
R. Klatte, U. Kulisch, M. Neaga, D. Ratz, Ch. UllrichPASCAL{XSCLanguage Referencewith Examples

Version March 3, 1999

This is the back cover page:The programming language PASCAL{XSC (PASCAL eXtension for Sci-enti�c Computation) signi�cantly simpli�es programming in the area ofscienti�c and technical computing. PASCAL{XSC provides a large num-ber of prede�ned data types with arithmetic operators and prede�nedfunctions of highest accuracy for real and complex numbers, for real andcomplex intervals, and for the corresponding vectors and matrices. ThusPASCAL{XSC makes the computer more powerful concerning the arith-metic.Through an implementation in C, compilers for PASCAL{XSC are avail-able for a large variety of computers such as personal computers, worksta-tions, mainframes, and supercomputers. PASCAL{XSC provides a moduleconcept, an operator concept, functions and operators with general resulttype, overloading of functions, procedures, and operators, dynamic arrays,access to subarrays, rounding control by the user, and accurate evaluationof expressions. The language is particularly suited for the developmentof numerical algorithms that deliver highly accurate and automaticallyveri�ed results. A number of problem-solving routines with automatic re-sult veri�cation have already been implemented. PASCAL{XSC containsStandard PASCAL. It is immediately usable by PASCAL programmers.PASCAL{XSC is easy to learn and ideal for programming education.The book can be used as a textbook for lectures on computer program-ming. It contains a major chapter with sample programs, exercises, andsolutions. A complete set of syntax diagrams, detailed tables, and indicescomplete the book.

R. Klatte U. Kulisch M. NeagaD. Ratz Ch. UllrichPASCAL{XSCLanguage Reference with Examples
Translated byG. F. Corliss R. Klatte U. KulischD. Ratz C. Wol�

Springer-VerlagBerlin Heidelberg New YorkLondon Paris TokyoHong Kong BarcelonaBudapest

ii

c 1991 by Springer-Verlag/HeidelbergPrinted in GermanyAll rights reserved. No part of this book may be translated or reproduced in anyform without written permission from Springer-Verlag.The use of general descriptive names, trade names, trademarks, etc., in this pub-lication, even in the former are not especially identi�ed, it is not to be taken as asign that such names, as understood by the Trade Marks and Merchandise MarksAct, may accordingly be used freely by anyone.DisclaimerSpringer-Verlag and the authors make no representation or warranty with respectto the adequacy of this book or the programs which it describes for any particu-lar purpose or with respect to its adequacy to produce any particular result. Inno event shall Springer-Verlag or the authors be liable for special, direct, indirector consequential damages, losses, costs, charges, claims, demands or claim for lostpro�ts, fees or expenses of any nature of kind.

PrefaceThis manual describes a PASCAL extension for scienti�c computation with theshort title PASCAL{XSC (PASCAL eXtension for Scienti�c Computation). Thelanguage is the result of a long term e�ort of members of the Institute for AppliedMathematics of Karlsruhe University and several associated scientists. PASCAL{XSC is intended to make the computer more powerful arithmetically than usual. Itmakes the computer look like a vector processor to the programmer by providingthe vector/matrix operations in a natural form with array data types and the usualoperator symbols. Programming of algorithms is thus brought considerably closerto the usual mathematical notation. As an additional feature in PASCAL{XSC, allprede�ned operators for real and complex numbers and intervals, vectors, matrices,and so on, deliver an answer that di�ers from the exact result by at most onerounding.Numerical mathematics has devised algorithms that deliver highly accurate andautomatically veri�ed results by applying mathematical �xed point theorems. Thatis, these computations carry their own accuracy control. However, their imple-mentation requires arithmetic and programming tools that have not been availablepreviously. The development of PASCAL{XSC has been aimed at providing thesetools within the PASCAL setting.Work on the subject began during the 1960's with the development of a generaltheory of computer arithmetic. At �rst, new algorithms for the realization of thearithmetic operations had to be developed and implemented. The design and devel-opment of appropriate programming languages began around 1975 with preliminaryimplementation studies �rst on the basis of PASCAL and also as an extension ofFORTRAN. As the next step, complete compilers for the extended language hadto be developed. Since about 1980, algorithms for standard problems of numeri-cal analysis with automatic result veri�cation and for many applications have beensystematically developed.Many colleagues and scientists closely related with the Institute have contributedto the project by useful discussions, by a long term collaboration, or other kinds ofsupport. The main participants of this developement are: U. Allend�orfer, J. H. Ble-her, H. B�ohm, G. Bohlender, K. Braune, D. M. Claudio, D. Cordes, G. F. Corliss,A. Davidenko�, H. C. Fischer, S. Ge�org, K. Gr�uner, R. Hammer, E. Kaucher,R. Kelch, R. Kirchner, R. Klatte, W. Klein, W. Kr�amer, U. Kulisch, R. Lohner,M. Metzger, W. L. Miranker, M. Neaga, L. B. Rall, D. Ratz, S. M. Rump, R. Saier,L. Schmidt, G. Schumacher, D. Shiriaev, Ch. Ullrich, W. Walter, M. Weichelt,H. W. Wippermann, and J. Wol� von Gudenberg. The authors would like to ex-iii

ivpress sincere and cordial thanks to each one for his cooperation. Thanks are alsodue to the many students who used and applied PASCAL{XSC in an early stage ofthe development and thus helped to stabilize both the language and the compiler.This manual provides a complete description of PASCAL{XSC. The part dealingwith ISO Standard PASCAL is only briey discussed, while the extensions markedby PASCAL{XSC are presented in full detail. A detailed chapter with exercisesand solutions is included in this manual to help the reader to get familiar with thenew language constructs. A full set of syntax diagrams, appendices, and indicescomplete the book.Finally, we would like to mention that a programming language is never com-plete. Improvements are always possible and often necessary. The main concerndeveloping this language was to provide a useful and appropriate tool for numericalapplications in the �eld of engineering and scienti�c computation. Benevolent andcritical comments for improvements of the language are very welcome.This book is a translation of a German version also published by Springer-Verlag.The authors are very grateful to George Corliss who helped to polish the text andthe contents.Karlsruhe, October 1991 The Authors

The Realization of this BookThis manual was completely written in the text system LATEX or TEX. Co-AuthorDietmar Ratz gathered the text, designed the necessary macros and environments,developed the syntax diagrams, carried out corrections, and drew up the �nal versionincluding the appendices and indices. He was also responsible for the �nal layout ofthis book. The Authors

Contents
1 Introduction 11.1 Typography . 11.2 Historical Remarks and Motivation 21.3 Advanced Computer Arithmetic . 41.4 Connection with Programming Languages 71.5 Survey of PASCAL{XSC . 81.5.1 Universal Operator Concept and Arbitrary Result Type 91.5.2 Overloading of Procedures, Functions, and Operators 111.5.3 Module Concept . 111.5.4 Dynamic Arrays and Subarrays 121.5.5 String Concept . 131.5.6 Arithmetic and Rounding . 141.5.7 Accurate Expressions . 142 Language Reference 152.1 Basic Symbols . 172.2 Identi�ers . 182.3 Constants, Types, and Variables . 202.3.1 Simple Types . 212.3.2 Structured Types . 252.3.2.1 Arrays . 252.3.2.2 Subarrays . 272.3.2.3 Access to Index Bounds 282.3.2.4 Dynamic Arrays . 282.3.2.5 Strings . 302.3.2.6 Dynamic Strings . 302.3.2.7 Records . 312.3.2.8 Records with Variants 322.3.2.9 Sets . 332.3.2.10 Files . 342.3.2.11 Text Files . 352.3.3 Structured Arithmetic Standard Types 362.3.3.1 The Type complex 362.3.3.2 The Type interval 372.3.3.3 The Type cinterval 37v

vi CONTENTS2.3.3.4 Vector Types and Matrix Types 382.3.4 Pointers . 382.3.5 Compatibility of Types . 402.3.5.1 Compatibility of Array Types 412.3.5.2 Compatibility of Strings 432.4 Expressions . 442.4.1 Standard Expressions . 442.4.1.1 Integer Expressions 462.4.1.2 Real Expressions . 472.4.1.3 Boolean Expressions 512.4.1.4 Character Expressions 522.4.1.5 Enumeration Expressions 532.4.2 Accurate Expressions (#-Expressions) 542.4.3 Expressions for Structured Types and Pointer Expressions . . 572.4.3.1 Array Expressions 572.4.3.2 String Expressions 582.4.3.3 Record Expressions 592.4.3.4 Set Expressions . 592.4.3.5 Pointer Expressions 602.4.4 Extended Accurate Expressions (#-Expressions) 602.4.4.1 #-Expressions for the Arithmetic Types 612.4.4.2 #-Expressions for Vectors 632.4.4.3 #-Expressions for Matrices 642.4.4.4 List of the Operands in #-Expressions 662.4.4.5 Review of General #-Expressions 692.5 Statements . 712.5.1 Assignment Statement . 712.5.2 Input/Output Statements . 722.5.3 Empty Statement . 762.5.4 Procedure Statement . 762.5.5 goto-Statement . 772.5.6 Compound Statement . 782.5.7 Conditional Statements . 782.5.7.1 if-Statement . 782.5.7.2 case-Statement . 782.5.8 Repetitive Statements . 792.5.8.1 while-Statement . 792.5.8.2 repeat-Statement 802.5.8.3 for-Statement . 802.5.9 with-Statement . 812.6 Program Structure . 832.7 Subroutines . 852.7.1 Procedures . 852.7.2 List of Prede�ned Procedures and Input/Output Statements . 882.7.3 Functions . 89

CONTENTS vii2.7.4 Functions with Arbitrary Result Type 902.7.5 List of Prede�ned Functions 912.7.6 Operators . 932.7.7 Table of Prede�ned Operators 972.7.8 forward- and external-Declaration 982.7.9 Modi�ed Call by Reference for Structured Types 982.7.10 Overloading of Procedures, Functions, and Operators 1002.7.11 Overloading of read and write 1022.7.12 Overloading of the Assignment Operator := 1052.8 Modules . 1072.9 String Handling and Text Processing 1112.9.1 Input of Characters and Strings 1152.10 How to Use Dynamic Arrays . 1203 The Arithmetic Modules 1253.1 The Module C ARI . 1313.2 The Module I ARI . 1353.3 The Module CI ARI . 1403.4 The Module MV ARI . 1463.5 The Module MVC ARI . 1513.6 The Module MVI ARI . 1563.7 The Module MVCI ARI . 1623.8 The Hierarchy of the Arithmetic Modules 1713.9 A Complete Sample Program . 1724 Problem-Solving Routines 1795 Exercises with Solutions 1835.1 Test of Representability . 1845.2 Summation of Exponential Series . 1865.3 Inuence of Rounding Errors . 1885.4 Scalar Product . 1905.5 Boothroyd/Dekker Matrices . 1925.6 Complex Functions . 1945.7 Surface Area of a Parallelepiped . 1975.8 Parallelism and Intersection of Lines 2005.9 Transposed Matrix, Symmetry . 2035.10 Rail Route Map . 2065.11 Inventory Lists . 2095.12 Complex Numbers and Polar Representation 2125.13 Complex Division . 2155.14 Electric Circuit . 2175.15 Alternating Current Measuring Bridge 2215.16 Optical Lens . 2245.17 Interval Evaluation of a Polynomial 227

viii CONTENTS5.18 Calculations for Interval Matrices . 2305.19 Di�erentiation Arithmetic . 2335.20 Newton's Method with Automatic Di�erentiation 2375.21 Measurement of Time . 2395.22 Iterative Method . 2415.23 Trace of a Product Matrix . 2455.24 Calculator for Polynomials . 2485.25 Interval Newton Method . 2535.26 Runge-Kutta Method . 2555.27 Rational Arithmetic . 2585.28 Evaluation of Polynomials . 263A Syntax Diagrams 269B Indices and Lists 297B.1 Syntax Diagrams . 297B.2 Reserved Words . 300B.3 Prede�ned Identi�ers . 301B.4 Operators . 303B.4.1 Basic Operators . 303B.4.2 Arithmetic Operators . 304B.4.3 Relational Operators for the Arithmetic Types 305B.4.4 Assignment Operators . 306B.5 Prede�ned Functions . 308B.6 Transfer Functions . 321B.7 Prede�ned Procedures . 324B.8 #-Expressions . 329B.8.1 Real and Complex #-Expressions 329B.8.2 Real and Complex Interval #-Expressions 330Bibliography 331Index 335

Chapter 1IntroductionThis book describes the language PASCAL{XSC. The core of the language de-scription consists of three chapters: language description, arithmetic modules, andexercises.In chapter 1 (Introduction), we describe the notation used in this book. Wesketch the historical development of PASCAL{XSC, the axiomatic de�nition of com-puter arithmetic, and its embedding in programming languages. The last section isa short survey of the language PASCAL{XSC.Chapter 2 (Language Reference) comprises the formal language de�nition. TheISO PASCAL Standard is only touched upon. The extensions of PASCAL{XSC aredescribed in detail.PASCAL{XSC supports arithmetic on real, complex, interval, or complex inter-val objects, as well as on vectors and matrices over these types. Chapter 3 (TheArithmetic Modules) describes the modules supporting these types with their op-erators, functions, and procedures. The succeeding chapter 4 (Problem SolvingRoutines) summarizes the routines which have been developed in PASCAL{XSCfor solving frequently occurring numerical problems.The closing chapter 5 (Exercises with Solutions) encourages the reader to ap-ply the new language elements to easy exercises to extend his or her knowledge.Solutions are provided.Finally, the Appendix contains the syntax diagrams of PASCAL{XSC, as wellas complete lists of reserved words, prede�ned identi�ers, operators, functions, andprocedures of the language core and the arithmetic modules.This book does not deal with implementation details of the language. For allimplementation-dependencies in the following chapters, we refer to the correspond-ing user manual supplied with the special compiler version.1.1 TypographyTo mark or emphasize certain words, names, or paragraphs, we use the followingtype faces:italics serves to emphasize certain words in the text.1

2 CHAPTER 1. INTRODUCTIONboldface is used to mark reserved words of PASCAL{XSC (e.g. begin,module) in the text or in excerpts of programs.slanted characterizes prede�ned identi�ers of PASCAL{XSC (e.g. integer,real) and identi�ers from programming examples when they appearin the body of the text.typewriter is used for listings and run-time outputs of programs that are directlycopied from a �le or from printer output.References are always indicated as [nr]. The number nr corresponds to an entry inthe bibliography.1.2 Historical Remarks and MotivationIn general, electronic computers for engineering and scienti�c computations areequipped with a oating point arithmetic to approximate mathematical operationswith real numbers. All higher programming languages permit these operations tobe denoted with the usual operation symbols so that the programmer is able towrite down simple expressions, formulas, or functions in their usual mathematicalnotation. In mathematics and the natural sciences, the concept of the arithmeticoperation or function is by no means restricted to real numbers. For example, op-erations in vector spaces and even vector-valued functions occur. It is not at alle�cient to program these concepts on the computer using basic oating point op-erations and then realize them via clumsy procedure calls, since this may result inmany unnecessary computing errors.Therefore, intensive research in the �eld of computer arithmetic has been con-ducted at Professor Kulisch's Institute for Applied Mathematics at the Universityof Karlsruhe since the 1960's. To achieve satisfactory results in many applications,the computer must support an arithmetic which is much more powerful than theusual oating-point arithmetic. That is, every computer, whether large or small,used for scienti�c computation should be a vector computer1 in the mathematicalsense. Its arithmetic should support operators in the common mathematical vec-tor spaces such as real numbers, complex numbers, intervals of real and complexnumbers, or vectors and matrices with elements of these types. The results of theseoperations should be provided with higher accuracy than can be achieved using theusual oating-point arithmetic. By 1976, a complete mathematical analysis of thesedemands led to the publication of two books ([24], [28]).To realize these demands, algorithms and fast hardware circuits have been de-veloped and implemented completely. Today, a variety of realizations is availablefor all kinds of computers, e.g. personal computers, workstations, general-purposecomputers, mainframes, as well as supercomputers. The new operations, e.g. theproduct of two matrices, always deliver a result which di�ers from the exact result1The term vector processor is often used as a synonym for a computer that is equipped withpipeline operations. Here, we do not mean this. The concept is used in a more mathematical sense.

