrm{c} 1, \mathrm{c} 2=\) complex expression, \(\mathrm{ci}=\) cinterval expression
\({ }^{(*)}\) : \(c 1<=c 2\) is assumed, otherwise an error occurs.
(*) : \(r<=c \quad\) is assumed, otherwise an error occurs.
\({ }^{\left(*^{\prime \prime}\right)}\) : \(c<=r\) is assumed, otherwise an error occurs.

\section*{Overloading of the Assignment Operator}

The type conversions real, complex, or interval to cinterval are provided as overloaded assignment operators:
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Assignment } & \multicolumn{2}{c|}{ Meaning } \\
\hline \hline ci & \(:=\) & r & ci \\
ci & \(:=\) & \(\mathrm{compl}(\) intval (r)) \\
ci & \(:=\) & i & ci \\
ci & \(:=\) & \(\operatorname{intval}(\mathrm{c})\) \\
\hline
\end{tabular}
\(\mathrm{ci}=\) cinterval variable, \(\mathrm{i}=\) interval expression
\(\mathrm{c}=\) complex expression, \(\mathrm{r}=\) real expression

\section*{Predefined Functions}

All mathematical functions of PASCAL-XSC available for real arguments are supplied for complex interval arguments \(c i\). These complex interval functions \(F\) satisfy \(F(c i) \supseteq f(c i)=\{f(c): c \in c i\}\). Moreover, functions for the computation of the angle component of the exponential representation, for the conjugation, and for the computation of midpoint, diameter, and epsilon inflation of a complex interval are available.
\begin{tabular}{|l|l|ll|}
\hline Function & Result Type & & Meaning \\
\hline \hline sqr \((\mathrm{ci})\) & cinterval & \((c i)^{2}\) & Square \\
sqrt \((\mathrm{ci})\) & cinterval & \(\sqrt{c i}\) & Square Root \\
\(\exp (\mathrm{ci})\) & cinterval & \(e^{c i}\) & Exponential Function \\
\(\operatorname{exp2}(\mathrm{ci})\) & cinterval & \(2^{c i}\) & Power Function, Base 2 \\
\(\operatorname{exp10}(\mathrm{ci})\) & cinterval & \(10^{c i}\) & Power Function, Base 10 \\
\(\ln (\mathrm{ci})\) & cinterval & \(\ln (c i)\) & Natural Logarithm \\
\(\log 2(\mathrm{ci})\) & cinterval & \(\log _{2}(c i)\) & Logarithm, Base 2 \\
\(\log 10(\mathrm{ci})\) & cinterval & \(\log _{10}(c i)\) & Logarithm, Base 10 \\
\(\sin (c i)\) & cinterval & \(\sin (c i)\) & Sine \\
\(\cos (c i)\) & cinterval & \(\cos (c i)\) & Cosine \\
\(\tan (c i)\) & cinterval & \(\tan (c i)\) & Tangent \\
\(\cot (c i)\) & cinterval & \(\cot (c i)\) & Cotangent \\
\(\arcsin (\mathrm{ci})\) & cinterval & \(\arcsin (c i)\) & Arc Sine \\
\(\arccos (c i)\) & cinterval & \(\arccos (c i)\) & Arc Cosine \\
\(\arctan (\mathrm{ci})\) & cinterval & \(\arctan (c i)\) & Arc Tangent \\
\(\operatorname{arccot}(\mathrm{ci})\) & cinterval & \(\operatorname{arccot}(c i)\) & Arc Cotangent \\
\hline
\end{tabular}
\(\mathrm{ci}=\) cinterval expression
\begin{tabular}{|c|c|c|c|}
\hline Function & Result Type & & Meaning \\
\hline \(\sinh (\mathrm{ci})\) & cinterval & \(\sinh (c i)\) & Hyperbolic Sine \\
\hline \(\cosh (\mathrm{ci})\) & cinterval & cosh (ci) & Hyperbolic Cosine \\
\hline \(\tanh\) (ci) & cinterval & \(\tanh (\mathrm{ci})\) & Hyperbolic Tangent \\
\hline coth (ci) & cinterval & coth (ci) & Hyperbolic Cotangent \\
\hline arsinh (ci) & cinterval & \(\operatorname{arsinh}(c i)\) & Inverse Hyperbolic Sine \\
\hline \(\operatorname{arcosh}(\mathrm{ci})\) & cinterval & \(\operatorname{arcosh}(c i)\) & Inverse Hyperbolic Cosine \\
\hline artanh (ci) & cinterval & artanh (ci) & Inverse Hyperbolic Tangent \\
\hline arcoth (ci) & cinterval & arcoth (ci) & Inverse Hyperb. Cotangent \\
\hline conj (ci) & cinterval & \(\overline{c i}=a-i b\) & Conjugation of ci \(=a+i b\) \\
\hline abs (ci) & interval & \(j=\sqrt{\text { ci.re }^{2}+\text { ci.im }^{2}}\) & Absolute Value of ci \\
\hline \(\arg\) (ci) & interval & \(\varphi\) & Angle component of the exponential representation of \(c i\) \\
\hline mid (ci) & complex & \(m\) & Midpoint of ci \\
\hline diam (ci) & real & \(d\) & Diameter of ci \\
\hline blow (ci,r) & cinterval & \(\ddagger\) & Epsilon Inflation \\
\hline
\end{tabular}

The domains and ranges of the predefined functions are implementation-dependent and are described in the user manual.

\section*{Example 3.3.2:}

If a of type cinterval is defined as
\[
\mathrm{a}:=\operatorname{compl}(\operatorname{intval}(-1,3), \text { intval }(3,4)),
\]
then the functions abs and sqr deliver the results:
\begin{tabular}{l|l}
Expression & \multicolumn{1}{|c}{ Result } \\
\hline abs (a) & {\([3,5]\)} \\
sqr (a) & {\([-16,0]+i[-8,24]\)}
\end{tabular}

\section*{Input/Output Procedures}

This module supplies the procedures
procedure read (var f: text; var a: cinterval);
procedure write (var f: text; a: cinterval);
with optional file parameters, arbitrarily many input/output parameters, but without format specifications.

A complex interval \(\mathrm{ci}=[x, y]+i[v, w]\) must be entered in the form
\[
([x, y],[v, w]) \quad \text { general complex interval }
\]
or in the form
\[
(x,[v, w]) \quad \text { with } x=y
\]
or in the form
\[
([x, y], v) \quad \text { with } v=w
\]
or in the form
\[
[x, y] \quad \text { with } v=w=0
\]
or in the form
\[
(x, v) \quad \text { with } x=y \text { and } v=w
\]
or in the form
\[
x \quad \text { with } x=y \text { and } v=w=0 .
\]

The rounding of real and imaginary part is done as described in section 3.2.
The output of a complex interval is done with the interval rounding described in section 3.2 for the real and imaginary parts. The result has the form
\[
([x, y],[v, w])
\]
with an implementation-dependent default format for the real values \(x, y, v\), and \(w\).

\section*{Example 3.3.3:}

If ci1, ci2, and ci3 are of type cinterval, then the statements
read (ci1, ci2, ci3);
writeln (ci1);
writeln (ci2);
writeln (ci3);
accept the input data
\([4,5]\)
100
and write the complex intervals
\[
\begin{aligned}
& ([4.0 \mathrm{E}+00,5.0 \mathrm{E}+00],[0.0 \mathrm{E}+00,0.0 \mathrm{E}+00]) \\
& ([8.0 \mathrm{E}+00,8.0 \mathrm{E}+00],[1.0 \mathrm{E}+01,1.0 \mathrm{E}+01]) \\
& ([1.0 \mathrm{E}+02,1.0 \mathrm{E}+02],[0.0 \mathrm{E}+00,0.0 \mathrm{E}+00])
\end{aligned}
\]

Another real representation may be used depending on the implementation.

\subsection*{3.4 The Module MV_ARI Real Matrix/Vector Arithmetic}

This module supplies all operators, functions, and procedures necessary for computations with real vectors and matrices.

\section*{Types}

The dynamic types for representing real vectors and matrices defined by
```

type rvector = dynamic array [*] of real;
rmatrix = dynamic array [*] of rvector;

```
are part of the language core of PASCAL-XSC. The actual index bounds are specified in connection with the declaration of variables of these types.

\section*{Operators}

Many of the basic matrix/vector operations known from mathematics are predefined in this module. There are the monadic operators,+- and the four basic operations \(+,-, *, /\), each with three different kinds of rounding. Special combinations of mixed types of operands are permitted. The operations + and - for vectors and matrices are defined componentwise by
\[
\begin{gathered}
c:=\mathrm{a} \pm \mathrm{b} \text { with } c[\mathrm{c}] \\
\mathrm{C}:=\mathrm{A} \pm \mathrm{B} \text { with } \mathrm{C}[\mathrm{i}, \mathrm{j}] \quad:=\mathrm{A}[\mathrm{i}] \pm \mathrm{i}, \mathrm{j}] \pm \mathrm{B}[\mathrm{i}[\mathrm{i}, \mathrm{j}]
\end{gathered}
\]
with a, \(b, c\) of type rvector, and \(A, B, C\) of type rmatrix. The operators * and / are defined by
\[
\begin{array}{rlllllllll}
\mathrm{s} & := & \mathrm{a} & * & \mathrm{~b} & \text { with } & \mathrm{s} & := & \# *(\text { for } \mathrm{i}:=1 \mathrm{lbound}(\mathrm{a}) \text { to ubound }(\mathrm{a}) \\
\mathrm{c} & := & \mathrm{r} & * & \mathrm{a} & \text { with } & \mathrm{c}[\mathrm{i}] & := & \mathrm{r} * \mathrm{a}[\mathrm{i}] \\
\mathrm{sum}(\mathrm{a}[\mathrm{i}] * \mathrm{~b}[\mathrm{i}])) \\
\ddagger
\end{array}
\]
with \(r, s\) of type real, a, \(b, c\) of type rvector and \(A, B, C\) of type rmatrix. The operations with directed rounding are defined in a corresponding way.
The definition of the relational operators \(=,<>,<,<=,>,>=\) is based upon \(=\) and \(<=\). It is realized according to (RD) (see page 130). If a and \(b\) are of type rvector, and \(A\) and \(B\) are of type rmatrix, then
\[
\begin{array}{lll}
a<=b & \Longleftrightarrow a[i] & <=b[i] \\
A & \text { for all } i \\
A[i, j] & <=B[i, j] & \text { for all } i, j
\end{array}
\]

The operators on the right side of the equivalences are the ones for values of type real.
\begin{tabular}{|c||c|c|c|}
\hline \begin{tabular}{c}
right \\
left \\
Operand
\end{tabular} & \begin{tabular}{c}
integer \\
real
\end{tabular} & rvector & rmatrix \\
\hline \hline monadic & &,+- &,+- \\
\hline \begin{tabular}{c}
integer \\
real
\end{tabular} & & \(*, *<, *>\) & \(*, *<, *>\) \\
\hline rvector & \begin{tabular}{c}
\(*, *<, *>\) \\
\(/, /<, />\)
\end{tabular} & \(\circ\) & \\
\hline rmatrix & \begin{tabular}{c}
\(*, *<, *>\) \\
\(/, /<, />\)
\end{tabular} & \(*, *<, *>\) & \begin{tabular}{c}
\\
\hline
\end{tabular} \\
\hline
\end{tabular}

The Operators of Module MV_ARI
\[
\begin{gathered}
\circ \in\{+,+<,+>,-,-<,->, *, *<, *>\} \\
\vee \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]

\section*{Example 3.4.1:}

A Runge-Kutta method can be used for the approximate solution of initial value problems of the form
\[
Y^{\prime}=F(x, Y) ; \quad Y\left(x^{0}\right)=Y^{0} ;
\]
with
\[
Y=\left(\begin{array}{c}
y_{1}(x) \\
\vdots \\
y_{n}(x)
\end{array}\right), Y^{\prime}=\left(\begin{array}{c}
y_{1}^{\prime}(x) \\
\vdots \\
y_{n}^{\prime}(x)
\end{array}\right)
\]
and
\[
F(x, Y)=\left(\begin{array}{c}
f_{1}\left(x, y_{1}, \ldots, y_{n}\right) \\
\vdots \\
f_{n}\left(x, y_{1}, \ldots, y_{n}\right)
\end{array}\right)
\]

To determine an approximation of the solution \(Y\) at \(x+h\), the formulas
\[
\begin{aligned}
K_{1} & =h * F(x, Y) \\
K_{2} & =h * F\left(x+\frac{h}{2}, Y+\frac{K_{1}}{2}\right) \\
K_{3} & =h * F\left(x+\frac{h}{2}, Y+\frac{K_{2}}{2}\right) \\
K_{4} & =h * F\left(x+h, Y+K_{3}\right)
\end{aligned}
\]
and
\[
Y(x+h)=Y(x)+\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) / 6
\]
are applied. After the definition of the rvector function \(F\) and the declaration of the variables \(k 1, k 2, k 3, k 4, Y\) of type rvector and \(h, x\) of type real, these formulas can directly be transferred into PASCAL-XSC source code:
\[
\begin{aligned}
& \mathrm{k} 1 \quad:=\mathrm{h} * \mathrm{~F}(\mathrm{x}, \mathrm{Y}) \text {; } \\
& \mathrm{k} 2:=\mathrm{h} * \mathrm{~F}(\mathrm{x}+\mathrm{h} / 2, \mathrm{Y}+\mathrm{k} 1 / 2) \text {; } \\
& \mathrm{k} 3:=\mathrm{h} * \mathrm{~F}(\mathrm{x}+\mathrm{h} / 2, \mathrm{Y}+\mathrm{k} 2 / 2) \text {; } \\
& \mathrm{k} 4:=\mathrm{h} * \mathrm{~F}(\mathrm{x}+\mathrm{h}, \mathrm{Y}+\mathrm{k} 3) \text {; } \\
& \mathrm{Y}:=\mathrm{Y}+(\mathrm{k} 1+2 * \mathrm{k} 2+2 * \mathrm{k} 3+\mathrm{k} 4) / 6 \text {; }
\end{aligned}
\]

\section*{Overloading of the Assignment Operator}

The componentwise initialization of rvector and rmatrix variables is provided as overloaded assignment operators:
\begin{tabular}{|c|c|c|}
\hline Assignment & & Meaning \\
\hline \(\mathrm{rv} \quad:=\mathrm{r}\) & \(\operatorname{rv}[\mathrm{j}] \quad:=\mathrm{r}\) & \(\mathrm{j}=\mathrm{lb}(\mathrm{rv}), \ldots, \mathrm{ub}(\mathrm{rv})\) \\
\hline \(\mathrm{rM}:=\mathrm{r}\) & \(\mathrm{rM}[\mathrm{j}, \mathrm{k}] \quad:=\mathrm{r}\) & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{rM}, 1), \ldots, \mathrm{ub}(\mathrm{rM}, 1) \\
& \mathrm{k}=\mathrm{lb}(\mathrm{rM}, 2), \ldots, \mathrm{ub}(\mathrm{rM}, 2)
\end{aligned}
\] \\
\hline
\end{tabular}
\(\mathrm{r}=\) real expression, \(\mathrm{rv}=\) rvector variable, \(\mathrm{rM}=\) rmatrix variable

\section*{Predefined Functions}

The functions id and null are supplied for generating an identity matrix and a null matrix or a null vector. Furthermore, the function transp computes the transposed of a matrix.
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline null (v) & rvector & Null vector with the actual index range of v \\
\hline vnull (n) & rvector & Null vector with the index range [1..n] \\
\hline null (M) & rmatrix & Null matrix with the actual index ranges of \(M\) \\
\hline null (M1,M2) & rmatrix & Null matrix with the actual index ranges of the product matrix M1 • M2 \\
\hline null (n) & rmatrix & Null matrix with index range [1..n,1..n] \\
\hline null (n1,n2) & rmatrix & Null matrix with index range [1..n1,1..n2] \\
\hline id (M) & rmatrix & Identity matrix with the actual index ranges of \(M\) \\
\hline id (M1,M2) & rmatrix & Identity matrix with the actual index ranges of the product matrix M1 - M2 \\
\hline id (n) & rmatrix & Identity matrix with the index ranges [1..n,1..n] \\
\hline id (n1,n2) & rmatrix & Identity matrix with the index ranges [1..n1,1..n2] \\
\hline transp (M) & rmatrix & Transposed matrix Mt of \(M\) with \(M t[i, j]=M[j, i]\) \\
\hline
\end{tabular}
\(\mathrm{n}, \mathrm{n} 1, \mathrm{n} 2=\) integer expression, \(\mathrm{v}=\) rvector expression
M, M1, M2 = rmatrix expression

\section*{Example 3.4.2:}

If \(E\) denotes the identity matrix and \(R \approx A^{-1}\) an approximate inverse of the square matrix \(A\), then the defect
\[
D=E-R \cdot A
\]
is often used in the numerical computations. In PASCAL-XSC, the defect can be computed by
\[
\mathrm{D}:=\mathrm{id}(\mathrm{~A})-\mathrm{R} * \mathrm{~A},
\]
or with the use of an accurate expression (see section 2.4.4) by
\[
\mathrm{D}:=\# *(\mathrm{id}(\mathrm{~A})-\mathrm{R} * \mathrm{~A}) .
\]

In the second form, the defect matrix is computed with only one rounding in each component.

\section*{Input/Output Procedures}

The procedures
procedure read (var f: text; var a: rvector);
procedure read (var f: text; var A: rmatrix);
procedure write (var f: text; a: rvector);
procedure write (var f: text; A: rmatrix);
are provided with optional file parameters, arbitrarily many input/output parameters, but without any format specifications.

The input of a vector or a matrix is done componentwise according to the input of real values. A matrix is entered row by row. The output of a vector or a matrix is also done componentwise using an implementation-dependent default format for the real components.

\section*{Example 3.4.3:}

The statement
\[
\operatorname{read}(\mathrm{b}, \mathrm{~A}, \mathrm{x})
\]
reads the vector \(b\), the matrix \(A\) and the vector \(x\).

\subsection*{3.5 The Module MVC_ARI Complex Matrix/Vector Arithmetic}

This module supplies all operators, functions, and procedures necessary for computations with complex vectors and matrices.

\section*{Types}

The dynamic types for representing complex vectors and matrices defined by
```

type cvector = dynamic array [*] of complex;
cmatrix = dynamic array [*] of cvector;

```
are part of the language core of PASCAL-XSC. The actual index bounds are specified in connection with the declaration of variables of these types.

\section*{Operators}

Many of the basic complex matrix/vector operations known from mathematics are predefined in this module. There are the monadic operators,+- and the four basic operations \(+,-, *, /\), each with three different kinds of rounding. Special combinations of mixed types of operands are permitted. The operations + and for complex vectors and matrices are defined componentwise by
\[
\begin{gathered}
\mathrm{c}:=\mathrm{a} \pm \mathrm{b} \text { with } c[\mathrm{c}[\mathrm{i}] \\
\mathrm{C}:=\mathrm{A} \pm \mathrm{B}[\mathrm{i}] \pm \mathrm{b}[\mathrm{i}] \\
\mathrm{B}
\end{gathered} \mathrm{with} \mathrm{C}[\mathrm{i}, \mathrm{j}] \quad:=\mathrm{A}[\mathrm{i}, \mathrm{j}] \pm \mathrm{B}[\mathrm{i}, \mathrm{j}] .
\]
with \(a, b\), and \(c\) of type cvector, and \(A, B\), and \(C\) of type cmatrix. The operators * and / are defined by
\[
\begin{aligned}
& \mathrm{s}:=\mathrm{a} * \mathrm{~b} \text { with } \mathrm{s} \quad:=\# *(\text { for } \mathrm{i}:=\operatorname{lbound}(\mathrm{a}) \text { to ubound(a) } \\
& \operatorname{sum}(\mathrm{a}[\mathrm{i}] * \mathrm{~b}[\mathrm{i}])) \quad \ddagger \\
& \mathrm{c}:=\mathrm{r} * \mathrm{a} \text { with } \mathrm{c}[\mathrm{i}] \quad:=\mathrm{r} * \mathrm{a}[\mathrm{i}] \\
& \mathrm{c}:=\mathrm{a} * \mathrm{r} \text { with } \mathrm{c}[\mathrm{i}] \quad:=\mathrm{a}[\mathrm{i}] * \mathrm{r} \\
& \mathrm{c}:=\mathrm{a} / \mathrm{r} \text { with } \mathrm{c}[\mathrm{i}] \quad:=\mathrm{a}[\mathrm{i}] / \mathrm{r} \\
& \mathrm{c}:=\mathrm{A} * \mathrm{~b} \text { with } \mathrm{c}[\mathrm{i}] \quad:=\mathrm{A}[\mathrm{i}] * \mathrm{~b} \quad \ddagger \\
& \mathrm{C}:=\mathrm{r} * \mathrm{~A} \text { with } \mathrm{C}[\mathrm{i}, \mathrm{j}]:=\mathrm{r} * \mathrm{~A}[\mathrm{i}, \mathrm{j}] \\
& \mathrm{C}:=\mathrm{A} * \mathrm{r} \text { with } \mathrm{C}[\mathrm{i}, \mathrm{j}]:=\mathrm{A}[\mathrm{i}, \mathrm{j}] * \mathrm{r} \\
& \mathrm{C}:=\mathrm{A} / \mathrm{r} \text { with } \mathrm{C}[\mathrm{i}, \mathrm{j}] \quad:=\mathrm{A}[\mathrm{i}, \mathrm{j}] / \mathrm{r} \\
& \mathrm{C}:=\mathrm{A} * \mathrm{~B} \text { with } \mathrm{C}[\mathrm{i}, \mathrm{j}] \quad:=\mathrm{A}[\mathrm{i}] * \mathrm{~B}[*, \mathrm{j}] \quad \ddagger \\
& \ddagger \text { : Scalar product } \\
& \text { with maximum accuracy }
\end{aligned}
\]
with \(r\) and \(s\) of type complex, \(a, b\). and \(c\) of type \(c\) vector, and \(A, B\), and \(C\) of type cmatrix. The operations with mixed operand types and the operations with directed rounding are defined in a corresponding way.
The definition of the relational operators \(=,<>,<,<=,>,>=\) is based upon \(=\) and \(<=\). It is realized according to (RD) (see page 130). If \(a\) and \(b\) are of type cvector and \(A\) and \(B\) are of type cmatrix, then
\[
\begin{aligned}
& \mathrm{a}<=\mathrm{b} \Longleftrightarrow \mathrm{a}[\mathrm{i}] \quad<=\mathrm{b}[\mathrm{i}] \quad \text { for all i } \\
& A<=B \Longleftrightarrow A[i, j]<=B[i, j] \text { for all } i, j
\end{aligned}
\]

The operators on the right side of the equivalences are the ones for values of type complex.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (eft \begin{tabular}{r}
right \\
Operand \\
Operand
\end{tabular} & integer real & complex & rvector & cvector & rmatrix & cmatrix \\
\hline monadic & & & & +, - & & +, - \\
\hline integer real & & & & *, *<, *> & & *, *<, *> \\
\hline complex & & & \(*, *<, *>\) & *, *<, *> & *, *<, *> & *, *<, *> \\
\hline rvector & & \[
\begin{aligned}
& *, *<, *>, \\
& /, /<, />
\end{aligned}
\] & & v & & \\
\hline cvector & \[
\begin{aligned}
& *, *<, *>, \\
& \mid, /<, />
\end{aligned}
\] & \[
\begin{aligned}
& *, *<, *>, \\
& \mid, /<, />
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \vee
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \vee
\end{aligned}
\] & & \\
\hline rmatrix & & \[
\begin{aligned}
& *, *<, *>, \\
& \mid, /<, />
\end{aligned}
\] & & *, *<, *> & & \[
\stackrel{\circ}{\circ}
\] \\
\hline cmatrix & \[
\begin{aligned}
& *, *<, *>, \\
& \mid, /<, />
\end{aligned}
\] & \[
\begin{aligned}
& *, *<, *>, \\
& \mid, /<, />
\end{aligned}
\] & *, *<, *> & *, *<, *> & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{\circ}{\circ}
\] \\
\hline
\end{tabular}

The Operators of Module MVC_ARI
\[
\begin{gathered}
\circ \in\{+,+<,+>,-,-<,->, *, *<, *>\} \\
\vee \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]

\section*{Example 3.5.1:}

If \(c v\) is of type cvector and \(c M\) is of type cmatrix, then a stretching with the factor \(1 / 3\) may be produced by
\[
\begin{aligned}
& \mathrm{cv}:=\mathrm{cv} / 3 ; \\
& \mathrm{cM}:=\mathrm{cM} / 3 ;
\end{aligned}
\]

The division operation may also be executed with downwardly or upwardly rounding using / or \(/>\), respectively.

\section*{Transfer Functions for Complex Vectors}

The following transfer functions are supplied for type conversion between the types rvector and cvector:
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Function } & Result Type & \multicolumn{1}{|c|}{ Meaning } \\
\hline \hline compl (rv1,rv2) & cvector & \begin{tabular}{l}
Complex vector \(c v\) with \\
\(c v[i]=c o m p l ~(r v 1[i], ~ r v 2[i]) ~\)
\end{tabular} \\
\(\operatorname{compl}(\mathrm{rv})\) & cvector & \begin{tabular}{l}
Complex vector \(c v\) with \\
\(c v[i]=\operatorname{compl}(r v[i])\)
\end{tabular} \\
re (cv) & rvector & \begin{tabular}{l}
Real part vector rv with \\
\(r v[i]=r e(c v[i])\)
\end{tabular} \\
im (cv) & rvector & \begin{tabular}{l}
Imaginary part vector \(r v\) with \\
\(r v[i]=i m ~(c v[i])\)
\end{tabular} \\
\hline
\end{tabular}
rv, rv1, rv2 \(=\) rvector expression, \(\quad \mathrm{cv}=c\) vector expression

\section*{Transfer Functions for Complex Matrices}

The following transfer functions are supplied for type conversion between the types rmatrix and cmatrix:
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Function } & Result Type & \multicolumn{1}{|c|}{ Meaning } \\
\hline \hline compl (rM1,rM2) & cmatrix & \begin{tabular}{l}
Complex matrix \(c M\) with \\
\(c M[i, j]=\operatorname{compl}(r M 1[i, j], r M 2[i, j])\)
\end{tabular} \\
compl (rM) & cmatrix & \begin{tabular}{l}
Complex matrix \(c M\) with \\
\(c M[i, j]=\operatorname{compl}(r M[i, j])\)
\end{tabular} \\
re (cM) & rmatrix & \begin{tabular}{l}
Real part matrix \(r M\) with \\
\(r M[i, j]=r e(c M[i, j])\)
\end{tabular} \\
im (cM) & rmatrix & \begin{tabular}{l}
Imaginary part matrix rM with \\
\(r M[i, j]=\) im \((c M[i, j])\)
\end{tabular} \\
\hline
\end{tabular}
\(\mathrm{rM}, \mathrm{rM} 1, \mathrm{rM} 2=\) rmatrix expression, \(\quad \mathrm{cM}=\) cmatrix expression

\section*{Overloading of the Assignment Operator}

The componentwise initialization of cvector and cmatrix variables and type conversions from rvector to cvector and rmatrix to cmatrix are provided as overloaded assignment operators:
\begin{tabular}{|c|c|c|}
\hline Assignment & \multicolumn{2}{|r|}{Meaning} \\
\hline cv \(:=\mathrm{r}\) & \(\mathrm{cv}[\mathrm{j}] \quad:=\) compl (r) & \(\mathrm{j}=\mathrm{lb}(\mathrm{cv}), \ldots, \mathrm{ub}(\mathrm{cv})\) \\
\hline cv \(:=\mathrm{c}\) & \(\operatorname{cv}[\mathrm{j}] \quad:=\mathrm{c}\) & \(\mathrm{j}=\mathrm{lb}(\mathrm{cv}), \ldots, \mathrm{ub}(\mathrm{cv})\) \\
\hline cv \(:=\mathrm{rv}\) & cv \(\quad:=\) compl (rv) & \\
\hline cM : \(=\mathrm{r}\) & \(\mathrm{cM}[\mathrm{j}, \mathrm{k}] \quad:=\) compl (r) & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{cM}, 1), \ldots, \mathrm{ub}(\mathrm{cM}, 1) \\
& \mathrm{k}=\mathrm{lb}(\mathrm{cM}, 2), \ldots, \mathrm{ub}(\mathrm{cM}, 2)
\end{aligned}
\] \\
\hline \(\mathrm{cM}:=\mathrm{c}\) & \[
\mathrm{cM}[\mathrm{j}, \mathrm{k}]:=\mathrm{c}
\] & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{cM}, 1), \ldots, \mathrm{ub}(\mathrm{cM}, 1) \\
& \mathrm{k}=\mathrm{lb}(\mathrm{cM}, 2), \ldots, \mathrm{ub}(\mathrm{cM}, 2)
\end{aligned}
\] \\
\hline \(\mathrm{cM}:=\mathrm{rM}\) & \(\mathrm{cM} \quad:=\) compl (rM) & \\
\hline
\end{tabular}
\(\mathrm{c}=\) complex expression, \(\quad \mathrm{cv}=\) cvector variable
\(\mathrm{cM}=\) cmatrix variable, \(\mathrm{r}=\) real expression
\(\mathrm{rv}=\) rvector expression, \(\quad \mathrm{rM}=\) rmatrix expression

\section*{Predefined Functions}

The functions id and null are supplied for generating an identity matrix and a null matrix or a null vector. The functions transp and herm compute the transposed and the Hermitian matrices. The function conj for conjugation is available, too.
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline null (cv) & rvector & Null vector with the actual index range of cv \\
\hline null (cM) & rmatrix & Null matrix with the actual index ranges of \(c M\) \\
\hline null (cM1,cM2) & rmatrix & Null matrix with the actual index ranges of the product matrix \(c M 1 \cdot c M 2\) \\
\hline id (cM) & rmatrix & Identity matrix with the actual index ranges of \(c M\) \\
\hline id (cM1,cM2) & rmatrix & Identity matrix with the actual index ranges of the product matrix \(c \mathrm{M1} \cdot \mathrm{cM} 2\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline conj (cv) & cvector & Conjugated complex vector cvc with \(c v c[i]=\operatorname{conj}(c v[i])\) \\
\hline conj (cM) & cmatrix & Conjugated complex matrix \(c M c\) with \(c M c[i, j]=\operatorname{conj}(c M[i, j])\) \\
\hline transp (cM) & cmatrix & Transposed matrix \(c M t\) of \(c M\) with \(c M t[i, j]=c M[j, i]\) \\
\hline herm (cM) & cmatrix & Hermitian matrix \(c M h\) of \(c M\) with \(c M h[i, j]=\operatorname{conj}(c M[j, i])\) \\
\hline
\end{tabular}
\(\mathrm{cv}, \mathrm{cvc}=\) cvector expression, \(\quad \mathrm{cM}, \mathrm{cMc}, \mathrm{cMt}, \mathrm{cMh}=\) cmatrix expression

\section*{Example 3.5.2:}

If \(c M, c M 1\), and \(c M 2\) are complex matrices of type cmatrix, and the statements
\[
\begin{aligned}
& \mathrm{cM} 1:=\operatorname{conj}(\operatorname{transp}(\mathrm{cM})) \\
& \mathrm{cM} 2:=\operatorname{herm}(\mathrm{cM}) ;
\end{aligned}
\]
are executed, then the boolean expression
\[
\mathrm{cM} 1=\mathrm{cM} 2
\]
delivers true.

\section*{Input/Output Procedures}

The procedures
procedure read (var f: text; var a: cvector);
procedure read (var f: text; var A: cmatrix);
procedure write (var f: text; a: cvector);
procedure write (var f: text; A: cmatrix);
are provided with optional file parameters, arbitrary many input/output parameters, but without any format specifications.

A complex vector or a complex matrix is entered componentwise according to the input of complex values. A matrix is entered row by row. The output of a complex vector or a complex matrix is also done componentwise using the default output format for complex numbers.

\subsection*{3.6 The Module MVI_ARI Interval Matrix/Vector Arithmetic}

This module supplies all operators, functions, and procedures necessary for computations with interval vectors and matrices.

\section*{Types}

The dynamic types for representing interval vectors and matrices defined by
\[
\begin{aligned}
\text { type ivector } & =\text { dynamic array }[*] \text { of interval; } ; \\
\text { imatrix } & =\text { dynamic array }[*] \text { of ivector; }
\end{aligned}
\]
are part of the language core of PASCAL-XSC. The actual index bounds are specified in connection with the declaration of variables of these types.

\section*{Operators}

Many of the basic interval matrix/vector operations known from the mathematics are predefined in this module. There are the monadic operators,+- and the four basic operations \(+,-, *, /\), each with componentwise rounding to the smallest enclosing interval. Even special combinations of mixed types of operands are permitted. The operations + and - for interval vectors and matrices are defined componentwise by
\[
\begin{gathered}
\mathrm{c}:=\mathrm{a} \pm \mathrm{b} \text { with } c[\mathrm{c}[\mathrm{i}] \\
\mathrm{C}:=\mathrm{A} \pm \mathrm{B}[\mathrm{i}] \pm \mathrm{b}[\mathrm{i}] \\
\mathrm{B}
\end{gathered} \mathrm{with} \mathrm{C}[\mathrm{i}, \mathrm{j}] \quad:=\mathrm{A}[\mathrm{i}, \mathrm{j}] \pm \mathrm{B}[\mathrm{i}, \mathrm{j}] .
\]
with \(a, b\), and \(c\) of type ivector and \(A, B\), and \(C\) of type imatrix. The operators * and / are defined by
\[

\]
with \(r\) and \(s\) of type interval, a, b, and \(c\) of type ivector, and \(A, B\), and \(C\) of type imatrix. The operations with mixed operand types are defined in a corresponding way.
The definition of the relational operators \(=,<>,<,<=,>,>=\) is based upon \(=\) and \(<=\). It is realized according to (RD) (see page 130). If a and \(b\) are of type ivector, and \(A\) and \(B\) of type imatrix, then
\[
\begin{array}{lll}
a<=b & \Longleftrightarrow a[i] & <=b[i] \\
A<=B & \text { for all i } \\
A & \Longleftrightarrow A[i, j] & <=B[i, j] \\
\text { for all } i, j
\end{array}
\]

The operators on the right side of the equivalences are the ones for values of type interval.

Moreover, the operators in for the relations "is contained in" and "is contained in the interior" and the operator \(><\) to test for disjointedness are provided for interval vectors and interval matrices. These operators are defined componentwise.

The lattice operators \(+*\) and \(* *\) denote the interval hull and the interval intersection as described for the type interval in section 3.2 (I_ARI).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline left
Operand \begin{tabular}{r}
Operant
\end{tabular} & integer real & interval & rvector & ivector & rmatrix & imatrix \\
\hline monadic & & & & +, - & & +, - \\
\hline integer real & & & & * & & * \\
\hline interval & & & * & * & * & * \\
\hline rvector & & *,/ & +* & \[
=\stackrel{\diamond}{\stackrel{\diamond}{+}, \text { in }}
\] & & \\
\hline ivector & *,/ & *, / & \[
=,<>
\] & \[
\begin{gathered}
\text { in, }, ~ \\
+*,>*
\end{gathered}
\] & & \\
\hline rmatrix & & *,/ & & * & +* & \[
=, \stackrel{\diamond>}{+*}+\text { in }
\] \\
\hline imatrix & *,/ & *,/ & * & * & \[
=,<>
\] & \[
\begin{gathered}
\text { in }, \vee,>< \\
+*, * *
\end{gathered}
\] \\
\hline
\end{tabular}

The Operators of Module MVI_ARI
\[
\begin{gathered}
\diamond \in\{+,-, *\} \\
\vee \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]

\section*{Example 3.6.1:}

If we want to execute the Runge-Kutta method mentioned in section 3.4 (MV_ARI) using interval arithmetic, we only have to change a few things in the original program. The variables \(k 1, k 2, k 3, k 4, Y\) must be declared of type ivector, and the function \(F\) must be defined with result type ivector. If we now use the module MVI_ARI instead of MV_ARI, the program statements
\[
\begin{aligned}
& \mathrm{k} 1 \quad:=\mathrm{h} * \mathrm{~F}(\mathrm{x}, \mathrm{Y}) \text {; } \\
& \mathrm{k} 2:=\mathrm{h} * \mathrm{~F}(\mathrm{x}+\mathrm{h} / 2, \mathrm{Y}+\mathrm{k} 1 / 2) \text {; } \\
& \mathrm{k} 3:=\mathrm{h} * \mathrm{~F}(\mathrm{x}+\mathrm{h} / 2, \mathrm{Y}+\mathrm{k} 2 / 2) \text {; } \\
& \mathrm{k} 4:=\mathrm{h} * \mathrm{~F}(\mathrm{x}+\mathrm{h}, \mathrm{Y}+\mathrm{k} 3) \text {; } \\
& \mathrm{Y}:=\mathrm{Y}+(\mathrm{k} 1+2 * \mathrm{k} 2+2 * \mathrm{k} 3+\mathrm{k} 4) / 6 \text {; }
\end{aligned}
\]
need not be changed in any way. Now, all operators denote the corresponding interval operations. Although we have an interval result \(Y\), we do not have an enclosure for the true solution of the ordinary differential equation. To compute an enclosure, we would also have to enclose the truncation error of the method.