1.2. HISTORICAL REMARKS AND MOTIVATION 3by at most one single rounding in each component. Assuming that the same technol-ogy (software, microcode, hardware, pipeline technique) is used, the new operationsare not only more accurate, but also faster in general than those simulated via thetraditional oating point arithmetic. Gradually, the manufacturers have realizedthe correctness and usefulness of this procedure. Thus, over the years, more andmore products that support the new demands of arithmetic have appeared on themarket.Immediately, however, di�culties arose concerning the programming languages.Traditional programming languages as ALGOL, FORTRAN, PL/1, PASCAL, orMODULA do not allow access to a hardware-supported matrix product, a mul-tiplication of complex numbers with maximum accuracy, or an interval operationvia the traditional operation symbols. Thus, a further development of program-ming languages was necessary to support the requirements of high quality arith-metic. Between 1976 and 1979, two institutes from the Universities of Karlsruheand Kaiserslautern (Prof. Kulisch and Prof. Wippermann) cooperated to developand implement a PASCAL extension called PASCAL{SC (PASCAL for Scienti�cComputation). In the following years, in cooperation with IBM, a correspondingFORTRAN 77 extension was developed and implemented for IBM/370 computersat the Institute for Applied Mathematics at the University of Karlsruhe. Today, theresult is available as an IBM program product under the name of ACRITH{XSC.ACRITH{XSC contains some constructs such as dynamic arrays and overload-ing of function names which were not considered in PASCAL{SC. So the languagePASCAL{XSC was developed in parallel with the development of ACRITH{XSC.PASCAL{XSC is implemented using a PASCAL{XSC-to-C preprocessor (itself writ-ten in C) and a run-time system written in C. Hence, PASCAL{XSC may be in-stalled and used in a nearly identical way on almost any computer system whichsupports C. In particular, PASCAL{XSC runs on nearly all UNIX systems. Thus,the programmer may develop PASCAL{XSC programs on a personal computer ora workstation and run them on a mainframe or a supercomputer.Mathematicians have used PASCAL{SC, ACRITH{XSC, and PASCAL{XSC tosolve a variety of problems. Easy access to interval operations played a major role.We can use intervals to represent bounds for the solution of the problem or to repre-sent a continuum of the real or complex numbers. A single evaluation of a functionover an interval may be su�cient to state in a strict mathematical sense that thefunction does not possess a zero in this interval. In continuation of these ideas,mathematical �xed point theorems of the Brouwer or Schauder type may be appliedto obtain statements on existence and uniqueness concerning numerical problemsby the computer itself or to have the correctness of a computed result automaticallyveri�ed by the computer. Thus, program packages have been developed for the so-lution of boundary value and eigenvalue problems of ordinary di�erential equationsand systems of linear and nonlinear integral equations. These programs verify theexistence as well as uniqueness, and compute narrow bounds for the solution itself(see [27]). The new tools are applied in many �elds of application, including me-chanics, chemistry, chaos theory, or in the search for periodic solutions of di�erentialequations. Moreover, researchers have been able to discover surprising solutions to

4 CHAPTER 1. INTRODUCTIONproblems not previously solvable. For further information, see the References.1.3 Advanced Computer ArithmeticWhen the programming languages ALGOL and FORTRAN were developed in the1950's, speci�cation of the arithmetic was left to the manufacturer. As a conse-quence, the programmer does not know what happens when the symbols +, -, *, or/ are applied. Besides that, two computers from di�erent vendors may also di�er inthe properties of arithmetic. Consequently, numerical analysis could not be basedon universally valid axioms of computer arithmetic.The increasing e�ciency and speed of computers requires a more precise de�ni-tion of the arithmetic. Since a computer may represent only a �nite set of numbers,the set IR of the real numbers has to be mapped onto a subset R, called oatingpoint numbers. This mapping : IR ! R is called a rounding if it satis�es theproperties:(R1) a = a, for all a 2 R, and (projection)(R2) a � b) a � b, for all a; b 2 IR. (monotonicity)A rounding possessing the property(R3) (�a) = � a, for all a 2 IR (antisymmetry)is called antisymmetric. The commonly used antisymmetric roundings are roundingto zero, rounding away from zero, or rounding to the nearest oating point num-ber. The approximating operations + ; � ; � , and = for oating point numbers arerequired to satisfy(RG) a � b = (a � b), for all a; b 2 R, and � 2 f+;�; �; =g.Here +;�; �, and = denote the operations for real numbers.If a mapping satis�es the properties (R1), (R2), (R3), and (RG), we call it asemimorphism.All operations de�ned by (RG), (R1), and (R2) are of maximum accuracy in thesense that there is no element of R lying between the exact result a � b executed inIR and its approximation a � b executed in R. To realize this, we assume that � and� are adjacent elements of R with the property� � a � b � �:Applying (R2), (R1), and (RG) we get:� � a � b � �:That is, a � b is either equal to � or to �.For special applications, a programming language should also provide the di-rected roundings 5 and 4 which are de�ned by the properties (R1), (R2), and(R4) 5a � a or a � 4a, for all a 2 IR.

1.3. ADVANCED COMPUTER ARITHMETIC 5These roundings, as well as the operations de�ned by (RG)a5� b := 5(a � b)or a4� b := 4(a � b)are determined unique ([24], [28]).Besides the real numbers, vectors and matrices over the real numbers frequentlyappear in scienti�c computation. We denote these sets by VIR andMIR, respectively.Occasionally, the complex numbersC , vectors VC and matricesMC over the complexnumbers are used. All these spaces are ordered according to the order relation �,which is de�ned componentwise in the product spaces. Intervals may be de�nedvia this relation. Numerical algorithms often use intervals in the above-mentionedspaces. If we denote the set of intervals over an ordered set by a preceding I, thespaces IIR; IVIR; IMIR, and IC ; IVC , and IMC occur. All these spaces are listed inthe �rst column of the following table. Their subsets, which may be represented on acomputer, are described by the symbols listed in the second column of the followingtable. Basic Spaces of Subsets RepresentableScienti�c Computation on the ComputerIR RVIR VRMIR MRIIR IRIVIR VIRIMIR MIRC CRVC VCRMC MCRIC CIRIVC VCIRIMC MCIRTable 1: Vector Spaces for Scienti�c ComputationNext, we de�ne the arithmetic for a vector processor (in our mathematical sense)for all inner and outer operations occurring in the second column of Table 1. Wedemand that all these operations ful�ll the properties of semimorphism. Since theseoperations in the product spaces di�er essentially from the operations executedtraditionally on a computer, we would like to briey repeat their de�nition here.

6 CHAPTER 1. INTRODUCTIONLet S be an element of the left column of Table 1, and let T be the correspondingsubset in the right column. Furthermore, let a rounding: S ! Tbe given that rounds the elements of S into those of T . Again, this rounding isassumed to satisfy(R1) a = a, for all a 2 T , and (projection)(R2) a � b) a � b, for all a; b 2 S. (monotonicity)This rounding is called antisymmetric, if it also satis�es(R3) (�a) = � a, for all a 2 S. (antisymmetry)The operations in T are de�ned by(RG) a � b := (a � b), for all a; b 2 T , and � 2 f+;�; �; =g,with � denoting the exact operations in S in the mathematical sense, if they exist.The operations de�ned in the product spaces (e.g. for complex matrices) areagain of maximum accuracy in the sense that there is no element of T lying betweenthe exact result a � b executed in S and its approximation a � b in T .In case of the interval spaces occurring in Table 1, the order relation � in (R2)is replaced by the inclusion relation �. The rounding : IS ! IT is assumed tosatisfy the additional property(R4) a � a, for all a 2 IS. (upwardly directed)The theory developed in [24] and [28] shows that this rounding is uniquely de�ned.The usual de�nition of computer arithmetic di�ers considerably from our de�-nition. Traditionally, computer arithmetic comprises only the operations in R. Allother operations in the second column of Table 1 have to be implemented by theuser. In general, this is done by procedures where every operation occurring in analgorithm requires its own procedure call. This procedure is cumbersome, ine�cientfor both programmers and computers, and often subject to inaccuracies. Let us con-sider the example of the matrix multiplication C = A � B, requiring the executionof a scalar product for each component of C. This is usually done on the basis ofreal oating point operations of the formC = (cij) = (ai1 � b1j +ai2 � b2j + : : : +ain � bnj)with 2n� 1 roundings. By contrast, the formula (RG) requires an implementationof the rule C = A � B withC = (cij) = ((ai1 � b1j + ai2 � b2j + : : :+ ain � bnj))with only one rounding for each component. A computer which satis�es our axiomscalculates this formula for arbitrary n with one single rounding. This optimal scalar

1.4. CONNECTION WITH PROGRAMMING LANGUAGES 7product plays a signi�cant part in all product spaces of Table 1. In addition, thescalar product is very often used in numerical algorithms to achieve high accuracy.A vector processor in the mathematical sense, as we de�ne it here, is requiredto provide all inner and outer operations in the spaces of the right column of Table1 by semimorphism. In PASCAL{XSC, the sets in the right column of Tabel 1 areprede�ned types. Variables and values of these types may be combined by means ofthe usual operator symbols +, -, *, and /. In PASCAL{XSC, the operator symbolsdenote the operations + ; � ; � ; = used above and de�ned by means of semimor-phism. Expressions of these types may be written down easily and clearly. All innerand outer operations ful�ll the demands of the semimorphism. The arithmetic weare describing can be implemented in hardware, in �rmware, or in software. If thebasic hardware of the processor in use supports these requirements, the operationsare even faster than those traditionally implemented and executed via operationsin R. In case an appropriate support by the hardware is lacking, the operationsaccording to semimorphism in the spaces of the second column of Table 1 are simu-lated in software via the run-time system of PASCAL{XSC. The software arithmeticof PASCAL{XSC is realized using integer arithmetic. In case an IEEE arithmeticcoprocessor is available, its operations can be used. However, a software simulationof the optimal dot product for accumulation of numbers and products is still neces-sary. The latter is the most useful operation for automatic veri�cation of computedresults.Of course, a software simulation of the arithmetic increases the execution time.On the other hand, the user has a well de�ned and comprehensive arithmetic. Hecan fully rely on its properties and build upon them in numerical algorithms. Fromthe perspective of arithmetic and programming languages, PASCAL{XSC is an idealvector language. Programming of algorithms in engineering and scienti�c computa-tion is facilitated by the language extensions. PASCAL{XSC is particularly suitedfor the development of numerical algorithms that deliver highly accurate and auto-matically veri�ed results.1.4 Connection with Programming LanguagesThe demands of a high quality computer arithmetic lead quite naturally to theconcepts of a programming language for vector processors like PASCAL{XSC orACRITH{XSC. Usual programming languages like ALGOL, FORTRAN, PASCAL,MODULA, or PL/1 possess only the integer, real, and (perhaps) complex arithmeticas elementary operations. All other arithmetic operations, especially those in theproduct spaces shown in the second column of Table 1, have to be based upon theinteger and real arithmetic.In contrast, PASCAL{XSC provides all operations in the product spaces forprede�ned types via the usual operator symbols. Each of these operations calls el-ementary operations which are implemented directly and with maximum accuracy.In general, the operations in the product spaces could even be carried out in paral-lel. Unlike the other languages listed above, PASCAL{XSC provides the following

8 CHAPTER 1. INTRODUCTIONlanguage elements and features:{ Explicit language support for the directed roundings 5 and 4.{ Explicit language support for the corresponding operations 5� and 4� for all� 2 f+;�; �; =g.{ An optimal scalar product for vectors of arbitrary length.{ Interval types with appropriate operators.{ Functions with arbitrary result type.{ A universal operator concept.{ Overloading of function identi�ers and operators.{ Dynamic and structured numerical types{ A large number of mathematical functions with high accuracy for the numericaltypes real, complex, interval, and complex interval.A library of problem solving routines with results of highest accuracy and auto-matic result veri�cation (see also [27]) for many standard problems of numericalmathematics has been implemented in PASCAL{XSC. Via interval input data theaccuracy of the elementary functions becomes immediately visible to the user.PASCAL{XSC is a true vector language in the mathematical sense. The vectornotation of the operations in the product spaces is already expressed in the pro-gramming language. An additional vectorization of programs by the compiler isoften superuous. The execution of these operations may be essentially acceleratedby parallel processing and pipeline techniques.1.5 Survey of PASCAL{XSCThe programming language PASCAL{XSC was developed to supply a powerful toolfor the numerical solution of scienti�c problems based upon a properly de�ned andimplemented computer arithmetic in the usual spaces of numerical computation (see[24], [28]). The main concepts of PASCAL{XSC are� ISO Standard PASCAL� Universal operator concept (user-de�ned operators)� Functions and operators with arbitrary result type� Overloading of procedures, functions, and operators� Module concept� Dynamic arrays� Access to subarrays� String concept� Controlled rounding

1.5. SURVEY OF PASCAL{XSC 9� Optimal (exact) scalar product� Prede�ned type dotprecision (a �xed point format to cover the whole range ofoating-point products)� Additional arithmetic built-in types such as complex, interval, rvector,rmatrix, etc.� Highly accurate arithmetic for all built-in types� Highly accurate elementary functions� Exact evaluation of expressions within accurate expressions (#-expressions)Interval arithmetic, complex arithmetic, complex interval arithmetic, and the cor-responding vector and matrix arithmetics are provided.Application modules have been implemented in PASCAL{XSC for solving com-mon numerical problems, such as� Linear systems of equations� Matrix inversion� Nonlinear systems of equations� Eigenvalues and eigenvectors� Evaluation of arithmetic expressions� Evaluation of polynomials and zeros of polynomials� Numerical quadrature� Initial and boundary value problems in ordinary di�erential equations� Integral equations� Automatic di�erentiation� Optimization problemsAll these problem-solving routines provide automatically veri�ed results.In the subsequent sections, the most important new concepts are considered briey.The details are described in chapter 2.1.5.1 Universal Operator Concept andArbitrary Result TypePASCAL{XSC makes programming easier by allowing the programmer to de�nefunctions and operators with arbitrary result type. The advantages of these con-cepts are illustrated by the simple example of polynomial addition. De�ne the typepolynomial byconst maximum_degree = 20;type polynomial = array [0..maximum_degree] of real;

10 CHAPTER 1. INTRODUCTIONin Standard PASCAL, the addition of two polynomials is implemented as a procedureprocedure add (a, b: polynomial; var c: polynomial);{ Computes c = a + b for polynomials }var i: integer;beginfor i:= 0 to maximum_degree doc[i]:= a[i] + b[i];end;Several calls of add have to be used to compute the expression z = a+ b + c+ d:add (a,b,z);add (z,c,z);add (z,d,z);In PASCAL{XSC, we de�ne a function with the result type polynomialfunction add (a, b: polynomial): polynomial;{ Delivers the sum a + b for polynomials }var i: integer;beginfor i:= 0 to maximum_degree doadd[i]:= a[i] + b[i];end;Now, the expression z = a+ b + c+ d may be computed asz:= add(a,add(b,add(c,d))).Even clearer is the operator in PASCAL{XSCoperator + (a, b: polynomial) result_polynomial : polynomial;{ Delivers the sum a + b for polynomials }var i: integer;beginfor i:= 0 to maximum_degree doresult_polynomial[i]:= a[i] + b[i];end;Now, the expression may be written in the common mathematical notationz:= a+b+c+d.A programmer may also de�ne a new name as an operator. A priority is assignedin a preceding priority declaration.

1.5. SURVEY OF PASCAL{XSC 111.5.2 Overloading of Procedures, Functions, and OperatorsPASCAL{XSC permits the overloading of function and procedure identi�ers. Ageneric name concept allows the programmer to apply the identi�ers sin, cos, exp, ln,arctan, and sqrt not only for real numbers but also for intervals, complex numbers,or elements of other mathematical spaces. Overloaded functions and procedures aredistinguished by number, order, and type of their parameters. The result type isnot used for distinction.As illustrated above, operators may also be overloaded. Even the assignmentoperator (:=) may be overloaded so that the mathematical notation may be usedfor assignments:varc: complex;r: real;operator := (var c : complex; r: real);beginc.re := r;c.im := 0;end;...r:= 1.5;c:= r; {complex number with real part 1.5 and imaginary part 0}1.5.3 Module ConceptThe module concept allows the programmer to separate large programs into modulesand to develop and compile them independently of each other. The control of syntaxand semantics may be carried out beyond the bounds of the modules. Modules areintroduced by the reserved word module followed by a name and a semicolon. Thebody of a module is built up quite similarly to that of a common PASCAL program.The signi�cant exception is that the objects to be exported from the module arecharacterized by the reserved word global directly in front of the reserved wordsconst, type, var, procedure, function, and operator and directly after use andthe equality sign in type declarations. Thus, private types as well as non-privatetypes can be declared and exported.Modules are imported into other modules or programs via a use-clause. Thesemantics of the use-clause are that all objects declared global in the importedmodule are also known in the importing module or program.The example of a polynomial arithmetic module illustrates the structure of amodule:module poly;use {other modules}

12 CHAPTER 1. INTRODUCTION...{local declarations}...{global declarations}global type polynomial =global procedure read (......global procedure write (......global operator + (......global operator * (......begin{initialization part of the module}...end. {module poly}1.5.4 Dynamic Arrays and SubarraysThe concept of dynamic arrays enables the programmer to implement algorithmsindependently of the length of the arrays used. The index ranges of dynamic arraysare not to be de�ned until run-time. Procedures, functions, and operators may beprogrammed in a fully dynamic manner, since allocation and release of local dynamicvariables are executed automatically. Hence, the memory is used optimally.For example, a dynamic type polynomial may be declared in the followingform: type polynomial = dynamic array [*] of real;When declaring variables of this dynamic type, the index bounds have to be speci�ed:var p, q : polynomial [0..2*n];where the values of the expressions for the index range are computed during programexecution. To get access to the bounds of dynamic arrays which are speci�ed onlyduring execution of the program, the two functions lbound(: : :) and ubound(: : :)and their abbreviations lb(: : :) and ub(: : :) are supplied. The multiplication of twopolynomials may be realized dynamically as follows:operator * (a, b: polynomial)product: polynomial[0..ubound(a)+ubound(b)];{ Delivers the product a * b of two polynomials a, b }var i, j : integer;result : polynomial[0..ubound(a)+ubound(b)];beginfor i:= 0 to ubound(a)+ubound(b) doresult[i]:= 0;

1.5. SURVEY OF PASCAL{XSC 13for i:= 0 to ubound(a) dofor j:= 0 to ubound(b) doresult[i+j]:= result[i+j] + a[i] * b[j];product:= result;end;A PASCAL{XSC program using dynamic arrays for polynomials follows the tem-plate program dynatest (input, output);...type polynomial = dynamic array [*] of real;...var maximum_degree : integer;...operator * (a, b:polynomial)......procedure write (var f : text; p: polynomial);...procedure main (degree : integer);varp,q : polynomial[0..degree];r : polynomial[0..2*degree];begin...r:= p * q;writeln ('p*q = ', r);...end;begin {main program}read (maximum_degree);main (maximum_degree);end. {main program}The following example demonstrates that it is possible to access a row or a columnof dynamic arrays as a single object. This is called slice notation.type vector = dynamic array [*] of real;type matrix = dynamic array [*] of vector;var v : vector[1..n];m : matrix[1..n,1..n];...v := m[i]; { i-th row of m }m[*,j] := v; { j-th column of m }1.5.5 String ConceptA string concept is integrated into the language PASCAL{XSC to handle characterstrings of variable length. Declaration, input, and output of strings are simpli-

14 CHAPTER 1. INTRODUCTION�ed extensively compared to the facilities of Standard PASCAL. Special prede�nedfunctions and operators enable the programmer to formulate and manipulate stringexpressions.1.5.6 Arithmetic and RoundingCompared with Standard PASCAL, the set of operators for real numbers is extendedby the directed-rounding operators �< and �> with � 2 f+;�; �; =g. These symbolsdenote the operations with upwardly and downwardly directed rounding. In thearithmetic modules, the common operators are also provided for complex numbers,intervals, complex intervals, and also for vectors and matrices over these spaces.1.5.7 Accurate ExpressionsThe implementation of inclusion algorithms with high accuracy requires the exactevaluation of scalar products. For this purpose, the new type dotprecision wasintroduced into PASCAL{XSC representing a �xed-point format covering the wholerange of oating-point products. This format allows scalar results { especially sumsof oating-point products { to be stored exactly.Furthermore, scalar product expressions (dot product expressions) with vectorand matrix operands with only one rounding per component can be computed viaexact evaluation within accurate expressions (#-expressions).