\section*{Transfer Functions for Interval Vectors}

The following transfer functions are supplied for type conversions between the types rvector and ivector:
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Function } & Result Type & \multicolumn{1}{|c|}{ Meaning } \\
\hline \hline intval (rv1,rv2) & ivector & \begin{tabular}{l}
Interval vector iv with \\
iv[i] = intval (rv1[i],rv2[i]) (*)
\end{tabular} \\
intval (rv) & ivector & \begin{tabular}{l}
Interval vector iv with \\
iv[i] = intval (rv[i])
\end{tabular} \\
\(\inf (i v)\) & rvector & \begin{tabular}{l}
Vector rv of lower bounds with \\
\(r v[i]=\inf (i v[i])\) \\
Vector \(r v\) of upper bounds with \\
\(r v[i]=\sup (i v[i])\)
\end{tabular} \\
\hline
\end{tabular}
rv, rv1, rv2 \(=\) rvector expression, \(\quad\) iv \(=\) ivector expression
\({ }^{(*)}\) : rv1 \(<=\) rv2 is assumed, otherwise an error occurs.

\section*{Transfer Functions for Interval Matrices}

The following transfer functions are supplied for type conversions between the types rmatrix and imatrix:
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline intval (rM1,rM2) & imatrix & \begin{tabular}{l}
Interval vector iM with \(i M[i, j]=\operatorname{intval}(r M 1[i, j], r M 2[i, j])\) \\
(*)
\end{tabular} \\
\hline intval (rM) & imatrix & Interval vector \(i M\) with \(i M[i, j]=\operatorname{intval}(r M[i, j])\) \\
\hline inf (iM) & rmatrix & Vector \(r M\) of lower bounds with \(r M[i, j]=\inf (i M[i, j])\) \\
\hline sup (iM) & rmatrix & Vector \(r M\) of upper bounds with \(r M[i, j]=\sup (i M[i, j])\) \\
\hline
\end{tabular}
rM, rM1, rM2 \(=\) rmatrix expression, \(\quad \mathrm{iM}=\) imatrix expression
\({ }^{(*)}\) : \(\mathrm{rM} 1<=\mathrm{rM} 2\) is assumed, otherwise an error occurs.

\section*{Overloading of the Assignment Operator}

The componentwise initialization of ivector and imatrix variables and type conversions from rvector to ivector and rmatrix to imatrix are provided as overloaded assignment operators:
\begin{tabular}{|c|c|c|}
\hline Assignment & \multicolumn{2}{|c|}{Meaning} \\
\hline iv \(\quad:=\mathrm{r}\) & \(\mathrm{iv}[\mathrm{j}] \quad:=\) intval (r) & \(\mathrm{j}=\mathrm{lb}(\mathrm{iv}), \ldots, \mathrm{ub}(\mathrm{iv})\) \\
\hline iv \(:=\) i & \(\mathrm{iv}[\mathrm{j}] \quad:=\mathrm{i}\) & \(\mathrm{j}=\mathrm{lb}(\mathrm{iv}), \ldots, \mathrm{ub}(\mathrm{iv})\) \\
\hline iv \(:=r v\) & iv \(\quad:=\) intval (rv) & \\
\hline \(\mathrm{iM}:=\mathrm{r}\) & \(\mathrm{iM}[\mathrm{j}, \mathrm{k}] \quad:=\) intval (r) & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{iM}, 1), \ldots, \mathrm{ub}(\mathrm{iM}, 1) \\
& \mathrm{k}=\operatorname{lb}(\mathrm{iM}, 2), \ldots, \mathrm{ub}(\mathrm{iM}, 2)
\end{aligned}
\] \\
\hline \(\mathrm{iM} \quad:=\mathrm{i}\) & \(\mathrm{iM}[\mathrm{j}, \mathrm{k}] \quad:=\mathrm{i}\) & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{iM}, 1), \ldots, \mathrm{ub}(\mathrm{iM}, 1) \\
& \mathrm{k}=\operatorname{lb}(\mathrm{iM}, 2), \ldots, \mathrm{ub}(\mathrm{iM}, 2)
\end{aligned}
\] \\
\hline \(\mathrm{iM}:=\mathrm{rM}\) & iM \(\quad:=\) intval (rM) & \\
\hline
\end{tabular}
\(\mathrm{i}=\) interval expression, \(\mathrm{iv}=\) ivector variable, \(\mathrm{iM}=\) imatrix variable
\(\mathrm{r}=\) real expression, \(\mathrm{rv}=\) rvector expression, \(\mathrm{rM}=\) rmatrix expression

\section*{Predefined Functions}

The functions id and null are supplied for generating an identity matrix and a null matrix or a null vector. The function transp computes the transposed matrix. The functions mid, diam, and blow compute midpoint, diameter, and epsilon inflation componentwise.
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline null (iv) & rvector & Null vector with the actual index range of iv \\
\hline null (iM) & rmatrix & Null matrix with the actual index ranges of iM \\
\hline null (iM1,iM2) & rmatrix & Null matrix with the actual index ranges of the product matrix iM1 • iM2 \\
\hline id (iM) & rmatrix & Identity matrix with the actual index ranges of iM \\
\hline id (iM1,iM2) & rmatrix & Identity matrix with the actual index ranges of the product matrix iM1 - iM2 \\
\hline mid (iv) & rvector & Midpoint vector rv with \(r v[i]=\operatorname{mid}(i v[i])\) \\
\hline diam (iv) & rvector & Diameter vector rv with \(\operatorname{rv}[i]=\operatorname{diam}(i v[i])\) \\
\hline mid (iM) & rmatrix & Midpoint matrix \(r M\) with \(r M[i, j]=\operatorname{mid}(i M[i, j])\) \\
\hline diam (iM) & rmatrix & Diameter matrix \(r M\) with \(r M[i, j]=\operatorname{diam}(i M[i, j])\) \\
\hline transp (iM) & imatrix & Transposed matrix iMt of iM with \(i M t[i, j]=i M[j, i]\) \\
\hline blow (iv,r) & ivector & Vector epsilon inflation ive with ive \([i]=\) blow (iv[i],r) \\
\hline blow (iM,r) & imatrix & Matrix epsilon inflation iMe with iMe \([i, j]=\) blow (iM[i, j],r) \\
\hline
\end{tabular}

\section*{Example 3.6.2:}

An interval enclosure for the defect
\[
\mathrm{D}=\mathrm{E}-\mathrm{R} \cdot \mathrm{~A}
\]
mentioned in section 3.4 (MV_ARI) can be computed by using MVI_ARI, the variables \(A, D\), and \(R\) of type imatrix, and the statement
\[
\mathrm{D}:=\mathrm{id}(\mathrm{~A})-\mathrm{R} * \mathrm{~A} .
\]

The tightest possible enclosing interval matrix can be computed using an accurate expression (see section 2.4.4)
\[
\mathrm{D}:=\# \#(\mathrm{id}(\mathrm{~A})-\mathrm{R} * \mathrm{~A})
\]

\section*{Input/Output Procedures}

The procedures
procedure read (var f: text; var a: ivector);
procedure read (var f: text; var A: imatrix);
procedure write (var f: text; a: ivector);
procedure write (var f: text; A: imatrix);
are provided with optional file parameters, arbitrarily many input/output parameters, but without any format specifications.

An interval vector or an interval matrix is entered componentwise as individual interval values. A matrix is entered row by row. The output of an interval vector or an interval matrix is also done componentwise using the default output format for intervals.

\subsection*{3.7 The Module MVCI_ARI Complex Interval Matrix/Vector Arithmetic}

This module supplies all operators, functions, and procedures necessary for computations with complex interval vectors and matrices.

\section*{Types}

The dynamic types for representing complex interval vectors and matrices defined by
\[
\begin{aligned}
\text { type civector } & =\text { dynamic array }[*] \text { of cinterval; } \\
\text { cimatrix } & =\text { dynamic array }[*] \text { of civector; }
\end{aligned}
\]
are part of the language core of PASCAL-XSC. The actual index bounds are specified in connection with the declaration of variables of these types.

\section*{Operators}

Many of the basic complex interval matrix/vector operations known from the mathematics are predefined in this module. There are the monadic operators,+- and the four basic operations \(+,-, *, /\), each with componentwise rounding to the smallest enclosing complex interval. Even special combinations of mixed types of operands are permitted. The operations + and - for complex interval vectors and matrices are defined componentwise by
\[
\begin{gathered}
\mathrm{c}:=\mathrm{a} \pm \mathrm{b} \text { with } c[\mathrm{c}[\mathrm{i}] \\
\mathrm{C}:=\mathrm{A} \pm \mathrm{A}[\mathrm{i}] \pm \mathrm{b}[\mathrm{i}] \\
\mathrm{B}
\end{gathered} \mathrm{with} \mathrm{C}[\mathrm{i}, \mathrm{j}] \quad:=\mathrm{A}[\mathrm{i}, \mathrm{j}] \pm \mathrm{B}[\mathrm{i}, \mathrm{j}] .
\]
with a, \(b\), and \(c\) of type civector and \(A, B\), and \(C\) of type cimatrix. The operators * and / are defined by
\[

\]
with \(r\) and \(s\) of type cinterval, \(a, b\), and \(c\) of type civector, and \(A, B\), and \(C\) of type cimatrix. The operations with mixed operand types are defined in a corresponding way.

The definition of the relational operators \(=,<>,<,<=,>,>=\) is based upon \(=\) and \(<=\). It is realized according to (RD) (see page 130). If a and \(b\) are of type civector and \(A\) and \(B\) are of type cimatrix, then
\[
\begin{array}{llll}
a & ==b & \Longleftrightarrow a[i] & <=b[i] \\
A & \text { for all } i \\
B=B & \Longleftrightarrow i, j] & <=B[i, j] & \text { for all } i, j
\end{array}
\]

The operators on the right side of the equivalences are the ones for complex intervals.
Moreover, the operators in for the relations "is contained in" and "is contained in the interior", and the operator \(><\) for the test on disjointedness are provided for complex interval vectors and complex interval matrices. These operators are defined componentwise.

The lattice operators \(+*\) and \(* *\) denote the complex interval hull and the complex interval intersection as described for the type cinterval in section 3.3 (CI_ARI).

The review of the operators defined in Module MVCI_ARI is given in two tables due to the large number of operators. The first table has no matrix types as right operands, while the second table has only matrix types as right operands.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & integer real & complex & interval & cinterval & rvector & cvector & ivector & civector \\
\hline monadic & & & & & & & & +, - \\
\hline integer real & & & & & & & & * \\
\hline complex & & & & & & & * & * \\
\hline interval & & & & & & * & & * \\
\hline cinterval & & & & & * & * & * & * \\
\hline rvector & & & & *,/ & & +* & & \[
=, \stackrel{\diamond>, \text { in }}{+*}
\] \\
\hline cvector & & & *,/ & *,/ & +* & +* & \[
=, \stackrel{\diamond}{+>, \text { in }}+
\] & \[
=, \stackrel{\diamond>, \text { in }}{+*}
\] \\
\hline ivector & & *, / & & *,/ & & \[
\begin{gathered}
\diamond, \\
=,<>, \\
+*
\end{gathered}
\] & & \[
\begin{gathered}
\text { in }, V,><, \\
+*, * *
\end{gathered}
\] \\
\hline civector & *,/ & *, / & *,/ & *,/ & \[
\begin{aligned}
& \stackrel{\diamond}{,},<>, \\
& +*
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\diamond}{,},<>, \\
& +*
\end{aligned}
\] & \[
\begin{aligned}
& \vee,><, \\
& +*, * *
\end{aligned}
\] & \[
\begin{gathered}
\text { in }, \vee,><, \\
+*, * *
\end{gathered}
\] \\
\hline rmatrix & & & & *, / & & & & * \\
\hline cmatrix & & & *,/ & *,/ & & & * & * \\
\hline imatrix & & *, / & & *, / & & * & & * \\
\hline cimatrix & *, / & *, / & *, / & *, / & * & * & * & * \\
\hline
\end{tabular}

The Operators of Module MVCI_ARI (Part 1)
\[
\begin{gathered}
\diamond \in\{+,-, *\} \\
v \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & rmatrix & cmatrix & imatrix & cimatrix \\
\hline monadic & & & & +, - \\
\hline integer real & & & & * \\
\hline complex & & & * & * \\
\hline interval & & * & & * \\
\hline cinterval & * & * & * & * \\
\hline rvector & & & & \\
\hline cvector & & & & \\
\hline ivector & & & & \\
\hline civector & & & & \\
\hline rmatrix & & +* & & \[
\begin{aligned}
=, & <>, \text { in } \\
& +*
\end{aligned}
\] \\
\hline cmatrix & +* & +* & \[
\begin{gathered}
=, \quad<>, \text { in } \\
+*
\end{gathered}
\] & \[
\begin{gathered}
=, \quad<>, \text { in } \\
+*
\end{gathered}
\] \\
\hline imatrix & & \[
\begin{gathered}
\stackrel{\diamond}{2} \\
=,<>, \\
+*
\end{gathered}
\] & & \[
\begin{gathered}
\text { in }, V,><, \\
+*, * *
\end{gathered}
\] \\
\hline cimatrix & \[
\begin{gathered}
\diamond, \\
=,<>, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
\diamond, \\
=,<>, \\
+*
\end{gathered}
\] & \[
\begin{aligned}
& \vee,>< \\
& +*, * *
\end{aligned}
\] & \[
\begin{gathered}
\text { in }, V,><, \\
+*, * *
\end{gathered}
\] \\
\hline
\end{tabular}

The Operators of Module MVCI_ARI (Part 2)
\[
\begin{gathered}
\diamond \in\{+,-, *\} \\
v \in\{=,<>,<,<=,>,>=\}
\end{gathered}
\]

\section*{Transfer Functions for Complex Interval Vectors}

The following transfer functions are supplied for type conversions between the types rvector, cvector, ivector, and civector:
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline compl (iv1,iv2) & civector & Complex interval vector civ with \(\operatorname{civ}[i]=\operatorname{compl}(\operatorname{iv1}[i], i v 2[i])\) \\
\hline compl (rv,iv) & civector & Complex interval vector civ with \(\operatorname{civ}[i]=\operatorname{compl}(r v[i], i v[i])\) \\
\hline compl (iv,rv) & civector & Complex interval vector civ with \(\operatorname{civ}[i]=\operatorname{compl}(\mathrm{iv}[\mathrm{i}], r v[i])\) \\
\hline compl (iv) & civector & Complex interval vector civ with \(\operatorname{civ}[i]=\operatorname{compl}(\mathrm{iv}[i])\) \\
\hline intval (cv1,cv2) & civector & Complex interval vector civ with \(\operatorname{civ}[i]=\operatorname{intval}(\operatorname{cv} 1[i], c v 2[i])\) \\
\hline intval (rv,cv) & civector & Complex interval vector civ with \(\operatorname{civ}[i]=\operatorname{intval}(r v[i], c v[i])\) \\
\hline intval (cv,rv) & civector & Complex interval vector civ with \(\operatorname{civ}[i]=\operatorname{intval}(c v[i], r v[i])\) \\
\hline intval (& civector & Interval vector civ with \(\operatorname{civ}[i]=\) intval \((c v[i])\) \\
\hline re (civ) & ivector & Real part vector iv with \(i v[i]=r e(c i v[i])\) \\
\hline im (civ) & ivector & Imaginary part vector iv with \(\mathrm{iv}[i]=\operatorname{im}(\operatorname{civ}[i])\) \\
\hline inf (civ) & cvector & Complex vector \(c v\) of the lower bounds with \(c v[i]=\inf (\operatorname{civ}[i])\) \\
\hline sup (civ) & cvector & Complex vector \(c v\) of the upper bounds with \(c v[i]=\sup (\operatorname{civ}[i])\) \\
\hline
\end{tabular}
\(\mathrm{rv}=\) rvector expression, \(\quad \mathrm{cv}, \mathrm{cv} 1, \mathrm{cv} 2=\) cvector expression, iv, iv1, iv2 \(=\) ivector expression, \(\quad\) civ \(=\) civector expression

\section*{Transfer Functions for Complex Interval Matrices}

The following transfer functions are supplied for type conversions between the types rmatrix, cmatrix, imatrix, and cimatrix:
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline compl (iM1,iM2) & cimatrix & Complex interval matrix ciM with \(\operatorname{ciM}[i, j]=\operatorname{compl}(i M 1[i, j], i M 2[i, j])\) \\
\hline compl (rM, iM) & cimatrix & Complex interval matrix ciM with \(\operatorname{ciM}[i, j]=\operatorname{compl}(r M[i, j], i M[i, j])\) \\
\hline compl (iM,rM) & cimatrix & Complex interval matrix ciM with \(\operatorname{ciM}[i, j]=\operatorname{compl}(i M[i, j], r M[i, j])\) \\
\hline compl (iM) & cimatrix & Complex interval matrix ciM with \(\operatorname{ciM}[i, j]=\operatorname{compl}(i M[i, j])\) \\
\hline intval (cM1,cM2) & cimatrix & Complex interval matrix ciM with \(\operatorname{ciM}[i, j]=\) intval \((c M 1[i, j], c M 2[i, j])\) \\
\hline intval (rM, cM) & cimatrix & Complex interval matrix ciM with \(\operatorname{ciM}[i, j]=\operatorname{intval}(r M[i, j], c M[i, j])\) \\
\hline intval (cM,rM) & cimatrix & Complex interval matrix ciM with \(\operatorname{ciM}[i, j]=\operatorname{intval}(c M[i, j], r M[i, j])\) \\
\hline intval (cM) & cimatrix & Complex interval matrix ciM with \(\operatorname{ciM}[i, j]=\) intval \((c M[i, j])\) \\
\hline re (ciM) & imatrix & Real part matrix \(i M\) with \(i M[i, j]=r e(c i M[i, j])\) \\
\hline im (ciM) & imatrix & Imaginary part matrix iM with \(i M[i, j]=\operatorname{im}(c i M[i, j])\) \\
\hline \(\inf (\mathrm{ciM})\) & cmatrix & Complex matrix \(c M\) of the lower bounds with \(c M[i, j]=\inf (c i M[i, j])\) \\
\hline \(\sup (\mathrm{ciM})\) & cmatrix & Complex matrix \(c M\) of the upper bounds with \(c M[i, j]=\sup (c i M[i, j])\) \\
\hline
\end{tabular}
\(\mathrm{rM}=\) rmatrix expression, \(\quad \mathrm{cM}, \mathrm{cM} 1, \mathrm{cM} 2=\) cmatrix expression
\(\mathrm{iM}, \mathrm{iM} 1, \mathrm{iM} 2=\) imatrix expression, \(\quad\) ciM \(=\) cimatrix expression

\section*{Overloading of the Assignment Operators}

The componentwise initialization of civector and cimatrix variables and type conversions from rvector, cvector, or ivector to civector and rmatrix, cmatrix, or imatrix to cimatrix are provided as overloaded assignment operators:
\begin{tabular}{|c|c|c|}
\hline Assignment & \multicolumn{2}{|l|}{Meaning} \\
\hline civ \(:=\mathrm{r}\) & \(\operatorname{civ}[\mathrm{j}] \quad:=\mathrm{compl}(\) intval (r)) & \(\mathrm{j}=\mathrm{lb}(\mathrm{civ}), \ldots, \mathrm{ub}(\mathrm{civ})\) \\
\hline civ \(:=\mathrm{c}\) & \(\operatorname{civ}[\mathrm{j}] \quad:=\) intval (c) & \(\mathrm{j}=\mathrm{lb}(\mathrm{civ}), \ldots, \mathrm{ub}(\mathrm{civ})\) \\
\hline civ \(:=\mathrm{i}\) & \(\operatorname{civ}[\mathrm{j}] \quad:=\mathrm{compl}(\mathrm{i})\) & \(\mathrm{j}=\mathrm{lb}(\mathrm{civ}), \ldots, \mathrm{ub}(\mathrm{civ})\) \\
\hline civ \(:=\) ci & \(\operatorname{civ}[\mathrm{j}] \quad:=\mathrm{ci}\) & \(\mathrm{j}=\mathrm{lb}(\mathrm{civ}), \ldots, \mathrm{ub}(\mathrm{civ})\) \\
\hline civ \(:=r \mathrm{rv}\) & civ \(\quad:=\) compl (intval (rv)) & \\
\hline civ \(:=\mathrm{cv}\) & civ \(\quad:=\) intval (cv) & \\
\hline civ \(:=\) iv & civ \(\quad:=\) compl (iv) & \\
\hline ciM \(:=\mathrm{r}\) & ciM \([\mathrm{j}, \mathrm{k}] \quad:=\mathrm{compl}(\) intval (r)) & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{ciM}, 1), \ldots, \mathrm{ub}(\mathrm{ciM}, 1) \\
& \mathrm{k}=\mathrm{lb}(\mathrm{ciM}, 2), \ldots, \mathrm{ub}(\mathrm{ciM}, 2)
\end{aligned}
\] \\
\hline ciM \(:=\mathrm{c}\) & \(\operatorname{ciM}[\mathrm{j}, \mathrm{k}] \quad:=\) intval (c) & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{ciM}, 1), \ldots, \mathrm{ub}(\mathrm{ciM}, 1) \\
& \mathrm{k}=\mathrm{lb}(\mathrm{ciM}, 2), \ldots, \mathrm{ub}(\mathrm{ciM}, 2)
\end{aligned}
\] \\
\hline \(\operatorname{ciM}:=\mathrm{i}\) & \(\operatorname{ciM}[\mathrm{j}, \mathrm{k}] \quad:=\mathrm{compl}(\mathrm{i})\) & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{ciM}, 1), \ldots, \mathrm{ub}(\mathrm{ciM}, 1) \\
& \mathrm{k}=\mathrm{lb}(\mathrm{ciM}, 2), \ldots, \mathrm{ub}(\mathrm{ciM}, 2)
\end{aligned}
\] \\
\hline \(\operatorname{ciM}:=\mathrm{ci}\) & \(\operatorname{ciM}[\mathrm{j}, \mathrm{k}] \quad:=\mathrm{ci}\) & \[
\begin{aligned}
& \mathrm{j}=\mathrm{lb}(\mathrm{ciM}, 1), \ldots, \mathrm{ub}(\mathrm{ciM}, 1) \\
& \mathrm{k}=\mathrm{lb}(\mathrm{ciM}, 2), \ldots, \mathrm{ub}(\mathrm{ciM}, 2)
\end{aligned}
\] \\
\hline ciM \(:=\mathrm{rM}\) & ciM \(\quad:=\) compl (intval (rM) \()\) & \\
\hline ciM \(:=\mathrm{cM}\) & ciM \(\quad:=\) intval (cM) & \\
\hline ciM \(:=\mathrm{iM}\) & ciM \(\quad:=\) compl (iM) & \\
\hline
\end{tabular}
ci \(=\) cinterval expression, civ \(=\) civector variable, ciM \(=\) cimatrix variable
\(\mathrm{i}=\) interval expression, \(\mathrm{iv}=\) ivector expression, \(\mathrm{iM}=\) imatrix expression
\(\mathrm{c}=\) complex expression, \(\mathrm{cv}=\) cvector expression, \(\mathrm{cM}=\) cmatrix expression \(\mathrm{r}=\) real expression, \(\mathrm{rv}=\) rvector expression, \(\mathrm{rM}=\) rmatrix expression

\section*{Predefined Functions}

The functions id and null are supplied for generating an identity matrix and a null matrix or a null vector. The functions transp and herm compute the transposed matrix and the Hermitian matrix. The functions mid, diam, and blow compute the midpoint, diameter, and epsilon inflation componentwise. The function conj for the conjugation of complex interval vectors and matrices is also supplied.
\begin{tabular}{|c|c|c|}
\hline Function & Result Type & Meaning \\
\hline null (civ) & rvector & Null vector with the actual index range of civ \\
\hline null (ciM) & rmatrix & Null matrix with the actual index ranges of ciM \\
\hline null (ciM1, ciM2) & rmatrix & Null matrix with the actual index ranges of the product matrix ciM1 - ciM2 \\
\hline id (ciM) & rmatrix & Identity matrix with the actual index ranges of ciM \\
\hline id (ciM1,ciM2) & rmatrix & Identity matrix with the actual index ranges of the product matrix ciM1 • ciM2 \\
\hline mid (civ) & cvector & Midpoint vector \(c v\) with \(c v[i]=\operatorname{mid}(\operatorname{civ}[i])\) \\
\hline diam (civ) & rvector & Diameter vector \(r v\) with \(r v[i]=\operatorname{diam}(\operatorname{civ}[i])\) \\
\hline mid (ciM) & cmatrix & Midpoint matrix \(c M\) with \(c M[i, j]=\operatorname{mid}(c i M[i, j])\) \\
\hline diam (ciM) & rmatrix & Diameter matrix \(r M\) with \(r M[i, j]=\operatorname{diam}(c i M[i, j])\) \\
\hline conj (civ) & civector & Conjugated complex interval vector cive with civc \([i]=\operatorname{conj}(\operatorname{civ}[i])\) \\
\hline conj (ciM) & cimatrix & Conjugated complex interval matrix \(\operatorname{ciMc}\) with \(\operatorname{ciMc}[i, j]=\operatorname{conj}(\operatorname{ciM}[i, j])\) \\
\hline transp (ciM) & cimatrix & Transposed matrix ciMt of ciM with \(\operatorname{ciMt}[i, j]=\operatorname{ciM}[j, i]\) \\
\hline herm (ciM) & cimatrix & Hermitian matrix ciMh of ciM with \(\operatorname{ciMh}[i, j]=\operatorname{conj}(\operatorname{ciM}[j, i])\) \\
\hline blow (civ,r) & civector & Vector epsilon inflation cive with cive \([i]=\) blow (civ \([i], r)\) \\
\hline blow (ciM,r) & cimatrix & Matrix epsilon inflation ciMe with ciMe \([i, j]=\) blow (ciM \([i, j], r\)) \\
\hline
\end{tabular}
\(\mathrm{n}, \mathrm{n} 1, \mathrm{n} 2=\) integer expression, \(\mathrm{r}=\) real expression, \(\quad \mathrm{rv}=\) rvector expression
\(\mathrm{cv}=\) cvector expression, civ, civc, cive \(=\) civector expression
\(\mathrm{rM}=\) rmatrix expression, \(\quad \mathrm{cM}=\) cmatrix expression
ciM, ciM1, ciM2, ciMc, ciMt, ciMh, ciMe \(=\) cimatrix expression

\section*{Input/Output Procedures}

The Procedures
procedure read (var f: text; var a: civector);
procedure read (var f: text; var A: cimatrix);
procedure write (var f: text; a: civector);
procedure write (var f: text; A: cimatrix);
are provided with optional file parameters, arbitrary many input/output parameters, but without any format specifications.

A complex interval vector or a complex interval matrix is entered componentwise as individual cinterval values. A matrix is entered row by row. The output of a complex interval vector or a complex interval matrix is also done componentwise using the default output format for complex intervals.

\subsection*{3.8 The Hierarchy of the Arithmetic Modules}

The dependencies between the arithmetic modules generate a hierarchy which is represented in the following diagram. Nevertheless, each arithmetic module that is used in a user-defined program or module must appear in a use-clause, since the "lower" modules are linked into the "higher" modules by using a use-clause without the reserved word global.

For example, a program which uses MVCI_ARI must also use I_ARI when the basic interval operations should be used in the program.

Hierarchy of the PASCAL-XSC Arithmetic Modules
\(\bullet\) stands for "• is used by - "

\subsection*{3.9 A Complete Sample Program}

Here is a complete PASCAL-XSC program which demonstrates the use of some of the arithmetic modules. The module LIN_SOLV is used to enclose the solution of a system of linear equations in an interval vector by successive interval iterations. This module is described later in this section.

The procedure main, which is called in the body of lin_sys, is only used for reading the dimension of the system and for allocating the dynamic variables. The numerical method itself is started by the call of procedure linear_system_solver defined in module LIN_SOLV. This procedure may be called with arrays of arbitrary dimension.

For detailed information on iteration methods with automatic result verification see [46], for example. The use of our program is demonstrated by an example at the end of this section.

\section*{The Main Program}
```

program lin_sys (input, output);
{ Program for verified solution of linear systems of equations. The }
{ matrix A and the right-hand side b of the system are to be read in. }
{The program delivers either a verified solution or an appropriate }
{ failure message.
use lin_solv, { linear system solver }
mv_ari, { matrix/vector arithmetic }
mvi_ari; { matrix/vector interval arithmetic }
var
n : integer;
{-------------------------------------------------------
procedure main (n : integer);
{The matrix A and the vectors b and x are allocated dynamically. }
{ The matrix A and the right-hand side b are read in, and }
{ linear_system_solver is called.
var
ok : boolean;
b : rvector[1..n];
x : ivector[1..n];
A : rmatrix[1..n,1..n];

```

\section*{begin}
```

    writeln ('Please enter the matrix A:');
    read (A);
    writeln ('Please enter the right-hand side b:');
    read (b);
    linear_system_solver (A, b, x, ok);
    if ok then
        begin
            writeln ('The matrix A is non-singular. The solution ');
            writeln ('of the linear system is contained in:');
            write (x);
    end
    else
writeln ('No solution found !');
end; {procedure main}

```


\section*{begin}
```

write ('Please enter the dimension n of the linear system: ');
read (n);
if n>0 then
main (n)
else
writeln ('Dimension > 0 expected!');
end. {program lin_sys}

```

\section*{The Module LIN_SOLV}

\section*{module lin_solv;}
\{Verified solution of the linear system of equations \(\mathrm{Ax}=\mathrm{b}\). \}
```

use i_ari, { interval arithmetic }
mv_ari, { matrix/vector arithmetic }
mvi_ari; { matrix/vector interval arithmetic }

```

\section*{priority}
```

    inflated_by = *; { priority level 2 }
    {-------------------------------------------------------

```
operator inflated_by (a : ivector; eps : real) infl: ivector[1..ubound(a)];
\{ Computes the epsilon inflation of an interval vector. \}
```

var
i : integer;
x : interval;

```

\section*{begin}
for \(\mathrm{i}:=1\) to ubound(a) do
begin
\(\mathrm{x}:=\mathrm{a}[\mathrm{i}]\);
if (diam \((x)<>0)\) then
\(\mathrm{a}[\mathrm{i}]:=(1+\mathrm{eps}) * \mathrm{x}-\mathrm{eps} * \mathrm{x}\)
else
\(\mathrm{a}[\mathrm{i}]:=\operatorname{intval}(\operatorname{pred}(\inf (\mathrm{x})), \operatorname{succ}(\sup (\mathrm{x})))\);
end; \{for\}
infl := a;
end; \{operator inflated_by\}

function approximate_inverse (A: rmatrix): rmatrix[1..ubound(A),1..ubound(A)];
\{ Computation of an approximate inverse of the (\(\mathrm{n}, \mathrm{n}\))-matrix A \}
\(\{\) by Gauss elimination.
var
\(\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{n} \quad:\) integer;
factor : real;
R, Inv, E : rmatrix[1..ubound(A),1..ubound(A)];

\section*{begin}
\(\mathrm{n}:=\) ubound \((\mathrm{A}) ; \quad\{\) dimension of A\(\}\)
\(\mathrm{E}:=\mathrm{id}(\mathrm{E}) ; \quad\) \{ identity matrix \(\}\)
R : = A;
\{ Gaussian elimination step with unit vectors as \}
\{ right-hand sides. Division by \(\mathrm{R}[\mathrm{i}, \mathrm{i}]=0\) indicates \(\}\)
\(\{\) that the matrix A is probably singular.
for \(\mathrm{i}:=1\) to n do for \(\mathrm{j}:=(\mathrm{i}+1)\) to n do
begin
factor \(:=\mathrm{R}[\mathrm{j}, \mathrm{i}] / \mathrm{R}[\mathrm{i}, \mathrm{i}]\);
for \(\mathrm{k}:=\mathrm{i}\) to n do \(\mathrm{R}[\mathrm{j}, \mathrm{k}]:=\# *(\mathrm{R}[\mathrm{j}, \mathrm{k}]-\) factor \(* \mathrm{R}[\mathrm{i}, \mathrm{k}])\);
\(\mathrm{E}[\mathrm{j}]:=\mathrm{E}[\mathrm{j}]\) - factor \(* \mathrm{E}[\mathrm{i}] ;\)
end; \(\quad\{\) for \(\mathrm{j}:=\ldots\}\)
\{ Backward substitution delivers the rows of the inverse of A. \}
for \(\mathrm{i}:=\mathrm{n}\) downto 1 do
\(\operatorname{Inv}[\mathrm{i}]:=\# *(\mathrm{E}[\mathrm{i}]-\) for \(\mathrm{k}:=(\mathrm{i}+1)\) to \(\mathrm{n} \operatorname{sum}(\mathrm{R}[\mathrm{i}, \mathrm{k}] * \operatorname{Inv}[\mathrm{k}])) / \mathrm{R}[\mathrm{i}, \mathrm{i}]\);
approximate_inverse := Inv;
end; \{function approximate_inverse\}

global procedure linear_system_solver (A : rmatrix; b : rvector;
var x : ivector; var ok : boolean);
\{ Computation of a verified inclusion vector for the solution of the \}
\{ linear system of equations. If an inclusion is not achieved after \}
\{ a certain number of iteration steps, then the algorithm is stopped, \}
\{ and the parameter ok is set to false.
const
epsilon \(=0.25 ;\) \{ Constant for the epsilon inflation \}
max_steps \(=10 ; \quad\{\) Maximum number of iteration steps \(\}\)
var
i : integer;
\(\mathrm{y}, \mathrm{z}\) : ivector[1..ubound (A)];
R : rmatrix[1..ubound(A),1..ubound(A)];
C : imatrix[1..ubound(A),1..ubound(A)];

\section*{begin}
\(\mathrm{R}:=\) approximate_inverse (A);
\(\{\mathrm{R} * \mathrm{~b}\) is an approximate solution of the linear system and z is an inclusion \(\}\)
\{ of this vector. However, z does not usually include the true solution. \}
\(\mathrm{z}:=\mathrm{R} * \operatorname{intval}(\mathrm{~b}) ;\)
\{ An inclusion of \(\mathrm{I}-\mathrm{R} * \mathrm{~A}\) is computed with maximum accuracy. \}
\{ The (\(n, n\)) identity matrix is generated by the function call \(\mathrm{id}(\mathrm{A})\).
\(\mathrm{C}:=\# \#(\mathrm{id}(\mathrm{A})-\mathrm{R} * \mathrm{~A}) ;\)
\(\mathrm{x}:=\mathrm{z} ; \quad \mathrm{i}:=0 ;\)
repeat
\(\mathrm{i}:=\mathrm{i}+1 ;\)
\(\mathrm{y}:=\mathrm{x}\) inflated_by epsilon; \(\{\) To obtain a true inclusion, the interval \}
\{ vector x is slightly enlarged. \}
\(\mathrm{x}:=\mathrm{z}+\mathrm{C} * \mathrm{y} ; \quad\{\) The new iterate is computed. \}
\(\mathrm{ok}:=\mathrm{x}\) in \(\mathrm{y} ; \quad\{\) Is x contained in the interior of \(\mathrm{y} ?\) \}
until ok or (i = max_steps);
end; \{procedure linear_system_solver\}

end. \{module lin_solv\}

\section*{Example}

If we use a \(10 \times 10\) Boothroyd/Dekker matrix (see chapter 5, Exercise 5) to test this program, then the output is:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Please enter the dimension \(n\) of the linear system: 10} \\
\hline 10 & 45 & 120 & 210 & 252 & 210 & 120 & 45 & 10 & 1 \\
\hline 55 & 330 & 990 & 1848 & 2310 & 1980 & 1155 & 440 & 99 & 0 \\
\hline 220 & 1485 & 4752 & 9240 & 11880 & 10395 & 6160 & 2376 & 540 & 55 \\
\hline 715 & 5148 & 17160 & 34320 & 45045 & 40040 & 24024 & 9360 & 2145 & 220 \\
\hline 2002 & 15015 & 51480 & 105105 & 140140 & 126126 & 76440 & 30030 & 6930 & 715 \\
\hline 5005 & 38610 & 135135 & 280280 & 378378 & 343980 & 210210 & 83160 & 19305 & 2002 \\
\hline 11440 & 90090 & 320320 & 672672 & 917280 & 840840 & 517440 & 205920 & 48048 & 5005 \\
\hline 24310 & 194480 & 700128 & 1485120 & 2042040 & 1884960 & 1166880 & 466752 & 109395 & 11440 \\
\hline 48620 & 393822 & 1432080 & 3063060 & 4241160 & 3938220 & 2450448 & 984555 & 231660 & 24310 \\
\hline 92378 & 755820 & 2771340 & 5969040 & 8314020 & 7759752 & 4849845 & 1956240 & 461890 & 48620 \\
\hline
\end{tabular}
```

Please enter the right-hand side b:

```
1111111111

The matrix A is non-singular. The solution of the linear system is contained in:
[9.999999999999998E-001, 1.000000000000001E+000]
[-1.000000000000001E+000, -9.999999999999998E-001]

\section*{Chapter 4}

\section*{Problem-Solving Routines}

Routines for solving common numerical problems have been developed in PASCALXSC. They are supplied by means of an additional module library. The methods used compute a highly accurate inclusion of the true solution of the problem and verify the existence and uniqueness of the solution in the given interval. The advantages of these new routines are:
- The solution is computed with high accuracy, even for many ill-conditioned cases.
- The accuracy of the computed solution is always controlled.
- The correctness of the result is automatically verified, i.e. an inclusion set is computed which guarantees the existence and uniqueness of the exact solution within the bounds computed.
- If no solution exists, or if the problem is extremely ill-conditioned, an error message is returned.

PASCAL-XSC routines have been developed for:
- linear systems of equations
- full systems (real, complex, interval, cinterval)
- matrix inversion (real, complex, interval, cinterval)
- least squares problems (real, complex, interval, cinterval)
- computation of pseudo inverses (real, complex, interval, cinterval)
- band matrices (real)
- sparse matrices (real)
- polynomial evaluation
- in one variable (real, complex, interval, cinterval)
- in several variables (real)
- zeros of polynomials (real, complex, interval, cinterval)
- eigenvalues and eigenvectors
- symmetric matrices (real)
- arbitrary matrices (real, complex, interval, cinterval)
- initial and boundary value problems of ordinary differential equations
- linear
- nonlinear
- evaluation of arithmetic expressions
- nonlinear systems of equations
- numerical quadrature
- integral equations
- automatic differentiation
- optimization problems

For further information about the individual routines and modules, see the documentation enclosed with the PASCAL-XSC numeric library.

In addition to solving the basic problems, these routines can be used for other explorations. They provide answers to rather interesting and important questions, such as
- Determination of the condition of problems by the use of interval input.
- Determination of local exclusion domains (regions in which a solution can be guaranteed not to exist).
- Verification of processes such as determination of the minimum rank of a matrix or determination of a sphere or a half plane including all zeros of a complex polynomial. Thus, it is possible, to guarantee stability of technical devices as far as the mathematical model corresponds to reality.
- Parameter control of models. It is easy to determine how sensitively any model data affects a model formula and vice versa. We can compute how accurately the data must be measured in order to guarantee a predefined accuracy for quantities depending on these data.
- In critical cases where there may not be sufficient processing power available to use inclusion methods in real time control problems, it may still be possible to use inclusion methods running in the background to monitor the accuracy and reliability of the foreground processing. A special field of application is the scope of security problems (navigation and control of satellites and aircraft, spacecraft, as well as highly-sensitive, large technical equipment).

Verifying methods are unilateral decision processes which, on the basis of given computing resources (run-time, memory requirements, mantissa length, etc.), detect solvable problems and enclose their solution to a desired accuracy. For example,
an enclosure algorithm for solving a system of linear equations may validate the existence of a unique solution and compute an enclosure of the solution. If the algorithm does not succeed, that does not imply that the system is singular. It might be that the same algorithm could solve the problem with more time, memory, or precision. Other algorithms might be used to verify that a matrix is singular.

There is an extensive literature in the area of interval analysis, enclosure methods, and self-validating computation. Neumaier [38] contains an extensive bibliography. The bibliography of our book includes some of the more significant references. Especially noteworthy are the introductory texts [1], [2], [34], [35], and collections of conference papers in [16], [27], [30], [31], [32], [36], [39], [40], [41], [50], and [51].

\section*{Chapter 5}

\section*{Exercises with Solutions}

Here are some exercises with which the reader can practice the language PASCALXSC by solving various exercises and applying the new language elements to the development of complete programs.

A series of simple exercises is given which use the most important language elements of PASCAL-XSC. This series covers
- introductory exercises
- exercises to go more deeply into the new concepts of PASCAL-XSC (operator concept, functions with arbitrary result type, dynamic arrays, module concept, etc.)
- easy exercises to treat problems of accuracy in arithmetic operations and numerical computations (use of the type dotprecision)
- exercises dealing with various arithmetics (interval arithmetic, complex arithmetic, matrix/vector arithmetic, etc.)
- exercises concerning physical and engineering applications of programming languages and numerical methods.

Most of the exercises are taken from a collection that has been developed in connection with lectures on programming languages held at the University of Karlsruhe.

Our proposed solutions, the complete program listings, and some results follow each exercise. The results were produced on an HP 9000 Workstation using an implementation of PASCAL-XSC with 53 bit binary arithmetic.

The results computed with binary arithmetic may differ from the results computed with decimal arithmetic according to the problems of conversion described in chapter 2. In this case, some deviations in the run-time outputs may be possible.

\section*{Exercise 1: Test of Representability}

Write a PASCAL-XSC program to determine whether a pair of integer numbers \(z, n(n \neq 0)\) have a quotient \(z / n\) which is exactly representable as a real number (in the computer's set of floating-point numbers).

Hint: \(z / n\) is exactly representable on the computer if and only if
\[
z /<n=z />n .
\]

Your program should loop to read and check an arbitrary number of such pairs. If the condition is fulfilled, then \(z, n\), and \(z / n\) are to be printed. If the condition is not fulfilled, write a message to that effect. Use \(n=0\) to terminate the loop. After the termination of the loop, the percentage of the pairs with an exactly representable quotient is to be computed and reported (rounded to one place past the decimal point).

\section*{Solution:}
```

program represent (input, output);
{ Exercise 1: Test of Representability }
var n, z : integer;
no_of_exacts,
no_of_pairs : integer;
quotient : real;
begin
writeln ('Exercise 1: Test of Representability');
writeln;
no_of_exacts:= 0;
no_of_pairs := 0;
write ('Enter z and n for quotient test: ');
read (z, n);
while n <> 0 do
begin
quotient := z/<n;
no_of_pairs:= no_of_pairs+1;
if quotient = z/>n then
begin
no_of_exacts := no_of_exacts+1;
writeln ('Quotient is exactly representable!');
writeln (z:1,'/',n:1,' = ',quotient);
end
else
writeln ('Quotient is not exactly representable!');

```
```

        writeln;
        write ('Enter z and n for quotient test: ');
        read (z, n);
    end;
    if no_of_pairs <> 0 then
    begin
        writeln;
        writeln (no_of_pairs, , data pairs were entered');
        writeln (no_of_exacts, ' quotients are exactly representable');
        writeln ('These are ', no_of_exacts/no_of_pairs*100:5:1:-1,'%');
        end;
    end.

```

\section*{Exercise 2: Summation of Exponential Series}

The function \(e^{x}\) is approximated by a partial sum of its Taylor series:
\[
S_{n}=\sum_{i=0}^{n} a_{i} \quad \text { with } \quad a_{i}=\frac{x^{i}}{i!} \quad \text { and } \quad i!= \begin{cases}1 & \text { for } i=0 \\ 1 * 2 * \cdots * i & \text { for } i>0\end{cases}
\]

The partial sum may be computed according to the following algorithm:
\[
\begin{aligned}
\text { start: } & S_{1}=1 ; \quad a_{1}=x \\
\text { recursion: } & S_{i}=S_{i-1}+a_{i-1} ; \quad a_{i}=a_{i-1} \frac{x}{i} ; \quad i=2, \ldots, n
\end{aligned}
\]

Write a PASCAL-XSC program with \(n=100\) which reads \(x\) and computes \(S_{n}\) using three different rounding controls:
- downwardly directed,
- rounded to the next floating-point number,
- upwardly directed.

The computation of the sum should be terminated before handling the \(n\)-th summand if the upwardly directed sum \(S_{i}\) satisfies
\[
\left|a_{i}\right|<e p s *\left|S_{i}\right| \text { with eps }=10^{-12} .
\]

You should report the correct value of \(\exp (x)\) and the final values of \(i\) and \(S_{i}\).
Hint: Use negative values \((<-50)\) for \(x\) when testing your program since they demonstrate very clearly rounding errors occurring during summation.

\section*{Solution:}
```

program expo (input, output);
{ Exercise 2: Summation of the exponential series }
const eps = 1e-12;
n = 100;
var Sdown, Snext, Sup : real;
adown, anext, aup : real;
i : integer;
x, help : real;
begin
writeln ('Exercise 2: Summation of the exponential series');
writeln;
write ('Enter an argument x for computing exp(x): ');
read (x);

```
```

writeln ('Summation of the exponential series :');
writeln ('Step Summand Sum');
adown:= x; anext:= x; aup:= x;
Sdown:= 1; Snext:= 1; Sup:= 1;
i:= 1;
repeat
i := i+1;
Sdown:= Sdown +< adown;
Snext:= Snext + anext;
Sup := Sup +> aup;
anext:= anext * x / i;
if x >= 0 then
begin
adown:= adown *< x /< i;
aup := aup *> x /> i;
end
else
begin
help := adown;
adown:= aup *< x /< i;
aup := help *> x /> i;
end;
writeln (i :7,' ', adown, ' ', Sdown);
writeln (' ':7,' ', anext, ' ', Snext);
writeln (' ':7,',', aup, , ', Sup);
until (i >= n) or (abs(adown) < eps*abs(Sdown));
writeln('Exact value of the function exp(x) : ', exp(x));
end.

```

\section*{Exercise 3: Influence of Rounding Errors}

Write a PASCAL-XSC program to demonstrate the influence of rounding errors during computation of the expression
\[
z=x^{4}-4 y^{4}-4 y^{2}
\]
for different values of \(x\) and \(y\). The program should accept the real-values \(x\) and \(y\) and compute \(z\) according to the following methods
1) \(z=x \cdot x \cdot x \cdot x-4 \cdot y \cdot y \cdot y \cdot y-4 \cdot y \cdot y \quad\) using
a) the floating point operators \(*\) and -
b) the directed-rounding operators \(*<, *>\), and \(-<\) to deliver a lower bound for the expression
c) the directed-rounding operators *<, *>, and \(->\) to deliver an upper bound for the expression
2) \(z=x^{2} \cdot x^{2}-4 \cdot y^{2} \cdot y^{2}-4 \cdot y^{2} \quad\) using the predefined function sqr and the operators * and -
3) \(z=\left(x^{2}\right)^{2}-\left(2 \cdot y^{2}\right)^{2}-(2 \cdot y)^{2} \quad\) using \(s q r\), *, and -
4) \(z=\left(x^{2}\right)^{2}-(2 \cdot y)^{2} \cdot\left(y^{2}+1\right) \quad\) using \(s q r, *\), and -
5) \(z=\# *(a \cdot a-b \cdot b-c \cdot c)\) with \(a=x^{2}, b=2 \cdot y^{2}\) and \(c=2 \cdot y\).

The seven computed values should be reported with an accompanying comment for each operation. Test your program by using the values
\[
x=665857.0 \text { and } y=470832.0
\]

In this special case, the true value for \(z\) is the number 1 . For a detailed description of rounding error effects see [52], for example.

\section*{Solution:}
```

program rounding (input, output);
{ Exercise 3: Influence of Rounding Errors }
var x,y,z: real;
a,b,c: real;
begin
writeln('Exercise 3: Influence of Rounding Errors');
writeln;
write('x = '); read(x);
write('y = '); read(y);

```
```

writeln;
writeln('Computation of the expression z = x^4 - 4y^4 - 4y^2');
writeln;
z:= x*x*x*x-4*y*y*y*y-4*y*y;
writeln('Comp.: x*x*x*x-4*y*y*y*y-4*y*y = ',z);
z:= (x*<x)*< (x*<x) -< 4*> (y*>y)*> (y*>y) -< 4*> (y*>y);
writeln('Comp.: (x*<x)*< (x*<x)-<4*> (y*>y)*>(y*>y)-<4*> (y*>y)= ',z);
z:= (x*>x)*>(x*>x) -> 4*< (y*<y)*< (y*<y) -> 4*< (y*<y);
writeln('Comp.: (x*>x)*> (x*>x)->4*< (y*<y)*< (y*<y)->4*< (y*<y)=, , z);
z:= sqr(x)*sqr(x) - 4*sqr(y)*sqr(y) - 4*sqr (y);
writeln('Comp.: x^2*x^2-4*y^2*y^2-4*y^2 = ',z);
z:= sqr(sqr(x))-sqr(2*sqr(y)) - sqr(2*y);
writeln('Comp.: (x^2)^2-(2*y^2)^2-(2*y)^2 = ',z);
z:= sqr(sqr(x))-sqr(2*y) * (sqr(y)+1);
writeln('Comp.: (x^2)^2-(2*y)^2*(y^2+1) = ',z);
a:=sqr(x);
b:=2*Sqr (y);
c:=2*y;
z:=\#*(a*a-b*b-c*c);
writeln('Comp.: \#*(x^2*x^2-(2*y^2)*(2*y^2)-(2*y)*(2*y)) = ',z);

```
end.

\section*{Runtime Output:}

Influence of rounding errors
```

x = 665857.0
y = 470832.0

```
Computation of the expression \(z=x \wedge 4-4 y \wedge 4-4 y^{\wedge} 2\)
Comp.: \(\mathrm{x} * \mathrm{x} * \mathrm{x} * \mathrm{x}-4 * \mathrm{y} * \mathrm{y} * \mathrm{y} * \mathrm{y}-4 * \mathrm{y} * \mathrm{y}=1.1885568000000 \mathrm{E}+007\)
Comp.: \((\mathrm{x} *<\mathrm{x}) *<(\mathrm{x} *<\mathrm{x})-\langle 4 *>(\mathrm{y} *>\mathrm{y}) *>(\mathrm{y} *>\mathrm{y})-\langle 4 *>(\mathrm{y} *>\mathrm{y})=-5.5223296000000 \mathrm{E}+007\)
Comp.: \((\mathrm{x} *>\mathrm{x}) *>(\mathrm{x} *>\mathrm{x})->4 *<(\mathrm{y} *<\mathrm{y}) *<(\mathrm{y} *<\mathrm{y})->4 *<(\mathrm{y} *<\mathrm{y})=1.1885568000000 \mathrm{E}+007\)
Comp.: \(\mathrm{x}^{\wedge} 2 * \mathrm{x}^{\wedge} 2-4 * \mathrm{y}^{\wedge} 2 * \mathrm{y}^{\wedge} 2-4 * \mathrm{y}^{\wedge} 2=1.1885568000000 \mathrm{E}+007\)
Comp.: (\(\left.\mathrm{x}^{\wedge} 2\right)^{\wedge} 2-\left(2 * \mathrm{y}^{\wedge} 2\right)^{\wedge} 2-(2 * \mathrm{y})^{\wedge} 2=1.1885568000000 \mathrm{E}+007\)
Comp.: (\(\left.\mathrm{x}^{\wedge} 2\right)^{\wedge} 2-(2 * \mathrm{y})^{\wedge} 2 *\left(\mathrm{y}^{\wedge} 2+1\right)=0.0000000000000 \mathrm{E}+000\)

Remark: The \#-expression delivers the exact result. This is because all operands (here \(a, b, c\)) are exact since \(x=665875\) and \(y=470832\) are exactly representable.

\section*{Exercise 4: Scalar Product}

Write a PASCAL-XSC program to compute the value of a scalar product
\[
x \cdot y=\sum_{i=1}^{n} x_{i} \cdot y_{i}
\]
of two real vectors \(x, y \in \mathbb{R}^{n}\). Compare the value computed with maximum accuracy with the value computed in the usual manner.

Write a function Scalp producing the scalar product in the usual manner and a function Max_Acc_Scalp computing the scalar product by summing up the products \(x_{i} \cdot y_{i}\) in a variable of the type dotprecision and by a single final rounding to a real value.

The vectors \(x\) and \(y\) should be entered in the main program. The values computed via Scalp and Max_Acc_Scalp should be reported together with comments. Choose \(n=5\) for the declaration of the vector types. Test your program with the vectors
\[
x=\left(\begin{array}{c}
2.718281828 E 10 \\
-3.141592654 E 10 \\
1.414213562 E 10 \\
5.772156649 E 9 \\
3.010299957 E 9
\end{array}\right), \quad y=\left(\begin{array}{c}
1.4862497 E 12 \\
8.783669879 E 14 \\
-2.237492 E 10 \\
4.773714647 E 15 \\
1.85049 E 5
\end{array}\right)
\]

The function Max_Acc_Scalp of this program simulates the functionality of the operator \(*\) for type rvector supplied by module MV_ARI.

\section*{Solution:}
```

program Scalar_Product (input, output);
{ Exercise 4: Scalar Product }
const n = 5;
type vector = array [1..n] of real;
var x, y : vector;
i : integer;
function Scalp (x, y : vector) : real;
var s : real;
i : integer;
begin
s:= 0;
for i:=1 to n do s:= s + x[i]*y[i];
Scalp:= s;
end;

```
```

function Max_Acc_Scalp (x, y : vector) : real;
var d : dotprecision;
i : integer;
begin
d:= \#(0);
for i:=1 to n do d:= \#(d + x[i]*y[i]);
Max_Acc_Scalp:= \#*(d);
end;
begin
writeln('Exercise 4: Scalar Product');
writeln;
writeln('Enter 1. vector (with ',n:1,' components):');
for i:=1 to n do read(x[i]);
writeln('Enter 2. vector (with ',n:1,' Components):');
for i:=1 to n do read(y[i]);
writeln;
writeln('Scalar product in the usual manner : ',Scalp(x,y));
writeln('Scalar product with dotprecision : ',Max_Acc_Scalp(x,y));
end.

```

\section*{Runtime Output:}

Exercise 4: Scalar Product

Enter 1. vector (with 5 components):
2.718281828e10
-3.141592654e10
1.414213562 e 10
5.772156649 e 9
\(3.010299957 e 9\)
Enter 2. vector (with 5 components):
1.4862497e12
8.783669879 e 14
-2.237492e10
\(4.773714647 e 15\)
1.85049e5

Scalar product in the usual manner : 4.328386285000000E+009
Scalar product with dotprecision : -1.006571070000000E+008

\section*{Exercise 5: Boothroyd/Dekker Matrices}

The (integer) elements of a \(n\)-dimensional Boothroyd/Dekker matrix (see [53]) \(D=\) \(\left(d_{i j}\right)\) are given by
\[
d_{i j}=\binom{n+i-1}{i-1} \cdot\binom{n-1}{n-j} \cdot \frac{n}{i+j-1} .
\]

Write a PASCAL-XSC program to compute an \(n\)-dimensional Boothroyd/Dekker matrix. Use an operator Choose for the (integer) computation of the binominal coefficient \(\binom{m}{k}\). Write the values of the matrix row by row. The value \(n(\leq 10)\) should be entered.

Hint: Compute \(\binom{m}{k}\) this way:
\[
\begin{aligned}
& c_{0}:=1 ; \quad c_{i}:=c_{i-1} * \frac{m-i+1}{i} ; \quad i=1, \ldots, k \\
& \binom{m}{k}:=c_{k} ;
\end{aligned}
\]

Use the integer division div.

\section*{Solution:}
```

program BDM (input, output);
{ Exercise 5: Boothroyd/Dekker Matrices }
var i, j, n, d : integer;
priority Choose = *;
operator Choose (m, k: integer) ChooseResult : integer;
var i, c: integer;
begin
c:= 1;
for i:=1 to k do
c:= (c*(m-i+1)) div i;
ChooseResult:= c;
end;
begin
writeln('Exercise 5: Boothroyd/Dekker Matrices');
writeln;
write('Enter the desired dimension of the matrix (<=10): ');
read (n);

```
```

writeln;
for i:=1 to n do
begin
for j:=1 to n do
begin
d:=(((n+i-1) Choose (i-1))*((n-1) Choose (n-j))*n) div (i+j-1);
write (d:8);
end;
writeln;
end;
end.

```

\section*{Runtime Output:}

Exercise 5: Boothroyd/Dekker Matrices
Enter the desired dimension of the matrix (\(<=10\)) : 8
\begin{tabular}{rrrrrrrr}
8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 \\
36 & 168 & 378 & 504 & 420 & 216 & 63 & 8 \\
120 & 630 & 1512 & 2100 & 1800 & 945 & 280 & 36 \\
330 & 1848 & 4620 & 6600 & 5775 & 3080 & 924 & 120 \\
792 & 4620 & 11880 & 17325 & 15400 & 8316 & 2520 & 330 \\
1716 & 10296 & 27027 & 40040 & 36036 & 19656 & 6006 & 792 \\
3432 & 21021 & 56056 & 84084 & 76440 & 42042 & 12936 & 1716 \\
6435 & 40040 & 108108 & 163800 & 150150 & 83160 & 25740 & 3432
\end{tabular}

\section*{Exercise 6: Complex Functions}

Write a PASCAL-XSC program which simulates some features supplied in module C_ARI to compute the values \(e^{z}, \cos z, \sin z, \cosh z\), and \(\sinh z\) for 20 complex numbers \(z=x+i y\) and produces a table of these values.

Use the predefined type complex and define
- a monadic operator I_times to multiply a complex number by the imaginary unit \(i\),
- a monadic operator - for complex numbers,
- two operators + and - for the addition and subtraction of two complex numbers,
- an operator * for the multiplication of a real number by a complex number,
- functions exp, cos, sin, cosh, and sinh using the predefined functions sin, cos, and \(\exp\) for real quantities, and
- procedures for the input and output.

Hints: \(\quad(u, z \in \mathbb{C} ; \quad x, y, v, w \in \mathbb{R})\)
If \(z=x+i y\), then \(u=i z\) with \(u=v+i w\) is given by \(v=-y\) and \(w=x\).
Division by \(i\) is replaced by a multiplication by \(-i\).
real divisions are replaced by multiplications.
If \(z=x+i y\), then \(e^{z}=e^{x} \cos y+i e^{x} \sin y\) (Euler's formula)
\(\cos z=\frac{e^{i z}+e^{-i z}}{2} \quad \cosh z=\frac{e^{z}+e^{-z}}{2}\)
\(\sin z=\frac{e^{i z}-e^{-i z}}{2 i} \quad \sinh z=\frac{e^{z}-e^{-z}}{2}\)

\section*{Solution:}
```

program complex_functions (input, output);
{ Exercise 6: Complex Functions }

```
```

var
z : complex;
c : array [1..20] of complex;
i : integer;

```
```

priority I_times = `;
operator I_times (z : complex) multiplied_by_i : complex;
{ Monadic operator for the multiplication of the argument }
{ with the imaginary unit i (with sqr(i) = -1).
}
begin
multiplied_by_i.re:= -z.im;
multiplied_by_i.im:= z.re;
end;
operator + (a, b: complex) plus : complex;
begin
plus.re:= a.re + b.re;
plus.im:= a.im + b.im;
end;
operator - (a, b: complex) minus : complex;
begin
minus.re:= a.re - b.re;
minus.im:= a.im - b.im;
end;
operator - (a: complex) negate : complex;
begin
negate.re:= -a.re;
negate.im:= -a.im;
end;
operator * (r: real; z: complex) mulrc : complex;
begin
mulrc.re:= r * z.re;
mulrc.im:= r * z.im
end;
function exp (z: complex) : complex;
begin
exp.re:= exp (z.re) * cos(z.im);
exp.im:= exp (z.re) * sin(z.im);
end;
function cos (z: complex) : complex;
begin
cos:= 0.5 * (exp (I_times z) + exp (- I_times z))
end;
function sin (z: complex) : complex;
begin
sin:= 0.5 * - I_times (exp (I_times z) - exp (-I_times z))
end;

```
```

function cosh (z: complex) : complex;
begin
cosh:= 0.5 * (exp (z) + exp (-z))
end;
function sinh (z: complex) : complex;
begin
sinh:= 0.5 * (exp (z) - exp (-z));
end;
procedure write (var f: text; c: complex; s: integer);
begin
write (f,'(',c.re:s,',',c.im:s,') ');
end;
procedure read (var f: text; var c: complex);
begin
read (f, c.re, c.im);
end;
begin
writeln('Exercise 6: Complex Functions');
writeln;
for i:=1 to 20 do
begin
write ('Enter ', i:2, '. complex number: ');
read (c[i]);
end;
writeln;
writeln(' z ':11,' exp(z)':25,' cos(z) ':25,' sin(z) ':25);
for i:=1 to 20 do
begin
z:= c[i];
write (z:8);
write (exp(z):8);
write (cos(z):8);
writeln (sin(z):8);
end;
writeln;
writeln(' z ':11,' cosh(z)':25,' sinh(z) ':25);
for i:=1 to 20 do
begin
z:= c[i];
write (z:8);
write (cosh(z):8);
writeln (sinh(z):8);
end;
end.

```

\section*{Exercise 7: Surface Area of a Parallelepiped}

Compute the surface area of a 3-dimensional parallelepiped. We use the following notation
- \(a=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right), b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)\), and \(c=\left(\begin{array}{c}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)\) are vectors in \(\mathbb{R}^{3}\).
- The scalar product \(a \cdot b\) (dot product) of two vectors \(a\) and \(b\) is defined as
\[
a \cdot b=\sum_{i=1}^{3} a_{i} \cdot b_{i}=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+a_{3} \cdot b_{3} .
\]
- The length \(L\) of a vector \(a\) is computed as \(L(a):=\sqrt{a \cdot a}\).
- The vector product \(a \times b\) (cross product) of two vectors yields a vector
\[
a \times b:=\left(\begin{array}{c}
a_{2} \cdot b_{3}-a_{3} \cdot b_{2} \\
a_{3} \cdot b_{1}-a_{1} \cdot b_{3} \\
a_{1} \cdot b_{2}-a_{2} \cdot b_{1}
\end{array}\right) .
\]
- The area of a parallelogram defined by the vectors \(a\) and \(b\) is Area \((a, b):=\) \(L(a \times b)\).
- The surface area of a parallelepiped defined by the vectors \(a, b\), and \(c\) is determined by
\[
\operatorname{Surf}(a, b, c):=2 \cdot(\operatorname{Area}(a, b)+\operatorname{Area}(b, c)+\operatorname{Area}(c, a)) .
\]

Write a PASCAL-XSC program with these parts:
a) a type Vector declared as an array of length 3 whose component type is real,
b) an operator \(*\) for the scalar product of two vectors,
c) a function Length for the length \(L\) of a vector
d) an operator Cross for the vector product of two vectors,
e) a function Area for the area of a parallelogram,
f) a function Surface for the surface area of a parallelepiped,
g) a main program which repetitively reads in three vectors from a file with component type Vector and computes the surface of the corresponding parallelepiped. Write the result. The loop should terminate when the end of the input file is reached.

Hint: The number of vectors in the input file is a multiple of 3 .
The vector products b) and d) should be computed with maximum accuracy via dotprecision expressions or accurate expressions.

\section*{Solution:}
```

program parallelepiped (datafile, input, output);
{ Exercise 7: Surface Area of a Parallelepiped }
type Vector = array [1..3] of real;
operator * (a, b: Vector) scalp : real;
var i : integer;
begin
scalp:= \#* (for i:=1 to 3 sum (a[i]*b[i]));
end;
function Length (a: Vector) : real;
begin
Length:= sqrt (a*a);
end;
priority cross = *;
operator cross (a, b: Vector) cprod : Vector;
begin
cprod[1]:= \#*(a[2]*b[3]-a[3]*b[2]);
cprod[2]:= \#*(a[3]*b[1]-a[1]*b[3]);
cprod[3]:= \#*(a[1]*b[2]-a[2]*b[1]);
end;
function Area (a, b : VECTOR) : real;
begin
Area:= Length (a cross b);
end;
function Surface (a, b, c : VECTOR) : real;
begin
Surface:= 2 * (Area(a,b) + Area(b,c) + Area(c,a));
end;

```
```

var datafile : file of VECTOR;
a, b, c : VECTOR;
begin { main program }
writeln ('Exercise 7: Surface Area of a Parallelepiped');
writeln;
reset (datafile);
repeat
read (datafile, a);
read (datafile, b);
read (datafile, c);
writeln ('a : ',a[1],' ',a[2],' ,,a[3]);
writeln ('b : ',b[1],' ',b[2],' ,,b[3]);
writeln ('c : ',c[1],' ',c[2],' ',c[3]);
write ('Surface area of the parallelepiped : ');
writeln (Surface (a,b,c));
until eof(datafile)
end.

```

\section*{Exercise 8: Parallelism and Intersection of Lines}

Investigate two lines of the form \(a_{1} x+b_{1} y=c_{1}\) and \(a_{2} x+b_{2} y=c_{2}\) in the Euclidean plane for parallelism. In case the two lines are not parallel, find their intersection point \(S\). Write a PASCAL-XSC program including
a) a type declaration Line defining a line as an array consisting of 3 components with component type real,
b) a type declaration Point defining a point as a record with the components \(x\) and \(y\) of type real,
c) a real function Determinant with the parameters \(a, b, c, d\) of type real for computing the determinant
\[
\operatorname{det}(a, b, c, d)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a * d-b * c
\]
using a dotprecision expression with rounding away from zero,
d) a logical operator Parallel_To delivering the value TRUE for two lines \(g_{1}\) and \(g_{2}\) if and only if \(\operatorname{det}\left(a_{1}, b_{1}, a_{2}, b_{2}\right)=0\),
e) an operator \(* *\) for the intersection of two variables \(g_{1}\) given by \(a_{1}, b_{1}, c_{1}\) and \(g_{2}\) given by \(a_{2}, b_{2}, c_{2}\) of type Line. The result is of type Point and contains the coordinates of the intersection point \(s=\left(x_{s}, y_{s}\right)\) of the lines \(g_{1}\) and \(g_{2}\). Use part c) and the definitions
\[
x_{s}=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, \quad y_{s}=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
\]
f) a main program which uses a loop to read in the parameters of two lines and uses the operator Parallel_To to check whether the two lines are parallel. If the lines are parallel, the program should announce, "the lines are parallel". If not, then compute intersection point using part e) and report it. The loop is to be repeated until one of the conditions \(a_{1}=b_{1}=0\) or \(a_{2}=b_{2}=0\) hold.

\section*{Solution:}
```

program parallel (input, output);
{ Exercise 8: Parallelism and Intersection of Lines }
type
Comp = (a,b,c);
Line = array [Comp] of real;
Point = record
x, y : real;
end;
var
g1, g2 : Line;
s : Point;
function Determinant (a, b, c, d: real): real;
var
dp : dotprecision;
begin
dp:= \#(a*d - b*c);
if sign(dp) = 0 then
Determinant:= 0
else if sign(dp) < 0 then
Determinant:= \#< (dp)
else
Determinant:= \#> (dp);
end;
priority Parallel_To = =;
operator Parallel_To (g1, g2: line) par: boolean;
begin
par:= (Determinant(g1[a],g1[b],g2[a],g2[b]) = 0);
end;
operator ** (g1, g2: line) intersection: point;
var
det : real;
begin
det:= Determinant (g1[a],g1[b],g2[a],g2[b]);
intersection.x:= Determinant (g1[c],g1[b],g2[c],g2[b]) / det;
intersection.y:= Determinant (g1[a],g1[c],g2[a],g2[c]) / det;
end;
begin {main program}
writeln ('Exercise 8: Parallelism and Intersection of Lines');
writeln;

```
```

repeat
writeln ('Enter the values a1, b1, and c1 for line g1: ');
read (g1[a], g1[b], g1[c]);
writeln;
writeln ('Enter the values a2, b2, and c2 for line g2: ');
read (g2[a], g2[b], g2[c]);
writeln;
if g1 Parallel_To g2 then
writeln ('The two lines are parallel!')
else
begin
s:= g1 ** g2;
writeln ('The two lines intersect in point ');
writeln ('(xs,ys) = (',s.x,',',s.y,')');
end;
writeln; writeln;
until ((g1[a]=0) and (g1[b]=0)) or ((g2[a]=0) and (g2[b]=0));
end.

```

\section*{Exercise 9: Transposed Matrix, Symmetry}

An \(n \times n\) matrix \(A=\left(a_{i j}\right)\) is called symmetric if \(a_{i j}=a_{j i}\) for all \(i, j \in\{1, \ldots, n\}\). The transposed matrix \(T=\left(t_{i j}\right)=A^{T}\) of a matrix \(A\) is defined by \(t_{i j}=a_{j i}\) for all \(i, j \in\{1, \ldots, n\}\).

Write a program which
- defines a dynamic type Matrix for integer matrices,
- defines an operator \(=\) for two matrices of type Matrix,
- declares a monadic operator Transposed delivering the transpose of a matrix,
- declares a boolean function Is_Symmetric computing the value TRUE if and only if its parameter (of the type Matrix) is symmetric,
- contains a procedure Main declaring two square matrices \(A\) and \(B\) depending on a parameter \(n\), reading in \(A\) and \(B\), ascertaining whether \(A\) and \(B\) are symmetric or whether \(A^{T}=B\), and reporting the appropriate information,
- reads the value \(n\) in the main program and calls the procedure Main.

Hint: The function Is_Symmetric may be very easily formulated by means of the operators = and Transposed.

\section*{Solution:}
```

program Transposed_and_Symmetry (input, output);
{ Exercise 9: Transposed Matrix and Symmetry }
type Matrix = dynamic array [*,*] of real;
operator = (a, b: Matrix) equal: boolean;
var help : boolean;
i, j : integer;
begin
help:= true;
for i:= lbound(a,1) to ubound (a,1) do
for j:= lbound(a,2) to ubound(a,2) do
if a[i,j] <> b[i,j] then
help:= false;
equal:= help;
end;
priority Transposed = `;

```
```

operator Transposed (a: matrix) TransposedResult:
matrix[lbound(a,2)..ubound(a,2),lbound(a,1)..ubound(a,1)];
var i, j :integer;
begin
for i:=lbound(a,2) to ubound(a,2) do
for j:=lbound(a,1) to ubound(a,1) do
TransposedResult[i,j]:= a[j,i];
end;
function Is_Symmetric (a: matrix): boolean;
begin
Is_Symmetric:= a = Transposed a;
end;
procedure read (var f: text; var A: matrix);
var
n, i, j: integer;
begin
n:= ubound (A);
for i:=1 to n do
begin
write (i:3,'. row: ');
for j:=1 to n do
read (A[i,j]);
end;
end;
procedure write (var f: text; var A: matrix);
var
n, i, j: integer;
begin
n:= ubound (A);
for i:=1 to n do
begin
for j:=1 to n do
write (A[i,j]:5:1);
writeln;
end;
end;
procedure Main (n: integer);
var i, j : integer;
A, B, At : matrix[1..n,1..n];
begin
writeln('Enter the elements of matrix A:');
read (A);
writeln('Enter the elements of matrix B:');
read (B);

```
```

    writeln ('Transposed of the matrix A:');
    At:= Transposed A;
    writeln (At);
    if Is_Symmetric (A) then
        writeln('A is symmetric ');
    if Is_Symmetric (B) then
        writeln('B is symmetric ');
    if At = B then
        writeln('Transposed (A) is equal to B ');
    end;
var n : integer;
begin
writeln('Exercise 9: Transposed Matrix and Symmetry');
writeln;
write('Enter the dimension of the matrices: ');
read (n);
Main (n);
end.