Chapter 2Language ReferencePASCAL{XSC is based on the programming language PASCAL de�ned in the reportof Jensen and Wirth [13]. Since PASCAL{XSC is an extension of PASCAL, we donot give a detailed description of the complete language (for this purpose see [9],[13], or [14] for example). Instead, we give a concise description of the standardelements of PASCAL and a rather more detailed introduction into the additionallanguage elements of PASCAL{XSC.The syntax is speci�ed in an easy readable, simpli�ed Backus-Naur-Form, verysimilar to usual program code. It is marked by a black bar at the margin. Therepresentation of the syntax consists of� basic symbols written according to the typographical notation of section 2.1,� syntax variables,� prede�ned identi�ers,� repetition symbols ... , and� comments enclosed in braces f g.Syntax variables are English nouns or composite nouns which serve as abbreviationsfor other syntactical units. If a syntax variable denotes a list, then it stands fora non-empty sequence of corresponding objects separated by commas. Prede�nedidenti�ers are written in slanted characters. The repetition symbol ... denotes anarbitrary number of repetitions of a part of the syntax, i.e. the preceding group oflanguage elements within the same line. This group may occur zero or more timesif no comment to the contrary (enclosed in braces) is given.To generate PASCAL code by means of this syntax representation, we have toread line after line from left to right and note the basic symbols, the prede�nedidenti�ers, and the syntax variables in the suitable number of repetitions. Thento eliminate the syntax variables, we must successively replace them by their ownde�nitions. This process ends when all syntax variables are eliminated.An example for a syntax description is 15

16 CHAPTER 2. LANGUAGE REFERENCEvarIdenti�erList: Type; ... f not empty gAssuming that we know what to replace for Type and what kind of Identi�ers areallowed, we consider an example:Example 2.0.1:The syntax for variable declarations in the example above allows the followingsource code:var i, j, k : integer;x, y : real;m : array [1..10, 1..10] of real;The extensions provided by PASCAL{XSC beyond ISO Standard PASCAL are high-lighted in this chapter by a box: PASCAL{XSCAll extensions provided by PASCAL{XSC beyond the ISO Standard PASCALare enclosed in frames like this!A concise survey of the complete syntax of the language PASCAL{XSC is given bythe syntax diagrams in Appendix A starting from 269.For all implementation-dependencies mentioned in this chapter and in the fol-lowing chapters, we refer to the corresponding user manual supplied with the specialcompiler version.

2.1. BASIC SYMBOLS 172.1 Basic SymbolsThe source code of a program consists of the following basic symbols:letters: a, b, c, : : :, zdigits: 0, 1, 2, : : :, 9special characters: <= < > >= = <>() [] f g+ � � /:= . , ; : ' " t ..The character t denotes a blank.Instead of f g [] "the characters (� �) (. .) @ or ^ may be used.reserved words: and, array, begin, case, const, div, do, downto, else,end, �le, for, forward, function, goto, if, in, label,mod, nil, not, of, or, packed, procedure, program,record, repeat, set, then, to, type, until, var, while,withLetters may be used in either upper or lower case, but they are treated as equivalent.For example, the identi�ers PASCAL and Pascal are identical. A reserved word maybe written in any mixture of upper case or lower case letters. PASCAL{XSC is notcase sensitive as C is.Reserved words may not be used as identi�ers. PASCAL{XSCAdditional basic symbolsletters: (underscore)special characters: $ ##� #< #> ##>< +� ��+> �> �> =>+< �< �< =<reserved words: dynamic, external, global, module,operator, priority, sum, use

18 CHAPTER 2. LANGUAGE REFERENCE2.2 Identi�ersIdenti�ers are names denoting di�erent objects like constants, variables, types, func-tions, procedures, modules etc. occurring within a program.An identi�er consists of an arbitrary sequence of letters and digits beginningwith a letter.Example 2.2.1:variable1, NorthWest, extreme, abTwo identi�ers are considered to be identical if they both consist of the same se-quence of characters, ignoring the case of letters.Reserved words may not be used as identi�ers. When de�ning a new identi�er,note that the following identi�ers have prede�ned meanings:abs eof ln pred round truncarctan eoln maxint put sin writeboolean exp new read sqr writelnchar false odd readln sqrtchr get ord real succcos input output reset textdispose integer page rewrite trueThese identi�ers can be used in their prede�ned meaning without being declaredexplicitly. If they are given a new meaning by an explicit declaration, any occurrenceof such an identi�er refers to the new meaning. The usual meaning provided by thelanguage becomes invisible. PASCAL{XSCThe underscore () may occur at any position of an identi�er.Example 2.2.2:variable 1, north west, extreme , a b, ,The maximum length of an identi�er is the logical line length.Upper case and lower case letters are not distinguished within identi�ers.This means that north west and North West denote the same identi�er.

2.2. IDENTIFIERS 19PASCAL{XSCAdditional prede�ned identi�ers:arccos cmatrix im log2 setlengtharccot comp image log10 signarcsin complex imatrix mant sinharcosh cosh inf mark stringarcoth cot interval maxlength substringarctan2 coth ivector pos suparsinh cvector ival re tanartanh dotprecision lb release tanhcimatrix expo lbound rmatrix ubcinterval exp2 length rvector uboundcivector exp10 loc rvalThe prede�ned identi�ers of procedures and functions may be overloaded. Bythis device, they may be used in the prede�ned meaning as well as in the newmeaning (see section 2.7.10). However, if they are declared in a manner identicalto the prede�ned declaration, then the prede�ned meaning becomes invisible,and the new meaning is used.When using a module by means of a use-clause, all identi�ers declared inthe used module via global become prede�ned identi�ers in the using moduleor program (see section 2.8).Identi�ers are also used to denote operators (see section 2.7.6).

20 CHAPTER 2. LANGUAGE REFERENCE2.3 Constants, Types, and VariablesIn ISO Standard PASCAL, the types integer, real, boolean, and char are prede�nedtogether with corresponding operators (see section 2.4). In addition, an enumerationtype may be declared which de�nes a set of entirely new values and introducesconstant identi�ers to denote these values. The values of such simple types are called(literal) constants. Their syntax is precisely de�ned (see section 2.3.1). Except forstring constants (in the case of a one dimensional array with char as componenttype), there are no literal constants for the structured types array, set, record, and�le. A literal constant of a string is a sequence of characters enclosed in singlequotes.Identi�ers for constants (named constants) may be introduced by a constantde�nition:constIdenti�er = Constant; ... f not empty gThe constant on the right-hand side must be a literal constant or a previously de�nednamed constant.Example 2.3.1:constn = 50;eps = 10e�13;k = n;zf = 'charactersequence';Named constants may be used like literal constants within a program. Duringexecution of a program, they are unchangeable.Identi�ers for types (named types) may be �xed by a type de�nition:typeIdenti�er = Type; ... f not empty gThe type on the right-hand side is either an explicitly de�ned type or a previouslyde�ned type. All types mentioned above are always prede�ned.Example 2.3.2:type color = (red, blue, yellow);logical = boolean;vector = array [1..20] of real;

2.3. CONSTANTS, TYPES, AND VARIABLES 21Identi�ers for variables may be �xed by a variable declaration :varIdenti�erList: Type; ... f not emptygThe listed identi�ers denote variables with the type of the right-hand side. A variablemay therefore be interpreted as a symbolic address of a corresponding storage space.Example 2.3.3:var i, j, k : integer;x, y : real;f : color;vec1, vec2 : vector;m : array [1..20] of vector; PASCAL{XSCThe following additional standard types are available: dotprecision, complex,interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix,cimatrix, and string .A dynamic array type within a variable declaration must specify the indexbounds by corresponding expressions (see section 2.3.2 concerning dynamic arraytypes).A variable is called of anonymous type if there is no related type identi�erin the corresponding declaration (e.g. component variable).Example 2.3.4:var vec1, vec2 : vector; f known type ga : array [1..10] of real; f anonymous type gm : array [1..20] of vector; f anonymous type g2.3.1 Simple TypesThe simple types in PASCAL are the types integer, real, boolean, char, enumerationtypes, and subrange types. They are de�ned as follows:integer Implementation-dependent subset of the whole numbers.The prede�ned constant maxint denotes the implementation-dependent maximum integer number. A literal constant oftype integer is a digit sequence (of decimal digits) with orwithout a sign + or �. See page 23 for PASCAL{XSC exten-sions of type integer.

22 CHAPTER 2. LANGUAGE REFERENCEExample 2.3.5:128 �30 +4728 007real Implementation-dependent subset R of the real numbers IR.A literal constant of type real has the representation� mantissa E exponentThe mantissa is a sequence of digits with or without a decimalpoint, and the exponent is an integer value (with implemen-tation depended bounds). The notation� mantissawithout an exponent part is permitted as well. As a matter ofprinciple, at least one digit must occur in front of and behindthe decimal point.Example 2.3.6:3.1726E�2 �0.08E+5 +1E10 3.1415We have to bear in mind that the value of the decimalrepresentation in PASCAL is not always a member of theimplementation-dependent set R of type real. For example,the decimal oating-point number 1.1 is not exactly repre-sentable as binary oating-point number. Thus, the literalconstant 1.1 used within a program represents a real valuedi�erent from the value 1.1. This problematic nature of con-version we have to bear in mind every time we use literalconstants as operands within expressions, as parameters infunction and procedure calls, or as input parameters. Seepage 24 for the PASCAL{XSC extensions of type real.boolean The range consists of the logical constants true and false withfalse < true.char The range is an implementation-dependent set of characters.Literal constants are enclosed in single quotes. The orderrelation satis�es'0' < '1' < : : : < '9'and 'a' < 'b' < : : : < 'z'.

2.3. CONSTANTS, TYPES, AND VARIABLES 23enumeration types The range consists of constants listed in the type de�nition(ordered sequence of identi�ers). The order relation is de�nedby the order of the enumeration. An enumeration type isde�ned by the programmer in a type de�nition. The literalconstants which are the elements of an enumeration type mustnot collide with any value of another enumeration type.Example 2.3.7:The type de�nitiontype Color = (red, blue, yellow);speci�es the enumeration type Color with the values red,blue, yellow . Another typeSpecialColor = (yellow, orange);is not permitted since the value yellow already occurs intype Color.subrange types Subrange types of each of the prede�ned types integer,boolean, char, and all enumeration types (base types) maybe de�ned by specifying the lower and upper bound byconstant .. constantThe set of values of a subrange consists of the lower and upperbound and all values of the base type between them. Theimportant thing here is that the order relation is inheritedfrom the base type. The lower bound must be less than orequal to the upper bound, and both must be of the same basetype.Example 2.3.8:typeSubrange = 1..100;SubColor = blue..yellow;Letters = 'a'..'z';OctalDigits = 0..7;PASCAL{XSCPASCAL{XSC allows some additional notations for the types integer and real.Furthermore, we introduce the new type dotprecision.integer A value of type integer may also be written as a hexadecimalconstant beginning with the character $ and followed by a hexa-decimal digit sequence consisting of the digits 0; 1; : : : ; 9 andthe letters A,B,: : :,F and a,b,: : :,f.

24 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCExample 2.3.9:$12AFB2 represents the value 1224626real To execute the inevitable conversion of literal real constants intothe internal data format in a controlled way, an additional nota-tion for these constants is necessary. While the usual PASCALnotation of real numbers implies the conversion with roundingto the nearest oating-point (machine) number, it is possible tospecify real constants which are converted with rounding to thenext-smaller or the next-larger oating-point number by the no-tations(< � Mantissa E Exponent) and(> � Mantissa E Exponent) ,respectively. The E and Exponent may be omitted as usual, inwhich case Mantissa must contain a decimal point. The paren-theses are mandatory.Example 2.3.10:(< 1.1) round down(> �1.0E�1) round updotprecision The type dotprecision is based on the type real and permits therepresentation of products of two arbitrary real numbers and theexact summation of an arbitrary number of such products in a�xed point format of suitable size. If the internal real formatis �xed by the mantissa length l and the minimum and maxi-mal exponents emin and emax (see also section 2.4.1.2), then adotprecision variable occupies storage space of the form| {z }| {z }| {z }| {z }g 2�emax 2 � l 2�jeminjThe total length is L = g + 2emax + 2jeminj + 2l digits. Here,g denotes the implementation-dependent number of guard digitsfor accumulating carries during summation (see [28] and [29] fordetails).

2.3. CONSTANTS, TYPES, AND VARIABLES 25PASCAL{XSCValues of type dotprecision typically occur during multiplicationof vectors or matrices. These scalar products can be representedexactly, i.e. without rounding errors, in the format of this type in-dependent of the dimensions of the vectors or matrices. A Valueof type dotprecision can only be generated by an #-expression(see section 2.4.2) in the form# (ExactExpression)There are no constants of this type.2.3.2 Structured TypesThere are four composite data types in ISO Standard PASCAL:� arrays� �les� records� setsThey di�er in their manner of combining elements of the prede�ned types intoa higher structure and accessing their components. Composite types of arbitrarycomplexity may be built up by using components of arbitrary composite types.Any type de�nition may start with the reserved word packed which causesthe components to be stored in a compact fashion. The storage pattern isimplementation-dependent. The reserved word packed has no semantic e�ect.2.3.2.1 ArraysAn array consists of a �xed number of components having the same type. Eachcomponent is indicated by one or more indices which are values of index expressions.The type de�nition of an array must specify index types and the component type:array [IndexTypeList] of ComponentTypeAn index type is a subrange type of type integer, boolean, char, or an enumerationtype, or of one of the last three types itself. The component type may be of anytype. Note that the use of the component type dotprecision may be very memory-consuming.

26 CHAPTER 2. LANGUAGE REFERENCEExample 2.3.11:array [1..10] of real f real vector with gf 10 components garray [1..10, 1..20] of real f real matrix with gf 10 rows and 20 columns garray ['a'..'z'] of boolean f logical vector with gf 26 components garray [1..10] of array ['a'..'z'] of boolean f logical matrix with gf 10 rows and 26 columns garray [(red, yellow, blue, black)] of 0..10 f subrange type vector with gf 4 components gThe components of an array themselves may be used as variables (component vari-ables). The access to these component variables is done byArrayIdentifer [IndexExpressionList]or ArrayIdenti�er[IndexExpressionList] [IndexExpressionList] ...The relation of index expressions (indices) and index ranges works from left to right.The indices must be contained in the corresponding index range.Example 2.3.12: declaration component variablesvar v: array [1..10] of real; v[1], : : :, v[10]var m: array [1..10,1..20] of real; m[1,1], : : :, m[1,20],m[2,1], : : :, m[2,20],...m[10,1], : : :, m[10,20]also possible:m[1][1], : : :var x: array [1..10] ofarray ['a'..'z'] of boolean; x[1]['a'], : : :, x[1]['z'],...x[10]['a'],: : :, x[10]['z']also possiblex[1,'a'], : : :x[1,a] only works if a is a vari-able of type char.

2.3. CONSTANTS, TYPES, AND VARIABLES 272.3.2.2 SubarraysIf the number k of speci�ed indices of a component variable of an array is less thanthe number n of index ranges of the corresponding array (n dimensional array), thenthe component variable is an n�k dimensional subarray. The speci�ed indices referto the �rst k index ranges within the array declaration. PASCAL{XSCA component variable is called of anonymous type if there is no correspondingexplicit type identi�er (see also section 2.3.5 referring to compatibility of types).Example 2.3.13:Let the variable m be a two-dimensional array declared byvar m: array [1..10, 1..20] of real;Then the component variable m[5] is a one-dimensional subarray of anony-mous type, i.e. a vector of 20 components consisting of the row of thematrix m.Arbitrary subarrays (component variables) of an array may be accessed by spec-ifying corresponding index ranges by placing the character � within the indexexpression list. If there is no index expression following a �, then it may beomitted.Example 2.3.14:According to the declarationvar m: array [1..10, 1..20] of real;the component variable m[�,1] denotes an array variable, i.e. a vector with10 elements, where the elements correspond to the elements of the �rstcolumn of the matrix m.The notationsm[1,�] and m[1] as well asm and m[�] and m[�,�]are equivalent.

28 CHAPTER 2. LANGUAGE REFERENCE2.3.2.3 Access to Index Bounds PASCAL{XSCThe access to index bounds without using the quantities of the array declara-tion (absolutely necessary in case of using dynamic arrays) is provided by twostandard functionslbound (ArrayVariable, IntegerConstant) andubound (ArrayVariable, IntegerConstant).Their result is the lower and upper bound of the i-th index range (i = value of theinteger constant) of the array variable. In case the integer constant is missing,the �rst index range is addressed implicitly. The access to index ranges that donot exist is not allowed.The notations lb (instead of lbound) and ub (instead of ubound) may beused as short forms.Example 2.3.15:type matrix = array [1..n,1..k] of real;function sum(var m: matrix): real;vari, j: integer;s: real;begins := 0;for i := lbound(m) to ubound(m) dofor j:= lb(m,2) to ub(m,2) dos := s + m[i,j];sum:= s;end;2.3.2.4 Dynamic ArraysISO Standard PASCAL does not provide dynamic arrays. A certain dynamic capa-bility is given in level 1 of the standard (see [9]) by conformant array schemes asspeci�cation of array parameters within functions and procedures (see section 2.7.1).Thus, the call of the corresponding procedures and functions is possible with actualparameters which need not necessarily be of a de�nite type.PASCAL{XSCPASCAL{XSC provides the dynamic array declaration, similar to that providedby other well-known programming languages (e.g. ALGOL 60, ALGOL 68 [49],ADA [15]). This means that within subroutines, array variables need not bedeclared statically as in Standard PASCAL.