```

\section*{Exercise 10: Rail Route Map}

For a German railroad line, a rail route map is to be prepared. Beginning at the starting point Place_0, a destination station Place_9 has to be reached by visiting 8 intermediate stations Place_1,..., Place_8 with a two-minute stop at every station.

Write a program which reads in the time of departure from Place_0 and the distances between the stations Place_i and Place_i+1 for \(i=0, \ldots, 8\). Based upon an average speed of \(115 \mathrm{~km} / \mathrm{h}\), compute the times of arrival and departure at the stations. Print a rail route map which uses a 24 -hour clock!

For this purpose, define
a) a type Time as a record with the components Hour and Minute,
b) a function RouteTime computing the railroad time required by the rail route section,
c) an operator for the addition of the railroad time and duration of stay to the current time,
d) a main program reading in the necessary data, computing railroad time and duration of stay, and producing a table consisting of columns for place, times of arrival and departure, and distance to the next station.

Hint: In order to compute railroad times within the function RouteTime and to implement the operator, it is rather useful to compute in seconds and to convert them to whole minutes.

\section*{Solution:}
```

program map (input, output);
{ Exercise 10: Rail Route Map }
type
Time = record
Hour : 0..23;
Minute: 0..59;
end;
var
i : integer;
route : array [1..9] of real;
curr_time,
departure,
arrival,
stop_time : Time;

```
```

function RouteTime (place_i: integer) : Time;
var
hours : real;
help : Time;
begin
hours := route[place_i]/115;
help.Hour := trunc(hours);
hours := hours - help.Hour;
help.Minute:= trunc(hours*60);
RouteTime := help;
end;
operator + (a, b: Time) sm: Time;
var
help : 0..119;
begin
help := a.Minute + b.Minute;
sm.Minute:= help mod 60;
help := a.Hour + b.Hour + help div 60;
sm.Hour := help mod 24
end;
begin
writeln ('Exercise 10: Rail Route Map');
writeln;
stop_time.Hour := 0;
stop_time.Minute:= 2;
write('Enter the departure time (hh mm): ');
read (departure.Hour, departure.Minute);
for i:=1 to 9 do
begin
write ('Enter the distance between station ',
i-1:1,' and ', i:1,' (in km) : ');
read (route[i]);
end;
writeln;
writeln('Station Arrival Departure Distance to next station');
writeln('===========================================================');
curr_time := departure;
writeln('PLACE_', '0 --:-- ',
curr_time.Hour:2, ':', curr_time.Minute:2,
, ', route[1]:10:2, ' km');

```
```

for i:=1 to 8 do
begin
arrival := curr_time + RouteTime(i);
curr_time := arrival + stop_time;
writeln('PLACE_', i:1, , ',
arrival.Hour:2, ':', arrival.Minute:2, ' ',
curr_time.Hour:2, ':', curr_time.Minute:2,
, ', route[i+1]:10:2,' km');
end;
arrival := curr_time + RouteTime(9);
writeln('PLACE_','9 ',
arrival.Hour:2, ':', arrival.Minute:2, , ,,
,--:--',
, --.-- km');

```
end.

\section*{Runtime Output:}
\begin{tabular}{|c|c|c|c|}
\hline Station & Arrival & Departure & Distance to next Station \\
\hline PLACE_0 & --:-- & 10:00 & 12.00 km \\
\hline PLACE_1 & 10:06 & 10:08 & 23.00 km \\
\hline PLACE_2 & 10:20 & 10:22 & 34.00 km \\
\hline PLACE_3 & 10:40 & 10:42 & 45.00 km \\
\hline PLACE_4 & 11:05 & 11:07 & 56.00 km \\
\hline PLACE_5 & 11:37 & 11:39 & 67.00 km \\
\hline PLACE_6 & 12:14 & 12:16 & 78.00 km \\
\hline PLACE_7 & 12:56 & 12:58 & 89.00 km \\
\hline PLACE_8 & 13:45 & 13:47 & 91.00 km \\
\hline PLACE_9 & 14:34 & --:-- & --.-- -- \\
\hline
\end{tabular}

\section*{Exercise 11: Inventory Lists}

Write a PASCAL-XSC program summing up several individual inventory lists of branches of a chain of department stores in one total list. Use
- a linear linked list (pointer) with elements consisting of the components Ident (string with a maximum of 20 characters) and Number (0..maxint),
- a procedure for entering of an inventory list,
- an operator + for summing up two lists into one single list by addition of the two Number components with the same label or by inserting new list elements,
- a procedure to print the complete inventory list in tabular form.

In the main program, first the number \(n\) of the individual lists and then the \(n\) lists themselves should be entered. Finally, use of the operator + to sum the individual lists into one single list. Report the inventory in a tabular form.

\section*{Solution:}
```

program lists (input, output);
{ Exercise 11: Investory Lists }
type
goods_pointer = `goods;     goods = record                                     ident : string[20];                                     number : O..maxint;                             next : goods_pointer;                 end; procedure list_input (var list: goods_pointer);     var             h : goods_pointer;         begin             list:= nil;             repeat                 new (h);                 write ('ident: ');                 readln;                 read (h^.ident);                 write ('number: ');                 read (h^.number);                 h^.next:= list;                 list:= h;             until list`.number < 0;

```
```

    list:= list^.next;
    end;
    operator + (list1, list2: goods_pointer) total_list: goods_pointer;
var
total, h1, h2 : goods_pointer;
flag : boolean;
begin
if (list1 = nil) then
total := list2
else
begin
total := list1;
h2 := list2;
while h2 <> nil do
begin
h1 := total;
repeat
flag:= h1 <> nil;
if flag then
flag:= h1^.ident <> h2^.ident;
if flag then
h1:= h1^.next;
until not flag;
if h1 <> nil then
begin
h1^.number := h1^.number + h2^.number;
list2 := list2^.next;
end
else
begin
list2 := list2^.next;
h2^.next := total;
total := h2;
end;
h2 := list2;
end;
end;
total_list := total;
end;
procedure list_output (list: goods_pointer);
var
h : goods_pointer;
begin
h := list;
writeln('ident number ');
repeat

```
```

            writeln (h^.ident:24, h^.number);
            h := h^.next;
        until h = nil;
    end;
    var
n, i : integer;
list, total : goods_pointer;
begin {main program}
writeln('Exercise 11: Investory Lists');
writeln;
total := nil;
write('How many individual lists do you want to enter? ');
read (n);
writeln;
for i:=1 to n do
begin
writeln (i:3,'. inventory list:');
list_input (list);
writeln;
list_output (list);
writeln;
total:= total + list;
end;
writeln;
writeln(' *** Here is the total list *** ');
list_output (total);
end.

```

\section*{Exercise 12: Complex Numbers and Polar Representation}

A complex number \(z=a+i b=(a, b)\) with \(a, b \in \mathbb{R}\) can be represented in polar coordinates as \(z=r e^{i \varphi}=(r, \varphi)\) with \(r, \varphi \in \mathbb{R}, 0 \leq \varphi<2 \pi\).

Write a PASCAL-XSC program working with this representation. Proceed as follows:
a) Define an appropriate record-type polar_complex with the components \(r\) and phi for the representation of complex numbers in polar coordinates.
b) Write a function pi yielding the value \(\pi\) (hint: \(\pi=4 \arctan (1)\)).
c) Overload the assignment operator \(:=\) to enable the assignment of a complex number \(z=a+i b\) of type complex to a variable of type polar_complex with components \(r\) and phi. The type conversion has to be done according to the formulas
\[
\begin{aligned}
& r=\sqrt{a^{2}+b^{2}} \\
& \varphi= \begin{cases}\pi / 2 & \text { for } a=0 \text { and } b \geq 0 \\
3 / 2 * \pi & \text { for } a=0 \text { and } b<0 \\
\arctan (b / a) & \text { for } a>0 \text { and } b \geq 0 \\
2 * \pi+\arctan (b / a) & \text { for } a>0 \text { and } b<0 \\
\pi+\arctan (b / a) & \text { for } a<0 .\end{cases}
\end{aligned}
\]

To compute \(r\), use a \#-expression in order to increase accuracy (as far as possible).
d) Define an operator \(*\) to compute the product \(w=(r, \varphi)=u * v\) of two complex numbers \(u=\left(r_{1}, \varphi_{1}\right)\) and \(v=\left(r_{2}, \varphi_{2}\right)\) of type polar_complex in polar representation by
\[
\begin{aligned}
& r=r_{1} * r_{2}, \quad \text { and } \\
& \varphi= \begin{cases}\varphi_{1}+\varphi_{2} & \text { for } \varphi_{1}+\varphi_{2}<2 \pi \\
\varphi_{1}+\varphi_{2}-2 * \pi & \text { otherwise. }\end{cases}
\end{aligned}
\]
e) Define an operator / to compute the quotient \(w=(r, \varphi)=u / v\) of two complex numbers \(u=\left(r_{1}, \varphi_{1}\right)\) and \(v=\left(r_{2}, \varphi_{2}\right)\) of type polar_complex in polar representation by
\[
\begin{aligned}
& r=r_{1} / r_{2}, \quad \text { and } \\
& \varphi= \begin{cases}\varphi_{1}-\varphi_{2} & \text { for } \varphi_{1}-\varphi_{2} \geq 0 \\
\varphi_{1}-\varphi_{2}+2 * \pi & \text { otherwise. }\end{cases}
\end{aligned}
\]
f) Write a main program which
1. reads in two complex numbers \(u\) and \(v\) of type complex,
2. produces the corresponding values \(p u\) and \(p v\) using the overloaded assignment operator,
3. computes the values \(w=u * v / u / v\) and \(p w=p u * p v / p u / p v\),
4. reports the radius \(r\) and the angle \(\varphi\) of \(p w\), and
5. reports \(p w 2=\operatorname{pcompl}(w)\) as a comparison.

Hint: Use the predefined type complex and link the module C_ARI providing the operators and input/output procedures which are necessary for this type.

\section*{Solution:}
```

program polar (input, output);
{ Exercise 12: Complex Numbers and Polar Representation }
use c_ari;
type
polar_complex = record
r, phi : real;
end;
var
u, v, w : complex;
pu, pv, pw, pw2 : polar_complex;
function pi : real;
begin
pi:= 4 * arctan (1);
end;
operator := (var pz: polar_complex; z: complex);
var
a, b, ph : real;
begin
a := z.re;
b := z.im;
pz.r := sqrt ( \#*(a * a + b * b) );
if (a = 0) and (b >= 0) then
ph := pi/2
else if (a = 0) and (b < 0) then
ph := 3 / 2 * pi
else if (a > 0) and (b >= 0) then
ph := arctan (b/a)

```
```

        else if (a > 0) and (b < 0) then
            ph := 2 * pi + arctan (b/a)
        else
        ph := pi + arctan (b/a);
        pz.phi := ph;
    end;
    operator * (u, v : polar_complex) resmul : polar_complex;
var
ph : real;
begin
resmul.r := u.r * v.r;
ph := u.phi + v.phi;
if ph < 2 * pi then
resmul.phi := ph
else
resmul.phi := ph - 2 * pi;
end;
operator / (u, v : polar_complex) resdiv : polar_complex;
var
ph : real;
begin
resdiv.r := u.r / v.r;
ph := u.phi - v.phi;
if ph >= 0 then
resdiv.phi := ph
else
resdiv.phi := ph + 2 * pi;
end;
begin {main program}
writeln ('Exercise 12: Complex Numbers and Polar Representation');
writeln;
write ('Enter complex number u: ');
read (u);
write ('Enter complex number v: ');
read (v);
pu := u;
pv := v;
w := u * v / u / v;
pw2 := w;
pw := pu * pv / pu / pv;
writeln ('Radius of pw : ',pw.r);
writeln ('Angle of pw : ',pw.phi);
writeln ('Radius of pw2: ',pw2.r);
writeln ('Angle of pw2: ',pw2.phi);
end.

```

\section*{Exercise 13: Complex Division}

The quotient of two complex numbers \(z_{1}=x_{1}+i y_{1}\) and \(z_{2}=x_{2}+i y_{2}\) may be computed as
\[
\frac{z_{1}}{z_{2}}=\frac{z_{1} \overline{z_{2}}}{z_{2} \overline{z_{2}}}=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{x_{2}{ }^{2}+y_{2}{ }^{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}{ }^{2}+y_{2}{ }^{2}}+i \frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}{ }^{2}+y_{2}{ }^{2}}
\]
a) Write a PASCAL-XSC program which includes the declaration of an operator Cdiv realizing this complex division for two complex numbers of the type complex by application of the operators \(+,-, *, /\) for real numbers. In the main program, two numbers of type complex should be read in, divided, and the result should be printed.
b) Extend your program in such a manner that you link the module C_ARI. Call your operator Cdiv and then the operator / predefined in C_ARI. Compare the output of the two values.
c) Test your program by using the values \(z_{1}=x_{1}+i y_{1}\) and \(z_{2}=x_{2}+i y_{2}\) with
\[
\begin{array}{ll}
x_{1}=1254027132096, & y_{1}=886731088897 \\
x_{2}=886731088897, & y_{2}=627013566048
\end{array} .
\]

You will notice a clear difference in the imaginary parts of the results.
d) Design another operator NewCdiv yielding better results than Cdiv by the use of accurate expressions. Compare the three operators in a test run once more.

\section*{Solution:}
```

program ComplDiv (input, output);
{ Exercise 13: Complex Division }
use c_ari;
var z1, z2 : complex;
priority Cdiv = *;
operator Cdiv (z1, z2 : complex) result : complex;
var denom : real;
begin
denom := sqr(z2.re) + sqr(z2.im);
result.re:= (z1.re*z2.re + z1.im*z2.im)/denom;
result.im:= (z2.re*z1.im - z1.re*z2.im)/denom;
end;

```
```

priority NewCdiv = *;
operator NewCdiv (z1, z2 : complex) NewResult : complex;
var denom : real;
begin
denom := \#*(z2.re*z2.re + z2.im*z2.im);
NewResult.re:= \#*(z1.re*z2.re + z1.im*z2.im)/denom;
NewResult.im:= \#*(z2.re*z1.im - z1.re*z2.im)/denom;
end;
begin
writeln ('Exercise 13: Complex Division');
writeln;
write ('Numerator z1 = '); read (z1);
write ('Denominator z2 = '); read (z2);
writeln;
write ('z1 Cdiv z2 = '); writeln (z1 cdiv z2);
write ('z1 NewCdiv z2 = '); writeln (z1 NewCdiv z2);
write ('z1 / z2 = '); writeln (z1 / z2);
end.

```

\section*{Runtime Output:}

Exercise 13: Complex Division
```

Numerator z1 = ( 1254027132096, 886731088897 )

```
Denominator z2 \(=(886731088897,627013566048)\)
```

z1 Cdiv z2 = ( 1.414213562373095E+000, 0.000000000000000E+000 )
z1 NewCdiv z2 = ( 1.414213562373095E+000, 8.478614131951457E-025 )
z1 / z2 = ( 1.414213562373095E+000, 8.478614131951457E-025 )

```

\section*{Exercise 14: Electric Circuit}

One to three light bulbs with a resistance of \(R=240 \Omega\) are connected to a voltage \(U=220 \mathrm{~V}\) via a wire of the length \(l=100 \mathrm{~m}\) with the diameter \(d=1.5 \mathrm{~mm}\) and a specific resistance of \(\rho=0.02857 \Omega \mathrm{~mm}^{2} / \mathrm{m}\). All data are given with an error of \(0.5 \%\).

Write a PASCAL-XSC program using the module I_ARI and the type interval. For three cases (1, 2, 3 bulbs connected), compute intervals for the range of the values \(R_{\text {tot }}\) (total resistance of the circuit), \(I_{t o t}\) (total current), \(U_{w}\) (portion of the voltage at the wire) and \(U_{b u}\) (bulb voltage). Use the formulas
\[
\begin{aligned}
R_{t o t} & =R_{l}+R / n \\
I_{\text {tot }} & =U / R_{t o t} \\
U_{w} & =R_{w} \cdot I_{t o t} \\
U_{b u} & =U-U_{w} .
\end{aligned}
\]

Proceed as follows:
1) Read the values \(\pi, R, l, d, \rho\), and \(U\). Use the error of \(0.5 \%\) to compute the intervals \(R, L, D\), Rho, and \(U\) which enclose the given values. Compute PI enclosing \(\pi\). Print the values of the intervals.
2) Compute and print the inclusion \(R w\) of the wire resistance
\[
R_{w}=(8 \cdot \rho \cdot l) /\left(\pi \cdot d^{2}\right) .
\]
3) Compute and report the intervals Rtot, Itot, \(U_{w}\), and \(U b u\) for \(n=1,2,3\).
4) Finally, print the interval Us representing the total range of Ubu for the different number of bulbs.

Hint: An interval inclusion \(P I\) for \(\pi\) is computed by
\[
P I=4 \cdot \arctan ([1,1]) .
\]

Use the predefined type interval and the module I_ARI containing the necessary interval operators.

\section*{Solution:}
```

program circuit (input, output);
{ Exercise 14: Electric Circuit }
use i_ari;
var
error,
U, L, D, Rho, R, Us, pi,
Rw, Rtot, Itot, Uw, Ubu : interval;
n : integer;
procedure write (var f: text; int: interval; long: boolean);
{ Overloading of write to allow output of intervals with }
{ a long mantissa. The default output of intervals is }
{ made according to the width of the interval. }
begin
if long then
write (f,'[',int.inf:20:0:-1 ,',',int.sup:20:0:+1 ,']')
{ Output with more digits }
else
write (f,int);
{ Default output predefined in I_ARI }
end;
begin
writeln ('Exercise 14: Electric Circuit');
writeln;
write ('U = '); read (u);
write ('L = '); read (l);
write ('D = '); read (d);
write ('Rho = '); read (rho);
write ('R = '); read (r);
pi := 4 * arctan (intval(1));
error := intval ( (<0.995) , (>1.005) );
r := r * error;
l := l * error;
d := d * error;
Rho:= Rho * error;
u := u * error;
writeln;
writeln ('Intervals:');
writeln ('PI = ',pi : true);
writeln ('R = ',R : true);
writeln ('L = ',L : true);
writeln ('D = ',D : true);

```
```

writeln ('Rho = ',Rho: true);
writeln ('U = ',U : true);
writeln;
Rw:= (8*Rho*L)/(pi*sqr(D));
writeln ('Inclusion of the wire resistance:');
writeln ('Rw = ',Rw : true);
for n:= 1 to 3 do
begin
writeln;
Rtot:= Rw + r/n;
Itot:= U / Rtot;
Uw := Rw * Itot;
Ubu := U - Uw;
if n = 1 then
Us:= Ubu
else
Us:= Us +* Ubu;
write('With ',n:1,' bulb');
if n <> 1 then write ('s');
writeln(', the following inclusions are computed:');
writeln('- total resistance: Rtot = ',Rtot : true);
writeln('- total current: Itot = ',Itot : true);
writeln('- wire voltage: Uw = ',Uw : true);
writeln('- bulb voltage: Ubu = ',Ubu : true);
write('press return'); readln; writeln;
end;
writeln ('The bulb voltage Ubu has the total range interval');
writeln (Us : true);
end.

```

\section*{Runtime Output:}

\section*{Exercise 14: Electric Circuit}
```

U}=22
l = 100
d = 1.5
rho = 0.02857
R = 240

```
Intervals:
\(\mathrm{PI}=[3.141592653589 \mathrm{E}+000,3.141592653590 \mathrm{E}+000]\)
\(R=[2.387999999999 \mathrm{E}+002,2.412000000001 \mathrm{E}+002]\)
\(\mathrm{L}=[9.949999999999 \mathrm{E}+001,1.005000000001 \mathrm{E}+002]\)
\(\mathrm{D}=[1.492499999999 \mathrm{E}+000,1.507500000001 \mathrm{E}+000]\)
Rho \(=\) [\(2.842714999999 \mathrm{E}-002,2.871285000001 \mathrm{E}-002]\)
\(\mathrm{U}=[2.188999999999 \mathrm{E}+002,2.211000000001 \mathrm{E}+002]\)

Inclusion of the wire resistance:
\(\mathrm{Rw}_{\mathrm{w}}=\) [\(\left.3.169435182649 \mathrm{E}+000,3.298783385817 \mathrm{E}+000\right]\)

With 1 bulb, the following inclusions are computed:
- total resistance: Rtot \(=\) [\(2.419694351826 \mathrm{E}+002,2.444987833859 \mathrm{E}+002]\)
- total current: Itot \(=\) [\(8.953009784698 \mathrm{E}-001,9.137517713058 \mathrm{E}-001]\)
- wire voltage: \(U_{w}=[2.837598420222 \mathrm{E}+000,3.014269161944 \mathrm{E}+000]\)
- bulb voltage: \(\mathrm{Ubu}=\) [\(2.158857308380 \mathrm{E}+002,2.182624015798 \mathrm{E}+002]\)
press return

With 2 bulbs, the following inclusions are computed:
- total resistance: Rtot \(=\) [\(1.225694351826 \mathrm{E}+002,1.238987833859 \mathrm{E}+002]\)
- total current: Itot \(=\) [\(1.766764725351 \mathrm{E}+000,1.803875490416 \mathrm{E}+000]\)
- wire voltage: Uw \(=\) [5.599646279992E+000, 5.950594497863E+000]
- bulb voltage: Ubu = [2.129494055021E+002, 2.155003537201E+002]
press return

With 3 bulbs, the following inclusions are computed:
- total resistance: Rtot \(=\) [8.276943518264E+001, 8.369878338582E+001]
- total current: Itot \(=\) [\(2.615330726982 \mathrm{E}+000,2.671275930688 \mathrm{E}+000\)]
- wire voltage: \(\quad U w=[8.289121220362 \mathrm{E}+000,8.811960659084 \mathrm{E}+000]\)
- bulb voltage: Ubu = [\(2.100880393409 \mathrm{E}+002,2.128108787797 \mathrm{E}+002]\)
press return

The bulb voltage Ubu has the total range interval
[2.100880393409E+002, 2.182624015798E+002]

\section*{Exercise 15: Alternating Current Measuring Bridge}

The capacity of the unknown capacitance \(C_{1}\) and the resistance of the unknown resistor \(R_{1}\) may be determined by the circuit diagrammed above. This is done by varying the capacity \(C_{2}\) and the resistance \(R_{2}\) until the sound in the loudspeaker \(K\) reaches a minimum or vanishes. Then, the capacitances and the resistances satisfy
\[
\begin{aligned}
& C_{1}=R_{4} \cdot C_{2} / R_{3} \\
& R_{1}=R_{3} \cdot R_{2} / R_{4} .
\end{aligned}
\]

According to the data supplied by the manufacturer, the values of \(R_{3}\) and \(R_{4}\) satisfy
\[
\begin{array}{r}
9.9 \Omega \leq R_{3} \leq 10.1 \Omega \\
6.8 \Omega \leq R_{4} \leq 6.9 \Omega
\end{array}
\]

Due to uncertainties of perception, we obtain the estimates for \(C_{2}\) and \(R_{2}\)
\[
\begin{aligned}
40.2 \mathrm{mF} & \leq C_{2} \leq 41.5 \mathrm{mF} \\
18.3 \Omega & \leq R_{2} \leq 19.8 \Omega
\end{aligned}
\]

Write a PASCAL-XSC program that
- reads in the boundary values of \(R_{3}, R_{4}, C_{2}\), and \(R_{2}\),
- computes and prints the interval enclosures of \(C_{1}\) and \(R_{1}\), and
- repeats the computation of enclosures of \(C_{1}\) and \(R_{1}\) assuming that the amount of the error for \(C_{2}\) and \(R_{2}\) is \(10 \%\) higher.

Hint: The \(10 \%\) increase of the errors for \(C_{2}\) and \(R_{2}\) should be handled by enlarging the radius of the corresponding intervals by \(10 \%\).

\section*{Solution:}
```

program measure_bridge (input, output);
{ Exercise 15: Alternating Current Measuring Bridge }
use i_ari;
var
c1, c2, r1, r2, r3, r4 : interval;
d : real;
procedure write (var f: text; int: interval; long: boolean);
{ Overloading of write to allow output of intervals with }
{ a long mantissa. The default output of intervals is }
{ made according to the width of the interval. }
begin
if long then
write (f,'[',int.inf:20:0:-1 ,',',int.sup:20:0:+1 ,']')
{ Output with more digits }
else
write (f,int);
{ Default output predefined in I_ARI }
end;
begin
writeln ('Exercise 15: Alternating Current Measuring Bridge');
writeln;
write('lower bound of R3: '); read(r3.inf:-1);
write('upper bound of R3: '); read(r3.sup:+1);
write('lower bound of R4: '); read(r4.inf:-1);
write('upper bound of R4: '); read(r4.sup:+1);
write('lower bound of C2: '); read(c2.inf:-1);
write('upper bound of C2: '); read(c2.sup:+1);
write('lower bound of R2: '); read(r2.inf:-1);
write('upper bound of R2: '); read(r2.sup:+1);
{ Computing C1 and R1 }
c1:= r4 * c2 / r3;
r1:= r3 * r2 / r4;
writeln;
writeln('C1 = ', c1 : true);
writeln('R1 = ', r1 : true);
{ Compute: "10% of the radius", that is "diameter / 20" }
d := diam(c2) /> 20;
{ Enlarge the interval radius to that amount }
c2:= intval ( c2.inf -< d , c2.sup +> d );
{ Compute: "10% of the radius", that is "diameter / 20" }
d := diam(r2) /> 20;

```
```

{ Enlarge the interval radius to that amount }
r2:= intval ( r2.inf -< d , r2.sup +> d );
{ Computing C1 and R1 }
c1:= r4 * c2 / r3;
r1:= r3 * r2 / r4;
writeln;
writeln('Results, with the error for C2 and R2 10% higher:');
writeln;
writeln('C1 = ', c1 : true);
writeln('R1 = ', r1 : true);
end.

```

\section*{Runtime Output:}

Exercise 15: Alternating Current Measuring Bridge
lower bound of R3: 9.9
upper bound of R3: 10.1
lower bound of R4: 6.8
upper bound of R4: 6.9
lower bound of C2: 40.2
upper bound of C2: 41.5
lower bound of R2: 18.3
upper bound of R2: 19.8
\(\mathrm{C} 1=[2.706534653465 \mathrm{E}+001,2.892424242425 \mathrm{E}+001]\)
\(R 1=[2.625652173913 \mathrm{E}+001,2.940882352942 \mathrm{E}+001]\)

Results, with the error for C2 and R2 10\% higher:
\(C 1=[2.702158415841 \mathrm{E}+001,2.896954545455 \mathrm{E}+001]\)
\(R 1=[2.614891304347 \mathrm{E}+001,2.952022058824 \mathrm{E}+001]\)
Remark: This exercise illustrates how interval arithmetic may be easily applied to error computations in engineering.

\section*{Exercise 16: Optical Lens}

With a lens having a focal length \(f=(20 \pm 1) \mathrm{cm}\), an image distance \(b=(25 \pm 1)\) cm was measured for the image \(B\) of the object \(G\). The lens equation to determine the object distance \(g\) of a thin lens is given by
\[
\frac{1}{f}=\frac{1}{b}+\frac{1}{g}
\]

Hence, \(g\) satisfies the equation
\[
g=\frac{1}{\frac{1}{f}-\frac{1}{b}} .
\]

Usually, the value \(g=g_{0} \pm \triangle g\) is computed with the approximation \(g_{0}\) and the error term \(\triangle g\). This is done by
\[
g_{0}=\frac{1}{\frac{1}{f_{0}}-\frac{1}{b_{0}}}
\]
and by the linearization
\[
\triangle g=\frac{\triangle f}{\left(1-\frac{f_{0}}{b_{0}}\right)^{2}}+\frac{\triangle b}{\left(\frac{b_{0}}{f_{0}}-1\right)^{2}} .
\]

Let \(f_{0}=20 \mathrm{~cm}, b_{0}=25 \mathrm{~cm}\), and \(\triangle f=\triangle b=1 \mathrm{~cm}\). Write a PASCAL-XSC program that
- reads the values for \(f_{0}, b_{0}, \Delta f\), and \(\triangle b\),
- calculates the interval \(g=g_{0} \pm \Delta g\) by the method described above,
- calculates the interval \(g\) from the intervals \(f\) and \(b\) applying interval arithmetic according to
\[
g=\frac{1}{\frac{1}{f}-\frac{1}{b}},
\]
and
- prints \(f, b\), and the two different values of \(g\) along with appropriate comments.

Does the usual method deliver a correct result? Compare it with the enclosure for \(g\) computed with interval arithmetic.

\section*{Solution:}
```

program opt_lens (input, output);
{ Exercise 16: Optical Lens }
use i_ari;
var
g0, dg, f0, df, b0, db : real;
g, f, b : interval;
procedure write (var f: text; int: interval; long: boolean);
{ Overloading of write to allow output of intervals with }
{ a long mantissa. The default output of intervals is }
{ made according to the width of the interval. }
begin
if long then
write (f,'[',int.inf:20:0:-1 ,',',int.sup:20:0:+1 ,']')
{ Output with more digits }
else
write (f,int);
{ Default output predefined in I_ARI }
end;
begin
writeln ('Exercise 16: Optical Lens');
writeln;
write('f0 = '); read(f0);
write('df = '); read(df);
write('b0 = '); read(b0);
write('db = '); read(db);
writeln;
f:= intval (f0 - df , f0 + df);
b:= intval (b0 - db , b0 + db);
writeln ('f = ', f : true);
writeln ('b = ', b : true);
writeln;
g0 := 1 / (1/f0 - 1/b0);
dg := df / sqr(1 - f0/b0) + db / sqr(b0/f0 - 1);
g := intval (g0 - dg , g0 + dg);
writeln ('g = g0 +/- dg = ', g : true);
g:= 1/(1/f - 1/b);
writeln ('g = 1 / (1/f - 1/b) = ', g : true);
end.

```

\section*{Runtime Output:}

Exercise 16: Optical Lens
\(\mathrm{f} 0=20\)
\(\mathrm{df}=1\)
\(\mathrm{b} 0=25\)
\(\mathrm{db}=1\)
\(f=[1.90000000000 \mathrm{E}+001,2.100000000000 \mathrm{E}+001]\)
b \(=\) [\(2.400000000000 \mathrm{E}+001,2.600000000000 \mathrm{E}+001]\)
\(\mathrm{g}=\mathrm{g} 0+/-\mathrm{dg}=[5.899999999999 \mathrm{E}+001,1.410000000000 \mathrm{E}+002]\)
\(\mathrm{g}=1 /(1 / \mathrm{f}-1 / \mathrm{b})=[7.057142857142 \mathrm{E}+001,1.680000000001 \mathrm{E}+002]\)
Remark: The method normally used for error evalution calculates an interval which is incorrect.

Hint: Exercises 14, 15, and 16 were inspired by the contribution Technical Calculations by Means of Interval Mathematics, by P. Thieler [48].

\section*{Exercise 17: Interval Evaluation of a Polynomial}

Write a PASCAL-XSC program which uses the module I_ARI to evaluate the polynomial
\[
p(X)=1+3 X-10 X^{2}
\]
using interval arithmetic. Compare the results for the following representations (with \(X\) of type interval):
1) \((1-2 * X) *(1+5 * X)\)
2) \(1+3 * X-10 * \operatorname{sqr}(X)\)
3) \(1+X *(3-10 * X)\) (Horner sheme)
4) \(1+3 * m(X)-10 * \operatorname{sqr}(m(X))+(3-20 * X)(X-m(X))\)
(mean value form (see [43]), with \(m(X)\) as the midpoint of \(X\))
As examples for \(X\), choose both narrow intervals (about one unit in the \(14^{\text {th }}\) decimal place) and intervals with other diameters. Intervals around the zeros \((x=0.5\) and \(x=-0.2)\) and around the extreme value \((x=0.15)\) should also be considered.

Hint: For the evaluation of the midpoint of an interval, implement a function using an \#-expression to obtain maximum accuracy.

\section*{Solution:}
```

program int_poly (input, output);
{ Exercise 17: Interval Evaluation of a Polynomial }
use i_ari;
var x : interval;
function midpoint (x : interval) : real;
begin
midpoint:= \#* (0.5 * x.inf + 0.5 * x.sup);
end;
begin
writeln ('Exercise 17: Interval Evaluation of a Polynomial');
writeln;
repeat
write ('Enter X : '); read(x);
writeln;
writeln ('Method 1: p(X) = ', (1-2*x)*(1+5*x));

```
```

    writeln ('Method 2: p(X) = ', 1+3*x-10*Sqr(x));
    writeln ('Method 3: p(X) = ', 1+x*(3-10*x));
    writeln ('Method 4: p(X) = ', 1+3*midpoint(x)
                                    -10*sqr(midpoint(x))
                                    +(3-20*x)*(x-midpoint(x)));
    writeln; writeln;
    until x = 0;
    end.

```

\section*{Runtime Output:}

Exercise 17: Interval Evaluation of a Polynomial

Enter X : [0.5,0.5]

Method 1: \(p(X)=[\quad 0.000000000000000 \mathrm{E}+000,0.000000000000000 \mathrm{E}+000]\)
Method 2: \(p(X)=[\quad 0.000000000000000 \mathrm{E}+000,0.000000000000000 \mathrm{E}+000]\)
Method 3: \(p(X)=[\quad 0.000000000000000 \mathrm{E}+000,0.000000000000000 \mathrm{E}+000]\)
Method 4: p(X) = [\(0.000000000000000 \mathrm{E}+000,0.000000000000000 \mathrm{E}+000\)]

Enter X : [0.4999999999,0.5]

Method 1: \(p(X)=\)
\(0.0 \mathrm{E}+000\),
7.1E-010]

Method 2: \(p(X)=\) [
-3.1E-010,
1.1E-009]

Method 3: \(p(X)=\) [
\(0.0 \mathrm{E}+000\),
7.1E-010]

Method 4: \(\mathrm{p}(\mathrm{X})=\) [
\(0.0 \mathrm{E}+000\),
7.1E-010]

Enter X : [-0.2000000000001,-0.1999999999999]

Method 1: \(p(X)=\) [
-7.1E-013,
7.1E-013]

Method 2: \(p(X)=[\)
-7.1E-013,
7.1E-013]

Method 3: \(p(X)=\) [
-7.1E-013,
7.1E-013]

Method 4: \(p(X)=\) [
-7.1E-013,
7.1E-013]

Enter X : [0.1499999999999,0.1500000000001]

Method 1: \(p(X)=[\quad 1.224999999999 \mathrm{E}+000\)
Method \(2: ~ P(X)=[\quad 1.22499999999 E+000,1.2250000000001 \mathrm{E}+000]\)
Method 3: \(p(X)=[\quad 1.224999999999 \mathrm{E}+000,1.225000000001 \mathrm{E}+000]\)
Method 4: \(p(X)=[1.224999999999999 \mathrm{E}+000,1.225000000000001 \mathrm{E}+000]\)
\begin{tabular}{lll}
Method 1: \(p(X)=[\) & \(8.9 \mathrm{E}-001\), & \(1.7 \mathrm{E}+000]\) \\
Method 2: \(\mathrm{p}(\mathrm{X})=[\) & \(8.9 \mathrm{E}-001\), & \(1.6 \mathrm{E}+000]\) \\
Method 3: \(\mathrm{p}(\mathrm{X})=[\) & \(1.0 \mathrm{E}+000\), & \(1.5 \mathrm{E}+000]\) \\
Method 4: \(\mathrm{p}(\mathrm{X})=[\) & \(1.1 \mathrm{E}+000\), & \(1.3 \mathrm{E}+000]\)
\end{tabular}

Enter X : 0

Method 1: \(p(X)=[1.000000000000000 \mathrm{E}+000,1.000000000000000 \mathrm{E}+000]\)
Method 2: \(p(X)=[1.000000000000000 \mathrm{E}+000,1.000000000000000 \mathrm{E}+000]\)
Method 3: \(p(X)=[1.000000000000000 \mathrm{E}+000,1.000000000000000 \mathrm{E}+000]\)
Method 4: \(p(X)=[1.000000000000000 \mathrm{E}+000,1.000000000000000 \mathrm{E}+000]\)

\section*{Exercise 18: Calculations for Interval Matrices}

Let the interval matrices \(A\) and \(B\) be given:
\[
A=\left(\begin{array}{cc}
{[1,1]} & {[0,1]} \\
{[1,1]} & {[-1,1]}
\end{array}\right), \quad B=\left(\begin{array}{cc}
{[-1,2]} & {[3,4]} \\
{[2,2]} & {[-6,-4]}
\end{array}\right) .
\]

A PASCAL-XSC program should
a) calculate \(A+B, A-B, A \cdot B\),
b) demonstrate (by calculation) that \(A \cdot(A \cdot A) \neq(A \cdot A) \cdot A\),
c) demonstrate (by calculation) that \(A \cdot(B+A) \nsubseteq A \cdot B+A \cdot A\).

Hint: Use the operators supplied in module MVI_ARI.

\section*{Solution:}
```

program int_matr (input, output);
{ Exercise 18: Calculations for Interval Matrices }
use i_ari, mvi_ari;
var
A, B, C : imatrix[1..2,1..2];
begin
writeln ('Exercise 18: Calculations for Interval Matrices');
writeln;
A[1,1]:= 1;
A[1,2]:= intval(0,1);
A[2,1]:= 1;
A[2,2]:= intval(-1, 1);
B[1,1]:= intval(-1,2);
B[1,2]:= intval(3,4);
B[2,1]:= 2;
B[2,2]:= intval(-6, -4);
writeln ('A = '); writeln;
writeln (A);
writeln ('B = '); writeln;
writeln (B);
writeln ('A + B = '); writeln;
writeln (A+B);

```
```

writeln ('A - B = '); writeln;
writeln (A-B);
writeln ('A * B = '); writeln;
writeln (A*B);
writeln ('A * (A * A) = '); writeln;
writeln (A* (A*A));
writeln ('(A * A) * A = '); writeln;
writeln ((A*A)*A);
writeln ('A * (B + A) = '); writeln;
writeln (A* (B+A));
writeln ('A * B + A * A = '); writeln;
writeln (A*B+A*A);
end.

```

\section*{Runtime Output:}

Exercise 18: Calculations for Interval Matrices
\(\mathrm{A}=\)
[1.0E \(+00,1.0 \mathrm{E}+00]\) [\(0.0 \mathrm{E}+00,1.0 \mathrm{E}+00]\)
[\(1.0 \mathrm{E}+00,1.0 \mathrm{E}+00][-1.0 \mathrm{E}+00,1.0 \mathrm{E}+00]\)
\(B=\)
\([-1.0 \mathrm{E}+00,2.0 \mathrm{E}+00][3.0 \mathrm{E}+00,4.0 \mathrm{E}+00]\)
[2.0E+00, 2.0E+00] [-6.0E+00,-4.0E+00]
\(A+B=\)
[0.0E \(+00,3.0 \mathrm{E}+00]\) [3.0E \(+00,5.0 \mathrm{E}+00]\)
[3.0E \(+00,3.0 \mathrm{E}+00][-7.0 \mathrm{E}+00,-3.0 \mathrm{E}+00]\)
\(A-B=\)
\([-1.0 \mathrm{E}+00,2.0 \mathrm{E}+00][-4.0 \mathrm{E}+00,-2.0 \mathrm{E}+00]\)
[-1.0E \(+00,-1.0 \mathrm{E}+00][3.0 \mathrm{E}+00,7.0 \mathrm{E}+00]\)

A * \(B=\)
\([-1.0 \mathrm{E}+00,4.0 \mathrm{E}+00][-3.0 \mathrm{E}+00,4.0 \mathrm{E}+00]\)
\([-3.0 \mathrm{E}+00,4.0 \mathrm{E}+00][-3.0 \mathrm{E}+00,1.0 \mathrm{E}+01]\)
\(A *(A * A)=\)
[1.0E \(+00,4.0 \mathrm{E}+00][-2.0 \mathrm{E}+00,4.0 \mathrm{E}+00]\)
\([-1.0 \mathrm{E}+00,4.0 \mathrm{E}+00][-3.0 \mathrm{E}+00,4.0 \mathrm{E}+00]\)
```

(A * A) * A =
[ 0.0E+00, 4.0E+00] [-2.0E+00, 4.0E+00]
[-1.0E+00, 4.0E+00] [-2.0E+00, 4.0E+00]
A* (B + A) =
[ 0.0E+00, 6.0E+00] [-4.0E+00, 5.0E+00]
[-3.0E+00, 6.0E+00] [-4.0E+00, 1.2E+01]
A*B+A*A=
[ 0.0E+00, 6.0E+00][-4.0E+00, 6.0E+00]
[-3.0E+00, 6.0E+00][-4.0E+00, 1.2E+01]

```

\section*{Exercise 19: Differentiation Arithmetic}

With the help of differentiation arithmetic (see [42]), compute the values of the function
\[
f(x)=x \cdot \frac{4+x}{3-x}
\]
and the values of its derivative \(f^{\prime}(x)\) in the domain \(-4 \leq x \leq 2\) for the points \(x_{k}=-4+k h, k=0, \ldots, 48\) with \(h=0.125\).

Differentiation arithmetic is an arithmetic for ordered pairs of the form
\[
U=\left(u, u^{\prime}\right) \text { with } u, u^{\prime} \in \mathbb{R}
\]

The first component of \(U\) contains the value of the function. The second contains the value of the derivative. The rules for the arithmetic are
\[
\begin{aligned}
& U+V=\left(u, u^{\prime}\right)+\left(v, v^{\prime}\right)=\left(u+v, u^{\prime}+v^{\prime}\right) \\
& U-V=\left(u, u^{\prime}\right)-\left(v, v^{\prime}\right)=\left(u-v, u^{\prime}-v^{\prime}\right) \\
& U * V=\left(u, u^{\prime}\right) *\left(v, v^{\prime}\right)=\left(u * v, u * v^{\prime}+u^{\prime} * v\right) \\
& U / V=\left(u, u^{\prime}\right) /\left(v, v^{\prime}\right)=\left(u / v,\left(u^{\prime}-u / v * v^{\prime}\right) / v\right), \quad v \neq 0,
\end{aligned}
\]
where the corresponding differentiation rules have to be used in the second component. The independent variable \(x\) and the arbitrary constant \(c\) correspond to
\[
X=(x, 1) \text { and } C=(c, 0),
\]
because \(\frac{d x}{d x}=1\), and \(\frac{d c}{d x}=0\). To use the differentiation arithmetic in a PASCAL-XSC program, declare a type Derivative_Type as record of two real values. Now, define a function \(f\) with parameters and result of type Derivative_Type. The operators \(+,-, *, /\) perform differentiation arithmetic. If
\[
f(X)=X *((4,0)+X) /((3,0)-X)
\]
then an automatic differentiation is done because of
\[
f(X)=f((x, 1))=\left(f(x), f^{\prime}(x)\right)
\]

That is, the value of the function and the value of the derivative are automatically and simultaneously calculated. Write a PASCAL-XSC module which contains
a) the type declaration Derivative_Type and
b) the declarations for the operators \(+,-, *, /\) according to the rules for the differential arithmetic given above.

Write a PASCAL-XSC program which contains
a) a function F , using the operators of the module and thus delivering the value of the function \(f\) and the automatically calculated value of its derivative and
b) a main program that calculates and tabulates the values of \(f(x)\) and \(f^{\prime}(x)\) at the specified points.

Hint: The constants 4 and 3 of type Derivative_Type in the function \(f\) are represented by \((4,0)\) and \((3,0)\), respectively. The independent variable \(x\) is represented as \((x, 1)\).

\section*{Solution:}
```

module diff_ari;
{ Exercise 19: Module Providing Differentiation Arithmetic }
global type Derivative_Type = global record
f, df : real;
end;
global operator := (var a: Derivative_Type; r: real);
begin
a.f := r;
a.df := 0;
end;
global operator + (a,b: Derivative_Type) Result_add: Derivative_Type;
begin
Result_add.f := a.f + b.f;
Result_add.df := a.df + b.df;
end;
global operator - (a,b: Derivative_Type) Result_sub: Derivative_Type;
begin
Result_sub.f := a.f - b.f;
Result_sub.df := a.df - b.df;
end;
global operator * (a,b: Derivative_Type) Result_mul: Derivative_Type;
begin
Result_mul.f := a.f * b.f;
Result_mul.df := a.f * b.df + a.df * b.f;
end;

```
global operator / (a,b: Derivative_Type) Result_div: Derivative_Type;
```

begin
Result_div.f := a.f / b.f;
Result_div.df := (a.df - a.f * b.df / b.f) / b.f ;
end;

```
end.
```

program Automatic_Differentiation (input, output);
{ Exercise 19: Differentiation Arithmetic }
use diff_ari;
function f (x: Derivative_Type): Derivative_Type;
var
three, four : Derivative_Type;
begin
three := 3;
four := 4;
f:= x*((four+x)/(three-x));
end;
var
x, y : Derivative_Type;
h : real;
i : integer;
begin
writeln ('Exercise 19: Differentiation Arithmetic');
writeln;
x.df := 1;
h := 0.125;
writeln(' x ', , ',
, f(x) , , , ',
, f''(x) ');
for i:= 0 to 48 do
begin
x.f := -4 + i * h;
y := f(x);
writeln (x.f,' ',y.f,' ',y.df);
end;
end.

```

\section*{Runtime Output:}

Exercise 19: Differentiation Arithmetic
\begin{tabular}{|c|c|c|}
\hline X & \(\mathrm{f}(\mathrm{x})\) & \(\mathrm{f}^{\prime}\) (x) \\
\hline \(-4.000000000000000 \mathrm{E}+000\) & \(0.000000000000000 \mathrm{E}+000\) & -5.714285714285714E-001 \\
\hline \(-3.87500000000000 \mathrm{E}+000\) & -7.045454545454545E-002 & -5.557024793388429E-001 \\
\hline \(-3.75000000000000 \mathrm{E}+000\) & -1.388888888888889E-001 & -5.390946502057612E-001 \\
\hline \(-3.625000000000000 \mathrm{E}+000\) & -2.051886792452830E-001 & -5.215379138483447E-001 \\
\hline \(-3.50000000000000 \mathrm{E}+000\) & -2.692307692307693E-001 & -5.029585798816567E-001 \\
\hline \(-3.37500000000000 \mathrm{E}+000\) & -3.308823529411765E-001 & -4.832756632064591 \\
\hline \(-3.250000000000000 \mathrm{E}+000\) & -3.900000000000000E-001 & -4.624000000000000E-001 \\
\hline \(-3.12500000000000 \mathrm{E}+000\) & -4.464285714285714E-001 & -4.402332361516035E-001 \\
\hline \(-3.00000000000000 \mathrm{E}+000\) & -5.000000000000000E-001 & -4.166666666666667E-00 \\
\hline \(-2.875000000000000 \mathrm{E}+000\) & -5.505319148936170E-001 & -3.915799004074241E-001 \\
\hline \(-2.75000000000000 \mathrm{E}+000\) & -5.978260869565217E-001 & -3 \\
\hline \(-2.625000000000000 \mathrm{E}+000\) & -6.416666666666666E-001 & -3.362962962962963E-001 \\
\hline \(-2.50000000000000 \mathrm{E}+000\) & -6.818181818181818E-001 & -3.057851239669422 \\
\hline \(-2.37500000000000 \mathrm{E}+000\) & -7.180232558139534E-001 & - \\
\hline \(-2.250000000000000 \mathrm{E}+000\) & -7.500000000000000E-001 & -2.380952380952381E-001 \\
\hline \(-2.125000000000000 \mathrm{E}+000\) & -7.774390243902439E-001 & -2.004759071980964E-001 \\
\hline \(-2.000000000000000 \mathrm{E}+000\) & -8.000000000000000E-001 & -1.599999999999999 \\
\hline \(-1.87500000000000 \mathrm{E}+000\) & -8.173076923076923E-001 & -1.163708086785009E-001 \\
\hline \(-1.75000000000000 \mathrm{E}+000\) & -8.289473684210525E-001 & -6.925207756232682E-002 \\
\hline \(-1.625000000000000 \mathrm{E}+000\) & -8.344594594594594E-001 & -1.826150474799126E-002 \\
\hline \(-1.500000000000000 \mathrm{E}+000\) & -8.333333333333334E-001 & 3.703703 \\
\hline \(-1.37500000000000 \mathrm{E}+000\) & -8.250000000000000E-001 & 9.7142857142 \\
\hline \(-1.250000000000000 \mathrm{E}+000\) & -8.088235294117647E-001 & \(1.626297577854672 \mathrm{E}-001\) \\
\hline \(-1.125000000000000 \mathrm{E}+000\) & -7.840909090909092E-001 & 2.341597796143251 \\
\hline \(-1.00000000000000 \mathrm{E}+000\) & -7.500000000000000E-001 & 3. \\
\hline -8.750000000000000E-001 & -7.056451612903225E-001 & \(3.985431841831426 \mathrm{E}-001\) \\
\hline -7.500000000000000E-001 & -6.500000000000000E-001 & \(4.933333333333334 \mathrm{E}-001\) \\
\hline -6.250000000000000E-001 & -5.818965517241379E-001 & 5.9809 \\
\hline -5.000000000000000E-001 & -5.000000000000000E-001 & \(7.142857142857143 \mathrm{E}-001\) \\
\hline -3.750000000000000E-001 & -4.027777777777778E-001 & \(8.436213991769548 \mathrm{E}-001\) \\
\hline -2.500000000000000E-001 & -2.884615384615384E-001 & \(9.881656804733727 \mathrm{E}-001\) \\
\hline -1.250000000000000E-001 & -1.550000000000000E-001 & \(1.15040000000000 \mathrm{E}+000\) \\
\hline \(0.000000000000000 \mathrm{E}+000\) & \(0.000000000000000 \mathrm{E}+000\) & \(1.333333333333333 \mathrm{E}+000\) \\
\hline \(1.25000000000000 \mathrm{E}-001\) & \(1.793478260869565 \mathrm{E}-001\) & \(1.540642722117202 \mathrm{E}+000\) \\
\hline \(2.50000000000000 \mathrm{E}-001\) & \(3.863636363636364 \mathrm{E}-001\) & \(1.776859504132231 \mathrm{E}+000\) \\
\hline \(3.75000000000000 \mathrm{E}-001\) & \(6.250000000000000 \mathrm{E}-001\) & \(2.047619047619048 \mathrm{E}+000\) \\
\hline \(5.000000000000000 \mathrm{E}-001\) & \(9.000000000000000 \mathrm{E}-001\) & \(2.360000000000000 \mathrm{E}+000\) \\
\hline \(6.250000000000000 \mathrm{E}-001\) & \(1.217105263157895 \mathrm{E}+000\) & 2.722991689750693 \\
\hline \(7.50000000000000 \mathrm{E}-001\) & \(1.583333333333333 \mathrm{E}+000\) & \(3.148148148148148 \mathrm{E}+000\) \\
\hline \(8.750000000000000 \mathrm{E}-001\) & \(2.007352941176471 \mathrm{E}+000\) & \(3.650519031141868 \mathrm{E}+000\) \\
\hline \(1.00000000000000 \mathrm{E}+000\) & \(2.500000000000000 \mathrm{E}+000\) & \(4.25000000000000 \mathrm{E}+000\) \\
\hline \(1.12500000000000 \mathrm{E}+000\) & \(3.07500000000000 \mathrm{E}+000\) & \(4.973333333333333 \mathrm{E}+000\) \\
\hline \(1.25000000000000 \mathrm{E}+000\) & \(3.750000000000000 \mathrm{E}+000\) & \(5.857142857142857 \mathrm{E}+000\) \\
\hline \(1.37500000000000 \mathrm{E}+000\) & \(4.548076923076922 \mathrm{E}+000\) & \(6.952662721893491 \mathrm{E}+000\) \\
\hline \(1.50000000000000 \mathrm{E}+000\) & \(5.500000000000000 \mathrm{E}+000\) & \(8.333333333333332 \mathrm{E}+000\) \\
\hline \(1.62500000000000 \mathrm{E}+000\) & \(6.647727272727272 \mathrm{E}+000\) & \(1.010743801652893 \mathrm{E}+001\) \\
\hline \(1.75000000000000 \mathrm{E}+000\) & \(8.049999999999999 \mathrm{E}+000\) & \(1.244000000000000 \mathrm{E}+001\) \\
\hline \(1.87500000000000 \mathrm{E}+000\) & \(9.791666666666666 \mathrm{E}+000\) & \(1.559259259259259 \mathrm{E}+00\) \\
\hline \(2.00000000000000 \mathrm{E}+000\) & \(1.20000000000000 \mathrm{E}+001\) & 2.0000000 \\
\hline
\end{tabular}

\section*{Exercise 20: Newton's Method with Automatic Differentiation}

The zero of a function \(f(x)\) may be computed by Newton's method and a feasible \(x_{0}\) :
\[
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2, \ldots
\]

Using the module defined in the last exercise, the values of the function \(f\) and the values of its derivative can be computed simultaneously by using the corresponding operators within the function \(f\).

Write a PASCAL-XSC program to implement Newton's method with the help of differential arithmetic. Use the function
\[
f(x)=e^{x}-x-5
\]
to test your program. Your program should read the starting value \(x_{0}\), compute five Newton iterations, and print the values \(x_{i}\) and \(f\left(x_{i}\right)\) at each iteration.

Test your program with the starting values \(x_{0}=2.0\), and \(x_{0}=-5.0\). The zeros lie at \(x=1.9368470722\) and \(x=-4.99321618865\).

Hint: The function \(e^{U}\) can be implemented for the variable \(U=\left(u, u^{\prime}\right)\) of type Derivative_Type by
\[
e^{U}=e^{\left(u, u^{\prime}\right)}=\left(e^{u}, u^{\prime} * e^{u}\right) .
\]

\section*{Solution:}
```

program newt_diff (input, output);
{ Exercise 20: Newton's Method with Automatic Differentiation }
use diff_ari;
function exp (x: Derivative_Type) : Derivative_Type;
begin
exp.f := exp(x.f);
exp.df:= x.df * exp(x.f);
end;
function f (x: Derivative_Type) : Derivative_Type;
var
five : Derivative_Type;
begin
five := 5;
f := exp(x) - x - five;
end;

```
```

var
x, y : Derivative_Type;
i : integer;
begin
writeln ('Exercise 20: Newton''s Method with');
writeln (' Automatic Differentiation');
writeln;
write ('Enter starting value x0 : '); read (x.f);
x.df := 1;
for i:= 1 to 5 do
begin
y := f(x);
x.f := x.f - y.f/y.df;
writeln ('x',i:1,' : ',x.f);
end;
end.

```

\section*{Runtime Output:}
```

Exercise 20: Newton's Method with
Automatic Differentiation

```
Enter starting value x0 : 2.0
x1 : \(1.939105856497994 \mathrm{E}+000\)
x2 : \(1.936850383714592 \mathrm{E}+000\)
x3 : 1.936847407225395E+000
x 4 : \(1.936847407220219 \mathrm{E}+000\)
x5 : 1.936847407220219E+000

Exercise 20: Newton's Method with
Automatic Differentiation

Enter starting value x0 : -5.0
x1 : -4.993216345093695E+000
x2 : -4.993216188647903E+000
x3 : -4.993216188647903E+000
x4 : -4.993216188647903E+000
x5 : -4.993216188647903E+000

\section*{Exercise 21: Measurement of Time}

The time of a clock with the portions hours (h), minutes (m), and seconds (s) between 00.00 .00 o'clock and 23.59 .59 o'clock is to be represented by a record type Clock. Write a PASCAL-XSC declaration for an operator + that adds two such times and, depending on the input, subtracts 24 h , so that the result is again representable in type Clock. Use this declaration in a program that reads as many as maxint times, adds them to a total time, and prints each time subtotal. The input loop is terminated by the input of 0.00 .00 .

The input of the times should be given as a string in the form hh.mm.ss. This input string should be converted to the type Clock using the string functions of PASCAL-XSC. The opposite is done with the total time for the output, i.e. after conversion from type Clock to string, the time is printed in the form hh.mm.ss.

\section*{Solution:}
```

program times (input, output);
{ Exercise 21: Measurement of Time }
type
Clock = record
hours : 0..23;
minutes : 0..59;
seconds : 0..59;
end;
var
a, b : string[8];
time, total : Clock;
i, p : integer;
operator + (a, b: Clock) sum : Clock;
var
help : 0..119;
begin
help := a.seconds + b.seconds;
sum.seconds:= help mod 60;
help := a.minutes + b.minutes + help div 60;
sum.minutes:= help mod 60;
help := a.hours + b.hours + help div 60;
sum.hours := help mod 24;
end;

```
```

begin
writeln ('Exercise 21: Measurement of Time');
writeln;
total.hours := 0;
total.minutes := 0;
total.seconds := 0;
i:= 0;
repeat
i:= succ (i);
write ('Please enter difference of time: ');
readln;
read (a);
p := pos ('.', a);
time.hours := ival(substring(a,1,p-1));
a := substring(a,p+1,8);
p := pos ('.', a);
time.minutes := ival(substring(a,1,p-1));
a := substring(a,p+1,8);
time.seconds := ival(substring(a,1,8));
total := total + time;
b := image (total.hours,2) + '.' +
image (total.minutes,2) + ,.' +
image (total.seconds,2);
writeln ('New time : ', b);
until (i=maxint) or (time.hours+time.minutes+time.seconds=0);
end.

```

\section*{Exercise 22: Iterative Method}

Consider the vector iteration method
\((*) \quad x^{(k+1)}=c+A x^{(k)}, \quad k=0,1,2, \ldots\)
with \(c, x^{(k)} \in \mathbb{R}^{n}, k=0,1,2, \ldots\) and \(A \in \mathbb{R}^{n \times n}\). Assume that the spectral radius of \(A\) is less than 1 so that the iteration is convergent.

Write a PASCAL-XSC program that implements this method. Design a module MatVec that makes available the necessary types, operators, and procedures. This module should contain the following parts:
a) a dynamic type declaration vector defined as a one-dimensional array with component type real,
b) a dynamic type declaration matrix defined as a two-dimensional array with component type real,
c) an equality operator \(=\) for the comparison of two vectors \(a=\left(a_{i}\right)\) and \(b=\left(b_{i}\right)\) according to
\[
a=b \quad \Longleftrightarrow \quad a_{i}=b_{i}, \quad \text { for all } i,
\]
d) an operator + for the addition of two vectors \(a=\left(a_{i}\right)\) and \(b=\left(b_{i}\right)\) according to
\[
c=a+b \quad \text { with } \quad c_{i}=a_{i}+b_{i}, \quad \text { for all } i
\]
e) an operator \(*\) for the multiplication of a matrix \(A=\left(a_{i j}\right)\) with a vector \(x=\left(x_{i}\right)\) according to
\[
y=A * x \quad \text { where } \quad y_{i}=\sum_{j} a_{i j} x_{j}, \quad \text { for all } i,
\]
by use of the datatype dotprecision to ensure that the computation of \(y_{i}\) is done with only one rounding,
f) an overloading of the procedure read for the input of a vector,
g) an overloading of the procedure read for the input of a matrix,
h) an overloading of the procedure write for the output of a vector.

Implement a program Iteration which uses the module MatVec and contains the following parts:
1) A procedure Main with formal parameter \(n\) that works with the types, procedures, and operators of module MatVec. Main should declare the variables \(c, A\), and \(x^{(0)}\) necessary for the iteration as vectors (or matrices) with index range \(1, \ldots, n\), and read these variables. Furthermore, Main should process the iteration \((*)\) until \(x^{(k+1)}=x^{(k)}\) or until \(k=20\). Finally, the result vector \(x^{(k+1)}\) from the final iteration should be printed.
2) A main program should read the dimension \(n\) and call the procedure main.

\section*{Solution:}
```

module MatVec;
{ Exercise 22: Module with Matrix/Vector Operations }
global type
vector = dynamic array [*] of real;
matrix = dynamic array [*,*] of real;
global operator = (a, b: vector) equ: boolean;
{ Corresponding index ranges of a and b are assumed }
var
i : integer;
begin
i:= lbound(a) - 1;
repeat
i:= i + 1;
until (a[i] <> b[i]) or (i = ubound(a));
equ:= (a[i] = b[i]);
end;
global operator + (a,b: vector) vadd: vector[lbound(a)..ubound(a)];
{ Corresponding index ranges of a and b are assumed }
var
i : integer;
begin
for i:= lbound(a) to ubound(a) do
vadd[i] := a[i] + b[i];
end;
global operator * (A: matrix; x: vector)
mvmul: vector[lbound(x)..ubound(x)];
{ Corresponding index ranges of A and x are assumed }
var
i, j : integer;
d : dotprecision;
begin
for i:= lbound(A) to ubound(A) do
begin
d:= \#(0);
for j:= lbound(A,2) to ubound(A,2) do
d:= \#(d + a[i,j] * x[j]);
mvmul[i]:= \#*(d);
end;
end;

```
```

    global procedure read (var f: text; var c: vector);
    var
        i : integer;
    begin
        for i:= lbound(c) to ubound(c) do
        read (f, c[i]);
    end;
    global procedure read (var f: text; var A: matrix);
var
i, j : integer;
begin
for i:= lbound(A) to ubound(A) do
for j := lbound(A,2) to ubound(A,2) do
read(f, A[i,j]);
end;
global procedure write (var f: text; c: vector);
var
i : integer;
begin
for i:= lbound(c) to ubound(c) do
writeln (f, c[i]);
end;
end. {module MatVec}

```
program iterate (input, output);
 \{ Exercise 22: Iterative Method \}
 use matvec;
 var
 n : integer;
 procedure main (n : integer) ;
 var
 i, j, k : integer;
 c, \(x_{-} k, x_{-} k _p l u s _1, y: v e c t o r[1 . . n] ;\)
 \(\mathrm{A} \quad: \operatorname{matrix}[1 . . \mathrm{n}, 1 . \mathrm{n}]\);
```

    begin
    writeln ('Enter vector c');
    read (c);
    writeln ('Enter matrix A');
    read (A);
    writeln ('Enter vector x0');
    read (x_k_plus_1);
    {Iteration}
    k:= -1;
    repeat
        x_k := x_k_plus_1;
        k := k + 1;
        x_k_plus_1:= c + A * x_k;
    until (x_k_plus_1 = x_k) or (k = 20);
    writeln ('Last iterate: ');
    write (x_k_plus_1);
    end;
begin {Main program}
writeln ('Exercise 22: Iterative Method x_k+1 := c + A x_k');
writeln;
write ('Dimension of vectors and matrices? ');
read (n);
main (n);
end.

```

Remark: Module MatVec is a prototype of the predefined module MV_ARI of PASCAL-XSC, which uses the predefined types rvector and rmatrix. Note that our prototype module does not check the matching of the index ranges.

\section*{Exercise 23: Trace of a Product Matrix}

The trace of a \(n \times n\) matrix \(A=\left(a_{i j}\right)\) is defined by
\[
\operatorname{Trace}(A):=\sum_{i=1}^{n} a_{i i}=a_{11}+\cdots+a_{n n}
\]
i.e. the sum of the diagonal elements. Write a PASCAL-XSC program that accepts the dimension \(n\) and the two corresponding \(n \times n\) matrices \(A\) and \(B\), computes the trace of the product matrix \(C=A \cdot B\), and prints the value.

Use the module MV_ARI which declares the procedures and operators for the dynamic types rvector and rmatrix. Implement a function Trace1 that determines the trace of the product of two matrices with usual arithmetic operations, and a function Trace2 that uses an \#-expression with the same operations to computate the trace with maximum accuracy. Furthermore, implement a function Trace3 that does the summation in the usual way, but uses a scalar product for the calculation of the diagonal elements of the product matrix. Finally, implement a function Trace 4 that uses an \#-expression for the summation used in Trace3. Compare the four versions by means of some examples. Test your program also using the matrices
\[
A=\left(\begin{array}{cccc}
10^{9} & 8 & 126 & -237 \\
100 & 2 & -12 & 1 \\
10^{5} & 10 & -10^{7} & 81 \\
13 & -3 & 30 & 10^{-7}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
10^{8} & 85 & 8 & 6 \\
12 & 3 & 10^{3} & 156 \\
3 & 14 & 10^{10} & 13 \\
2 & -8332 & -10^{4} & -10^{-8}
\end{array}\right) .
\]

\section*{Solution:}
```

program trace (input, output);
{ Exercise 23: Trace of a Product Matrix }
use mv_ari;
var n: integer;
function trace1 (a, b: rmatrix): real;
var
i, j : integer;
s : real;
begin
s:= 0;
for i:= lbound(a,1) to ubound(a,1) do
for j:= lbound(a,2) to ubound(a,2) do
s:= s + a[i,j] * b[j,i];
trace1:= s;
end;

```
```

function trace2 (a, b: rmatrix): real;
var
i, j : integer;
begin
trace2:= \#* ( for i:= lbound(a,1) to ubound(a,1) sum
( for j:= lbound(a,2) to ubound(a,2) sum
( a[i,j]*b[j,i] ) ) );
end;
function trace3 (a, b: rmatrix): real;
var
i : integer;
s : real;
begin
s:= 0;
for i:= lbound(a,1) to ubound(a,1) do
s:= s + a[i] * rvector(b[*,i]);
trace3:= s;
end;
function trace4 (a, b: rmatrix): real;
var
i : integer;
begin
trace4:= \#* ( for i:= lb(a,1) to ub(a,1) sum
( a[i] * rvector (b[*,i]) ) );
end;
procedure main (n: integer);
var
a,b : rmatrix[1..n,1..n];
tr1, tr2, tr3, tr4 : real;
begin
writeln('Enter matrix A:');
read (A);
writeln('Enter matrix B:');
read (B);
tr1:= trace1 (A,B);
tr2:= trace2 (A,B);
tr3:= trace3 (A,B);
tr4:= trace4 (A,B);
writeln('Trace of A*B computed conventionally : ',tr1);
writeln('and with corresponding \#-expression : ',tr2);
writeln('Trace of A*B computed with scalar product : ',tr3);
writeln('and with corresponding \#-expression : ',tr4);
end;

```
```

begin {program trace}
writeln ('Exercise 23: Trace of a Product Matrix');
writeln;
write('Enter dimension of the matrices: ');
read (n);
main(n);
end. {program trace}

```

\section*{Runtime Output:}

Exercise 23: Trace of a Product Matrix

Enter dimension of the matrices: 4

Enter matrix A:
\begin{tabular}{rrrr}
\(1 e 9\) & 8 & 126 & -237 \\
100 & 2 & -12 & 1 \\
\(1 e 5\) & 10 & -1 e 7 & 81 \\
13 & -3 & 30 & \(1 \mathrm{e}-7\)
\end{tabular}

Enter matrix B:
\begin{tabular}{rrrr}
\(1 e 8\) & 85 & 8 & 6 \\
12 & 3 & \(1 e 3\) & 156 \\
3 & 14 & \(1 e 10\) & 13 \\
2 & -8332 & \(-1 e 4\) & \(-1 e-8\)
\end{tabular}
\begin{tabular}{llr}
Trace of \(A * B\) computed conventionally & \(:\) & \(-1.600000000000000 \mathrm{E}+001\) \\
and with corresponding \#-expression & \(:\) & \(5.999999999999999 \mathrm{E}+000\) \\
Trace of \(A * B\) computed with scalar product & \(:-9.999999999999999 \mathrm{E}-016\) \\
and with corresponding \#-expression & \(:\) & \(5.999999999999999 \mathrm{E}+000\)
\end{tabular}

\section*{Exercise 24: Calculator for Polynomials}

Write a PASCAL-XSC program that provides a calculator for the addition and multiplication of polynomials with real coefficients. The degree \(n\) of the polynomials should be no more than 5 . For two polynomials \(p\) and \(q\) of degree \(n\) with
\[
p(x)=\sum_{i=0}^{n} a_{i} x^{i} \quad \text { and } \quad q(x)=\sum_{i=0}^{n} b_{i} x^{i},
\]
the sum \(s\) is defined by
\[
s(x)=p(x)+q(x)=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i},
\]
and the product \(r\) by
\[
r(x)=p(x) \cdot q(x)=\sum_{i=0}^{n} \sum_{j=0}^{n} a_{i} b_{j} x^{i+j} .
\]

A module should be written containing
a) a dynamic type definition Polynomial where a polynomial is defined as a dynamic real array,
b) a procedure to read the coefficients of a polynomial,
c) an operator + with two operands of type Polynomial and with a resulting polynomial of the same degree as the operands,
d) an operator \(*\) with two operands of type Polynomial and with a resulting polynomial of appropriate degree, implemented with maximum accuracy,
e) a procedure for the output of polynomials.

A program testing this module should contain a procedure Main with parameter \(n\) \((\leq 5)\), that declares the three polynomials \((p, q, s)\) of degree \(n\) and a polynomial \((r)\) of degree \(2 n\), and reads \(p\) and \(q\). Depending upon the user's input, the procedure should compute and print the sum \(s\) or the product \(r\). In the main program of this test program, only the degree of the polynomials should be entered and the procedure Main be called.

\section*{Solution:}
```

module poly;
{ Exercise 24: Calculator for Polynomials }
global type Polynomial = dynamic array [*] of real;

```
```

global procedure read (var f: text; var a: Polynomial);
var i: integer;
begin
for i:= O to ub(a) do
read (f, a[i]);
end;
global operator + (a, b: Polynomial) Result_Add: Polynomial[0..ub(a)];
var i: integer;
begin
for i:= O to ub(a) do
Result_Add[i]:= a[i] + b[i];
end;
global operator * (a, b: Polynomial) Result_Mul: Polynomial[0..2*ub(a)];
var i, j, n: integer;
begin
n:= ub(a);
for i:= 0 to n do
Result_Mul[i]:= \#* (for j:= 0 to i sum (a[j] * b[i-j]));
for i:= n+1 to 2*n do
Result_Mul[i]:= \#* (for j:= i-n to n sum (a[j] * b[i-j]));
end;
global procedure write (var f: text; a: Polynomial);
var i: integer;
begin
write (f, a[0], , ');
for i:= 1 to ub(a) do
begin
writeln(f, ' + ');
write(' ', a[i], ' x^' ,i:1);
end;
writeln(f);
end;
end. {module poly}
program test_poly (input, output);
use poly;
var n, option : integer;
procedure Main (n : integer; var option : integer);
var
p, q, s : Polynomial[0..n];
r : Polynomial[0..2*n];

```
```

    begin
        writeln('Enter the coefficients of p (0 to n):');
        read (p);
        writeln;
    writeln('Enter the coefficients of q (0 to n):');
    read (q);
    writeln;
    repeat
        writeln('Please select:');
        writeln(' p + q ==> 0');
        writeln(' p * q ==> 1');
        writeln(' New polynomials p,q ==> 2');
        writeln(' Terminate program ==> 9');
        writeln;
        write ('Selection ==> '); read(option);
        writeln;
        if option = 0 then
        begin
            s:= p+q;
            write('p = '); writeln(p);
            write('q = '); writeln(q);
                write('p+q = '); writeln(s);
            end
            else if option = 1 then
            begin
                r:= p*q;
                write('p = '); writeln(p);
                write('q = '); writeln(q);
                write('p*q = '); writeln(r);
            end;
        until (option <> 0) and (option <> 1);
        writeln;
    end;
    begin { test_poly }
writeln('Exercise 24: Calculator for Polynomials');
writeln;
repeat
repeat
write('Degree n of the polynomials (>= 0 and <= 5) : ');
read (n);
until (0<=n) and (n<=5);
writeln;
Main (n, option);
until (option = 9);
end.