2.3. CONSTANTS, TYPES, AND VARIABLES 29PASCAL{XSCThe index bounds may be given by expressions which result in new index boundsat each subroutine call. Especially, the dynamic array concept and its use inthe speci�cation of formal parameters includes the complete functionality of theconformant array scheme of Standard PASCAL using only a slightly di�erentsyntactical notation.A dynamic array type may be declared similar to the declaration of a staticarray type:dynamic array [DimensionList] of ComponentTypeEvery index range within the dimension list is marked by the character �.A dynamic array type must not occur as component type of a structuredtype, except in a dynamic array type itself. The dynamic array type de�nitionspeci�es only the number of the index ranges and the component type.Example 2.3.16:type DynPolynomial = dynamic array [�] of real;DynVector = dynamic array [�] of real;DynMatrix = dynamic array [�,�] of real;Not allowed istype WrongType = dynamic array [1..n,�] of real;Dynamic array types may occur within a variable declaration by specifying cor-responding index expressions either by using a previously declared type identi�eror by explicitly denoting the dynamic type.Example 2.3.17:var mat1: dynmatrix [1..n,1..2�n];mat2: dynamic array [1..n,1..2�n] of real;In both cases, the computation of the corresponding index expressions must bedetermined at the time of processing of the variable declaration. Thus, truedynamic allocation in array declaration is only possible within procedures andfunctions by using global quantities or formal parameters in the index expressions(see section 2.10).The declaration part of a program can contain expressions in the index boundsonly if they can be evaluated at time of declaration. The reserved word packedmust not occur in a dynamic array declaration, i.e. sequences like packed dy-namic array or dynamic packed array are not permitted.

30 CHAPTER 2. LANGUAGE REFERENCE2.3.2.5 StringsThe string type of ISO Standard PASCAL is a special static packed array type, avector with the component type char:packed array [1..Length] of charwith the integer constant Length � 1.Example 2.3.18:The declarationpacked array [1..15] of charde�nes strings with 15 characters of type char. Examples for constants of thistype are'PASCAL{XSC TOPS' or 'string constant'with exactly 15 characters occurring between the two quotes.2.3.2.6 Dynamic Strings PASCAL{XSCThe declaration of string variables is facilitated by the type speci�cationstring [Length]or juststringLength must be a positive integer constant which is bounded by an implemen-tation dependent maximum length, e.g. 255. The maximum length is assumed ifthe length speci�cation is missing. The range of this dynamic string type consistsof all character sequences with 0, 1, 2, .., Length�1, Length characters.The current length of a string variable is called its actual length. It is dy-namically managed at run-time of the program and may be accessed to by thefunction length and changed by the procedure setlength (see section 2.9).

2.3. CONSTANTS, TYPES, AND VARIABLES 31PASCAL{XSCVariables of type string may be indexed. So s[i] denotes the i-th character of thestring s and is of type char. Access to components outside the declared lengthis not permitted. A change of the actual length of a string variable may only bee�ected by the procedure setlength or an assignment to the string variable.See string expressions (section 2.4.3.2) and text processing (section 2.9) forthe discussion of the use of dynamic strings.2.3.2.7 RecordsA record is a structure consisting of a �xed number of components, called �elds.Fields may be of di�erent types and each �eld is given a name, the �eld identi�er,which is used to select it. The de�nition has the form:record FieldList endA �eld list is an enumeration of �elds of the formFieldIdenti�erList: Type; ...Each �eld identi�er in FieldIdenti�erList denotes a component of the record. A �eldidenti�er is required to be unique only within the record in which it is de�ned. A�eld is referenced by the variable identi�er and the �eld identi�er separated by aperiod:RecordIdenti�er.FieldIdenti�erExample 2.3.19:recordhour: 0..23;minute, second: 0..59;end;recordre, im : real;end;var date: record month: (Jan, Feb, Mar, Apr, May, Jun,Jul, Aug, Sep, Oct, Nov, Dec);day: 1..31;year : integer;end;The component variables of the variable date are accessible bydate.month date.day date.year

32 CHAPTER 2. LANGUAGE REFERENCE2.3.2.8 Records with VariantsA record may be extended by so-called variants, i.e. additional components whichare all stored in the same storage space. The programmer has to keep this spaceunder his control. The variants allow the passing of values without the strong typecontrol of PASCAL. In the type de�nition, the variant part is listed following the�xed components in the formcaseTagField: f may be omitted gTagType ofTagList: (FieldList); ... f not empty gThe tag �eld is actually a �xed component. It is denoted by an identi�er. The tagtype is the type of the tag �eld and of the following tag list elements (constantsof the tag type). The types integer, boolean, char, enumeration types, and theirsubrange types are permitted tag types.An access to a variant should occur only after activation of the desired variant,by the assignment of the corresponding value to the tag �eld component. If a tag�eld component is missing, a variant becomes activated by the �rst access to one ofits components.The components of a variant are accessed like �xed components of a record.Example 2.3.20:Let a variant record type Tra�cSignType be de�ned bytypeform = (circle, rectangle, triangle);Tra�cSignType = recordserialnumber: integer;material: (metal, synthetic);price: real;case �gure: form ofcircle: (radius : real);rectangle:(length, height: real);triangle: (baseline, angleleft,angleright: real);end;A variable Tra�cSign declared byvar Tra�cSign : Tra�cSignType;has three variants, the components of which may be accessed byTra�cSign.�gure := circle;Tra�cSign.radius := 3.5;

2.3. CONSTANTS, TYPES, AND VARIABLES 33or Tra�cSign.�gure := rectangle;Tra�cSign.length := 7.8;Tra�cSign.height := 4.4;or Tra�cSign.�gure := triangle;Tra�cSign.baseline := 5;Tra�cSign.angleleft := 18.1;Tra�cSign.angleright := 45; PASCAL{XSCWith the exception of the type string , a dynamic array type may not occur as acomponent of a record.2.3.2.9 SetsThe range of values of a set type consists of all subsets of a given basetype. Therefore,the type de�nition of a set should only specify the base type:set of BaseTypeA base type may be a subrange of integer, boolean, char, and enumeration type orone of the last three types itself. In most implementations, the ordinal values of thebase type must be within the range 0 through 255 (0 � ord(x) � 255). An accessto elements of a set M corresponding to component variables of arrays and recordsis not provided. However, a test for x 2M is availablex in Mwith the result false or true.The simplest method to generate a set is the enumeration of the desired elementsof the base type by[ElementList]The empty set is member of any set type and is denoted by [].Example 2.3.21:The values of the set typetype digitset = set of 1..3;are the subsets[], [1], [2], [3], [1,2], [1,3], [2,3], and [1,2,3].Values of the character set

34 CHAPTER 2. LANGUAGE REFERENCEset of charare for example['a','b','c'] or ['a'..'z', '0'..'9', 't'].The latter may also be denoted in form of a set expression:['a'..'z'] + ['0'..'9'] + ['t'].2.3.2.10 FilesA �le consists of a sequence of arbitrarily many components of the same type.Therefore, the type de�nition of a �le only �xes the type of the components:�le of ComponentTypeThe component type may be any type except a �le type or a dynamic array type.The number of components in a �le (the actual size of a �le) is not determined bythe de�nition of the �le. It depends on the �le operations applied to a �le. Randomaccess to the components of a �le in the same manner as to the component variablesof arrays and records is not available. Instead, a bu�er variable of component typeis provided which is declared automatically by the declaration of the corresponding�le f . This bu�er variable f " facilitates the access to a special component of a �le,called the actual component. The actual component is determined by the preceding�le operations like reset, rewrite, put, or get:rewrite(f) initializes f for succeeding output operations. The �rst component ofthe �le variable f is actual component. The procedure rewrite setseof(f) = true, and the bu�er variable f " is unde�ned.put(f) assigns the value of f " to the actual component, the following com-ponent becomes the actual component, and eof(f) = true. The bu�ervariable f " is unde�ned.reset(f) initializes f for succeeding input operations. The �rst component be-comes the actual component. If eof(f) = true, then the �le is empty,and it is not possible to read anything. Thus, f " is unde�ned. If eof(f)= false, i.e. the �le is not empty, then the value of the actual componentis assigned to the bu�er variable.get(f) the succeeding component of the actual component becomes the newactual component. If eof(f) = false, then the value of the actual compo-nent is assigned to the bu�er variable f ". Otherwise, the bu�er variablef " is unde�ned.The logical function eof (end of file) returns false if the actual component is ade�ned component of the �le. Otherwise the result is true.Input and output using �les are sequential processes beginning at the �rst com-ponent of the �le. While reading, eof(f) = false must be valid. While writing, eof(f)= true.

2.3. CONSTANTS, TYPES, AND VARIABLES 35Example 2.3.22:program in and out;var f : �le of integer;...beginrewrite(f); f Initialization for output gfor i:= 1 to 100 do f File f consists of gbegin f 100 components with gf" := i; f values 1 to 100 gput(f);end;...reset(f); f Initialization for input gwhile not eof(f) do f The components of f are gbeginwriteln (sqr(f")); f read sequentially and gget(f); f the squares of their values are printed gend;end.2.3.2.11 Text FilesA special �le type is the prede�ned text �le type text with the component typechar. In principle, the handling of text �les is the same as for other �les. Since text�les usually have a line structure, text �les may additionally contain end-of-linecharacters which may be recognized by the logical function eoln (end of line).If eoln(t) = true, the value of the actual component of the text�le variable t isthe end-of-line character. In this case, the bu�er variable f " has the value t (blank).The input/output procedures read, readln, write, and writeln simplify the han-dling of text �le variables. They are used with a parameter for the �le variable andwith an input/output list (see section 2.5.2). If the �le parameter is missing, thestandard text�le variables input and output are assumed.Example 2.3.23:program make a copy (original, copy);f A text is copied according to its line structure gvaroriginal, copy: text;ch: char;: : :beginreset (original);rewrite (copy);while not eof (original) do

36 CHAPTER 2. LANGUAGE REFERENCEbeginwhile not eoln (original) dobeginread (original, ch);write (copy, ch);end;readln (original);writeln (copy);end;end.2.3.3 Structured Arithmetic Standard TypesPASCAL{XSCPASCAL{XSC provides the additional arithmetic built-in types complex, inter-val, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, andcimatrix. They have no constants and no operators within the language itselfand therefore no expressions, either. The use of operators and standard functionsrequires the use of the corresponding arithmetic modules (see chapter 3).
2.3.3.1 The Type complex PASCAL{XSCThe range of complex numbersz = x+ iywith the real part x and the imaginary part y (i is the imaginary unit) may bedeclared in PASCAL bytype complex = record re, im: real end;In PASCAL{XSC, this type is a prede�ned type. The variable declarationvar z: complex;speci�es a complex variable z. The real part and imaginary part of z may beaccessed by z.re and z.im, respectively.

2.3. CONSTANTS, TYPES, AND VARIABLES 372.3.3.2 The Type interval PASCAL{XSCFor real intervalsa = [a; a] := fx 2 IR j a � x � agwith lower bound a and upper bound a, PASCAL{XSC provides the prede�nedtype interval declared bytype interval = record inf, sup: real end;The variable declarationvar a: interval;speci�es an interval variable a. The lower and upper bound of a may be accessedby a.inf and a.sup, respectively:a.inf f access to lower bound ga.sup f access to upper bound g
2.3.3.3 The Type cinterval PASCAL{XSCComplex intervals are rectangles with sides parallel to the axes in the complexplane. The prede�ned type cinterval is de�ned bytype cinterval = record re, im : interval end;The components of the complex interval variable c, declared byvar c: cinterval;may be accessed byc.re f an interval for the real part gc.im f an interval for the imaginary part gThe component variables are intervals. The access to their real bounds may bedone byc.re.inf c.re.sup c.im.inf c.im.sup .

38 CHAPTER 2. LANGUAGE REFERENCE2.3.3.4 Vector Types and Matrix Types PASCAL{XSCFor vectors and matrices with component type real, complex, interval, and cin-terval, the following dynamic types are available:type rvector = dynamic array [�] of real;rmatrix = dynamic array [�] of rvector;cvector = dynamic array [�] of complex;cmatrix = dynamic array [�] of cvector;ivector = dynamic array [�] of interval;imatrix = dynamic array [�] of ivector;civector = dynamic array [�] of cinterval;cimatrix = dynamic array [�] of civector;2.3.4 PointersAll data types of ISO Standard PASCAL are static. Variables of these types areallocated at compile time. Their number remains unchanged during execution ofthe program. However, we frequently need to use a data structure which allows usto generate and discard variables as the need arises. For this purpose, the pointertype is provided.A pointer variable p is a reference (the value is an address) to a variable p "of the referenced type. This referenced variable p" need not to be declared. It isgenerated by means of the standard procedure new during execution time of theprogram. The pointer variable itself is declared like any other static variable.The type de�nition must specify only the referenced type:type PointerTypeIdentifer = " TypeIdenti�erThe referenced type may be any Standard PASCAL type. In contrast to the principlethat any quantity must be declared before it is used, the de�nition of the referencedtype may follow the declaration of the pointer type. The values of a pointer typeare references to variables of the referenced type extended by the value nil (pointerconstant) referencing to no variable and belonging to any pointer type. The constantnil is the only value of a pointer type that is explicitly accessible.Example 2.3.24:type DateType = array [1..20] of real;DatePointer = " element;element = record date: DateType;successor: DatePointer;end;New variables of the referenced type are allocated with the procedure new :

2.3. CONSTANTS, TYPES, AND VARIABLES 39new (PointerVariable);Given the declarations in Example 2.3.24, then the statementnew (DatePointer);allocates a referenced variable DatePointer" of type element. The pointer variableDatePointer points to this referenced variable. The value of DatePointer is notexplicitly known.If the referenced type is a record type with variants, a particular variant may beallocated bynew (PointerVariable, TagFieldValue);Nested variants may be allocated bynew (PointerVariable, TagFieldValue , � � �, TagFieldValue);The value of a pointer expression may be assigned to a pointer variable byPointerVariable := PointerExpression;with the pointer expression being the constant nil, a pointer variable, or a functioncall with a result of pointer type. Functions with a result of pointer type are allowed.Since a pointer can point to any object, functions can return pointers to arbitrarytypes.Pointer expressions may be compared by the relational operators = and <>, e.g.p = nil or p <> q.When a dynamic pointer variable is no longer required by the program, theproceduredispose (PointerVariable);is used to reclaim the memory occupied by the referenced variable. Afterwards,the value of the pointer variable and all references to the referenced variable areunde�ned. Referenced variables allocated bynew (p, m1, m2, � � �, mk);must be released bydispose (p, m1, m2, � � �, mk);At the call of dispose, the values of m1, ... , mk must be identical with the corre-sponding values at the call of new .

40 CHAPTER 2. LANGUAGE REFERENCEExample 2.3.25:varp : DatePointer;begin...new (p);p".date := f value corresponding to type DateType g;p".successor := nil;work (p); f procedure call for further execution g...dispose(p); f release of memory that is no longer required g... PASCAL{XSCA referenced type may be any type except dynamic array types.In addition to dispose, there is another method available to reclaim memory.The procedure call mark (PointerVariable) assigns the value of the heap pointerto the speci�ed pointer variable. The subsequent procedure call release (Pointer-Variable) (with the same unchanged pointer variable as used withmark), sets theheap pointer to the address contained in its argument. The call release (Point-erVariable) thus discards all dynamically allocated variables above this address.After this, the value of the pointer variable used is unde�ned, and all referencesto the released memory range are unde�ned.Within a program and all used modules, a programmer may employ eitherthe dispose construct or the mark/release construct, but not both.2.3.5 Compatibility of TypesCertain operations are only executable if the types of the corresponding operandsare compatible. Two types t1 and t2 are called compatible if(a) t1 and t2 are the same type.(b) t1 is a subrange of t2, t2 is a subrange of t1, or both t1 and t2 are subranges ofthe same base type.(c) t1 and t2 both are set types of compatible base types, and both are eitherpacked or unpacked.(d) t1 and t2 are (static) string types with the same length.Moreover, the assignment compatibility of the type t1 of the variable on the left-handside and the type t2 of the expression on the right-hand side (t1 := t2) is de�ned by:(a) t1 and t2 are the same type, except a �le type.

2.3. CONSTANTS, TYPES, AND VARIABLES 41(b) t1 is type real, t2 is type integer.(c) t1 and t2 are compatible scalar types (except real), and the value of type t2 iscontained in t1.(d) t1 and t2 are compatible set types, and the elements of the value of type t2 arecontained in the base type of t1.(e) t1 and t2 are compatible (static) string types.The assignment compatibility is also applied to the formal parameter in connectionwith a call by value of a function or procedure and the corresponding actual expres-sion in case of a procedure or function call. A formal parameter for call by referenceand the corresponding actual parameter must be compatible.Example 2.3.26:The declarationtypevec1 = array [1..10] of real;vec2 = array [1..10] of real;vec3 = vec1;causes the types vec1 and vec3 to be compatible because they are the sametype, whereas vec1 and vec2 are not compatible, although they have the samestructure. PASCAL{XSCAs a consequence of the dynamic types and the dynamic string concept, thecompatibility must be extended, too. These extensions are explained in thefollowing section.Furthermore, a programmer may overload the assignment operator := (seesection 2.7.12) in order to explicitly extend assignment compatibility to typeswhich are otherwise not compatible. This \overloaded compatibility" is validonly for the assignment statement but not for the call by value of functions andprocedures.2.3.5.1 Compatibility of Array Types PASCAL{XSCAs in Standard PASCAL, two array types are compatible only if they are thesame types, i.e. a dynamic type is not compatible with a static type.A value of the array type t2 is assignment compatible with the variable ofarray type t1 on the left-hand side, if� both types are compatible, and the lengths of the corresponding indexranges are equal.

42 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSC� t1 is an anonymous type, and both are structurally equivalent .A variable is called of anonymous type if there is no related type identi�erin the corresponding declaration. This may occur in the case of componentvariables (subarrays) (see section 2.3.2.2).Example 2.3.27:With the declarationstype vector = array [1..5] of integer;v matrix = array [1..5] of vector;a matrix = array [1..5,1..5] of integer;var a : array [1..10] of real;b : array [1..10] of rvector[1..10];c : rmatrix[1..10, 1..10];d : vector;e : v matrix;f : a matrix;the variables (or component variables)a, b, c[�,2], e[�,1], and f[3]are of anonymous type, and the variables (or component variables)b[3], c[2], d, e[1], and fare of known type.Two array types are called structurally equivalent if the component typesare the same and the index ranges are identical in number, length, andbase type. If the index ranges of an array type are not yet speci�ed, thelength is always adequate. This is a special case for a formal parameter.Thus, the assignment statement (see section 2.5.1) is allowed in the followingcases:Type of left Side Type of right Side Assignment permittedanonymous dynamic arbitrary array type if structurally equivalentknown dynamic known dynamic if the same typeanonymous static arbitrary array types if structurally equivalentknown static known static if the same typeIn all other cases, an assignment is only possible by quali�cation of the arrayexpression of the right side:ArrayTypeIdenti�er (ArrayExpression)

2.3. CONSTANTS, TYPES, AND VARIABLES 43PASCAL{XSCIn this case, the array type identi�er serves as type conversion function (seesection 2.4.3.1). Quali�cation, however, requires the named type and the typeof the array expression to be structurally equivalent.Example 2.3.28:The types poly and vec declared byconst degree = . . . ;type poly = dynamic array [�] of real;vec = dynamic array [�] of real;are not compatible. If we have provided a vector addition operator for thetype vec, then the polynomials p and q declared byvar p, q: poly[0..degree];can be added by means of the quali�cationp := poly (vec (p) + vec (q)).2.3.5.2 Compatibility of StringsIn Standard PASCAL, string types (called array-string types in the following) arecompatible and assignment compatible only if their lengths coincide.PASCAL{XSCThe following rules apply to the new standard type string (called string type inthe following):� Two string types are always compatible. A string type, however, is notcompatible with any other type.� A string value of type t2 is assignment compatible with a variable of typet1 if t1 is a string type and t2 is an array-string type, a string type, or achar type.

44 CHAPTER 2. LANGUAGE REFERENCE2.4 ExpressionsIn this section, we describe the expression concept of PASCAL. For the additionaltypes of PASCAL{XSC, we supply the corresponding details. Moreover, we describehow to create expressions for arbitrary, user-de�ned types by declaring operators andfunctions with arbitrary result for these types. This user-de�ned expression conceptis processed according to the usual rules of priority and parenthesizing.2.4.1 Standard ExpressionsExpressions for the types integer, real, boolean, char, enumeration type, and set arecomposed of operands and operators in the usual manner. All rules and propertiesdescribed for the types integer, boolean, char, and enumeration type in the followingapply in the same way to their subrange types.The evaluation of an expression is done according to the conventional rules ofalgebra for left-to-right evaluation of operators and operator precedence. An ex-pression enclosed within parentheses is evaluated independently of preceding andfollowing operators. The type of the expression value is given by the operator whichis processed last. An expression is built up byMonadicOperator Operand f not empty gDyadicOperator Operand ...An operand is given by the alternatives� constant� variable� function call� expression, enclosed in parentheseswhere a function can be prede�ned or user-de�ned.Example 2.4.1:Let op1, op2, op3 be operands, � a monadic operator, and +, � dyadic oper-ators. Then, we can built up the expression� op1 + op2 � op1 � op3using three repetitions of the third line of the above syntax. Moreover, we canreplace op3 by a further expression, for exampleop2 + f (op1)where f is a function with appropriate result type. Then we get� op1 + op2 � op1 � (op2 + f (op1))

2.4. EXPRESSIONS 45The operators are de�ned only for special kind of operands. They denote di�erentoperations depending on the operand types:Monadic Operator Operand Type Result Type+;� integer, real integer, realnot boolean booleanDyadic Operator Operand Type Result Type+;�; �; div, mod integer integer= real+;�; �; = integer and real real+;�; �; = real realor, and boolean boolean+ (set union), set set� (set di�erence),� (set intersection)=; <>;<;>;<=; >= integer, real, char, boolean, booleanenumeration type, string=; <>; set boolean<= (subset inclusion),>= (superset inclusion)in (set membership) left operand: booleaninteger, boolean, andenumeration typeright operand:corresponding set typeThe priority levels of Standard PASCAL are:Priority Dyadic Operators Monadic Operators0 (lowest) =; <>; <=; >=; <; >; in1 +; �; or +; �2 mod, div, �, /, and3 (highest) notPASCAL{XSCIn contrast to Standard PASCAL, the monadic operators + and � have thehighest priority 3. Several monadic operators can occur in sequence.MonadicOperator ... Operand f not empty gDyadicOperator Operand ...

46 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCSeveral monadic operators in sequence are executed from right to left. In additionto Standard PASCAL, the following operators are available:Dyadic Operator Operand Type Result Type+<, �<, �<, =< integer or real real+>, �>, �>, => integer or real real+ char or string stringin left operand: string or char booleanright operand: stringAdditionally, the dyadic operator symbols ��, +�, and >< are available. Theyget their prede�ned meaning by using the arithmetic modules (see chapter 3).In PASCAL{XSC, the priority levels are:Priority Dyadic Operators Monadic Operators0 (lowest) =; <>; <=; >=; <; >; in, ><1 or, +, +<, +>, �, �<, �>, +�2 �, �<, �>, /, /<, />, ��mod, div, and3 (highest) +, �, not2.4.1.1 Integer ExpressionsAn integer expression is composed of integer operands and the operators +;�; �;div, and mod. The operators div and mod denote the integer division and thedivision remainder, respectively. The following intrinsic functions are available:Function De�nitiontrunc (real expression) Rounding by truncation of the fractional partround (real expression) Rounding to the nearest integer number, i.e.round (r) = (trunc (r + 0.5) for r � 0trunc (r � 0.5) for r < 0ord (O-Type expression) Ordinal number of the parameter. The elementsof these types have the corresponding ordinalnumbers 0,1,2,...ord (integer expression) Identity, i.e. ord(v) = vsucc (integer expression) Successor, i.e. succ(v) = v + 1pred (integer expression) Predecessor, i.e. pred(v) = v � 1abs (integer expression) Absolute valuesqr (integer expression) Square, i.e. sqr(v) = v2O-Type = boolean, char, or enumeration typePASCAL{XSC

2.4. EXPRESSIONS 47The following additional functions with integer result are available:Function De�nitionloc (variable) Implementation-dependent address of thevariableord (pointer expression) Implementation-dependent value of thepointer expressionsign (S-Type expression) Sign, i.e. sign (a) = 8><>: �1 for a < 00 for a = 0+1 for a > 0lbound (array variable,integer constant) Lower bound of an index rangelb (array variable,integer constant) Lower bound of an index rangeubound (array variable,integer constant) Upper bound of an index rangeub (array variable,integer constant) Upper bound of an index rangeexpo (real expression) Exponential part of the normalized man-tissa (see section 2.4.1.2)S-Type = integer, real, or dotprecisionFor an array variable A, the function lbound(A,n) delivers the lower bound ofthe index range of the n-th dimension. If there is no second parameter, the �rstdimension is chosen. The functions lb (for lbound) and ub (for ubound) can beused as short forms.The functionivalfor conversion of a string to an integer value (see section 2.9) is provided.An integer expression may also include user-de�ned operators and functioncalls with integer result type.
2.4.1.2 Real ExpressionsA real expression is composed of real or integer operands and the correspondingoating point operators +;�; �; =. Using +;�; � with two integer operands causesthe integer operation to be executed. The following prede�ned functions are avail-able:

48 CHAPTER 2. LANGUAGE REFERENCEFunction De�nitionabs (real expression) Absolute value jxjsqr (real expression) Square x2sin (real expression) Sine sinxcos (real expression) Cosine cos xarctan (real expression) Arc Tangent arctan xexp (real expression) Exponential Function exln (real expression) Natural Logarithm lnx, x > 0sqrt (real expression) Square Root px, x � 0Further implementation-dependent information about the domain and the range ofthe functions can be found in the user manual of the compiler.Example 2.4.2:With the declarationsvar x, y, v, w : real;i, j : integer;the expressionssqr(x) + sin(y+1.5)/ln(sqr(v)+sqr(w)+1.2) andi div j + 1e�10are real expressions. PASCAL{XSCPASCAL{XSC provides oating point operations with three di�erent kinds ofroundings. The following remarks give a review of the fundamentals for the useof these operations.A oating point system R is characterized by a base b (for instance 2 or 10), a�nite number n of mantissa digits (for instance 13), and an exponent range withthe smallest exponent emin and the largest exponent emax (see also chapter 1).A normalized oating point number x can be represented byx = �0:d1d2:::dn � bex;where d1 6= 0, 0 � di � b � 1, and emin � ex � emax. We denote a oatingpoint system by R = R(b; n; emin; emax).A oating point system (see also [28] and [24]) is not closed with respect to thearithmetic operations +;�; �; =. That means that the mathematical operationapplied to two operands in R does not always produce a result which lies in R.Using R(10; 2;�10; 10) for example, x + y with x = 0:58 and y = 0:47 delivers1:05. This number is not an element of R, so it must be rounded to a numberin R. The best we can do is to round the exact result to one of the adjacentnumbers in R, either 1.0 or 1.1. So the result of the rounded operation is correctup to one ulp (unit in the last place).

2.4. EXPRESSIONS 49PASCAL{XSCThe smallest local error is produced by using the rounding to the nearest oat-ing point number (1/2 ulp). In PASCAL{XSC, this implementation-dependentrounding is accessed by the usual operations +;�; �; =. The operations withdownwardly directed rounding and with upwardly directed rounding are denotedby the symbols +<, �<, �<, =<, and +>, �>, �>, =>, respectively.We need directed roundings if we want to compute guaranteed bounds forthe exact value of a real expression. To get a valid bound, we must be carefulto use the correct rounding mode for each operation. We must also take care toround literal constants correctly.Directed roundings are also used to implement an interval arithmetic. In eachinterval operation, the lower bound must be rounded downward, and the upperbound must be rounded upward.Example 2.4.3:In R(10; 4;�5; 5), the real expressions1/3, 1/<3, and 1/>3deliver the values0.3333, 0.3333, and 0.3334,respectively.If we want to compute a lower and an upper bound for the real expressionx � y � v � w,we can do this in PASCAL{XSC by evaluatingx �< y �< v �> wand x �> y �> v �< w .The result of v � w must be rounded the opposite direction as the result ofx � y because of the intervening subtraction operator.PASCAL{XSC provides the built-in functions succ and pred for both integerand real arguments.Function De�nitionsucc (real expression) Next larger oating point numberpred (real expression) Next smaller oating point number

50 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCThe following additional mathematical functions are provided:Function De�nitionexp2 (real expression) Power function, base 2 2xexp10 (real expression) Power function, base 10 10xlog2 (real expression) Logarithm, base 2 log2 xlog10 (real expression) Logarithm, base 10 log10 xtan (real expression) Tangent tanxcot (real expression) Cotangent cotxarcsin (real expression) Arc Sine arcsinxarccos (real expression) Arc Cosine arccos xarccot (real expression) Arc Cotangent arccotxarctan2 (real expression,real expression) arctan2(r1,r2) = arctan (r1/r2)sinh (real expression) Hyperbolic Sine sinh xcosh (real expression) Hyperbolic Cosine cosh xtanh (real expression) Hyperbolic Tangent tanh xcoth (real expression) Hyperbolic Cotangent coth xarsinh (real expression) Inverse Hyperbolic Sine arsinhxarcosh (real expression) Inverse Hyperbolic Cosine arcosh xartanh (real expression) Inverse Hyperbolic Tangent artanhxarcoth (real expression) Inverse Hyperbolic Cotangent arcoth xAll real arithmetic functions available in PASCAL{XSC deliver a result of maxi-mum accuracy in the sense that there is no other oating-point number betweenthe exact result and the computed oating-point number (1 ulp accuracy). Fur-ther implementation-dependent information about the domain and the range ofthe functions can be found in the user manual of the compiler.The functionrvalconverts strings into real values (see section 2.9 for details). For decomposingand composing of real numbers, PASCAL-XSC provides the functions mant andcomp (see also expo in section 2.4.1.1).Function De�nitionmant (real expression) Normalized mantissa m of r. The range ofm is implementation-de�ned.comp (real expression,integer expression) Composition of a mantissa (type R) andan exponent (type I) to a real number.The ranges of the real and integer expres-sions are implementation-de�ned.

2.4. EXPRESSIONS 51PASCAL{XSCExample 2.4.4:The functions mant, expo, and comp satisfy the identitiesx = comp (mant (x), expo (x)),e = expo (comp (m , e)),m = mant (comp (m , e)).Depending on the implementation, we might getStatement Resultm := mant (100) m = 0.1e := expo (100) e = 3x := comp (m,e) x = 100 = 0.1E+03A real expression may also include user-de�ned operators and function calls withreal result type.
2.4.1.3 Boolean ExpressionsPermissible operands in a boolean expression are the literal constants true andfalse, variables, boolean functions, comparisons, expressions in parentheses, and thefollowing boolean functions:Function De�nitionpred (boolean expression) Predecessor according to false < truesucc (boolean expression) Successor according to false < trueodd (integer expression) Returns true if the argument is an oddnumber, and false if it is an even one.eof (�le variable) Returns true if the end of the �le isreached, and false if not.eoln (text �le variable) Returns true if the end of the line isreached, and false if not.If one of the operands is a comparison, then it has to be put in parentheses. Thesymbol <> stands for 6= (not equal to). The relational operators <= and >= denotethe logical implication ! and , respectively. The symbol = denotes the logicalequivalence.

52 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCAdditional built-in functions:Function De�nitionlbound (array variable, integer constant) Lower bound of an index rangelb (array variable, integer constant) Lower bound of an index rangeubound (array variable, integer constant) Upper bound of an index rangeub (array variable, integer constant) Upper bound of an index rangeFor an array variable A with index type boolean, lbound(A,n) delivers the lowerbound of the index range of the n-th dimension. If there is no second parameter,the �rst dimension is chosen. This rule also holds for ubound. lb (for lbound)and ub (for ubound) can be used as short forms.Comparisons for values of the arithmetic typescomplex, interval, cintervaland rvector, cvector, ivector, civector,rmatrix, cmatrix, imatrix, cimatrixare de�ned in the corresponding arithmetic modules. A detailed description isgiven in chapter 3 (Arithmetic Modules).It is not possible to compare dotprecision values directly. Two dotprecisionvalues can be compared by subtracting them and then using the sign function:sign (d) := 8><>: 1 for d > 00 for d = 0�1 for d < 0,where d is an expression of type dotprecision.A boolean expression may also include user-de�ned operators and functioncalls with boolean result type.2.4.1.4 Character ExpressionsA character expression is given by a constant, a variable, or a function call. Thereare no character operators. Prede�ned functions with result type char are:Function De�nitionpred (char expression) Predecessorsucc (char expression) Successorchr (integer expression) Returns the character with the ordi-nal value of the integer expressionThe results of these char functions depend on the implementation.

2.4. EXPRESSIONS 53PASCAL{XSCAdditional prede�ned functions:Function De�nitionlbound (array variable, integer constant) Lower bound of an index rangelb (array variable, integer constant) Lower bound of an index rangeubound (array variable, integer constant) Upper bound of an index rangeub (array variable, integer constant) Upper bound of an index rangeFor an array variable A with its index type char, lbound(A,n) delivers the lowerbound of the index range of the n-th dimension. If there is no second parameter,the �rst dimension is chosen. This rule also holds for ubound. lb (for lbound)and ub (for ubound) can be used as short forms.A char expression may also include user-de�ned operators and function callswith char result type.2.4.1.5 Enumeration ExpressionsThe enumeration expression consists of enumeration constants, variables, and func-tion calls of the built in functions pred and succ.Function De�nitionpred (enumeration expression) Predecessor in the enumeration typesucc (enumeration expression) Successor in the enumeration typePASCAL{XSCAdditional prede�ned functions:Function De�nitionlbound (array variable, integer constant) Lower bound of an index rangelb (array variable, integer constant) Lower bound of an index rangeubound (array variable, integer constant) Upper bound of an index rangeub (array variable, integer constant) Upper bound of an index rangeFor an array variable A with an enumeration type as its index type, lbound(A,n)delivers the lower bound of the n-th dimension. If there is no second parameter,the �rst dimension is chosen. This rule also holds for ubound. lb (for lbound)and ub (for ubound) can be used as short forms.