```
```

Runtime Output:
Exercise 24: Calculator for Polynomials
Degree n of the polynomials (>= 0 and <= 5) : 4
Enter the coefficients of p (0 to n):
99 11 22 33 44
Enter the coefficients of q:
01234
Please select:
p + q ==> 0
p * q ==> 1
New polynomials p,q ==> 2
Terminate program ==> 9
Selection ==> 0
p = 9.900000000000000E+001 +
1.100000000000000E+001 x^1 +
2.200000000000000E+001 x^2 +
3.300000000000000E+001 x^3 +
4.400000000000000E+001 x^4
q = 0.000000000000000E+000 +
1.000000000000000E+000 x^1 +
2.000000000000000E+000 x^2 +
3.000000000000000E+000 x^3 +
4.000000000000000E+000 x^4
p+q = 9.900000000000000E+001 +
1.200000000000000E+001 x^1 +
2.400000000000000E+001 x^2 +
3.600000000000000E+001 x^3 +
4.800000000000000E+001 x^4
Please select:
p +q =
p * q ==> 1
New polynomials p,q ==> 2
Terminate program ==> 9
Selection ==> 1

```
```

p = 9.900000000000000E+001 +
1.100000000000000E+001 x^1 +
2.200000000000000E+001 x^2 +
3.300000000000000E+001 x^3 +
4.400000000000000E+001 x^4
q = 0.000000000000000E+000 +
1.000000000000000E+000 x^1 +
2.000000000000000E+000 x^2 +
3.000000000000000E+000 x^3 +
4.000000000000000E+000 x^4
p*q = 0.000000000000000E+000 +
9.900000000000000E+001 x^1 +
2.090000000000000E+002 x^2 +
3.410000000000000E+002 x^3 +
5.060000000000000E+002 x^4 +
2.200000000000000E+002 x^5 +
2.750000000000000E+002 x^6 +
2.640000000000000E+002 x^7 +
1.760000000000000E+002 x^8
Please select:
p+q =}
p * q ==> 1
New polynomials p,q ==> 2
Terminate program ==> 9
Selection ==> 9

```

\section*{Exercise 25: Interval Newton Method}

The interval inclusion \(X_{n}\) of a zero of a function \(f(x)\) whose derivative is continuous and not equal to zero on the interval \([a, b]\) can be improved under the assumption \(f(a) \cdot f(b)<0\) with help of the interval Newton method ([1],[2],[34])
\[
X_{n+1}:=\left(m\left(X_{n}\right)-\frac{f\left(m\left(X_{n}\right)\right)}{f^{\prime}\left(X_{n}\right)}\right) \cap X_{n}
\]
\(m(X)\) is the midpoint of the interval \(X\).
Write a PASCAL-XSC program that uses the module I_ARI and computes the interval inclusion of the zero of
\[
f(x)=\sqrt{x}+(x+1) \cos x
\]
with the method described above. Your program should include
- a function \(F\) that computes \(f(X)\) with interval arithmetic
- a function \(D F\) that computes the derivative \(f^{\prime}(x)\) with interval arithmetic
- a function midpoint that computes the midpoint \(m\) of the interval \(X=\left[x_{1}, x_{2}\right]\) with maximum accuracy by means of an \#-expression
- a main program that accepts the starting interval \(X=[a, b]\), checks the two criteria \(f(a) \cdot f(b)<0\) and \(0 \notin D F(X)\), and computes the iterates using the Newton method. Print the newly calculated interval at each iteration. The iteration should terminate when \(X_{n+1}=X_{n}\) (for the finite convergence see [34]).

Hint: Use \([2.0,3.0]\) as the starting interval for the iteration. Note, that for the computation of \(f(m(X))\) with the interval function \(F\), the midpoint delivered by midpoint must be converted in an interval.

\section*{Solution:}
```

program i_newton (input, output);
{ Exercise 25: Interval Newton Method }
use i_ari;
var x, y : interval;
function F (x : interval) : interval;
begin
F:= sqrt(x) + (x+1) * cos(x);
end;

```
```

function DF (x : interval) : interval;
begin
DF:= 0.5/sqrt(x) + cos(x) - (x + 1) * sin(x);
end;
function midpoint (x : interval) : real;
begin
midpoint:= \#* (0.5 * x.inf + 0.5 * x.sup);
end;
function criterion_satisfied (x : interval) : boolean;
var
a, b: interval;
begin
a:= intval(inf(x));
b:= intval(sup(x));
criterion_satisfied:= (sup(F(a)*F(b)) < 0) and (not (0 in DF(x)));
end;
begin
writeln('Exercise 25: Interval Newton Method'); writeln;
write ('Starting interval: '); read (y); writeln;
writeln ('Iteration'); writeln;
if criterion_satisfied (y) then
repeat
writeln (y);
x:= y;
y:= ( midpoint(x) - F ( intval(midpoint(x)) ) / DF(x) ) ** x;
until y = x
else
writeln ('Criterion not satisfied!');
end.

```

\section*{Runtime Output:}

Exercise 25: Interval Newton Method

Starting interval: [2,3]

\section*{Iteration}
\begin{tabular}{lrr}
{\([\)} & \(2.0 \mathrm{E}+000\), & \(3.0 \mathrm{E}+000]\) \\
{\([\)} & \(2.0 \mathrm{E}+000\), & \(2.3 \mathrm{E}+000]\) \\
{\([\)} & \(2.05 \mathrm{E}+000\), & \(2.07 \mathrm{E}+000]\) \\
{\([\)} & \(2.05903 \mathrm{E}+000\), & \(2.05906 \mathrm{E}+000]\) \\
{\([\)} & \(2.059045253413 \mathrm{E}+000\), & \(2.059045253417 \mathrm{E}+000]\) \\
{\([\)} & \(2.059045253415143 \mathrm{E}+000\), & \(2.059045253415145 \mathrm{E}+000]\)
\end{tabular}

\section*{Exercise 26: Runge-Kutta Method}

The Runga-Kutta method [47] is used for approximating a solution for initial value problems of the form
\[
Y^{\prime}=F(x, Y) ; \quad Y\left(x^{0}\right)=Y^{0} ;
\]
where
\[
Y=\left(\begin{array}{c}
y_{1}(x) \\
\vdots \\
y_{n}(x)
\end{array}\right), Y^{\prime}=\left(\begin{array}{c}
y_{1}^{\prime}(x) \\
\vdots \\
y_{n}^{\prime}(x)
\end{array}\right)
\]
and
\[
F(x, Y)=\left(\begin{array}{c}
f_{1}\left(x, y_{1}, \ldots, y_{n}\right) \\
\vdots \\
f_{n}\left(x, y_{1}, \ldots, y_{n}\right)
\end{array}\right)
\]

Define the coefficients \(K_{i}\)
\[
\begin{aligned}
K_{1} & =h * F(x, Y) \\
K_{2} & =h * F\left(x+\frac{h}{2}, Y+\frac{K_{1}}{2}\right) \\
K_{3} & =h * F\left(x+\frac{h}{2}, Y+\frac{K_{2}}{2}\right) \\
K_{4} & =h * F\left(x+h, Y+K_{3}\right) .
\end{aligned}
\]

An approximation for the solution \(Y\) at the point \(x+h\) is given by the formula
\[
Y(x+h)=Y(x)+\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) / 6 .
\]

Write a PASCAL-XSC program that uses the module MV_ARI. Starting from \(Y(0)=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\), the values of \(Y\) at the points \(x_{i}=i * h, i=1, \ldots, 10\) should be computed with \(h=0.125\). As an example, use the function
\[
F(x, Y)=\left(\begin{array}{c}
Y_{1}-Y_{2} \\
e^{x} \cdot Y_{3} \\
\left(Y_{1}-Y_{2}\right) / e^{x}
\end{array}\right)
\]

The output should be presented as a table. Define the vector function \(F(x, Y)\). Compute the expressions \(K_{1}, K_{2}, K_{3}, K_{4}\), and the value of \(Y\left(x_{i}\right)\) in a loop using the predefined operators in MV_ARI.

\section*{Solution:}
```

program Runge_Kutta (input, output);
{ Exercise 26: Runge-Kutta Method }
use mv_ari;
const
n = 3;
var
h, x : real;
Y : rvector[1..n];
i : integer;
function F (x : real; Y : rvector) : rvector[1..n];
var
i: integer;
begin
F[1]:= Y[1] - Y[2];
F[2]:= exp(x) * Y[3];
F[3]:= (Y[1] - Y[2]) / exp(x);
end;
function One_Step (x, h : real; var Y : rvector) : rvector[1..n];
{ This function executes one step of the Runge-Kutta method }
var
k1, k2, k3, k4 : rvector[1..n];
begin
k1 := h * F (x , Y);
k2 := h * F (x + h/2, Y + k1/2);
k3 := h * F (x + h/2, Y + k2/2);
k4 := h * F (x + h , Y + k3);
One_Step := Y + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
end;
begin
writeln('Exercise 26: Runge-Kutta Method');
writeln;
x:= 0; Y[1]:= 1; Y[2]:= 0; Y[3]:= 1; h:= 0.125;
writeln (' x Y');
write ('-------------------------------------------');
writeln ('-------------------------------------------');
writeln (xi:7:4,' ',Y[1],' ',Y[2],' ',Y[3]);

```
```

    for i:=1 to 10 do
    begin
        x := i*h;
        Y := One_Step (x, h, Y);
        writeln (x:7:4,' ',Y[1],' ',Y[2],' ',Y[3]);
    end;
    end.

```

\section*{Runtime Output:}

Exercise 26: Runge-Kutta Method
x
Y
\begin{tabular}{lllll}
0.0000 & \(1.000000000000000 \mathrm{E}+000\) & \(0.000000000000000 \mathrm{E}+000\) & \(1.000000000000000 \mathrm{E}+000\) \\
0.1250 & \(1.123177059359435 \mathrm{E}+000\) & \(1.589550140041404 \mathrm{E}-001\) & \(1.102222238011605 \mathrm{E}+000\) \\
0.2500 & \(1.239209386091870 \mathrm{E}+000\) & \(3.550710525572459 \mathrm{E}-001\) & \(1.187244664965584 \mathrm{E}+000\) \\
0.3750 & \(1.341958893792722 \mathrm{E}+000\) & \(5.919581434349622 \mathrm{E}-001\) & \(1.253740540716452 \mathrm{E}+000\) \\
0.5000 & \(1.424014481447932 \mathrm{E}+000\) & \(8.728079152996371 \mathrm{E}-001\) & \(1.300672225680391 \mathrm{E}+000\) \\
0.6250 & \(1.476592898728182 \mathrm{E}+000\) & \(1.200161743578859 \mathrm{E}+000\) & \(1.327307372755333 \mathrm{E}+000\) \\
0.7500 & \(1.489460043511421 \mathrm{E}+000\) & \(1.575636069976619 \mathrm{E}+000\) & \(1.333230355256656 \mathrm{E}+000\) \\
0.8750 & \(1.450881281820536 \mathrm{E}+000\) & \(1.999602458523678 \mathrm{E}+000\) & \(1.318348752540877 \mathrm{E}+000\) \\
1.0000 & \(1.347610792483193 \mathrm{E}+000\) & \(2.470820861695647 \mathrm{E}+000\) & \(1.282894792112784 \mathrm{E}+000\) \\
1.1250 & \(1.164931397828429 \mathrm{E}+000\) & \(2.986025793442226 \mathrm{E}+000\) & \(1.227421725713755 \mathrm{E}+000\) \\
1.2500 & \(8.867578092820163 \mathrm{E}-001\) & \(3.539466687473293 \mathrm{E}+000\) & \(1.152795195942419 \mathrm{E}+000\)
\end{tabular}

Remark: The solutions of both of the last exercises demonstrate that the general operator concept in PASCAL-XSC substantially simplifies the transfer of numerical algorithms into program code. In principle, the mathematical formulas can be used directly as program statements.

\section*{Exercise 27: Rational Arithmetic}

Implement a PASCAL-XSC module for a rational arithmetic [23]. A rational number \(p=n / d\) should be represented as a record type with integer components numerator and denominator (\(>0\)). The module should make the following globally available
1) the type Rational,
2) the operators \(+,-, *, /\), which deliver a reduced fraction of type Rational as result,
3) a procedure for the input and for the output of rational numbers, respectively, using the form:
integer/integer

You will need to write functions to compute the greatest common denominator (gcd) and to reduce fractions. These should be declared locally for use only within the module.

A test program should test each operator and compute the value of the expression
\[
(a+b) *(b-c) /(c+d)
\]
for \(a=3 / 4, b=2 / 7, c=4 / 5\), and \(d=7 / 9\).
Hint: The function to reduce a rational number to lowest terms should use integer division (div) of the denominator and the numerator by the greatest common divisor. The function for the greatest common divisor should use the following algorithm:
\[
\begin{aligned}
& a, b>0 ; \quad z_{0}:=a ; \quad n_{0}:=b ; \quad i:=0 \\
& \text { set }\left\{\begin{aligned}
n_{i+1} & :=d_{i} \\
d_{i+1} & := \\
n_{i} & \bmod d_{i}
\end{aligned}\right\} \text { for } i=0,1,2, \ldots \\
& \text { until } d_{i+1}=0 .
\end{aligned} \text { then } n_{i+1}\left(\text { or } d_{i}\right) \text { is the greatest common divisor of } a \text { and } b . ~ \$
\]

Notice: \(\operatorname{gcd}(0, x)=x\) for every \(x \neq 0\).

\section*{Solution:}
```

module rational;
{ Exercise 27: Rational Arithmetic }
global type
positive = 1..maxint;
rational = record
numerator : integer;
denominator : positive;
end;
function gcd (a, b : integer) : positive;
var
n, d, r : integer;
begin
if a = 0 then
gcd:= b
else if b = 0 then
gcd:= a
else
begin
d:= a;
r:= b;
repeat
n:= d;
d:= r;
r:= n mod d;
until r = 0;
gcd:= abs(d);
end;
end;
function reduce (a: rational) : rational;
var
g : positive;
begin
g:= gcd (abs(a.numerator),a.denominator);
if (g=0) or ( }\textrm{g}=1)\mathrm{ then
reduce := a
else
begin
reduce.numerator := a.numerator div g;
reduce.denominator:= a.denominator div g;
end;
end;

```
```

global operator + (a,b : rational) respl : rational;
var
s: rational;
begin
s.numerator := a.numerator*b.denominator + b.numerator*a.denominator;
s.denominator:= a.denominator*b.denominator;
respl:= reduce (s);
end;
global operator - (a,b : rational) resmi : rational;
var
s: rational;
begin
s.numerator := a.numerator*b.denominator - b.numerator*a.denominator;
s.denominator:= a.denominator*b.denominator;
resmi:= reduce (s);
end;
global operator * (a,b : rational) resmu : rational;
var
s: rational;
begin
s.numerator := a.numerator*b.numerator;
s.denominator:= a.denominator*b.denominator;
resmu:= reduce (s);
end;
global operator / (a,b : rational) resdi : rational;
var
help : integer;
s : rational;
begin
s.numerator:= a.numerator*b.denominator;
help := a.denominator*b.numerator;
if help > 0 then
s.denominator:= help
else if help < 0 then
begin
s.numerator := -s.numerator;
s.denominator:= -help;
end
else { force division by zero to generate an error }
help:= help div help;
resdi:= reduce (s);
end;

```
```

global procedure read (var f: text; var r: rational);
var
s, sn, sd: string;
i, l : integer;
begin
if eoln (f) then
readln (f);
read (f,s);
i:= pos ('/',s);
l:= length (s);
sn:= substring (s,1,i-1);
sd:= substring (s,i+1,l-i);
r.numerator:= ival (sn);
l:= ival (sd);
if l > O then
r.denominator:= l
else if l < O then
begin
r.numerator := - r.numerator;
r.denominator:= - l;
end
else { force devision by zero to generate an error }
l:= l div l;
r:= reduce (r);
end;
global procedure write (var f: text; a: rational);
begin
write (f, a.numerator:1, '/', a.denominator:1);
end;

```
end. \{module rational\}
```

program test_ratio (input, output);
{ Exercise 27: Rational Arithmetic - Test Program }
use rational;
var
a,b,c,d : rational;

```
```

begin
writeln('Exercise 27: Rational Arithmetic - Test Program');
writeln;
write ('a = '); read (a);
writeln (a);
write ('b = '); read (b);
writeln (b);
write ('c = '); read (c);
writeln (c);
write ('d = '); read (d);
writeln (d);
writeln;
writeln ('a+b = ', a+b);
writeln ('b-c = ', b-c);
writeln ('c+d = ', c+d);
writeln ('(a+b)*(b-c)/(c+d) = ,, (a+b)*(b-c)/(c+d));
end.

```

\section*{Runtime Output:}

Exercise 27: Rational Arithmetic
```

a = 3/4
b = 2/7
c = 4/5
d = 7/9

```
\(a+b=29 / 28\)
\(b-c=-18 / 35\)
\(c+d=71 / 45\)
\((\mathrm{a}+\mathrm{b}) *(\mathrm{~b}-\mathrm{c}) /(\mathrm{c}+\mathrm{d})=-2349 / 6958\)

\section*{Exercise 28: Evaluation of Polynomials}

Write a PASCAL-XSC program to evaluate a polynomial
\[
p(t)=a_{n} t^{n}+\cdots+a_{1} t+a_{0}
\]
with maximum accuracy. Use the module LSS from the PASCAL-XSC numeric library for the verified solution of a system of linear equations. Horner's scheme
\[
\left.\left.p(t)=\left(\ldots\left(a_{n} \cdot t+a_{n-1}\right) \cdot t+a_{n-2}\right) \cdots\right) \cdot t+a_{1}\right) \cdot t+a_{0}
\]
for the evaluation of a polynomial can be done via the solution of the system of linear equations
\[
\begin{aligned}
x_{0} & =a_{n} \\
x_{1} & =t x_{0}+a_{n-1} \\
& \vdots \\
x_{n-1} & =t x_{n-2}+a_{1} \\
x_{n} & =t x_{n-1}+a_{0}
\end{aligned}
\]
by introducing the \(n+1\) variables \(x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\). The value of the polynomial \(p\) at point \(t\) is then given by \(x_{n}\), i.e. \(x_{n}=p(t)\).

Hence, we wish to solve the system of linear equations
\[
\left(\begin{array}{ccccc}
1 & & & 0 & \\
-t & 1 & & & \\
& \ddots & \ddots & & \\
& & -t & 1 & \\
0 & & & -t & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{n} \\
a_{n-1} \\
\vdots \\
a_{1} \\
a_{0}
\end{array}\right)
\]
or
\[
A x=b
\]
where
\[
A=\left(a_{i j}\right), \quad a_{i j}=\left\{\begin{array}{cl}
1 & \text { for } i=j \\
-t & \text { for } i=j+1 \\
0 & \text { else }
\end{array}\right\}, \quad i, j=0, \ldots, n
\]
and
\[
b=\left(b_{i}\right), \quad b_{i}=a_{n-i}, \quad i=0, \ldots, n .
\]

Write a PASCAL-XSC program that contains the following parts:
(a) a dynamic type declaration polynomial (component type real),
(b) a procedure read for the coefficients of a polynomial,
(c) a function Horner to compute the value of a polynomial by the Horner scheme,
(d) a procedure set_A_b, that generates the matrix \(A\) and the vector \(b\) from a polynomial \(p\) and a real number \(t\),
(e) a procedure main with formal parameter \(n\) that
- declares a variable \(p\) of type polynomial, a vector \(b\) of type rvector, an interval vector \(X\) of type ivector, and a square matrix \(A\) of type rmatrix with index range \(0, \ldots, n\),
- reads the polynomial coefficients \(a_{0}, \ldots, a_{n}\) using the procedure read of part (b),
- generates the matrix \(A\) and the vector \(b\) using the procedure from part (d),
- computes an inclusion of \(X\) of the solution of the system \(A x=b\) with maximum accuracy using the procedure lss,
- and finally, if lss is executed without errors, prints the lower and upper bounds of the interval inclusion \(X_{n}\) of the polynomial value \(x_{n}=p(t)\) and the value calculated by the Horner method (part (c)) for the sake of comparison.
(f) a main program that accepts the degree of the polynomial \(n\) and calls the procedure main.

Hint: Use the module LSS from the PASCAL-XSC numeric library. This module supplies the procedure lss which delivers a verified inclusion vector \(X\) for the solution \(x\) of \(A x=b\) using the matrix \(A\) and the right-hand side \(b\) as input. The interface of this procedure is
```

procedure lss ( var A: rmatrix; var b: rvector;
var X : ivector; var errcode: integer );

```
where:
errcode \(=0\) : errorfree execution, errcode \(=1:\) system is too poorly conditioned, errcode \(=2\) : matrix is possibly singular.

Test your program with the following examples:

\section*{Example 1:}
degree of polynomial 3
coefficients \(\quad a_{0}=1536796802\)
\(a_{1}=-1086679440\)
\(a_{2}=-768398401\)
\(a_{3}=543339720\)
point of evaluation \(\quad t=1.4142135\)

\section*{Example 2:}
\begin{tabular}{ll}
degree of polynomial & 3 \\
coefficients & \(a_{0}=191971912515\) \\
& \(a_{1}=-135744641136\) \\
& \(a_{2}=-95985956257\) \\
& \(a_{3}=67872320568\) \\
point of evaluation & \(t=1.41421353154\)
\end{tabular}

\section*{Solution:}
```

program Polynomial_Evaluation (input, output);
{ Exercise 28: Evaluation of Polynomials }
use i_ari, mv_ari, lss;
type polynomial = dynamic array [*] of real;
procedure read (var f: text; var p: polynomial);
var
i: integer;
begin
for i:= O to ub(p) do
begin
write ('Coeff. ',i:2,': ');
read (f, p[i]);
end;
end;
function Horner (p : polynomial; t: real) : real;
var
h: real;
i: integer;
begin
h:= 0;
for i:= ub(p) downto 0 do
h:= p[i] + t * h;
horner:= h;
end;
procedure set_A_b (p : polynomial; t : real;
var A: rmatrix; var b: rvector);
var
i, j, ub_p: integer;
begin
A:= null (A);
A[0,0]:= 1;

```
```

        for i:= 1 to ub(A) do
        begin
            A[i,i-1]:= -t; { sub diagonal := -t }
            A[i,i] := 1; { diagonal := 1 }
        end;
        ub_p:= ub(p);
        for i:= O to ub(b) do
        b[i] := p[ub_p-i];
    end;
    procedure main (n: integer);
var
p: polynomial[0..n];
b: rvector[0..n];
X: ivector[0..n];
A: rmatrix[0..n,0..n];
t: real;
error: integer;
begin
writeln ('Enter a polynomial');
read (p);
write ('Enter the point of evaluation t = '); read(t);
writeln;
set_A_b (p,t,A,b);
lss (A,b,X,error);
if error=0 then
begin
writeln ('Horner scheme : ', horner (p,t));
writeln ('Inclusion : ', X[n]);
end
else
writeln ('Error ',error:1,' ocurred');
end;
var n: integer;
begin
writeln('Exercise 28: Evaluation of Polynomials');
writeln;
write ('Degree of polynomial: '); read (n);
main (n);
end.

```

\section*{Runtime Output:}

\section*{Example 1}
```

Degree of polynomial: 3
Enter polynomial
Coeff. 0 = 1536796802
Coeff. 1 = -1086679440
Coeff. 2 = -768398401
Coeff. 3 = 543339720
Enter the point of evaluation t = 1.4142135
Horner scheme : 5.960464477539062E-006
Inclusion : [ 5.978758733249328E-006, 5.978758733249330E-006]

```

\section*{Example 2}

Degree of polynomial: 3
Enter polynomial
Coeff. \(0=191971912515\)
Coeff. \(1=-135744641136\)
Coeff. \(2=-95985956257\)
Coeff. \(3=67872320568\)
Enter the point of evaluation \(t=1.41421353154\)

Horner scheme : \(1.000183105468750 \mathrm{E}+000\)
Inclusion : [\(1.000182503810985 \mathrm{E}+000,1.000182503810986 \mathrm{E}+000]\)
Remark: This last exercise shows how to use the routine for the verified solution of linear equations to evaluate poynomials with maximum accuracy. The verified results show that the frequently used Horner method may deliver incorrect results.

The procedure lss is used for simplicity. The reader might wish to design and implement a more efficient algorithm which takes advantage of the special structure of the matrix \(A\) as an advanced exercise (see [8]).

\section*{Appendix A}

\section*{Syntax Diagrams}

As a supplement to the syntax description of the language reference (chapter 2) using the simplified Backus-Naur-Form, we now give a complete description of the PASCAL-XSC syntax. For this purpose, we use syntax diagramms in a special form being already mentioned in [6], [7] or [14]. The following rules apply to the usage of the diagrams.
- Each diagram is marked by a number followed by a special identifier (sequence of upper case letters). This identifier is called a syntax variable. It is chosen to refer to the represented language element.
- A diagram consists of syntax variables, terminal symbols (reserved words consisting of boldfaced sequences of lower case letters, symbols enclosed in circles, or sequences of symbols enclosed in ovals), and solid or dotted lines.
- Within a diagram, a syntax variable may occur in connection with a semantic prefix. For instance, the variable IDENTIFIER (ID) is used with the prefix COMP indicating a special kind of identifier, i.e. a component identifier. Nevertheless, the definition of the variable COMP IDENTIFIER is given by the syntax diagram IDENTIFIER.

Furthermore, these semantic attributes appear as italicized remarks which are stated immediately beneath or beside a variable. If a list of semantic attributes is given, then the comma is read as "or". The following abbreviations are used:
\begin{tabular}{ll}
A & Array \\
B & boolean \\
CH & char \\
CIR & cinterval (complex intervals) \\
COMP & Component (of a record) \\
CONST & Constant \\
CR & complex (complex numbers) \\
DOT & dotprecision \\
dyadop & dyadic operator \\
dyna & dynamic array
\end{tabular}
\begin{tabular}{ll}
ET & Enumeration Type \\
\(F\) & File \\
\(F C T\) & Function \\
\(F L\) & Field List \\
\(F S\) & File Structure Type \\
\(I\) & integer \\
id & identifier \\
\(I R\) & interval (real intervals) \\
\(M C I R\) & cimatrix (complex interval matrices) \\
\(M C R\) & cmatrix (complex matrices) \\
\(M I R\) & imatrix (interval matrices) \\
\(M R\) & rmatrix (real matrices) \\
monop & monadic operator \\
\(P\) & pointer \\
\(R\) & real \\
\(R E C\) & Record \\
\(R E S\) & Result \\
\(S T\) & string \\
\(T F\) & Text File \\
\(V C I R\) & civector (complex interval vectors) \\
\(V C R\) & cvector (complex vectors) \\
\(V I R\) & ivector (interval vectors) \\
\(V R\) & rvector (real vectors) \\
\(V A R\) & Variable
\end{tabular}

An index of all syntax variables (identifiers) is listed in alphabetical order after the diagrams in Appendix B. 1 to simplify working with the diagrams.

While editing a program, the syntax diagrams are used according to the following rules:
- The traversing of a diagram starts at the upper left.
- Solid lines must be followed from left to right or from top to bottom. Dotted lines must be followed from right to left or from bottom to top.
- The traversing of a diagram ends at the lower right.
- Wherever a syntax variable appears while traversing over a diagram, we have to traverse through the diagram of this syntax variable. Then we continue with the original diagram.

P1 COMPILATION UNIT

P2 PROGRAM DECLARATION AND BODY (PDB)

P3 MODULE DECLARATION AND BODY (MDB)

P4 MODULE DECLARATION

\section*{P5 DECLARATION PART}

P6 CONSTANT DEFINITION

P7 CONSTANT (CONST)

P8 TYPE DEFINITION

List of predefined PASCAL-XSC type identifiers:
\begin{tabular}{llll}
integer & I & dotprecision & DOT \\
real & R & rvector & VR \\
boolean & B & rmatrix & MR \\
char & CH & cvector & VCR \\
text & TF & cmatrix & MCR \\
string & ST & ivector & VIR \\
complex & CR & imatrix & MIR \\
interval & IR & civector & VCIR \\
cinterval & CIR & cimatrix & MCIR
\end{tabular}

P9 MODULE TYPE DEFINITION

P11 FIELD LIST (FLIST)

P12 VARIABLE DECLARATION

\section*{P13 CHOICE}

P14 PROCEDURE FUNCTION HEAD (PFHEAD)

\section*{P15 PRIORITY DEFINITION}

P16 OPERATOR HEAD

P17 MONADIC FORMAL PARAMETER LIST (MON FOR PAR L)

P18 DYADIC FORMAL PARAMETER LIST (DYA FOR PAR L)

P19 ASSIGNMENT FORMAL PARAMETER LIST (ASG FOR PAR L)

P20 RESULT TYPE (RESTYPE)

```

P21 BODY

```


P22 FORMAL PARAMETER LIST

P23 TYPE SPECIFICATION (TYPESPEC)

\section*{P24 STATEMENT (STMT)}

P25 RESULT

Predefined PASCAL-XSC component identifiers
re, im, inf, sup

P26 STANDARD PROCEDURE CALL

P27 INPUT OUTPUT STATEMENT (IO STMT)

P28 EXPRESSION (EXPR)

P29 ACCURATE EXPRESSION

\section*{P30 EXACT EXPRESSION (EXA EXPR)}

All Summands must have the same structure (scalar, vector, or matrix) and the same dimension.
No explicit accurate expressions are permitted in the I EXPR of the for-statement.

\section*{P31 FACTOR}

P32 OPERAND
 converting functions rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix are permitted (see section 2.4.4).

P33 DYADIC OPERATOR (DYADOP)

P34 MONADIC OPERATOR (MONOP) priority 3

P35 ACTUAL PARAMETER LIST

\section*{P36 VARIABLE (VAR)}

Predefined PASCAL-XSC component identifiers
re, im, inf, sup

P37 STANDARD FUNCTION CALL

P37 STANDARD FUNCTION CALL (continued)

P37 STANDARD FUNCTION CALL (continued; use of arithmetic modules assumed)

P38 IDENTIFIER (ID)

P39 DIGIT SEQUENCE (DS)

P40 HEX DIGIT SEQUENCE (HDS)

P41 CHARACTER

P42 LETTER

P43 DIGIT

P44 HEX DIGIT

\section*{Appendix B}

\section*{Indices and Lists}

\section*{B. 1 Syntax Diagrams}
No. Diagram Identifier (Syntax Variable) Page
P29 ACCURATE EXPRESSION 286
P35 ACTUAL PARAMETER LIST 289
P19 ASSIGNMENT FORMAL PARAMETER LIST (ASG FOR PAR L) 280
P21 BODY 281
P41 CHARACTER 294
P13 CHOICE 278
P1 COMPILATION UNIT 271
P7 CONSTANT (CONST) 274
P6 CONSTANT DEFINITION 273
P5 DECLARATION PART 273
P43 DIGIT 295
P39 DIGIT SEQUENCE (DS) 294
P18 DYADIC FORMAL PARAMETER LIST (DYA FOR PAR L) 280
P33 DYADIC OPERATOR (DYADOP) 288
P30 EXACT EXPRESSION (EXA EXPR) 287
P28 EXPRESSION (EXPR) 286
P31 FACTOR 287
B.1. SYNTAX DIAGRAMS 299
No. Diagram Identifier (Syntax Variable) Page
P11 FIELD LIST (FLIST) 277
P22 FORMAL PARAMETER LIST 281
P44 HEX DIGIT 295
P40 HEX DIGIT SEQUENCE (HDS) 294
P38 IDENTIFIER (ID) 294
P27 INPUT OUTPUT STATEMENT (IO STMT) 285
P42 LETTER 295
P9 MODULE TYPE DEFINITION 275
P4 MODULE DECLARATION 272
P3 MODULE DECLARATION AND BODY (MDB) 272
P17 MONADIC FORMAL PARAMETER LIST (MON FOR PAR L) 279
P34 MONADIC OPERATOR (MONOP) 289
P32 OPERAND 287
P16 OPERATOR HEAD 279
P15 PRIORITY DEFINITION 279
P14 PROCEDURE FUNCTION HEAD (PF HEAD) 278
P2 PROGRAM DECLARATION AND BODY (PDB) 271
P25 RESULT 283
P20 RESULT TYPE (RES TYPE) 280
P37 STANDARD FUNCTION CALL 291
P26 STANDARD PROCEDURE CALL 284
P24 STATEMENT (STMT) 282
P10 TYPE 276
P8 TYPE DEFINITION 275
P23 TYPE SPECIFICATION (TYPESPEC) 281
P36 VARIABLE (VAR) 290
P12 VARIABLE DECLARATION 277

\section*{B. 2 Reserved Words}
and array
begin
case const
div do downto dynamic
else end external
file for forward function
global goto
if in
label
mod module
nil not
of operator or
packed priority procedure program
record repeat
set sum
then to type
until use
var
while with

\section*{B. 3 Predefined Identifiers}

Subsequently, the predefined identifiers of the language core as well as those of the arithmetic modules are listed. The latter are marked by the use of italicized letters.
\begin{tabular}{|c|c|}
\hline Constants & false maxint true \\
\hline Types & \begin{tabular}{l}
boolean \\
char cimatrix cinterval civector cmatrix complex cvector dotprecision imatrix integer interval ivector real rmatrix rvector string text
\end{tabular} \\
\hline Variables & \begin{tabular}{l}
input \\
output
\end{tabular} \\
\hline Component Identifiers & im inf re sup \\
\hline Functions & \begin{tabular}{l}
abs arccos arccot arcosh arcoth arcsin arctan arctan2 arg arsinh artanh \\
blow \\
chr comp compl conj cos cosh cot coth \\
diam \\
eof eoln \(\exp \exp 2 \quad \exp 10 \quad\) expo \\
herm \\
id im image inf intval ival \\
lb lbound length \(\ln \operatorname{loc} \log 2 \log 10\) \\
mant maxlength mid \\
null \\
odd ord \\
pos pred \\
re round rval \\
sign sin sinh sqr sqrt substring succ \\
sup \\
tan tanh transp trunc \\
ub ubound \\
vnull
\end{tabular} \\
\hline Procedures & \begin{tabular}{l}
dispose \\
get
\end{tabular} \\
\hline
\end{tabular}
mark
new
page put
read readln release reset rewrite write writeln

\section*{B. 4 Operators}

The tables in this section list all of the predefined operators in the language core and in the arithmetic modules.