54 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCExample 2.4.5:type precipitation = (rain, hail, snow);var p: precipitation;pset: array [precipitation] of real;...p:= succ (rain); f the value hail is assigned to p gp:= ubound (pset); f the value snow is assigned to p gAn enumeration expression may also include user-de�ned operators and functioncalls with enumeration result type. There are no prede�ned operators available.2.4.2 Accurate Expressions (#-Expressions)PASCAL{XSCThe usual real expressions of almost every programming language are simplyevaluated by executing each operation and immediately rounding the result to thegiven real format. The problem with this kind of evaluation is that the inuenceof the roundings may falsify the �nal result. To avoid such uncontrollable e�ects,PASCAL{XSC provides the dotprecision expressions and accurate expressions.Accurate expressions (#-expressions) are marked by the preceding #-symbol.There are three di�erent forms of basic accurate expressions: the dotprecisionexpression# (real ExactExpression) f exact dotprecision result gthe real accurate expression#� (real ExactExpression) f rounded to the nearest real number g#< (real ExactExpression) f rounded to the next smaller real number g#> (real ExactExpression) f rounded to the next larger real number gand the interval accurate expression## (real ExactExpression) f rounded to the smallest enclosing interval gThe exact expression enclosed in parentheses is always evaluated exactly withoutany rounding. An exact expression must be mathematically equivalent to a scalarproduct (dot product) Pui �vi. It is built up according to the following syntacticstructure:

2.4. EXPRESSIONS 55PASCAL{XSC� Summand Operator Summand ...Only the operators + and � can be used in the exact expression. They denotethe exact (errorless) addition and subtraction of operands (summands) of one ormore of the following forms:Summand De�nitiondotprecision variable dotprecision-variablereal operand real operand with the alternativesinteger variableinteger constantreal variablereal constantreal operand � real operand exact double length product of tworeal operands(real exact expression) exact expression enclosed in paren-thesesfor i:= s to e sum(real exact expression) for-statement for summation, withi an integer variable and s, e integerexpressionsfor i:= s downto e sum(real exact expression) for-statement for summation, withi an integer variable and s, e integerexpressionsNotice: Within the exact expression, the operators +;�; � denote the exactoperations in the mathematical sense without any rounding. Therefore,they can not be overloaded by user-de�ned operators.The for-statement with sum is a short form for summation. In this state-ment, the exact expression enclosed in parentheses may depend on thecontrol variable i. An expression of the formEEs + EEs+1 + ... + EEe�1 + EEewith exact expressions EEi can be abbreviated byfor i:= s to e sum (EEi)(see also section 2.5.8.3 for-statement).

56 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCAn empty loop (for-statement) corresponds to a summand with the valuezero. The same applies to downto.The integer expressions s (start index) and e (end index) themselves mustnot contain explicit #-expressions.Example 2.4.6:The value of the scalar products := 10Xi=1 ai � bican be computed with only one rounding. Assuming the declarationsvar a, b : array [1..10] of real;s : real;d : dotprecision;i : integer;this can be realized viad := # (0);for i:=1 to 10 do d := # (d + a[i]�b[i]);s := #� (d); f rounding to the nearest real number gUsing the short form, this can be done bys := #� (for i:=1 to 10 sum (a[i]�b[i]));Example 2.4.7:To compute the nearest, the next smaller, and the next larger oating pointnumber of the value of the expression E = x � y � v � w , we can writeEnearest := #� (x � y � v � w),Esmaller := #< (x � y � v � w), andElarger := #> (x � y � v � w),respectively. The results satisfypred (Elarger) = Esmaller � Enearest � Elarger = succ (Esmaller).Notice: If literal constants are used as real operands within an #-expression,the programmer should understand that these constants are converted intothe internal data format �rst. Thus, depending on the implementation,inevitable errors may arise with the necessary conversions.

2.4. EXPRESSIONS 57PASCAL{XSCFor example, with an internal binary representation, the expression## (0.1)does not deliver an interval inclusion of the real number 0.1, but a pointinterval corresponding to the value of the converted constant. An inclusionfor the real value 0.1 may be computed byintval ((<0.1) , (>0.1))(see also section 3.2).2.4.3 Expressions for Structured Types andPointer ExpressionsThe set type is the only structured type of Standard PASCAL for which expressionscan be built up in the usual manner with operations. There are no operators inarray or record expressions. There are no �le expressions or text �le expressions.PASCAL{XSCThe operator concept of PASCAL{XSC (see section 2.7.6) enables us to declareoperators for arbitrary prede�ned types and user-de�ned types. Thus, we cande�ne expressions of any type.The syntax of a general expression in PASCAL{XSC is identical to the syntaxdescribed in section 2.4.1 on page 45 for standard expressions.PASCAL{XSC provides expressions for the arithmetic types complex, inter-val, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, andcimatrix. It also provides many operators and functions for these types. A de-tailed description of these features is given in chapter 3 (Arithmetic Modules)in the corresponding sections describing the modules C ARI, I ARI, CI ARI,MV ARI, MVC ARI, MVI ARI, and MVCI ARI.2.4.3.1 Array ExpressionsAn array expression comprises no operators. It consists only of variables.PASCAL{XSCIn PASCAL{XSC, an array expression can be composed of user-de�ned opera-tors, variables, function calls and quali�cation (similar to the casting in C).

58 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCThe quali�cation has the formArrayTypeIdenti�er (ArrayExpression)where the array type identi�er serves as a type converting function. If the arrayexpression is structurally equivalent, then it is converted into the type named bythe identi�er.There are no prede�ned operators for operands of an array type.Example 2.4.8:typevector = array [1..8] of real;polynomial = array [0..7] of real;varv : vector;p : polynomial;: : :p := polynomial (v);v := vector (p);The type converting function or quali�cation is used in connection with dynamicarrays and with operators (see section 2.7.6).A dynamic array expression has the same syntactical structure as the arrayexpression, except that dynamic array operands can be used.
2.4.3.2 String ExpressionsThere are no prede�ned operators or functions for strings in Standard PASCAL. Astring expression is either a string constant or a string variable.PASCAL{XSCThe operator + de�ned byoperator + (a, b : string) conc: string;concatenates two dynamic string operands. The strings are concatenated in theorder a followed by b. The current length of the result is the sum of the currentlengths of a and b. If the maximum length of the type string is exceeded, thenthe result is implementation-de�ned.

2.4. EXPRESSIONS 59PASCAL{XSCThe operands of + may be string constants and variables, string function calls(for the prede�ned functions, see section 2.9), and string expressions enclosedin parentheses. A character expression can be used as special kind of a stringoperand.Example 2.4.9:var s1, s2: string [6];s3 : string [11];...s1 := 'PASCAL';s2 := '{XSC';s3 := s1 + s2; f the value 'PASCAL{XSC' is assigned to s3 g2.4.3.3 Record Expressions PASCAL{XSCA record expression may include user-de�ned operators, record variables, andfunction calls with record result type. There are no prede�ned operators avail-able.2.4.3.4 Set ExpressionsA set can be given by a set constructor of the form[ExpressionList]The expressions in the expression list are element speci�cations. Such an elementspeci�cation is an expression of the base type of the set or a subrange expressed byExpression .. Expression.An empty expression list is permitted, so that [] de�nes an empty set.Set constructors, set variables, set function calls, and set expressions enclosed inparentheses can be operands in set expressions.The operators +;�, and � denote the set union, set di�erence, and set intersec-tion, respectively.Example 2.4.10:var set of vowels, set of consonants : set of 'a'..'z';set of vowels := ['a', 'e', 'i', 'o', 'u'];set of consonants := ['a'..'z'] � set of vowels;

60 CHAPTER 2. LANGUAGE REFERENCE2.4.3.5 Pointer ExpressionsA pointer expression consists of the constant nil, a pointer variable, or a pointerfunction call. There are no prede�ned operators for pointer operands.PASCAL{XSCIf the function ord is applied to an argument of pointer type, it delivers the valueof the pointer, i.e. the implementation-dependent address of the object which thepointer references. If p is a pointer, thenord (p) = loc (p")2.4.4 Extended Accurate Expressions (#-Expressions)PASCAL{XSCThe concept of real accurate expressions (#-expressions) based upon the typedotprecision can be extended to the arithmetic types complex , interval, andcinterval using the prede�ned operators +;�, and �. Moreover, it is possibleto form accurate expressions for vectors and matrices over the types real, in-terval, complex, and cinterval. The corresponding exact expressions must bemathematically equivalent to scalar products (dot products).Notice: To use these extended #-expressions, it is necessary to include thecorresponding arithmetic module (see section 3) via a use-clause.Within the exact expression, the operators +;�, and � denote the exactoperations in the mathematical sense without any rounding. Therefore,they can not be overloaded by user-de�ned operators.The for-statement with sum can be used within the extended #-expression. An expression of the formEEs + EEs+1 + ... + EEe�1 + EEewhere the EEi are exact expressions, can be abbreviated byfor i:= s to e sum (EEi)(see also section 2.5.8.3, for statement). An empty loop (for-statement)corresponds to a summand with the value zero. The same applies todownto. The integer expressions s and e themselves must not contain#-expressions.

2.4. EXPRESSIONS 612.4.4.1 #-Expressions for the Arithmetic Types PASCAL{XSCA real accurate expression can use scalar products of two real vectors as sum-mands. For example, with a and b of type rvector, we can evaluate a � b andstore the exact result in a dotprecision variable. Within the accurate expression,the operator � which is provided in the arithmetic module MV ARI denotes theexact computation of the scalar product.Furthermore, accurate expressions are useful to program operations on thetypes interval, complex, and cinterval (complex interval). The syntax of accu-rate expressions of type interval, complex, and cinterval has the following form:The interval accurate expression (with rounding to the smallest enclosing inter-val): ## (real ExactExpression)## (interval ExactExpression)The complex accurate expression (with componentwise rounding to the nearest,the next smaller, or the next larger complex number):#� (complex ExactExpression)#< (complex ExactExpression)#> (complex ExactExpression)The cinterval accurate expression (with rounding to the smallest enclosing inter-val): ## (complex ExactExpression)## (cinterval ExactExpression)The exact expressions within these accurate expressions are of the same syntac-tical structure as the real exact expression, except that there are no interval-,complex-, or cinterval-dotprecision types or variables. In general, an exact ex-pression has the syntactical form� Summand Operator Summand ...where only + and � are permitted as operators.

62 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCSummands which can be combined by the operators + and � are (with �; � 2freal, interval, complex, cintervalg):Summand De�nitiondotprecision variable dotprecision variable� operand constant, variable, function call� operand � � operand exact product of double length� vector operand � vector � operand exact scalar product of two vectors(� exact expression) exact expression enclosed in paren-thesesfor i:= s to e sum(� exact expression) for-statement for summation, withi an integer variable and s,e integerexpressionsfor i:= s downto e sum(� exact expression) for-statement for summation, withi an integer variable and s,e integerexpressionsNot all the summands must be of the same type. Within a cinterval accurateexpression, mixed summands of type real, complex, or interval can be used aswell. The type of the exact expression is speci�ed by the type combination ofthe summands that occur. The allowed � - or �-operands are listed in section2.4.4.4.Example 2.4.11:Assuming the declarationsvar a, b : real;ca : complex;cib : cinterval;v, w : rvector[1..10];cv, cw : cvector[1..10];civ : civector[1..10];the following accurate expressions are syntactically correct:Acccurate Expression Result Type#< (b + v � w + for i:=1 to 10 sum (v[i])) real#� (ca + a � b + a � ca + cv � w + cv[3] � cw[5]) complex## (b + a � b + v � w) interval## (ca + a � b + ca � cib + cv � civ) cinterval

2.4. EXPRESSIONS 632.4.4.2 #-Expressions for Vectors PASCAL{XSCFor vectors over the arithmetic types real, complex, interval, and cinterval, ac-curate expressions can be formed analogously:Accurate Expression Type Syntaxrvector accurate expression #� (rvector ExactExpression)#< (rvector ExactExpression)#> (rvector ExactExpression)ivector accurate expression ## (rvector ExactExpression)## (ivector ExactExpression)cvector accurate expression #� (cvector ExactExpression)#< (cvector ExactExpression)#> (cvector ExactExpression)civector accurate expression ## (cvector ExactExpression)## (civector ExactExpression)The exact expression has the form� Summand Operator Summand ...where only + and � are permitted as operators.Summands which can be combined by the operators + and � are (with �; � 2freal, interval, complex, cintervalg):Summand De�nition� vector operand variable, function call� operand � � vector operand exact product of double length(componentwise)� vector operand � � operand exact product of double length(componentwise)� matrix operand � � vector operand exact matrix/vector product (withexact scalar product for each com-ponent)(� vector exact expression) exact expression enclosed in paren-thesesfor i:= s to e sum(� vector exact expression) for-statement for summation, withi an integer variable and s, e integerexpressionsfor i:= s downto e sum(� vector exact expression) for-statement for summation, withi an integer variable and s, e integerexpressions

64 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCNot all the summands must be of the same type. Within a civector accurateexpression, mixed summands of type rvector, cvector, or ivector can be used aswell. The type of the exact expression is speci�ed by the type combinations ofthe summands that occur. The allowed � - or �-operands are listed in section2.4.4.4.Example 2.4.12:Assuming the declarationsvar a, b : real; M : rmatrix[1..10,1..10];ca : complex; cM : cmatrix[1..10,1..10];v, w : rvector[1..10]; iM : imatrix[1..10,1..10];cv : cvector[1..10]; ciM : cimatrix[1..10,1..10];civ : civector[1..10];the following accurate expressions are syntactically correct:Accurate Expression Result Type#� (for i:=1 to 10 sum (M � v + a � M[�,i])) rvector#> (cv + v � b + a � cv + cM � w + cM � cv) cvector## (v + a � v + iM � v) ivector## (cv + M � v + ca � civ + ciM � cv) civector2.4.4.3 #-Expressions for Matrices PASCAL{XSCFor the arithmetic matrix types, accurate expressions can be formed analogously:Accurate Expression Type Syntaxrmatrix accurate expression #� (rmatrix ExactExpression)#< (rmatrix ExactExpression)#> (rmatrix ExactExpression)imatrix accurate expression ## (rmatrix ExactExpression)## (imarrix ExactExpression)cmatrix accurate expression #� (cmatrix ExactExpression)#< (cmatrix ExactExpression)#> (cmatrix ExactExpression)cimatrix accurate expression ## (cmatrix ExactExpression)## (cimatrix ExactExpression)

2.4. EXPRESSIONS 65PASCAL{XSCThe exact expression again has the form� Summand Operator Summand ...where only + and � are permitted as operators.Summands which can be combined by the operators + and � are (with �; � 2freal, interval, complex, cintervalg):Summand De�nition� matrix operand variable, function call� operand � � matrix operand exact product of double length(componentwise)� matrix operand � � operand exact product of double length(componentwise)� matrix operand � � matrix operand exact matrix product (with exactscalar product for each component)(� matrix exact expression) exact expression enclosed in paren-thesesfor i:= s to e sum(� matrix exact expression) for-statement for summation, withi an integer variable and s, e integerexpressionsfor i:= s downto e sum(� matrix exact expression) for-statement for summation, withi an integer variable and s, e integerexpressionsNot all the summands have to be of the same type. Within a cimatrix accurateexpression, mixed summands of type rmatrix, cmatrix, or imatrix can be usedas well. The type of the exact expression is speci�ed by the type combinationof the summands that occur. The allowed � -or �-operands are listed in section2.4.4.4.Example 2.4.13:Assuming the declarations of example 2.4.12, the following #-expressionsare syntactically correct:Accurate Expression Result Type#> (for i:=1 to 10 sum (M � M)) rmatrix#< (cM + b � cM + for i:=1 to 10 sum (cM � M)) cmatrix## (M + a � M + iM � iM) imatrix## (cM + M � iM + ca � iM + cM � cM) cimatrix

66 CHAPTER 2. LANGUAGE REFERENCE2.4.4.4 List of the Operands in #-Expressions PASCAL{XSCThe de�nition of the functions mentioned in the following list and their declara-tions are given in chapter 3 and in a short form in the appendix.real operand:integer variableinteger constantreal variablereal constantinf (interval operand) flower bound of the intervalgsup (interval operand) fupper bound of the intervalgre (complex operand) freal part gim (complex operand) fimaginary partginterval operand:interval variableintval (real operand) ftransfer functiongintval (real operand, real operand) ftransfer functiongre (complex operand) freal partgim (cinterval operand) fimaginary partgcomplex operand:complex variable fz = x+ iygconj (complex operand) fconjugation z = x� iygcompl (real operand) ftransfer functiongcompl (real operand, real operand) ftransfer functionginf (cinterval operand) flower bound of the complex intervalgsup (cinterval operand) fupper bound of the complex intervalgcinterval operand:cinterval variableconj (cinterval operand)intval (complex operand)intval (complex operand, complex operand)intval (real operand, complex operand)intval (complex operand, real operand)compl (interval operand)compl (interval operand, interval operand)compl (real operand, interval operand)compl (interval operand, real operand)rvector operand:rvector variablervector (array variable) fquali�cationginf (ivector operand)

2.4. EXPRESSIONS 67PASCAL{XSCrvector operand: (continued)sup (ivector operand)re (cvector operand)im (cvector operand)ivector operand:ivector variableivector (array variable) fquali�cationgintval (rvector operand)intval (rvector operand, rvector operand)re (civector operand)im (civector operand)cvector operand:cvector variablecvector (array variable) fquali�cationgconj (cvector operand)compl (rvector operand)compl (rvector operand, rvector operand)inf (civector operand)sup (civector operand)civector operand:civector variablecivector (array variable) fquali�cationgconj (civector operand)intval (cvector operand)intval (cvector operand, cvector operand)intval (rvector operand, cvector operand)intval (cvector operand, rvector operand)compl (ivector operand)compl (ivector operand, ivector operand)compl (rvector operand, ivector operand)compl (ivector operand, rvector operand)rmatrix operand:rmatrix variablermatrix (array variable) fquali�cationgid (rmatrix operand) fidentity matrixgid (rmatrix operand, rmatrix operand) fidentity matrixgtransp (rmatrix operand) ftransposed matrixginf (imatrix operand)sup (imatrix operand)re (cmatrix operand)im (cmatrix operand)

68 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCimatrix operand:imatrix variableimatrix (array variable) fquali�cationgid (imatrix operand)id (imatrix operand, imatrix operand)transp (imatrix operand)intval (rmatrix operand)intval (rmatrix operand, rmatrix operand)re (cimatrix operand)im (cimatrix operand)cmatrix operand:cmatrix variablecmatrix (array variable) fquali�cationgid (cmatrix operand)id (cmatrix operand, cmatrix operand)transp (cmatrix operand)herm (cmatrix operand) fHermitian matrixgconj (cmatrix operand)compl (rmatrix operand)compl (rmatrix operand, rmatrix operand)inf (cimatrix operand)sup (cimatrix operand)cimatrix operand:cimatrix variablecimatrix (array variable) fquali�cationgid (cimatrix operand)id (cimatrix operand, cimatrix operand)transp (cimatrix operand)herm (cimatrix operand)conj (cimatrix operand)intval (cmatrix operand)intval (cmatrix operand, cmatrix operand)intval (rmatrix operand, cmatrix operand)intval (cmatrix operand, rmatrix operand)compl (imatrix operand)compl (imatrix operand, imatrix operand)compl (rmatrix operand, imatrix operand)compl (imatrix operand, rmatrix operand)

2.4. EXPRESSIONS 692.4.4.5 Review of General #-Expressions PASCAL{XSCThe following tables give a complete review of #- expressions. By \special func-tions", we mean those listed in section 2.4.4.4.Real and Complex Accurate ExpressionsSyntax: #-Symbol (Exact Expression)#-Symbol Result Type Summands Permitted in the Exact Expression# dotprecision � variables, constants, and special function calls oftype integer, real, or dotprecision� products of type integer or real� scalar products of type realreal � variables, constants, and special function calls oftype integer, real, or dotprecision� products of type integer or real� scalar products of type realcomplex � variables, constants, and special function calls oftype integer, real, complex, or dotprecision� products of type integer, real, or complex� scalar products of type real or complex#�#<#> rvector � variables and special function calls of type rvector� products of type rvector (e.g. rmatrix � rvector, real� rvector etc.)cvector � variables and special function calls of type rvector orcvector� products of type rvector or cvector (e.g. cmatrix �rvector, real � cvector etc.)rmatrix � variables and special function calls of type rmatrix� products of type rmatrixcmatrix � variables and special function calls of type rmatrixor cmatrix� products of type rmatrix or cmatrix

70 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCReal and Complex Interval Accurate ExpressionsSyntax: ## (Exact Expression)#-Symbol Result Type Summands Permitted in the Exact Expressioninterval � variables, constants, and special function calls oftype integer, real, interval, or dotprecision� products of type integer, real, or interval� scalar products of type real or interval
cinterval � variables, constants, and special function calls oftype integer, real, complex, interval, cinterval, ordotprecision� products of type integer, real, complex, interval, orcinterval� scalar products of type real, complex, interval, orcinterval## ivector � variables and special function calls of type rvector orivector� products of type rvector or ivectorcivector � variables and special function calls of type rvector,cvector, ivector, or civector� products of type rvector, cvector, ivector, or civectorimatrix � variables and special function calls of type rmatrixor imatrix� products of type rmatrix or imatrixcimatrix � variables and special function calls of type rmatrix,cmatrix, imatrix, or cimatrix� products of type rmatrix, cmatrix, imatrix, orcimatrix

2.5. STATEMENTS 712.5 StatementsIn PASCAL, we distinguish between simple and structured statements. Simple state-ments are the assignment statement, the input/output statement, the empty state-ment, the procedure statement, and the goto-statement. Structured statements arethe compound statements, the conditional statements, the repetitive statements,and the with-statement.2.5.1 Assignment StatementAn assignment statement assigns the value of an expression to a variable:Variable := ExpressionThe type of the expression on the right-hand side of the assignment operator mustbe assignment compatible with the variable on the left-hand side (see section 2.3.5).The expression is �rst evaluated, and this value is assigned to the variable, i.e. thevalue is stored into the memory location referenced on the left-hand side. The orderof access to the variable on the left-hand side and the evaluation of the expressionon the right-hand side of the statement depends upon the implementation.Within a function, the resulting value must be assigned to the function name.The function name is used like a variable of the result type on the left-hand side ofthe assignment statement.Example 2.5.1:varr, x : real;i, k : integer;: : :i := k div 3 + 1;r := i div k;r := x � x + sin (x);i := r � x; f !! not allowed !! g PASCAL{XSCIn PASCAL{XSC, a program may overload the assignment operator to assign avalue to a variable of noncompatible type. This assignment overloading is doneby programming the corresponding algorithm within a subroutine (see section2.7.12).

72 CHAPTER 2. LANGUAGE REFERENCE2.5.2 Input/Output StatementsThe input and output statements read, readln, write, and writeln use data �les forinput and output. These statements handle general �les of type �le of ..., text �lesof type text, and the standard �les input and output. If no �le name is speci�ed inthe corresponding statement, the standard �les input (for reading) and output (forwriting) are used. In this case, input and/or output must be de�ned in the programheader as program parameters (see section 2.6). PASCAL �les corresponding toexternal �les must be listed in the program parameter list.File OpeningThe standard text �les input and output are automatically opened whenneeded. All other �les must be explicitly opened.reset (t) The �le t is opened for reading. After reset(t),t" contains the �rst element of the �le. If thisdoes not exist, then eof(t) is set to true. Afterthe program starts, a reset(input) is automaticallyexecuted, eoln(input) is set to true, and input" con-tains a blank.rewrite (t) The �le t is opened for writing. t" represents the�rst actual position to which data can be written.Input Statementsread (t, v1, . . . , vn) The values for the variables v1, : : :, vn are enteredin this order from the �le t. This statement corre-sponds to the statementsread (t, v1); . . . read (t, vn);Every read (t, v) for the general �le type (�le of...) is de�ned asbegin v := t"; get (t); end;This applies also to text �les (text), when v is avariable of type char. However, for integer or realvariables, a sequence of characters is entered fromthe text �le. This sequence must correspond tothe syntax of literal constants described in section2.3.1, and it is converted into a number. Leadingblanks or end-of-line characters are ignored. Thereading ends when t" cannot be a part of the num-ber to be read (see section 2.9).readln (t) or readln The remaining characters of the current line areread, and the bu�er is set to the beginning of the

2.5. STATEMENTS 73next line (for text �les only!). The procedure readln(t) is de�ned as:beginwhile not eoln (t) doget (t);get (t);end;readln (t, v1, . . . , vn) corresponds to the compound statementbeginread (t, v1, : : :, vn);readln (t);end;Output Statementswrite (t, e1, . . . , en) The values of the expressions e1, e2, : : :, en areevaluated and written to the �le t in this order.This statement is equivalent towrite (t, e1); . . . write (t, en);Every write (t, e) for the general �le type (�le of...) is de�ned asbegin t":= e; put (t); end;This applies also to text �les (text) when e is anexpression of type char. For an integer, real, orboolean expression, a sequence of characters thatrepresents the corresponding value is written to thetext �le in a standard format arranged in the nec-essary number of lines.An integer value is represented as a decimal num-ber without leading zeros. A sign is given only fornegative values. A real value is represented as adecimal oating point number with one signi�cantdigit in front of the decimal point and leading minusfor a negative value or blank for a positive value,and an exponential part with leading character E.The logical values are written as true or false.For char values, the character itself (without sin-gle quotes) is written. For a character string, thesequence of characters in the string is written usingthe necessary number of positions.

74 CHAPTER 2. LANGUAGE REFERENCEwriteln (t) or writeln The current line is terminated. The next outputstarts from beginning of the following line (for text�les only!). The procedure writeln (t) is de�ned asbegint" := \end-of-line character";put (t);end;writeln (t, e1, . . . , en) corresponds to the compound statementbeginwrite (t, e1, : : :, en);writeln(t);end;page (t) All successive output is put on a new page (for text�les only!).Format Speci�cationsThe form in which an integer expression e is printed to a text �le by write orwriteln can be controlled by a control expression w > 0 following the outputparameter e in the formwrite (e : w);The value of the integer expression w is called the minimum �eld width andindicates the number of characters to be written. In general, w characters areused to write e (with preceding blanks if necessary).For output parameters of type real, the programmer can specify a minimum�eld width w > 0 and a fractional length f > 0:write (e : w : f);The value of the integer expression f determines the digits in the fractionalpart (after the decimal point). PASCAL{XSCThe procedures reset and rewrite can be called with a second parameter s oftype stringreset (t, s)rewrite (t, s)which assigns the external (physical) �le name s to the �le variable t.

2.5. STATEMENTS 75PASCAL{XSCThe overloading principle available in PASCAL{XSC (see section 2.7.10) appliesalso to the procedures read and write. They may be overloaded to allow callingwith an arbitrary number of parameters and format controls for built-in typesor for user de�ned types (see section 2.7.11).For the input and output of real values, PASCAL{XSC provides the proceduresread and write (or readln and writeln) with an additional format control param-eter r. This integer parameter speci�es the rounding of the real value during theinput or output process.Sometimes, the value of a variable v of type real is entered in a form which isnot exactly representable in the internal representation. The use of the statementread (v : r)rounds the quantity entered according to the value of the rounding parameter rinto the internal real format. The statementwrite (e : w : f : r)causes the value of a real expression e to be rounded to f fractional placesduring output. For both reading and writing, the parameter r has the followingmeanings: r Rounding Modenone to the nearest representable number0 to the nearest representable number< 0 to the next-smaller representable number> 0 to the next-larger representable numberA rounding parameter can also be used for the conversion of real values intostrings (see section 2.9).In order to make it possible to use the oating point output format in con-nection with a rounding parameter, f = 0 may be used as the second formatcontrol parameter. Furthermore, w = 0 indicates that the default oating pointoutput format should be used.The rounding parameter should be used for the output of values thatwere computed by directed-rounding operators to reect the implementation-dependent conversion into the decimal output format.

76 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCExample 2.5.2:var x: real;beginread (x : +1);writeln (x : 11 : 0 : �1, ' ', x : 9 : 3 : 1);end.Input: 4730281356200104E-12Value of x: 4.7302813562002E3 f mantissa length 14 gOutput: 4.7302E+03 4730.282For the numeric types interval, complex, cinterval, rvector, ivector, cvector, civec-tor, rmatrix, imatrix, cmatrix, and cimatrix, the overloading of read and write isprede�ned in the arithmetic modules (see chapter 3). For new user-de�ned datatypes, read and write can be overloaded by explicit declarations (see section2.7.11).2.5.3 Empty StatementThe empty statement can be used at places where syntactically a statement is nec-essary, but no action is intended by the programmer. There is no special symbolfor the empty statement. It is recognized from context, for example, between twosymbols; ; or ; end or then else etc.The empty statement is meaningfully used in connection with the goto-statementwhen branching to the end of a block.Example 2.5.3:goto 100;...100: f empty statement gend;In this book, we include an empty statement before each end so that statementscan be added to the end of a block without requiring the programmer to add a ; tothe end of the existing code.2.5.4 Procedure StatementA procedure statement causes the call of the named procedure with the actualparameters replacing the formal parameters:

2.5. STATEMENTS 77ProcedureIdenti�er (ActualParameterList) f may be omitted gIf the procedure is declared without formal parameters, then the procedure must becalled without an actual parameter list. Otherwise, the actual parameters must beconsistent with the formal parameters in the same order. With a call by reference,the actual parameter must be a variable of compatible type. With a call by value,the actual parameter must be an expression that is assignment compatible to theformal parameter. Further details are found in 2.7.1. PASCAL{XSCPASCAL{XSC allows a modi�ed call by reference in connection with structureddata types (see section 2.7.9).Example 2.5.4:quicksort (x, i, j); f call of a sort procedure gprimenumber(m); f call of a prime number generating procedure g2.5.5 goto-StatementThe goto-statement indicates that further processing should continue at anotherpart of the program. The sequential execution of the program is broken, and pro-cessing is continued at a labeled statement.All statement labels must be declared in the declaration part of the correspondingblock. The declaration is:label LabelList; f not empty gThe goto-statement has the form:goto LabelThe label is an unsigned integer with a maximum of four digits. The labeled state-ment has the form:Label : StatementA goto-statement may only branch to a label that marks a statement of the sameor a higher level according to the block structure of the program.The goto-statement should be used with caution!

78 CHAPTER 2. LANGUAGE REFERENCE2.5.6 Compound StatementA compound statement combines a sequence of statements into a single statement:beginStatement; ...endThe execution of a compound statement is analogous to the execution of the state-ment part of a program.Example 2.5.5:while i <= n dobegins := s + a[i];i := i + 1;end;2.5.7 Conditional Statements2.5.7.1 if-StatementThe if-statement allows the selective execution of two statements:if LogicalExpression then Statementelse Statement f may be omitted gThe execution of the if-statement causes the evaluation of the logical expression.If the value of the expression is true, the statement after then (1st alternative) isexecuted. Otherwise the statement after else (2nd alternative) is executed. Theelse alternative may be omitted. This situation is handled as if the else alternativewere an empty statement.Example 2.5.6:if x <= y then z := y � xelse z := x � y; f positive di�erence of x and y gif x >= 0 then y := sqrt (x);In nested if-statements, the rule applies that every else goes with the closest if.2.5.7.2 case-StatementWhile the if-statement handles only two alternatives, the case-statement allows theexecution of a statement which is chosen from arbitrarily many alternatives:case IndexExpression ofConstantList: Statement; ... f not empty gend

2.5. STATEMENTS 79The �rst operation of the case statement is the evaluation of the index expression. Ifthe value of this expression is contained in one of the constant lists, the correspondingstatement is executed. If the value of the expression is not in a constant list, anerror message is given.The index expression may be of type integer, boolean, char, or an enumerationtype. The constants in all of the constant lists must be of the same type. Successiveconstants of a constant list may be abbreviated in the form of a subrange accordingto the ordering of the basic types.Constant .. ConstantAll constant lists must be disjoint. PASCAL{XSCThe case statement may contain an else-alternative immediately before end.This alternative covers all constants which are not listed in the constant lists ofthe case-statement:else: StatementThis else alternative is executed when the value of the index expression is notlisted in one of the constant lists.Example 2.5.7:case trunc (phi/90) + 1 of1: f := phi � r;2: f := 90 � r;3: f := �(phi � 180) � r;4: f := � 90 � r;else f := 0;end;2.5.8 Repetitive Statements2.5.8.1 while-StatementThewhile-statement allows the repetitive execution of a statement under the controlof a beginning condition:while LogicalExpression do StatementThe statement following do is executed as long as the logical expression has thevalue true. Hence, the logical expression is evaluated before each execution of thestatement. If the value of the expression is false, the while-statement is terminated.This can happen before the execution of Statement for the very �rst time.

80 CHAPTER 2. LANGUAGE REFERENCEExample 2.5.8:i := n;while i >= 1 dobegins := s + a[i];i := i � 2;end;2.5.8.2 repeat-StatementThe repeat-statement executes a series of statements until an end condition isful�lled.repeatStatement; ...until LogicalExpressionThe statements between repeat and until are executed repeatedly until the logicalexpression evaluates to true. The logical expression is evaluated after every execu-tion of the series of statements. This means that the sequence is executed at leastonce.Example 2.5.9:i := n;repeats := s + a[i];i := i � 2;until i < 1The two statements between repeat and until are executed at least once, nomatter what the value of n. For n = 0, the statements s:= s + a[0]; andi:= �2 are executed.2.5.8.3 for-StatementThe for-statement allows the repetitive execution of a statement for a known numberof repetitions:for ControlVariable := InitialValue to FinalValue doStatementor for ControlVariable := InitialValue downto FinalValue doStatement

2.5. STATEMENTS 81The �rst action of the for-statement is to evaluate the expressions for the initial and�nal value. If the �nal value is smaller (or, in the case of downto, larger) than theinitial value, the execution of the for statement is ended. This situation is referredto as an empty loop. Otherwise, the control variable is set to the starting value andthe statement is executed. If the control variable is not equal to the �nal value,it is incremented (or, in the case of downto, decremented), and the statement isexecuted repeatedly until the �nal value is reached. The control variable may beof types integer, boolean, char, or enumeration type and must be declared in thesame block as the for-statement. The initial and �nal values must be of compatibletypes.The expressions for the initial and the �nal values are only evaluated once atthe beginning of the execution of the for-statement. However, it is considered poorprogramming practice to change the initial or the �nal value within the loop.Within the statement after the do, the control variable may not occur� on the left-hand side of an assignment statement,� as an actual parameter for a formal var-parameter of a subroutine call,� as an input parameter of a read statement, or� as a control variable in a further for-statement.On exit from the for-statement, the value of the control variable is considered un-de�ned.Example 2.5.10:for i := 1 to n do s := s + a[i];for i := n downto 1 do s := s + a[i];A variation of the step length can only be accomplished through additional andexplicit programming.Example 2.5.11:for i := 1 to n do s := s + a[2�i];2.5.9 with-StatementThe with-statement facilitates working with records by allowing an abbreviatednotation for the record components. The with-statement has the formwith RecordVariableList do StatementThe list can contain more than one variable after the reserved word with, for ex-ample:with r1, r2, . . . , rn do statement;This corresponds to the nesting of the with-statements

82 CHAPTER 2. LANGUAGE REFERENCEwith r1 do with r2, . . . , rn do statement;So, it su�ces to explain the execution of the with-statementwith r do statement;which is equivalent to the execution of the statement after the do using the recordcomponents of r. The advantage of the with-statement is that the components of rcan appear without the pre�x r. in this statement.Example 2.5.12:type date = record day: 1..31;month: (Jan, Feb, Mar, Apr, May, Jun,Jul, Aug, Sep, Oct, Nov, Dec);year: integer;end;var birthday: date;. . .begin. . .with birthday dobeginday := 4;month := Dec;year := 1960;end;. . .end.

2.6. PROGRAM STRUCTURE 832.6 Program StructureA program consists of a program header, a declaration part, and a statement part(body) between begin and end. The program header contains the name of theprogram that is speci�ed after the reserved word program, and optionally theprogram parameters, i.e. the names of the external �les used (especially input andoutput).program Name(ProgramParameterList) f may be omitted g;Declaration; ...beginStatement; ...end.The statement part describes the processing steps (algorithm) which are executedby the computer. All objects appearing in this part that are not prede�ned standardobjects must be de�ned in the declaration part. In Standard PASCAL, the order ofthe declaration sections is: label declaration part, constant declaration part, typedeclaration part, variable declaration part, and �nally the procedure and functiondeclaration part.When coding the program, note the following rules for the use of separatingsymbols:� No separating symbol may occur within a name, number, reserved word, or atwo-character symbol (e.g. <=, :=).� Identi�ers, numbers, or reserved words immediately following one anothermust be separated by at least one separating symbol.The separating symbols are the blank space (t), a tab character, a new line, or acomment, which appears within braces \f", \g".The execution of the program causes the processing of the declarations in thegiven order. Then, the execution of the statements begins with the physically �rststatement. After each statement, the following statement is executed. Normally,this is the physically next statement, but this is not necessarily the case in gotoand structured statements. PASCAL{XSCAn executable program consists of a main program, as in Standard PASCAL,and possibly of a number of modules, which are introduced by a use-clause inthe main program itself or in a used module.