\section*{B.4.1 Basic Operators}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\underbrace{\text { leperand }}_{\text {left }}\) & integer & boolean & char & string & set \\
\hline monadic & +, - & not & & & \\
\hline integer & \begin{tabular}{l}
\[
+,-, *, /,
\] \\
div, mod, V
\end{tabular} & & & & in \\
\hline boolean & & or, and, \(=,<>\),
\(<=,>=\) & & & in \\
\hline char & & & \[
\begin{aligned}
& + \\
& \text { v }
\end{aligned}
\] & \[
\begin{aligned}
& + \\
& v \\
& \text { in }
\end{aligned}
\] & in \\
\hline string & & & \[
\begin{aligned}
& + \\
& \text { v }
\end{aligned}
\] & \[
\begin{aligned}
& \hline+ \\
& \vee
\end{aligned}
\]
in & \\
\hline set & & & & & \[
\begin{aligned}
& +,-, *, \\
& =,<> \\
& <=,>=
\end{aligned}
\] \\
\hline enumeration type & & & & & in \\
\hline
\end{tabular}
\(\vee \in\{=,<>,<,<=,>,>=\}\)

\section*{B.4.2 Arithmetic Operators}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
integer \\
real complex
\end{tabular} & \begin{tabular}{l}
interval \\
cinterval
\end{tabular} & rvector cvector & \begin{tabular}{l}
ivector \\
civector
\end{tabular} & rmatrix cmatrix & \begin{tabular}{l}
imatrix \\
cimatrix
\end{tabular} \\
\hline monadic \({ }^{1}\)) & +, - & +, - & +, - & +, - & +, - & +, - \\
\hline \begin{tabular}{l}
integer \\
real \\
complex
\end{tabular} & \[
\begin{gathered}
0, \circ<, \circ>, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
+,-, *, /, \\
+*
\end{gathered}
\] & *, * \(<, *>\) & * & *, *<, * \(>\) & * \\
\hline interval cinterval & \[
\begin{gathered}
+,-, *, /, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
+,-, *, /, \\
+*, * *
\end{gathered}
\] & * & * & * & * \\
\hline \begin{tabular}{l}
rvector \\
cvector
\end{tabular} & \[
\begin{gathered}
*, *<, *> \\
\mid, /<, />
\end{gathered}
\] & *, / & \[
\begin{gathered}
\hline \\
\circ, \circ<, \circ>, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
\left.{ }^{4}\right) \\
+,-, *, \\
+*
\end{gathered}
\] & & \\
\hline \begin{tabular}{l}
ivector \\
civector
\end{tabular} & *, / & *, / & \[
\begin{gathered}
\left.{ }^{4}\right) \\
+,-, *, \\
+*
\end{gathered}
\] & \[
\begin{gathered}
\left.{ }^{4}\right) \\
+,-, *, \\
+*, * *
\end{gathered}
\] & & \\
\hline \begin{tabular}{l}
rmatrix \\
cmatrix
\end{tabular} & \[
\begin{gathered}
*, *<, *> \\
/, /<, />
\end{gathered}
\] & *, / & *, *<, *> & * & \[
\begin{gathered}
\left.0, \circ<, \circ>{ }^{3}\right) \\
+*
\end{gathered}
\] & \[
\begin{gathered}
\left.{ }^{4}\right) \\
+,-, *, \\
+*
\end{gathered}
\] \\
\hline \begin{tabular}{l}
imatrix \\
cimatrix
\end{tabular} & *, / & *, / & * & * & \[
\begin{gathered}
\left.+,{ }^{4}\right) \\
+, *
\end{gathered}
\] & \[
\begin{gathered}
\left.\quad{ }^{4}\right) \\
+,-, *, \\
+*, * *
\end{gathered}
\] \\
\hline
\end{tabular}
\({ }^{1}\)) The operators of this row are monadic (i.e. there is no left operand).
\(\left.{ }^{2}\right) \circ \in\{+,-, *, /\}\)
\(\left.{ }^{3}\right) \circ \in\{+,-, *\}\), where \(*\) denotes the scalar or matrix product.
\({ }^{4}\)) \(*\) denotes the scalar or matrix product.
+*: Interval hull (smallest interval enclosing both operands)
** : Interval intersection

\section*{B.4.3 Relational Operators for the Arithmetic Types}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
integer \\
real complex
\end{tabular} & \begin{tabular}{l}
interval \\
cinterval
\end{tabular} & \begin{tabular}{l}
rvector \\
cvector
\end{tabular} & \begin{tabular}{l}
ivector \\
civector
\end{tabular} & \begin{tabular}{l}
rmatrix \\
cmatrix
\end{tabular} & \begin{tabular}{l}
imatrix \\
cimatrix
\end{tabular} \\
\hline \begin{tabular}{l}
integer \\
real complex
\end{tabular} & \[
\begin{aligned}
& \hline=,<>, \\
& <=,<, \\
& >=,>
\end{aligned}
\] & \[
\begin{gathered}
\text { in } \\
=,<>
\end{gathered}
\] & & & & \\
\hline \begin{tabular}{l}
interval \\
cinterval
\end{tabular} & \(=,<>\) & \[
\begin{aligned}
& \text { in },><, \\
& =,<>, \\
& <=,<, \\
& >=,>
\end{aligned}
\] & & & & \\
\hline rvector cvector & & & & \[
\begin{gathered}
\text { in } \\
=,<>
\end{gathered}
\] & & \\
\hline \begin{tabular}{l}
ivector \\
civector
\end{tabular} & & & \(=,<>\) & \[
\begin{aligned}
& \text { in },><, \\
& =,<> \\
& <=,<, \\
& >=,>
\end{aligned}
\] & & \\
\hline rmatrix cmatrix & & & & & \[
\begin{aligned}
& =,<>, \\
& <=,<, \\
& >=,>
\end{aligned}
\] & \[
\begin{gathered}
\text { in } \\
=,<>
\end{gathered}
\] \\
\hline \begin{tabular}{l}
imatrix \\
cimatrix
\end{tabular} & & & & & \(=,<>\) & \[
\begin{aligned}
& \text { in },><, \\
& =,<> \\
& <=,<, \\
& >=,>
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{1}\)) The operators \(<=\) and \(<\) denote the "subset" relations; \(>=\) and \(>\) denote the "superset" relations.
\(><\) : Test for disjointedness of intervals
in : Test for membership of a point in an interval or
Test for strict inclusion of an interval in the interior of an interval

\section*{B.4.4 Assignment Operators}

The subsequent tables give a survey of all possible assignment statements which have been made possible by overloading of the operator \(:=\) in the arithmetic modules.
\begin{tabular}{|c|c|c|}
\hline Type of Left Side & Type of Right Side & Overloading Defined in \\
\hline complex & integer real & module C_ARI \\
\hline interval & integer real & module I_ARI \\
\hline cinterval & integer real complex interval & module CI_ARI \\
\hline rvector & integer real & module MV_ARI \\
\hline cvector & integer real complex rvector & module MVC_ARI \\
\hline ivector & \begin{tabular}{l}
integer \\
real interval rvector
\end{tabular} & module MVI_ARI \\
\hline civector & \begin{tabular}{l}
integer \\
real \\
complex interval cinterval rvector cvector ivector
\end{tabular} & module MVCI_ARI \\
\hline rmatrix & \begin{tabular}{l}
integer \\
real
\end{tabular} & module MV_ARI \\
\hline cmatrix & \begin{tabular}{l}
integer \\
real complex rmatrix
\end{tabular} & module MVC_ARI \\
\hline imatrix & \begin{tabular}{l}
integer \\
real interval rmatrix
\end{tabular} & module MVI_ARI \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Type of Left Side & Type of Right Side & Overloading Defined in \\
\hline \hline \multirow{5}{*}{ cimatrix } & integer & \\
& real & \\
& complex & \\
& interval & module MVCI_ARI \\
& cinterval & \\
& rmatrix & \\
& cmatrix & \\
& imatrix & \\
\hline
\end{tabular}

\section*{B. 5 Predefined Functions}

In this section, we supply an alphabetical review of all predefined functions with their declaration (interface) and a short explanation of their purpose. For functions which are overloaded or newly defined in the arithmetical modules, the name of the defining module is listed. For the generic mathematical functions, consult the extra table at the end of this section. For details about the domain of definition or the range of the result, see the user manual of the compiler version you are using.

\section*{abs}
see extra table on page 319

\section*{\(\arccos\)}
see extra table on page 319
arccot
see extra table on page 319
arcosh
see extra table on page 319

\section*{arcoth}
see extra table on page 319

\section*{\(\arcsin\)}
see extra table on page 319
\(\arctan\)
see extra table on page 319

\section*{\(\arctan 2\)}
see extra table on page 319

\section*{arg}
function \(\arg\) (c: complex) : real;
Purpose: Delivers the argument (angle component) of the exponential representation of \(c\).
def./overl. in: C_ARI
function arg (c: cinterval) : interval;
Purpose: Delivers the argument interval (angle component) of the exponential representation of \(c\).
def./overl. in: CI_ARI

\section*{arsinh}
see extra table on page 319

\section*{artanh}
see extra table on page 319

\section*{blow}
function blow (x: Type1; eps: real) : Type1;
Type1: interval, cinterval, ivector, civector, imatrix, cimatrix
Purpose: Delivers the epsilon inflation of the interval argument \(x\) (componentwise for array types). For \(x\) of type interval, blow is computed by
\[
\mathrm{y} \quad:=(1+\mathrm{eps}) * \mathrm{x}-\mathrm{eps} * \mathrm{x} \text {; }
\]
\[
\text { blow }:=\operatorname{intval}(\operatorname{pred}(\inf (y)), \operatorname{succ}(\sup (y))) ;
\]
def./overl. in: I_ARI, CI_ARI, MVI_ARI, MVCI_ARI
chr
function chr (i: integer) : char;
Purpose: Delivers the character with the ordinal number i. It is an error if no such value exists.

\section*{comp}
function comp (m: real; e: integer) : real;
Purpose: Composition of a mantissa \(m\) and an exponent \(e\) into a floating point value \(m \cdot b^{e}\). It is an error if the values of \(b, e\), and \(m\) do not lie in the implementation-dependent range.
conj
function conj (c: Type1) : Type1;
Type1: complex, cinterval, cvector, civector, cmatrix, cimatrix
Purpose: Conjugation (for vector and matrix types in every component)
def./overl. in: C_ARI, CI_ARI, MVC_ARI, MVCI_ARI

\section*{cos}
see extra table on page 319
cosh
see extra table on page 319

\section*{cot}
see extra table on page 319

\section*{coth}
see extra table on page 319

\section*{diam}
function diam (x: Type1) : ResType;
Type1: interval, cinterval, ivector, civector, imatrix, cimatrix
ResType: real, rvector, rmatrix according to the structure of Type1.
Purpose: Delivers the diameter of \(x\) (for array types in every component).
def./overl. in: I_ARI, CI_ARI, MVI_ARI, MVCI_ARI
eof
function eof (var f: Type1) : boolean;
Type1: text, file of ...
Purpose: Delivers false if the actual component of the file variable \(f\) is a defined component, otherwise true. It is an error if \(f\) is undefined.
function eof : boolean;
Purpose: Corresponds to eof (input).
eoln
function eoln (var f: text) : boolean;
Purpose: Delivers true if the actual component of the file variable \(f\) contains the end-of-line character, otherwise false. It is an error if \(f\) is undefined.
function eoln : boolean;
Purpose: Corresponds to eoln (input).
exp
see extra table on page 319
\(\exp 2\)
see extra table on page 319
\(\exp 10\)
see extra table on page 319

\section*{expo}
function expo (x: real) : integer;
Purpose: \(\quad\) Delivers the exponent of \(x\) corresponding to the normalized mantissa and the base.

\section*{herm}
function herm (x: Type1) : Type1;
Type1: cmatrix, cimatrix
Purpose: Delivers the Hermitean matrix.
def./overl. in: MVC_ARI, MVCI_ARI
id
function id (x: Type1) : rmatrix[lb(x).. \(u b(x), \operatorname{lb}(x, 2) . . u b(x, 2)]\);
Type1: rmatrix, cmatrix, imatrix, cimatrix
Purpose: Delivers an identity matrix with the index range of \(x\).
def./overl. in: MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
function id (x, y: Type1) : rmatrix[lb(x)..ub(x), lb(y,2)..ub(y,2)];
Type1: rmatrix, cmatrix, imatrix, cimatrix
Purpose: Delivers an identity matrix with the index ranges of the product matrix \(x \cdot y\).
def./overl. in: MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
function id (n: integer) : rmatrix[1..n,1..n];
Purpose: \(\quad\) Delivers a \(n \times n\) square identity matrix (\(n \geq 1\) assumed).
def./overl. in: MV_ARI
function id (n1, n2: integer) : rmatrix[1..n1,1..n2];
Purpose: \(\quad\) Delivers a rectangular \(n 1 \times n 2\) identity matrix (n1, n2 \(\geq 1\) assumed).
def./overl. in: MV_ARI

\section*{image}
function image (i: integer) : string;
Purpose: Converts the integer value \(i\) into a string with a current length according to the default output of integer values (possibly filled by leading blanks).
function image (i: integer; width: integer) : string;
Purpose: Converts the integer value \(i\) into a string with the length width (possibly filled with leading blanks).
function image (r: real) : string;
Purpose: Converts the real value \(r\) into a string with a current length according to the default output for real values (possibly filled by leading blanks).
function image (r: real; width: integer) : string;
Purpose: Converts the real value \(r\) into a string with the length width (possibly filled by leading blanks).
function image (r: real; width, fracs: integer) : string;
Purpose: Converts the real value \(r\) into a string with the length width (possibly filled by leading blanks) and fracs places after the decimal point.
function image (r: real; width, fracs, round: integer) : string;
Purpose: Converts the real value \(r\) into a string with the length width (possibly filled by leading blanks), fracs places after the decimal point, and rounded according to round (\(<0\) downwardly, \(=0\) to the nearest, \(>0\) upwardly).

\section*{ival}
function ival (s: string) : integer;
Purpose: Converts the first part of the string \(s\), which represents a numeric value according to the rules for integer constants, into an integer value. Leading blanks as well as trailing characters are neglected. It is an error if \(s\) does not satisfy the syntax of an integer constant.
function ival (s: string; var rest: string) : integer;
Purpose: Converts the first part of the string \(s\), which represents a numeric value according to the rules for integer constants, into an integer value. Leading blanks are neglected, whereas trailing characters are passed back in the string rest. It is an error if \(s\) does not satisfy the syntax of an integer constant.

\section*{lb}
function lb (var a: Type1; i: integer) : ResType;
Type1: Arbitrary array type
ResType: Index type of Type1
Purpose: Short form of lbound. Delivers the lower bound of the \(i\)-th index range of \(a\). It is an error if \(i\) exceeds the number of dimensions.
function lb (var a: Type1) : ResType;
Type1: Arbitrary array type
ResType: Index type of Type1
Purpose: Short form of lbound. Delivers the lower bound of the first index range of a.

\section*{lbound}
function lbound (var a: Type1; i: integer) : ResType;
Type1: Arbitrary array type
ResType: Index type of Type1
Purpose: \(\quad\) Delivers the lower bound of the \(i\)-th index range of a. It is an error if \(i\) exceeds the number of dimensions.
function lbound (var a: Type1) : ResType;
Type1: Arbitrary array type
ResType: Index type of Type1
Purpose: Delivers the lower bound of the first index range of a.

\section*{length}
function length (s: string) : integer;
Purpose: Delivers the current length of the string expression \(s\).

\section*{ln}
see extra table on page 319
loc
function loc (var \(\mathrm{x}: ~ T y p e 1) ~: ~ i n t e g e r ; ~\)
Type1: Arbitrary type
Purpose: Delivers the implementation-dependent memory address of the variable \(x\).

\section*{\(\log 2\)}
see extra table on page 319

\section*{\(\log 10\)}
see extra table on page 319

\section*{mant}
function mant (x: real) : real;
Purpose: Delivers the normalized mantissa \(m\) (value range implementation-dependent) of \(x\). It is an error if the values of \(x\) and \(m\) do not lie in the implementationdependent range.

\section*{maxlength}
function maxlength (var \(\mathrm{s}:\) string) : integer;
Purpose: Delivers the maximum length of the string variable \(s\).

\section*{mid}
function mid (x: Type1) : ResType;
Type1: interval, cinterval, ivector, civector, imatrix, cimatrix
ResType: Type of the lower bound (inf) or of the upper bound (sup) of Type1.
Purpose: Delivers the midpoint of \(x\) (in each component for array types).
def./overl. in: I_ARI, CI_ARI, MVI_ARI, MVCI_ARI
null
function null (x: Type1) : rvector[lb(x)..ub(x)];
Type1: rvector, cvector, ivector, civector
Purpose: Delivers a zero vector with the index range of \(x\).
def./overl. in: MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
function null (x: Type2) : rmatrix[lb(x)..ub(x), lb(x,2)..ub(x,2)];
Type2: rmatrix, cmatrix, imatrix, cimatrix
Purpose: \(\quad\) Delivers a zero matrix with the index ranges of \(x\).
def./overl. in: MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
function null (x, y: Type2) : rmatrix[lb(x)..ub(x), lb(y,2)..ub(y,2)];
Type2: rmatrix, cmatrix, imatrix, cimatrix
Purpose: Delivers a zero matrix with the index ranges of the product matrix \(x \cdot y\).
def./overl. in: MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
function null (n : integer) : rmatrix[1..n,1..n];
Purpose: \(\quad\) Delivers a \(n \times n\) square zero matrix (\(n \geq 1\) assumed).
def./overl. in: MV_ARI
function null (n1, n2: integer) : rmatrix[1..n1,1..n2];
Purpose: \(\quad\) Delivers an \(n 1 \times n 2\) zero matrix (\(n 1, n 2 \geq 1\) assumed).
def./overl. in: MV_ARI
odd
function odd (i: integer) : boolean;
Purpose: Delivers true if \(i\) is an odd number, otherwise false.
ord
function ord (x: Type1) : integer;
Type1: integer, boolean, char, enumeration type, pointer type
Purpose: Delivers the ordinal number of \(x\) or the value of the pointer, if \(x\) is of pointer type.
pos
function pos (s1, s2: string) : integer;
Purpose: \(\quad\) Delivers the position of the first occurrence of \(s 1\) in \(s 2\).
pred
function pred (x: Type1) : Type1;
Type1: integer, real, boolean, char, enumeration type
Purpose: Delivers the predecessor of \(x\). It is an error if no predecessor exists.

\section*{round}
function round (x: Type1) : integer;
Type1: integer, real
Purpose: Rounding to the nearest integer number. The result satisfies
\[
\operatorname{round}(\mathrm{x})=\operatorname{sign}(\mathrm{x}) * \operatorname{trunc}(\operatorname{abs}(\mathrm{x})+0.5)
\]

It is an error if no such integer value exists.
rval
function rval (s: string) : real;
Purpose: Converts the first part of the string \(s\), which represents a numeric value according to the rules of real constants, into a real value. Leading blanks as well as trailing characters are neglected. It is an error if \(s\) does not satisfy the syntax of an real constant.
function rval (s: string; var rest: string) : real;
Purpose: Converts the first part of the string \(s\), which represents a numeric value according to the rules of real constants, into a real value. Leading blanks are neglected, whereas trailing characters are passed back in the string rest. It is an error if \(s\) does not satisfy the syntax of an real constant.
function rval (s: string; round: integer) : real;
Purpose: Converts the first part of the string \(s\), which represents a numeric value according to the rules of real constants, into a real value rounded according to round (\(<0\) downwardly, \(=0\) to the nearest, \(>0\) upwardly). Leading blanks as well as trailing characters are neglected. It is an error if \(s\) does not satisfy the syntax of an real constant.
function rval (s: string; round: integer; var rest: string) : real;
Purpose: Converts the first part of the string \(s\), which represents a numeric value according to the rules of real constants, into a real value rounded according to round (\(<0\) downwardly, \(=0\) to the nearest, \(>0\) upwardly). Leading blanks are neglected, whereas trailing characters are passed back in the string rest. It is an error if \(s\) does not satisfy the syntax of an real constant.

\section*{sign}
function sign (x: Type1) : integer;
Type1: integer, real, dotprecision
Purpose: \(\quad\) Delivers the sign of \(x(-1\) for \(x<0,1\) for \(x>0,0\) for \(x=0\)).
\(\sin\)
see extra table on page 319

\section*{sinh}
see extra table on page 319

\section*{sqr}
see extra table on page 319
sqrt
see extra table on page 319

\section*{substring}
function substring (s: string; pos, number: integer) : string;
Purpose: \(\quad\) Returns a substring of \(s\) containing number characters starting from position pos. If pos is larger than the current length of \(s\), an empty string is returned. If \(s\) is shorter than pos + number characters, a shorter string is returned. For pos \(<1\), pos is set to 1 .
succ
function succ (x: Type1) : Type1;
Type1: integer, real, boolean, char, enumeration type
Purpose: Delivers the successor of \(x\). It is an error if no successor exists.

\section*{tan}
see extra table on page 319

\section*{tanh}
see extra table on page 319

\section*{transp}
function transp (x: Type1) : Type1;
Type1: rmatrix, cmatrix, imatrix, cimatrix
Purpose: Delivers the transposed matrix of x.
def./overl. in: MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI

\section*{trunc}
function trunc (x: Type1) : integer;
Type1: integer, real
Purpose: Rounding to an integer number by truncation of the fractional portion of \(x\). It is an error if no such integer value exists.
ub
function ub (var a: Type1; i: integer) : ResType;
Type1: Arbitrary array type
ResType: Index type of Type1
Purpose: Short form of ubound. Delivers the upper bound of the \(i\)-th index range of \(a\). It is an error if \(i\) exceeds the number of dimensions.
function ub (var a: Type1) : ResType;
Type1: Arbitrary array type
ResType: Index type of Type1
Purpose: Short form of ubound. Delivers the upper bound of the first index range of a.

\section*{ubound}
function ubound (var a: Type1; i: integer) : ResType;
Type1: Arbitrary array Type
ResType: Index type of Type1
Purpose: \(\quad\) Delivers the upper bound of the \(i\)-th index range of a. It is an error if \(i\) exceeds the number of dimensions.
function ubound (var a: Type1) : ResType;
Type1: Arbitrary array type
ResType: Index type of Type1
Purpose: Delivers the upper bound of the first index range of a.

\section*{vnull}
function vnull (n: integer) : rvector[1..n];
Purpose: Delivers a zero vector with \(n\) components (\(n \geq 1\) assumed).
def./overl. in: MV_ARI

\section*{The Predefined Mathematical Functions}
\begin{tabular}{|r||l|l|}
\hline & \multicolumn{1}{|c|}{ Function } & Generic Name \\
\hline \hline 1 & Absolute Value & abs \\
\hline 2 & Arc Cosine & arccos \\
\hline 3 & Arc Cotangent & \(\operatorname{arccot}\) \\
\hline 4 & Inverse Hyperbolic Cosine & \(\operatorname{arcosh}\) \\
\hline 5 & Inverse Hyperbolic Cotangent & arcoth \\
\hline 6 & Arc Sine & \(\arcsin\) \\
\hline 7 & Arc Tangent & \(\arctan\) \\
\hline 8 & Inverse Hyperbolic Sine & \(\operatorname{arsinh}\) \\
\hline 9 & Inverse Hyperbolic Tangent & \(\operatorname{artanh}\) \\
\hline 10 & Cosine & \(\cos\) \\
\hline 11 & Cotangent & \(\cot\) \\
\hline 12 & Hyperbolic Cosine & \(\cosh\) \\
\hline 13 & Hyperbolic Cotangent & \(\operatorname{coth}\) \\
\hline 14 & Exponential Function & \(\exp\) \\
\hline 15 & Power Function (Base 2) & \(\exp 2\) \\
\hline 16 & Power Function (Base 10) & \(\exp 10\) \\
\hline 17 & Natural Logarithm (Base \(e\)) & \(\ln\) \\
\hline 18 & Logarithm (Base 2) & \(\log 2\) \\
\hline 19 & Logarithm (Base 10) & \(\log 10\) \\
\hline 20 & Sine & \(\sin\) \\
\hline 21 & Hyperbolic Sine & \(\sinh\) \\
\hline
\end{tabular}
\begin{tabular}{|l||l|c|}
\hline & \multicolumn{1}{|c|}{ Function } & Generic Name \\
\hline \hline 22 & Square & sqr \\
\hline 23 & Square Root & sqrt \\
\hline 24 & Tangent & \(\tan\) \\
\hline 25 & Hyperbolic Tangent & \(\tanh\) \\
\hline
\end{tabular}

The argument type for each of these functions may be any of the types integer, real, complex, interval, and cinterval, i. e. the functions are defined not only for the types integer and real. They are also provided for the types complex, interval, and cinterval in the arithmetic modules C_ARI, I_ARI, and CI_ARI.

We do not explain the interfaces and the formal declarations, because all of these functions are defined with only one formal parameter. Normally, the result type is the same as the type of the argument. For integer arguments, this only holds for the functions abs and sqr. All other functions return real values for integer arguments.

In addition to the standard functions listed in the table above, the function
\[
\arctan 2(x 1, x 2)
\]
is available for two arguments \(x 1, \mathrm{x} 2\) of type real or interval. The result of arctan2 (\(\mathrm{x} 1, \mathrm{x} 2\)) is
\[
\arctan (\mathrm{x} 1 / \mathrm{x} 2) .
\]

\section*{B. 6 Transfer Functions}

In this section, we give an alphabetical review of the transfer functions for type conversion between the arithmetic types. Beneath their declaration (interface) and a short explanation of their purpose, we list the name of the module, in which the functions are defined or overloaded.

\section*{compl}
function compl (x1: Type1; x2: Type2) : Type3;
Type1: real, interval, rvector, ivector, rmatrix, imatrix
Type2: real, interval, rvector, ivector, rmatrix, imatrix with the corresponding structure (scalar, vector, matrix) of Type1
Type3: Corresponding complex type of Type1 or Type2 (complex, cinterval, cvector, civector, cmatrix, cimatrix)
Purpose: \(\quad\) Composition of the arguments \(x 1\) and \(x 2\) (real and imaginary parts) into the corresponding complex type (componentwise for vector and matrix types).
def./overl. in: C_ARI, CI_ARI, MVC_ARI, MVCI_ARI
function compl (x: Type1) : Type2;
Type1: real, interval, rvector, ivector, rmatrix, imatrix
Type2: Corresponding complex type of Type1 (complex, cinterval, cvector, civector, cmatrix, cimatrix)
Purpose: Composition of the argument \(x\) (real part) and imaginary part 0 to the corresponding complex type (componentwise for vector and matrix types).
def./overl. in: C_ARI, CI_ARI, MVC_ARI, MVCI_ARI

\section*{im}
function im (c: Type1) : Type2;
Type1: complex, cinterval, cvector, civector, cmatrix, cimatrix
Type2: Corresponding real or interval type of Type1 (real, interval, rvector, ivector, rmatrix, imatrix)
Purpose: Delivers the imaginary part of the argument (componentwise for vector and matrix types).
def./overl. in: C_ARI, CI_ARI, MVC_ARI, MVCI_ARI

\section*{inf}
function inf (i: Type1) : Type2;
Type1: interval, cinterval, ivector, civector, imatrix, cimatrix
Type2: Corresponding real or complex type of Type1 (real, complex, rvector, cvector, rmatrix, cmatrix)
Purpose: Delivers the lower bound of the interval argument (componentwise for vector and matrix types).
def./overl. in: I_ARI, CI_ARI, MVI_ARI, MVCI_ARI

\section*{intval}
function intval (x1: Type1; x2: Type2) : Type3;
Type1: real, complex, rvector, cvector, rmatrix, cmatrix
Type2: real, complex, rvector, cvector, rmatrix, cmatrix with the structure (scalar, vector, matrix) of Type1.
Type3: Corresponding interval type of Type1 or Type2 (interval, cinterval, ivector, civector, imatrix, cimatrix)
Purpose: Composition of the arguments x1 and x2 (lower and upper bound) to the corresponding interval type (componentwise for vector and matrix types). It is an error if \(\mathrm{x} 1>\mathrm{x} 2\).
def./overl. in: I_ARI, CI_ARI, MVI_ARI, MVCI_ARI
function intval (x: Type1) : Type2;
Type1: real, complex, rvector, cvector, rmatrix, cmatrix
Type2: Corresponding interval type of Type1 (interval, cinterval, ivector, civector, imatrix, cimatrix)
Purpose: Converting of the argument \(x\) into an interval with lower and upper bound equal to \(x\) (componentwise for vector and matrix types).
def./overl. in: I_ARI, CI_ARI, MVI_ARI, MVCI_ARI
re
function re (c: Type1) : Type2;
Type1: complex, cinterval, cvector, civector, cmatrix, cimatrix
Type2: Corresponding real or interval type of Type1 (real, interval, rvector, ivector, rmatrix, imatrix)
Purpose: Delivers the real part of the argument (componentwise for vector and matrix types).
def./overl. in: C_ARI, CI_ARI, MVC_ARI, MVCI_ARI
sup
function sup (i: Type1) : Type2;
Type1: interval, cinterval, ivector, civector, imatrix, cimatrix
Type2: Corresponding real or complex type of Type1 (real, complex, rvector, cvector, rmatrix, cmatrix)
Purpose: Delivers the upper bound of the interval argument (componentwise for vector and matrix types).
def./overl. in: I_ARI, CI_ARI, MVI_ARI, MVCI_ARI

\section*{B. 7 Predefined Procedures}

In this section, we give an alphabetical review of the predefined procedures (including the input/output procedures) with their declaration part (interface) and a short explanation of their purpose. For the functions which are overloaded or newly defined in the arithmetic modules, we list the name of the defining module.
```

dispose
procedure dispose (var p: Type1);
Type1: Arbitrary pointer type
Purpose: Release of the storage space of an element referenced by
the pointer p. It is an error if p=nil. The procedure
dispose may not be used in conjunction with release.
procedure dispose (var p: Type1; c1,c2,...,cn: Type2);
Type1: Arbitary pointer type
Type2: integer, boolean, char, enumeration type
Purpose: Release of the storage space of an element referenced by
the pointer p. The constants c1, .., cn enable the access
of special variants (for variant records). It is an error
if p=nil. The procedure dispose may not be used in
conjunction with release.

```
 get
 procedure get (var f: Type1);
 Type1: text, file of ...
 Purpose: The next component of the actual component of the
 file variable \(f\) becomes the new actual component. The
 value of the actual component is assigned to the buffer
 variable \(f \uparrow\). It is an error if \(f\) is undefined or if \(f\) is not
 in reading mode.
 mark
 procedure mark (var p: Type1);
 Type1: Arbitrary pointer type
 Purpose: Marks the heap to enable a release later.
 new
 procedure new (var p: Type1);
 Type1: Arbitrary pointer type
 Purpose: \(\quad\) Creation of a new element referenced by the pointer \(p\).
procedure new (var p: Type1; c1,c2,...,cn: Type2);
Type1: Arbitrary pointer type
Type2: integer, boolean, char, enumeration type
Purpose: Creation of a new element, referenced by the pointer \(p\). The constants \(c 1, \ldots, c n\) enable the access to special varaints (for variant records).
page
procedure page (var f: text);
Purpose: Beginning of a new page on the output file \(f\). It is an error if \(f\) is undefined or if \(f\) is not in writing mode.
procedure page;
Purpose: \(\quad\) Corresponds to page (output).
put
procedure put (var f: Type1);
Type1: text, file of ...
Purpose: \(\quad\) The value of the buffer variable \(f \uparrow\) is assigned to the actual component of \(f\). The next component of the actual component of the file variable \(f\) becomes actual component. It is an error if \(f\) is undefined or if \(f\) is not in writing mode.
read
procedure read (var f: Type1; var x: Type2);
Type1: text, file of ...
Type2: integer, char, string, real, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix
Purpose: \(\quad\) Input of one or several variables of type Type2 from file \(f\) (depending on Type2, format specifications are permitted seperated by colons). It is an error if \(f\) is undefined or if \(f\) is not in reading mode.
def./overl. in: C_ARI, I_ARI, CI_ARI, MV_ARI, MVC_ARI, MVI_ARI and MVCI_ARI
procedure read (var x: Type2);
Type2: integer, char, string, real, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix
Purpose: Corresponds to read(input, \(x\)).
readln
procedure readln (var f: text);
Purpose: Terminate an input line by reading the end-of-line character. It is an error if \(f\) is undefined or if \(f\) is not in reading mode.
procedure readln;
Purpose: Corresponds to readln(input).
procedure readln (var f: text; var \(x\) : Type2);
Type2: integer, char, string, real, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix
Purpose: \(\quad\) Corresponds to \(\operatorname{read}(f, x)\) followed by readln \((f)\).
procedure readln (var x: Type2);
Type2: integer, char, string, real, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix
Purpose: Corresponds to read \((x)\) followed by readln.

\section*{release}
procedure release (var p: Type1);
Type1: Arbitrary pointer type
Purpose: Refreshes the old state of heap marked by mark. All variables created since the call of mark are released. The pointer \(p\) must have the same value as the pointer used for the most recent call of the procedure mark. The procedure mark may not be used in conjunction with dispose.
reset
procedure reset (var f: Type1);
Type1: text, file of ...
Purpose: \(\quad\) The file \(f\) is initialized for reading (input).
procedure reset (var f: Type1; s: string);
Type1: text, file of ...
Purpose: \(\quad\) The file \(f\) is initialized for reading (input). The physical file with external name \(s\) is associated with the internal file \(f\).

\section*{rewrite}
procedure rewrite (var f: Type1);
Type1: text, file of ...
Purpose: \(\quad\) The file \(f\) is initialized for writing (output).
procedure rewrite (var f: Type1; s: string);
Type1: text, file of ...
Purpose: \(\quad\) The file \(f\) is initialized for writing (output). The physical file with external name \(s\) is associated with the internal file \(f\).

\section*{setlength}
procedure setlength (var s: Type1; i: Type2);
Type1: \(\quad\) string \([m]\) or string
Type2: \(\quad 0 . . m\) or \(0 . . M\)
Purpose: \(\quad\) The actual length of the string variable \(s\) is set to \(i\) with \(0 \leq i \leq m\) or \(0 \leq i \leq M\), respectively, where \(M\) is the implementation-defined maximum length of strings. It is an error if \(i\) exceeds the maximum string length.
write
procedure write (var f: Type1; x: Type2);
Type1: text, file of ...
Type2: integer, boolean, char, string, real, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix
Purpose: Output of one or several expressions of type Type2 into the file \(f\) (depending on Type2, format specification are permitted seperated by colons). It is an error if \(f\) is undefined or if \(f\) is not in writing mode.
def./overl. in: C_ARI, I_ARI, CI_ARI, MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
procedure write (x: Type2);
Type2: integer, boolean, char, string, real, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix
Purpose: Corresponds to write (output, x).

\section*{writeln}
procedure writeln (var f: text);
Purpose: \(\quad\) Termination of an output line by writing the end-of-line character. It is an error if \(f\) is undefined or if \(f\) is not in writing mode.
procedure writeln;
Purpose: Corresponds to writeln (output).
procedure writeln (var f: text; x: Type2);
Type2: integer, boolean, char, string, real, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix
Purpose: Corresponds to write(f, \(x\)) followed by writeln(f).
procedure writeln (x: Type2);
Type2: integer, boolean, char, string, real, complex, interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, cimatrix
Purpose: Corresponds to write(x) followed by writeln.

\section*{B. 8 \#-Expressions}

\section*{B.8.1 Real and Complex \#-Expressions}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Syntax:} & \#-Symbol (Exact Expression) \\
\hline \#-Symbol & Result Type & Summands Permitted in the Exact Expression \\
\hline \# & dotprecision & \begin{tabular}{l}
- variables, constants, and special function calls of type integer, real, or dotprecision \\
- products of type integer or real \\
- scalar products of type real
\end{tabular} \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& \# * \\
& \#< \\
& \#>
\end{aligned}
\]} & real & \begin{tabular}{l}
- variables, constants, and special function calls of type integer, real, or dotprecision \\
- products of type integer or real \\
- scalar products of type real
\end{tabular} \\
\hline & complex & \begin{tabular}{l}
- variables, constants, and special function calls of type integer, real, complex, or dotprecision \\
- products of type integer, real, or complex \\
- scalar products of type real or complex
\end{tabular} \\
\hline & rvector & \begin{tabular}{l}
- variables and special function calls of type rvector \\
- products of type rvector (e.g. rmatrix \(*\) rvector, real * rvector etc.)
\end{tabular} \\
\hline & cvector & \begin{tabular}{l}
- variables and special function calls of type rvector or cvector \\
- products of type rvector or cvector (e.g. cmatrix * rvector, real \(*\) cvector etc.)
\end{tabular} \\
\hline & rmatrix & \begin{tabular}{l}
- variables and special function calls of type rmatrix \\
- products of type rmatrix
\end{tabular} \\
\hline & cmatrix & \begin{tabular}{l}
- variables and special function calls of type rmatrix or cmatrix \\
- products of type rmatrix or cmatrix
\end{tabular} \\
\hline
\end{tabular}
"Special function calls" are the calls of the functions compl, re, im, conj, int val, inf, sup, id, transp, herm, and the type converting functions rvector, cvector, ivector, and civector.

\section*{B.8.2 Real and Complex Interval \#-Expressions}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Syntax: \#\# (Exact Expression)} \\
\hline \#-Symbol & Result Type & Summands Permitted in the Exact Expression \\
\hline \multirow{6}{*}{\#\#} & interval & \begin{tabular}{l}
- variables, constants, and special function calls of type integer, real, interval, or dotprecision \\
- products of type integer, real, or interval \\
- scalar products of type real or interval
\end{tabular} \\
\hline & cinterval & \begin{tabular}{l}
- variables, constants, and special function calls of type integer, real, complex, interval, cinterval, or dotprecision \\
- products of type integer, real, complex, interval, or cinterval \\
- scalar products of type real, complex, interval, or cinterval
\end{tabular} \\
\hline & ivector & \begin{tabular}{l}
- variables and special function calls of type rvector or ivector \\
- products of type rvector or ivector
\end{tabular} \\
\hline & civector & \begin{tabular}{l}
- variables and special function calls of type rvector, cvector, ivector, or civector \\
- products of type rvector, cvector, ivector, or civector
\end{tabular} \\
\hline & imatrix & \begin{tabular}{l}
- variables and special function calls of type rmatrix or imatrix \\
- products of type rmatrix or imatrix
\end{tabular} \\
\hline & cimatrix & \begin{tabular}{l}
- variables and special function calls of type rmatrix, cmatrix, imatrix, or cimatrix \\
- products of type rmatrix, cmatrix, imatrix, or cimatrix
\end{tabular} \\
\hline
\end{tabular}
"Special function calls" are the calls of the functions compl, re, im, conj, intval, inf, sup, id, transp, herm, and the type converting functions rvector, cvector, ivector, and civector.

\section*{Bibliography}
[1] Alefeld, G. and Herzberger, J.: Einführung in die Intervallrechnung. Bibliographisches Institut, Mannheim, 1974.
[2] Alefeld, G. and Herzberger, J.: Introduction to Interval Computations. Academic Press, New York, 1983.
[3] American National Standards Institute / Institute of Electrical and Electronic Engineers: A Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985, New York, 1985.
[4] Bauch, H., Jahn, K.-U., Oelschlägel, D., Süsse, H., and Wiebigke, V.: Intervallmathematik. Teubner, Leipzig, 1987.
[5] Bleher, J. H., Rump, S. M., Kulisch, U., Metzger, M., Ullrich, Ch., and Walter, W.: FORTRAN-SC: A Study of a FORTRAN Extension for Engineering/Scientific Computation with Access to ACRITH. Computing 39, pp 93-110, 1987.
[6] Bohlender, G., Rall, L., Ullrich, Ch., and Wolff von Gudenberg, J.: PASCALSC: A Computer Language for Scientific Computation. Academic Press, New York, 1987.
[7] Bohlender, G., Rall, L., Ullrich, Ch., and Wolff von Gudenberg, J.: PASCALSC - Wirkungsvoll programmieren, kontrolliert rechnen. Bibliographisches Institut, Mannheim, 1986.
[8] Böhm, H.: Auswertung arithmetischer Ausdrücke mit maximaler Genauigkeit. In: Kulisch, U. and Ullrich, Ch. (Eds.): Wissenschaftliches Rechnen und Programmiersprachen. Berichte des German Chapter of the ACM, Band 10, pp 175184, Teubner, Stuttgart, 1982.
[9] British Standards Institution: Specification for Computer Programming Language PASCAL. BS 6192:1982, UDC 681.3.06, PASCAL:519.682, London, 1982.
[10] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). General Information Manual, GC 33-6163-02, 3rd Edition, 1986.
[11] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). Program Description and User's Guide, SC 33-6164-02, 3rd Edition, 1986.
[12] IBM High Accuracy Arithmetic - Extended Scientific Computation (ACRITHXSC), Reference. SC 33-6462-00, IBM Corp., 1990.
[13] Jensen, K. and Wirth, N.: PASCAL User Manual and Report. ISO PASCAL Standard, 3rd ed., Springer, Berlin, 1985.
[14] Kaucher, E., Klatte, R., and Ullrich, Ch.: Programmiersprachen im Griff Band 2: PASCAL. Bibliographisches Institut, Mannheim, 1981.
[15] Kaucher, E., Klatte, R., Ullrich, Ch., and Wolff von Gudenberg, J.: Programmiersprachen im Griff - Band 4: ADA. Bibliographisches Institut, Mannheim, 1983.
[16] Kaucher, E., Kulisch, U., and Ullrich, Ch. (Eds.): Computer Arithmetic Scientific Computation and Programming Languages. Teubner, Stuttgart, 1987.
[17] Kaucher, E. and Miranker, W. L.: Self-Validating Numerics for Function Space Problems. Academic Press, New York, 1984.
[18] Kaucher, E. and Rump, S. M.: E-Methods for Fixed Point Equation \(f(x)=x\). Computing 28, pp 31-42, 1982.
[19] Kießling, I., Lowes, M., and Paulik, A.: Genaue Rechnerarithmetik - Intervallrechnung und Programmieren mit PASCAL-SC. Teubner, Stuttgart, 1988.
[20] Kirchner, R. and Kulisch, U.: Accurate Arithmetic for Vector Processors. Journal of Parallel and Distributed Computing 5, pp 250-270, 1988.
[21] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch.: PASCAL-XSC - Sprachbeschreibung mit Beispielen. Springer-Verlag, Heidelberg, 1991.
[22] Klatte, R. and Ullrich, Ch.: Programmiersprachen im Griff - Band 9: MODULA-2. Bibliographisches Institut, Mannheim, 1988.
[23] Knuth, D. E.: The Art of Computer Programming. Vol. 2: Seminumerical Algorithms. Addison Wesley, Reading, Massachusetts., 1981.
[24] Kulisch, U.: Grundlagen des Numerischen Rechnens - Mathematische Begründung der Rechnerarithmetik. Reihe Informatik, Band 19, Bibliographisches Institut, Mannheim, 1976.
[25] Kulisch, U. (Ed.): PASCAL-SC: A PASCAL Extension for Scientific Computation, Information Manual and Floppy Disks, Version ATARI ST. Teubner, Stuttgart, 1987.
[26] Kulisch, U. (Ed.): PASCAL-SC: A PASCAL Extension for Scientific Computation, Information Manual and Floppy Disks, Version IBM PC/AT (DOS). Teubner, Stuttgart, 1987.
[27] Kulisch, U. (Ed.): Wissenschaftliches Rechnen mit Ergebnisverifikation - Eine Einführung. Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 1989.
[28] Kulisch, U. and Miranker, W. L.: Computer Arithmetic in Theory and Practice. Academic Press, New York, 1981.
[29] Kulisch, U. and Miranker, W. L.: The Arithmetic of the Digital Computer: A New Approach. SIAM Review, Vol. 28, No. 1, pp 1-140, 1986.
[30] Kulisch, U. and Miranker, W. L. (Eds.): A New Approach to Scientific Computation. Academic Press, New York, 1983.
[31] Kulisch, U. and Stetter, H. J. (Eds.): Scientific Computation with Automatic Result Verification. Computing Suppl. 6, Springer-Verlag, Vienna, 1988.
[32] Kulisch, U. and Ullrich, Ch. (Eds.): Wissenschaftliches Rechnen und Programmiersprachen. Berichte des German Chapter of the ACM, Band 10, Teubner, Stuttgart, 1982.
[33] Mayer, G.: Grundbegriffe der Intervallrechnung. In: Kulisch, U. (Ed.): Wissenschaftliches Rechnen mit Ergebnisverifikation - Eine Einführung, pp 101118, Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 1989.
[34] Moore, R. E.: Interval Analysis. Prentice Hall, Engelwood Cliffs, New Jersey, 1966.
[35] Moore, R. E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia, Pensylvania, 1979.
[36] Moore, R. E. (Ed.): Reliability in Computing: The Role of Interval Methods in Scientific Computations. Academic Press, New York, 1988.
[37] Neaga, M.: PASCAL-SC - Eine PASCAL-Erweiterung für wissenschaftliches Rechnen. In: Kulisch, U. (Ed.): Wissenschaftliches Rechnen mit Ergebnisverifikation - Eine Einführung, pp 69-84. Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 1989.
[38] Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, 1990.
[39] Nickel, K. (Ed.): Interval Mathematics. Proceedings of the International Symposium, Karlsruhe 1975, Springer-Verlag, Vienna, 1975.
[40] Nickel, K. (Ed.): Interval Mathematics 1980. Proceedings of the International Symposium, Freiburg 1980, Academic Press, New York, 1980.
[41] Nickel, K. (Ed.): Interval Mathematics 1985. Proceedings of the International Symposium, Freiburg 1985, Springer-Verlag, Vienna, 1986.
[42] Rall, L. B.: Automatic Differentiation, Techniques and Applications. Lecture Notes in Computer Science, No. 120, Springer, Berlin, 1981.
[43] Ratschek, H. and Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood Limited, Chichester, 1984.
[44] Rump, S. M.: Lösung linearer und nichtlinearer Gleichungssysteme mit maximaler Genauigkeit. In: Kulisch, U. and Ullrich, Ch. (Eds.): Wissenschaftliches Rechnen und Programmiersprachen. Berichte des German Chapter of the ACM, Band 10, pp 147-174, Teubner, Stuttgart, 1982.
[45] Rump, S. M.: Wie zuverlässig sind die Ergebnisse unserer Rechenanlagen. In: Jahrbuch Überblicke Mathematik, Bibliographisches Institut, Mannheim, 1983.
[46] Rump, S. M.: Solving Algebraic Problems with High Accuracy. In: Kulisch, U. and Miranker, W. L. (Eds.): A New Approach to Scientific Computation, pp 51-120. Academic Press, New York, 1983.
[47] Stoer, J. and Bulirsch, R.: Introduction to Numerical Analysis. Springer-Verlag, New York, 1980.
[48] Thieler, P.: Technical Calculations by Means of Interval Mathematics. In: Nickel, K. (Ed.): Interval Mathematics 1985, Lecture Notes in Computer Science, pp 197-208, Springer Verlag, Berlin, 1986.
[49] van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Kester, C. H. A.: Report on the Algorithmic Language ALGOL-68. Numerische Mathematik 14, pp 79218, 1969.
[50] Ullrich, Ch. (Ed.): Computer Arithmetic and Self-Validating Numerical Methods. Academic Press, San Diego, 1990.
[51] Ullrich, Ch. (Ed.): Contributions to Computer Arithmetic and Self-Validating Numerical Methods. J. C. Baltzer AG, Scientific Publishing Co., IMACS, Basel, 1990.
[52] Wilkinson, J. H.: Rounding Errors in Algebraic Processes. Prentice Hall, Englewood Cliffs, New Jersey, 1963.
[53] Zurmühl, R., Falk, S.: Matrizen und ihre Anwendungen. Teil 2: Numerische Methoden. Springer-Verlag, Heidelberg, 1984.

\section*{Index}

Abbreviations
- for semantic attributes 269
abs (function) \(46,48,133,138,144,319\)
Accuracy
- , maximum \(4,6,50,125\)
- of the predefined functions 130

Accurate expression 14,54
- , complex 61, 69, 328
- , complex interval 61, 70
-, extended 60
- for arithmetic types 61
- for matrices 64
- for vectors 63
- , interval 61, 70, 329
- , operands in 66
- , overview of the general 69, 328
- , real 54, 61, 69, 328

Accurate symbol 54
Actual
- length of strings 114
- parameter 76, 86

Addition, errorless 55
Advanced computer arithmetic 4
Alternating current measuring bridge (exercise) 221
and (operator) 45
Angle component of complex number 133
Anonymous type 21, 27, 42
Antisymmetry 4, 6
Arbitrary result type 9,90
\(\arccos\) (function) \(50,133,138,143,319\)
\(\operatorname{arccot}\) (function) \(\quad 50,133,138,143,319\)
arcosh (function) \(50,133,138,144,319\)
arcoth (function) \(\quad 50,133,138,144,319\)
\(\arcsin\) (function) \(\quad 50,133,138,143,319\)
\(\arctan\) (function) \(48,133,138,143,319\)
\(\arctan 2\) (function) \(50,133,138,143,319\)
\(\arg\) (function) 133, 144, 307
Arithmetic 14
-, complex 131
- , complex interval 140
-, complex interval matrix/vector 162
- , complex matrix/vector 151
-, differentiation 233
- , interval 135
- , interval matrix/vector 156
- modules 125
- operators \(126,128,303\)
- , rational (exercise) 258
- , real matrix/vector 146
- standard types 36

Array 25
- , dynamic \(12,28,87,120\)
- expression 57
- expression, dynamic 58
- type 25
array (reserved word) 25
arsinh (function) \(50,133,138,144,319\)
artanh (function) \(50,133,138,144,319\)
Assignment compatibility \(40,41,86,101\), 105
Assignment operator, overloading of the 105
Assignment statement 71, 105
- for strings 114

Assignment to the function result 90
Base 48
Base type 33
Basic symbols 17
begin (reserved word) 78
Beginning condition 79
Bibliography 331
Binomial coefficient 192
blow (function) 138, 144, 160, 169, 308
boolean (type) 22
Boolean expression 51
Boothroyd/Dekker matrices (exercise) 192
Buffer variable 34
Calculator for polynomials (exercise) 248
Call by reference \(41,77,85,86,87,101\) - , modified \(77,87,90,96,98\)

Call by value \(41,77,85,86,87,101,105\)
case-statement 78
- with else 79

Case constants 79
char (type) 22
Character expression 52
chr (function) 52, 308
cimatrix (type) 38, 162
cinterval (type) 37,140
Circuit (exercise) 217
civector (type) 38,162
cmatrix (type) 38,151
comp (function) 50, 308
Comparisons of dotprecision 52
Compatibility 40
- assignment 40
- of array types 41
- of strings 43
- of types 40
- , overloaded 41
compl (function) 132, 142, 153, 166, 167, 320
complex (type) 36,131
Complex division (exercise) 215
Complex functions (exercise) 194
Complex interval 37
Complex number 36
- , conjugation of a 133
- , imaginary part of a 36
-, polar representation of a 212
- , real part of a 36

Component
- type 25,34
- variable 26

Compound statement 78
Computer arithmetic 4
Concealment
- of identifiers 101
- of operators 95

Conditional statements 78
Conformant array scheme 85
conj (function) 133, 144, 155, 169, 308
Conjugation of a complex number 133
const (reserved word) 20
Constants
\[
- \text {, case } \quad 79
\]
- , conversion of 22,24
-, definition of 20
- false 22
- , hexadecimal 23
-, literal 20
-, logical 22
- maxint 21
- , named 20
- nil 38, 60
- , rounded 24,49
- true 22

Control expression 74, 75
Conversion of constants 22,24
\(\cos\) (function) \(48,133,138,143,319\)
\(\cosh\) (function) \(\quad 50,133,138,144,319\)
\(\cot\) (function) \(\quad 50,133,138,143,319\)
coth (function) \(50,133,138,144,319\)
Cross product 197
cvector (type) 38,151
Declaration
- , external- 98
- , forward- 98
- , global- 107

Declaration part
- in PASCAL-XSC 84
- in Standard PASCAL 83

Defect 149, 160
diam (function) 138, 144, 160, 169, 309
Diameter of an interval 137
Differentiation
- arithmetic 233
- automatic 233

Disjointedness 136
dispose (procedure) 39, 323
div (operator) 46
do (reserved word) 79, 81
dotprecision (type) 14, 24, 60
downto (reserved word) 55, 81
Dyadic operators 45,46
dynamic (reserved word) 29
Dynamic array expression 58
Dynamic arrays \(12,28,87,120\)
- declaration 29
- , how to use 120
- type definition 29

Dynamic strings 30
Electric circuit (exercise) 217
else (reserved word) 78
Empty loop 81
Empty statement 76
Enclosure 179
end (reserved word) 31, 78
End condition 80
End-of-line character \(35,72,115,117\)
Enumeration
\[
\text { - expression } 53
\]
- type 23
eof (function) 34, 51, 309
eoln (function) 35, 51, 309
Epsilon inflation 137
Equivalence, logical 51
Evaluation of an expression 44
Exact
- expression 54,61
- matrix product 65
- matrix/vector product 63
- representable 184
- scalar product 61

Execution of programs 83
Exercises with solutions 183
- Alternating current measuring bridge 221
- Boothroyd/Dekker matrices 192
- Calculator for polynomials 248
- Circuit 217
- Complex division 215
- Complex functions 194
- Differentiation arithmetic 233
- Electric circuit 217
- Evaluation of Polynomials 263
- Exponential series 186
- Intersection of lines 200
- Interval evaluation of a polynomial 227
- Interval matrix calculations 230
- Interval Newton method 253
- Inventory lists 209
- Iterative method 241
- Lens 224
- Measurement of time 239
- Measuring bridge 221
- Newton's method 237
- Optical lens 224
- Polar representation 212
- Rail route map 206
- Rational arithmetic 258
- Rounding errors 188
- Runge-Kutta method 255
- Scalar product 190
- Surface area of a parallelepiped 197
- Symmetry 203
- Test of representability 184
- Trace 245
- Transposed matrix 203
\(\exp\) (function) \(48,133,137,143,319\)
expo (function) 47, 50, 310
Exponent 48
Exponential
- representation of a complex number 133
- series (exercise) 186

Export of objects 107, 108
Expression 44
- , accurate \(14,54,60,328\)
- , array 57
- , boolean 51
- , character 52
- concept 44, 125
- , dynamic array 58
- , enumeration 53
- evaluation 44
-, exact 54, 61
- for arithmetic types 57
- for structured types 57
- , integer 46
- , logical 51
- , pointer 57, 60
- , real 47
-, record 59
- , set 59
-, standard 44
- , string 58,111
\(\exp 10\) (function) \(\quad 50,133,137,143,319\)
\(\exp 2\) (function) \(50,133,137,143,319\)
Extended accurate expressions 60
external-declaration 98
false (logical constant) 22
Field
- list 31
- width 74
file (reserved word) 34
File operations 34
- get 34
- put 34
- reset 34
- rewrite 34

Files 34,72
- , opening of 72

Final value 81
Floating-point
- number, normalized 48
- operations 47, 48
- system 48
for-statement 80
Formal
- parameter 76, 86, 87
- parameter list 85

Format
- parameter 75,102
- specification 75,102
- specifications 74
forward-declaration 98
function (reserved word) 89
Function call 89
Function result 90
-, dynamic type as 90
Functions \(85,89,307\)
- abs \(46,48,133,138,144,319\)
\(-\arccos 50,133,138,143,319\)
- arccot 50, 133, 138, 143, 319

Functions (continued)
- arcosh \(50,133,138,144,319\)
- arcoth 50, 133, 138, 144, 319
\(-\arcsin 50,133,138,143,319\)
\(-\arctan 48,133,138,143,319\)
- arctan2 50, 133, 138, 143, 319
\(-\arg 133,144,307\)
\(-\operatorname{arsinh} 50,133,138,144,319\)
- artanh \(50,133,138,144,319\)
- as formal parameter 91
- blow \(138,144,160,169,308\)
- , call of 89
- cat 133
- chr 52, 308
- comp 50, 308
- compl 132, 142, 153, 166, 167, 320
- conj 133, 144, 155, 169, 308
- cos 48, 133, 138, 143, 319
- cosh 50, 133, 138, 144, 319
- cot \(50,138,143,319\)
- coth 50, 133, 138, 144, 319
- diam 138, 144, 160, 169, 309
- eof 34, 51, 309
- eoln 35, 51, 309
- exp 48, 133, 137, 143, 319
- expo 47, 50, 310
\(-\exp 10 \quad 50,133,137,143,319\)
\(-\exp 250,133,137,143,319\)
- herm 155, 169, 310
- id 149, 154, 160, 169, 310
- im 132, 142, 153, 166, 167, 320
- image 111, 311
- , index of 307
- inf 137, 142, 158, 159, 166, 167, 321
- intval 137, 142, 158, 159, 166, 167, 321
- ival 47, 112, 311
- lb 47, 52, 53, 312
- lbound \(28,47,52,53,312\)
- length 112, 312
- ln 48, 133, 137, 143, 319
- loc 47, 312
\(-\log 10 \quad 50,133,137,143,319\)
- \(\log 250,133,137,143,319\)
- mant 50, 313
- maxlength 112, 313
- mid \(138,144,160,169,313\)
- null 149, 154, 160, 169, 313
- odd 51, 314
- ord 46, 314
- , overloading of 100
- pos 112, 314
- pred 46, 49, 51, 52, 53, 314
- , predefined 91, 93
- re \(132,142,153,166,167,321\)
- , recursive 90
- round 46, 315
- rval 50, 112, 315
- sign 47, 52, 316
\(-\sin 48,133,138,143,319\)
\(-\sinh \quad 50,133,138,144,319\)
- sqr \(46,48,133,137,143,319\)
- sqrt \(48,133,137,143,319\)
- substring 112, 316
- succ 46, 49, 51, 52, 53, 316
\(-\sup 137,142,158,159,166,167,322\)
\(-\tan 50,133,138,143,319\)
- tanh \(50,133,138,144,319\)
- , transfer \(132,137,142,153,158\), 159, 166, 167, 320
- transp 149, 155, 160, 169, 317
- trunc 46, 317
- , type converting 58
- , type of 89
- ub 47, 52, 53, 317
- ubound 28, 47, 52, 53, 317
- vnull 149, 318
- with arbitrary result type 90
\(\mathbf{g}_{\text {et }}\) (procedure) 34, 323
Global
- objects 86
- quantities 107
global-declaration 107
goto-statement 77
herm (function) 155, 169, 310
Hermitian matrix 155, 169
Hexadecimal constant 23
Hierarchy
- , module 109
- of the arithmetic modules 171
- of types 128

Hull, interval 136
\(\mathbf{i} d\) (function) \(\quad 149,154,160,169,310\)
Identifiers 18
- as operators 95
- , concealment of 101
- , predefined \(18,19,300\)
- , result 94,105

Identity matrix \(149,154,160,169\)
if-statement 78
im (function) 132, 142, 153, 166, 167, 320
image (function) 111, 311
Imaginary part 36
imatrix (type) 38,156
Implication, logical 51
Import of objects 108
in (operator) \(33,45,46,135,140\)
Inclusion 14, 179
Index 297
- of accurate expressions 328
- of operators 302
- of predefined functions 307
- of predefined identifiers 300
- of predefined procedures 323
- of reserved words 299
- of syntax diagrams 297
- of transfer functions 320

Index bounds 28
- , access to 28

Index type 25
inf (function) \(137,142,158,159,166,167\), 321
Initial value 81
Input
- of a complex interval 144
- of a complex interval matrix 170
- of a complex interval vector 170
- of a complex matrix 155
- of a complex number 134
- of a complex vector 155
- of a real matrix 150
- of a real vector 150
- of an interval 139
- of an interval matrix 161
- of an interval vector 161
- of characters 115
- of strings 116
input (file variable) 72
Input statements 72, 88
- read \(72,134,139,144,150,155\), 161, 170
- readln 73
- reset 72
integer (type) 21
Integer expression 46
Intersection 136
Intersection of lines (exercise) 200
Interval 37
-, complex 37
- diameter 137
- hull 136
- matrix calculations (exercise) 230
- midpoint 137, 227
interval (type) 37, 135
Interval evaluation of a polynomial (exercise) 227
Interval Newton method 253
intval (function) 137, 142, 158, 159, 166, 167, 321
Inventory lists (exercise) 209
is-contained-in relation 135,140
is-contained-in-the-interior relation 135, 140
Iterative method
- exercise 241
- with automatic result verification 172
ival (function) 47, 112, 311
ivector (type) 38, 156
Label 77
label (reserved word) 77
Language elements 15
\(l b\) (function) 47, 52, 53, 312
lbound (function) \(28,47,52,53,312\)
length (function) 112, 312
Length of string 114
Lens (exercise) 224
Lists 15
Literal constants 20
\(\ln\) (function) 48, 133, 137, 143, 319
loc (function) 47, 312
Local objects 86
Logical
- equivalence 51
- expression 51
- implication 51
\(\log 10\) (function) \(\quad 50,133,137,143,319\)
\(\log 2\) (function) \(\quad 50,133,137,143,319\)
Loop, empty 81
Main program 83
mant (function) 50, 313
Mantissa 48
mark (procedure) 40, 323
Mathematical exact operation 55, 60
Matrix product, exact 65
Matrix/vector product, exact 63
Maximum accuracy 4, 6, 50, 125
maxint (constant) 21
maxlength (function) 112, 313
Measurement of time (exercise) 239
Measuring bridge (exercise) 221
mid (function) 138, 144, 160, 169, 313
Midpoint of an interval 137, 227
\(\bmod\) (operator) 46
Modified call by reference \(77,87,90,96\), 98
Module 83, 107
-, arithmetic 125
- C_ARI 131
- CI_ARI 140
- concept 11
- declaration 107
- declaration part 110
- definition part 110
- hierarchy 109
- I_ARI 135
- implementation 109
- library for numerical problems 179
- MV_ARI 146
- MVC_ARI 151
- MVCI_ARI 162
- MVI_ARI 156
- processing 84
- statement part 110
module (reserved word) 107
Monadic operators 45
Monotonicity 4, 6
Named constant 20
new (procedure) 38, 323
Newton's method 237
- , interval 253
- with automatic differentiation (exercise) 237
nil (reserved word) 38
Normalized floating-point number 48
not (operator) 45
null (function) 149, 154, 160, 169, 313
Null matrix \(149,154,160,169\)
Null vector \(149,154,160,169\)
Number, complex 36
Numeric library 180
Objects
- , export of 107, 108
-, global 86
- , import of 108
-, local 86
odd (function) 51, 314
of (reserved word) 25
Opening of files 72
Operations, mathematical exact 55,60
Operator
- body 94
- call 96
- concept 9
operator (reserved word) 94, 105
Operators 93, 302
- and 45
- , arithmetic \(45,46,126,128,131\), \(135,140,146,151,156,162,303\)
- , assignment \(105,130,132,137\), \(143,148,154,157,159,168,305\)
-, basic 302
- , concealment of 95
- , declaration of 94
-, definition of the arithmetic 128
- , definition of the relational 129
- div 46
- , dyadic \(45,46,94\)
- in \(33,135,140\)
- in accurate expression 66
- , index of 302
-, lattice \(136,141,157,163\)
- , logical 45
- mod 46
- , monadic 45, 94
- not 45
- of C_ARI 131
- of CI_ARI 140
- of I_ARI 135
- of MV_ARI 146
- of MVC_ARI 151
- of MVCI_ARI 162
- of MVI_ARI 156
- or 45
- , overloading of \(95,100,105\)
- , overloading of the assignment 130
- , predefined 97
- , recursive 96
- , relational \(45,46,127,129,131\), \(135,140,147,152,163,304\)
- , set 45
- with no result 105

Optical lens (exercise) 224
or (operator) 45
ord (function) 46, 314
Output
- of a complex interval 144
- of a complex interval matrix 170
- of a complex interval vector 170
- of a complex matrix 155
- of a complex number 134
- of a complex vector 155
- of a real matrix 150
- of a real vector 150
- of an interval 139
- of an interval matrix 161
- of an interval vector 161
output (file variable) 72
Output statements 72,88
- page 74
- rewrite 72
- write \(73,134,139,144,150,155\), 161, 170
- writeln 74

Overloading 11, 100
- , call of 101
- of \(:=105,305\)
- of read, write 75, 102
- of functions 100
- of input/output 102
- of operators \(95,100,105\)
- of procedures 100
- of the assignment operator 105,305

> - relation to several routines 101
> - , rules for 100

Packed (reserved word) 30
page (procedure) 324
Parallelepiped surface area 197
Parameter
\[
\begin{aligned}
& -, \text { actual } \quad 76,86 \\
& -, \text { formal } \\
& - \text { list } 85,85,87
\end{aligned}
\]

Parentheses 44
Pointer
\[
\begin{aligned}
& \text { - expression } \\
& \text { - type } \quad 38
\end{aligned}
\]

Polar representation (exercise) 212
Polynomial
- addition 248
- calculator (exercise) 248
- evaluation with maximum accuracy (exercise) 263
- interval evaluation (exercise) 227
- multiplication 248
pos (function) 112, 314
pred (function) \(46,49,51,52,53,314\)
Predefined functions 91, 93, 307
- , accuracy of the 130
- , boolean 51, 52
- , char 52,53
- , cimatrix- 169
-, cinterval 143
-, civector- 169
- , cmatrix- 154
- , complex- 133
- , cvector- 154
- , enumeration 53
- , imatrix- 160
- , index of 307
-, integer 46, 47
- , interval- 137
-, ivector- 160
- , real 47, 49, 50
-, rmatrix- 149
-, rvector- 149
-, string- 111
Predefined identifiers 18, 19, 300
Predefined operators 97,302
Predefined procedures 88, 323
Priority
- declaration 95
- levels 45, 46
- symbol 95
priority (reserved word) 95
Problem-solving routines 179
procedure (reserved word) 85

Procedure statement 76, 86
Procedures 85, 323
- , call of 86
-, declaration of 85
- dispose 39, 323
- get 34, 323
- , index of 323
- mark 40, 323
- new 38, 323
- , overloading of 100
- page 74, 324
- , predefined 88
- put 34, 324
- read 72, 102, 134, 139, 144, 150, \(155,161,170,324\)
- readln 73,325
- , recursive 87
- release 40, 325
- reset \(34,72,74,325\)
- rewrite 34, 72, 74, 326
- setlength 113, 326
- write \(73,102,134,139,144,150\), \(155,161,170,326\)
- writeln 74, 327

Product
- , exact 55
- of double length 55

Program
- declaration part 83,84
- execution 83, 84
- head 83
- , main 83
- parameter 83
- statement part 83
- structure 83
program (reserved word) 83
Projection 4, 6
put (procedure) 34, 324
Qualification 58
Quantities, global 107
Rail route map (exercise) 206
Rational arithmetic (exercise) 258
re (function) 132, 142, 153, 166, 167, 321
read (procedure) \(72,102,134,139,144\), \(150,155,161,170,324\)
Reading from a file 34
readln (procedure) 73, 325
real (type) 22, 24
Real expression 47
Real part of a complex number 36
Record
- component 31
- expression 59
- type 31
- with variants 32
record (reserved word) 31
Rectangular representation of a complex interval 140
Recursive
- function 90
- operator 96
- procedure 87

Reference 38
referenced
- type 38
- variable 38

Relational operators 127,304
- , definition of 129
release (procedure) 40, 325
Remarks, historical 2
repeat-statement 80
Repetitive statements 79
- for 80
- repeat 80
- while 79

Reserved words 17, 299
- and 45
- array 25
- begin 78
- case 32,78
- const 20
- div 46
- do 79, 81
- downto 55, 81
- dynamic 29
- else 78
- end 31, 78
- external 98
- file 34
- for 55, 80
- forward 98
- function 89
- global 107
- goto 77
- if 78
- in \(33,45,46,135,140\)
- label 77
\(-\bmod 46\)
- module 107
- nil 38
- not 45
- of 25
- operator 94, 105
- or 45
- packed 30
- priority 95
- procedure 85
- program 83
- record 31
- repeat 80
- set 33
- sum 55
- then 78
- to 55,81
- type 20
- until 80
- use 107
- var 21, 85
- while 79
- with 81
reset (procedure) 34, 72, 325
Result identifier 94, 105
Result type, arbitrary 9,90
rewrite (procedure) 34, 72, 326
rmatrix (type) 38, 146
round (function) 46, 315
Rounded constant 24
Rounding 14
- , directed 61
- downwardly 48
- , mode 75
- to interval 61
- upwardly 48

Rounding errors (exercise) 188
Runge-Kutta method 147, 158, 255
- exercise 255
rval (function) 50, 112, 315
rvector (type) 38,146
Scalar product
- , exact 61
- exercise 190
-, optimal 7
Scheme for handling dynamic arrays 120
Semantic attributes in syntax diagrams 269
Semimorphism 4, 5
Separating symbol 83
Set
- constructors 59
- difference 45,59
- expression 59
- intersection 45,59
- union 45, 59

Set (type) 33
setlength (procedure) 113, 326
sign (function) 47, 52, 316
Simple
- statements 71
- types 21
\(\sin\) (function) \(\quad 48,133,138,143,319\)
sinh (function) \(50,133,138,144,319\)
Solution of a system of linear equations 172
Special characters 17
sqr (function) \(46,48,133,137,143,319\)
sqrt (function) 48, 133, 137, 143, 319
Standard expression 44
Standard files
- input 72
- output 72

Standard types 20, 21
Statement part
- of a module 110
- of a program 83

Statements 71
- assignment 71, 105
-, case- 78
- , compound 78
-, conditional 78
-, empty 76
-, for- 80
- , goto- 77
-, if- 78
- , input 72
- , marked 77
- , output 72, 73
-, procedure 76
- , repeat- 80
-, repetitive 79
-, simple 71
-, structured 71
-, while- 79
-, with- 81
String 30
- concept 14
-, dynamic 30
- expression 58
string (type) 30,111
Structurally equivalent 42
Structured
- statements 71
- types 25

Subarrays 27
Subrange type 23
Subroutine 85
Subset 135
substring (function) 112, 316
Subtraction, errorless 55
succ (function) 46, 49, 51, 52, 53, 316
sum-notation 55
\(\sup\) (function) \(137,142,158,159,166\), 167, 322
Superset 135

Surface area of a parallelepiped (exercise) 197
Symbols, basic 17
Symmetry 203
- exercise 203

Syntax 15
- , complete 269
- representation in the language reference 15
- variable 15,269

Syntax diagrams 269
- , application of 270
- , index of 297

System of linear equations 172
Tag field 32
\(\tan\) (function) \(\quad 50,133,138,143,319\)
\(\tanh\) (function) \(\quad 50,133,138,144,319\)
Taylor series 186
Terminal symbol 269
Test of representability (exercise) 184
text (type) 35
Text files 35
Text processing 111
then (reserved word) 78
to (reserved word) 55, 81
Trace 245
- exercise 245

Transfer functions 320
- , cimatrix- 167
- , cinterval- 142
- , civector- 166
- , cmatrix- 153
- , complex- 132
- , cvector- 153
- , imatrix- 159

Transfer functions (continued)
- , index of 320
- , interval- 137
-, ivector- 158
transp (function) 149, 155, 160, 169, 317
Transposed matrix \(149,155,160,169\)
- exercise 203
true (logical constant) 22
trunc (function) 46, 317
type (reserved word) 20
Type compatibility 40,86
Type converting function 58
Type definition 20
Types
- , anonymous 21, 27, 42
-, arithmetic 36
- boolean 22
- char 22
- cimatrix 38, 162
- cinterval 37, 140
- civector 38, 162
- cmatrix 38, 151
- complex 36, 131
- , component 25
- cvector 38, 151
- dotprecision 14, 24, 60
- enumeration type 23
- file 34
- , hierarchy of 128
- imatrix 38, 156
-, index 25
- integer 21
- interval 37, 135
- ivector 38, 156
- pointer 38
- real 22, 24
- record 31
- rmatrix 38,146
- rvector 38, 146
- set 33
- , simple 21
- , standard 20, 21
- string 111
- string (dynamic) 30
- string (static) 30
- , structured 25
- subrange type 23
- text 35

Typography 1
\(\mathbf{u} b\) (function) \(\quad 47,52,53,317\)
ubound (function) \(28,47,52,53,317\)
Ulp 48
Underscore 18
until (reserved word) 80
use-clause 19, 108
Var (reserved word) 21, 85
Variable 21
-, component 26
- declaration 21
- input 72
- output 72

Variants of a record 32
Verification 172
vnull (function) 149, 318
While-statement 79
with-statement 81
write (procedure) \(73,102,134,139,144\),
\(150,155,161,170,326\)
writeln (procedure) 74, 327
Writing to a file 34```

[^0]: ${ }^{1}$ The term vector processor is often used as a synonym for a computer that is equipped with pipeline operations. Here, we do not mean this. The concept is used in a more mathematical sense.