84 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCIn the main program, objects can appear that are� prede�ned,� de�ned or declared in the main program, or� globally de�ned in used modules.A main program has the form:program Name(ProgramParameterList) f may be omitted g;UseClause; ...Declaration; ...beginStatement; ...end.A program �rst executes the used modules. Then, the processing continues withthe execution of the declarations in the main program and �nally, the executionof the statements, as in Standard PASCAL.The declarations preceded by label, const, type, var, function, proce-dure, priority, or operator may appear more than once and in any order.An identi�er must be declared or de�ned before it is used (except see pointers,section 2.3.4).

2.7. SUBROUTINES 852.7 SubroutinesSpecial parts of algorithms in PASCAL may be declared and called as procedures orfunctions. The purpose of a function is to execute an algorithm and return a singleresult of type integer, real, boolean, char, an enumerated type, or a pointer type. Aprocedure is an algorithm which can return any number of parameters with each ofthem possibly having a di�erent type. The declaration of procedures and functionsoccurs immediately before the statement part of a program.PASCAL{XSCAs a further extension to subroutines, PASCAL{XSC has the option to declareoperators whose result, like that of a function, can be of any type. Procedures,functions, and operators can be declared anywhere within the declaration partof a program.2.7.1 ProceduresThe form of a procedure declaration is very similar to that of a program:procedure Name(FormalParameterList) f may be omitted g;Declaration; ...beginStatement; ...end;The formal parameter list describes those objects of the procedure which serve asinput and output parameters. Formal parameters can be variables, procedures, orfunctions. The speci�cation of parameters has the form:var f may be omitted gIdenti�erList: TypeSpeci�cationIf the reserved word var precedes an identi�er or an identi�er list, then the listedvariables are used for a call by reference (variable parameters) when the procedureis called. Otherwise, the variables are used for a call by value (value parameters).The speci�cation of procedures and functions is given by a corresponding pro-cedure or function header along with the formal parameters and the type of thefunction. The sections of the formal parameter list are each separated with a semi-colon (;). There are no limits to the length and the order of the list.In contrast to declarations, the type speci�cation for formal parameters maycontain a conformant array scheme:

86 CHAPTER 2. LANGUAGE REFERENCEarray [IndexRangeList] of TypeSpeci�cationwith index ranges of the formIdenti�er..Identi�er : Typeand the separating symbol ; in the index range list. A conformant array schemeleaves the index bounds of the formal argument indeterminate until the procedureis called. The identi�ers that are speci�ed in this scheme can be used to access tothe index bounds inside the procedure.The statement part of the procedure contains the program statements that im-plement the algorithm. These statements can be formulated using� formal parameters,� local objects of the procedure (i.e. objects declared within the procedure), and� non-local objects of the procedure (i.e. objects of the encompassing programor procedure).Example 2.7.1:typefraction = record N, D : integer end;procedure readfraction (var b: fraction);beginwrite ('Numerator = '); read (b.N);write ('Denominator = '); read (b.D);end;procedure addfraction (a, b: fraction; var g: fraction);beging.N:= a.N � b.D + b.N � a.D;g.D:= a.D � b.D;end;The call of a procedure is given by a procedure statement:ProcedureIdenti�er (ActualParameterList) f may be omitted gA procedure statement handles the parameter list in the manner described belowand then executes the statement part of the called procedure.� The actual parameters are related to the formal parameters in the given order.With a call by reference, the rules of type compatibility are applied. With acall by value, the rules of assignment compatibility are applied (see 2.3.5).

2.7. SUBROUTINES 87� The formal parameters representing variables for a call by reference are usedto access the corresponding actual parameters during the execution of theprocedure.� For the formal parameters representing variables for a call by value, memoryis allocated, and the values of the actual parameters (expressions) are assignedto them before the statement part of the procedure is executed.� During the execution of the procedure, formal procedure and function param-eters serve as names for the corresponding actual procedures and functions.PASCAL{XSCPASCAL{XSC allows a modi�ed call by reference in connection with structureddata types (see 2.7.9).Example 2.7.2:vara, b, g : fraction;beginreadfraction (a);readfraction (b);addfraction (a, b, g);: : :end.In the statement part of a procedure, local and non-local subroutines may be called.A procedure may call itself (recursion). This recursive call may occur directlyor indirectly. Fundamentally, the called procedure must be declared before it iscalled. This declaration can be accomplished incompletely by the use of a forwarddeclaration (see section 2.7.8). PASCAL{XSCInstead of the conformant array scheme, the more powerful concept of dynamicarrays is available (see section 2.3.2). Through the use of a dynamic type fora formal parameter, the index range remains indeterminate until the procedureis called with actual parameters. The access to the index bounds within theprocedure body is managed through the use of the functions lbound and ubound.

88 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCExample 2.7.3:type dynvector = dynamic array [�] of real;� � �procedure vecadd (var x, y, res: dynvector);f equal index bounds for x, y, res are assumed gvar i: integer;beginfor i:= lbound(x) to ubound(x) dores[i] := x[i] + y[i]end;The call of the procedure vecadd can only occur with vectors of type dyn-vector. Using this implementation, the index ranges of the actual param-eters x and y must match with the index range of the actual parameterres.In this example, x and y are speci�ed as var parameters to save thestorage which would be required for copying a call-by-value parameter (seesection 2.7.9).If a function which returns a result of a dynamic type appears as a formal pa-rameter in a procedure, then the function header may only contain the name ofthe dynamic type without the index bounds.2.7.2 List of Prede�ned Procedures andInput/Output StatementsThe following prede�ned procedures and input/output statements are available inStandard PASCAL:Allocation and Release of Referenced Variables:new (PointerVariable)new (PointerVariable, TagFieldValue, . . . , TagFieldValue)dispose (PointerVariable)dispose (PointerVariable, TagFieldValue, . . . , TagFieldValue)Reading and Writing on File Variables:reset (FileVariable)get (FileVariable)read (FileVariable, Variable, . . . , Variable)readln (TextFileVariable, Variable, . . . , Variable)rewrite (FileVariable)put (FileVariable)

2.7. SUBROUTINES 89write (FileVariable, Variable, . . . , Variable)writeln (TextFileVariable, Variable, . . . , Variable)page (TextFileVariable) PASCAL{XSCThe PASCAL{XSC extensions are:Allocation and Release of Referenced Variables:mark (PointerVariable)release (PointerVariable)Reading and Writing on File Variables:reset (FileVariable, StringExpression)rewrite (FileVariable, StringExpression)Changing the Actual Length of String Variables:setlength (StringVariable, IntegerExpression)2.7.3 FunctionsA partial algorithm that delivers only one result of a simple type (integer, real,boolean, char, an enumeration type, or a pointer type) can be formulated as afunction in place of a procedure:function Identi�er(FormalParameterList) f may be omitted g: Type;Declaration; � � �beginStatement; � � �end;The result of a function is returned by the name of the function, and not by a formalparameter. The type of the function (or of the function result) is speci�ed followingthe formal parameter list after the colon (:). The function value must be assigned tothe name of the function in the statement part of the function. Thus, the functionname may appear on the left-hand side of the assignment statement.The appearance of the function name on the right hand side of an assignmentstatement is a recursive call of the function. All other rules for the declaration offunctions are analogous to those for procedures.The calling of a function has the formFunctionIdenti�er (ActualParameterList) f may be omitted g

90 CHAPTER 2. LANGUAGE REFERENCEand serves as an operand in an expression. The evaluation of the expression isinterrupted, parameters are handled as described for procedures on page 86, thestatement part of the function is executed, and the value computed within thefunction is assigned to the function identi�er. Then, the evaluation of the expressionis continued by using the function result in place of the function call.PASCAL{XSCPASCAL{XSC allows a modi�ed call by reference in connection with structureddata types (see section 2.7.9).In the statement part of a function, local and non-local subroutines may be called.The use of the function itself is a recursive execution of the function. The recursivecall can occur either as a direct call or as an indirect call from another function.Fundamentally, the called function must be declared before it is called. This decla-ration can be accomplished incompletely by the use of a forward declaration (seesection 2.7.8).2.7.4 Functions with Arbitrary Result TypePASCAL{XSCPASCAL{XSC removes the restriction of function result types to integer, real,boolean, char, an enumeration type, or a pointer type. A function result maybe of any structured type. The assignment to the function result may be donecomponentwise or by assigning the entire structure as a unit. For a record type,the use of the with-statement for the function result is also possible.Example 2.7.4:type mycomplex = record re, im : real end;� � �function mycompladd (y, w: mycomplex) : mycomplex;beginmycompladd.re := y.re + w.re;mycompladd.im := y.im + w.im;end;Furthermore, a dynamic type can be used for the function result. The indexbounds of the dynamic result are speci�ed by expressions that must be able tobe evaluated before the execution of the function body.

2.7. SUBROUTINES 91PASCAL{XSCExample 2.7.5:type dynvector = dynamic array [�] of real;function vecadd (x, y: dynvector) :dynvector [lbound(x)..ubound(x)]; ffunction typegf the same index bounds for x and y are assumed gvar i: integer;beginfor i:= lbound(x) to ubound(x) dovecadd[i] := x[i] + y[i];end;If a function with a dynamic result appears as a formal parameter of a procedure,then the function header may only contain the name of the dynamic type withoutthe index bounds.2.7.5 List of Prede�ned FunctionsHere are the prede�ned functions of Standard PASCAL, grouped according to theallowed parameter types. The types of the function results are given in braces.Parameter type integer, boolean, char, enumeration typeord (Expression) f integer gsucc (Expression) f Parameter type gpred (Expression) f Parameter type gParameter type integerodd (Expression) f boolean gchr (Expression) f char gParameter type integer, realabs (Expression) f Parameter type gsqr (Expression) f Parameter type gsqrt (Expression) f real gexp (Expression) f real gln (Expression) f real garctan (Expression) f real gsin (Expression) f real gcos (Expression) f real ground (Expression) f integer gtrunc (Expression) f integer gParameter type Fileeof (FileVariable) or eof f boolean geoln (TextFileVariable) or eoln f boolean g

92 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCThe PASCAL{XSC extensions are:Arbitrary parameter typeloc (Variable) f integer gParameter type Pointerord (P Expression) f integer gParameter type integer, real, dotprecisionsign (Expression) f integer gParameter type real f Result type real gsucc (R Expression)pred (R Expression)exp2 (R Expression)exp10 (R Expression)log2 (R Expression)log10 (R Expression)tan (R Expression)cot (R Expression)arcsin (R Expression)arccos (R Expression)arccot (R Expression)arctan2 (R Expression, R Expression)sinh (R Expression)cosh (R Expression)tanh (R Expression)coth (R Expression)arsinh (R Expression)arcosh (R Expression)artanh (R Expression)arcoth (R Expression)Parameter type Array f Result type: Array index type glbound (ArrayVariable, I Constant)lb (ArrayVariable, I Constant)lbound (ArrayVariable)lb (ArrayVariable)ubound (ArrayVariable, I Constant)ub (ArrayVariable, I Constant)ubound (ArrayVariable)ub (ArrayVariable)

2.7. SUBROUTINES 93PASCAL{XSCParameter Type integer, real f Result type string gimage (I Expression)image (I Expression, I Expression)image (R Expression)image (R Expression, I Expression)image (R Expression, I Expression, I Expression)image (R Expression, I Expression, I Expression, I Expression)Parameter Type stringival (ST Expression) f integer gival (ST Expression, ST Variable) f integer grval (ST Expression) f real grval (ST Expression, ST Variable) f real grval (ST Expression, I Expression) f real grval (ST Expression, I Expression, ST Variable) f real glength (ST Expression) f integer gmaxlength (ST Variable) f integer gpos (ST Expression, ST Expression) f integer gsubstring (ST Expression, I Expression, I Expression) f string gAdditional prede�ned functions for the data types complex, interval, cinterval,rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, and cimatrix areprovided in the modules C ARI, I ARI, CI ARI, MV ARI, MVC ARI, MVI ARI,and MVCI ARI (see chapter 3).
2.7.6 Operators PASCAL{XSCPASCAL{XSC lets the programmer de�ne subroutines in the form of operatordeclarations. We have two di�erent kinds of operators, i.e. operators with resultand operators without result . The assignment operator := is the only operatorwithout result. Its de�nition and overloading is described in detail in section2.7.12.A programmer may de�ne unary and binary operators with arbitrary operandtype and arbitrary result type. User-de�ned operators may be used in expressionsinterchangeably with built-in operators. User-de�ned operators are declared ina form similar to a function declaration.

94 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCThe declaration isoperator MonadicOperator (FormalParameter)ResultIdenti�er: TypeSpeci�cation;Declaration; ...beginStatement; ...end;or operator DyadicOperator (FormalParameter, FormalParameter)ResultIdenti�er: TypeSpeci�cation;Declaration; ...beginStatement; ...end;Thus, unary operators have exactly one operand, and binary operators haveexactly two operands. The result identi�er takes the place of the function identi-�er. The assignment to the result must occur in the operator body. The formalparameters are listed in the formvar f may be omitted gIdenti�er: TypeSpeci�cationIf both operands have the same type and both are either reference or valueparameters, the speci�cation may be shortened tovar f may be omitted gIdenti�er, Identi�er: TypeSpeci�cation

2.7. SUBROUTINES 95PASCAL{XSCThe programmer may overload the names of the monadic operators+, �, not (priority 3)and the dyadic operators=, <>, <=, >=, <, >, in, >< (priority 0)+, +<, +>, �, �>, �<, +�, or (priority 1)�, �<, �>, =, =<, =>, ��, mod, div, and (priority 2)Furthermore, anIdenti�erde�ned by the user may be introduced as a new operator symbol. A new operatoridenti�er must �rst occur in a priority de�nition:priority Identi�er = PrioritySymbol; ...This de�nition �xes the priority of the new identi�er corresponding to the sym-bols =, +, �, and ". The priority symbols =, +, and � correspond to binaryoperators with priority 0 (=), 1 (+) and 2(�), whereas the symbol " correspondsto a monadic operator with priority 3.We speak of overloading of an already existing operator if the declarationis given with alternate operand types. Hence, various overloaded operators canbe distinguished by their operands. For example in Standard PASCAL, theoperator + is already overloaded (on the one hand for integer addition, on theother hand for real addition). In Example 2.7.6, we overload the operator + toprovide addition of vectors. If a given operator becomes rede�ned with the sameoperand types (concealment), the existing operator is hidden. In this case, theoperator symbol has a new meaning for the same operand types for which it waspreviously de�ned. The old meaning is hidden according to the underlying blockstructure (see section 2.7.10).Example 2.7.6:typemycomplex = record re, im : real end;dynvector = dynamic array [�] of real;operator � (z, w: mycomplex) complmult: mycomplex;begincomplmult.re := z.re � w.re � z.im � w.im;complmult.im := z.re � w.im + z.im � w.re;end;

96 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCoperator + (x, y: dynvector) vecadd: dynvector [lb(x)..ub(x)];f the same index bounds for x and y are assumed gvar i: integer;beginfor i:= lbound(x) to ubound(x) dovecadd[i] := x[i] + y[i];end;priority xor = +; f exclusive or goperator xor (a, b: boolean) exor: boolean;beginexor := a <> b;end;A monadic operator is used or \called" within an expression byOperatorSymbol ActualParametera dyadic operator byActualParameter OperatorSymbol ActualParameterLike functions, operators can only occur within expressions. The evaluation ofthe expression containing the operator is interrupted, the actual parameters arehandled as described in connetion with procedures on page 86, and the statementpart of the operator is executed. Finally, the evaluation of the expression iscontinued using the result of the operator instead of the operator call.PASCAL{XSC permits a modi�ed call by reference in connection with struc-tured types (see section 2.7.9).Example 2.7.7:varcomplex 1, complex 2, complex 3, complex 4 : mycomplex;vector x, vector y, vector z : dynvector [1..100];boolean 1, boolean 2, boolean 3 : boolean;begincomplex 4 := complex 1 � complex 2 � complex 3;vector z := vector x + vector y;boolean 3 := boolean 1 xor boolean 2;end.The statement part of an operator may contain calls to local or non-local sub-routines, including the operator itself. This recursive call may be a�ected eitherdirectly or indirectly. An operator always must be declared before it is used. Thisdeclaration may also be done incompletely in form of a forward-declaration (seesection 2.7.8).

2.7. SUBROUTINES 972.7.7 Table of Prede�ned Operators PASCAL{XSCThe prede�ned operators of PASCAL and the extensions of PASCAL{XSC arelisted in the following table. The additional operators provided in the arithmeticmodules for the arithmetic types complex, interval, cinterval, rvector, cvector,ivector, civector, rmatrix, cmatrix, imatrix, and cimatrix are not listed here.The corresponding tables are given in chapter 3 and in appendix B.4.QQQQQQQQleftOperand rightOperand integer real boolean char string setmonadic +;� +;� notinteger �; �<; �>;div, mod;_ �; �<; �>;_ inreal �; �<; �>;_ �; �<; �>;_boolean or, and,=, <>,<=, >= inchar +_ +_in instring +_ +_inset +, �, �,=, <>,<=, >=enumerationtype inPrede�ned Operators of PASCAL{XSC� 2 f+;�; �; =g_ 2 f=, <>, <, <=, >, >=g

98 CHAPTER 2. LANGUAGE REFERENCE2.7.8 forward- and external-Declaration PASCAL{XSCThe forward-declaration allows routines to be called mutually or recursively.This incomplete declaration of procedures, functions, or operators is given bythe head of the procedure, function, or operator followed by the reserved wordforward instead of the body of the procedure, function, or operator. The com-plete declaration of such a subroutine must occur in the same declaration part.This complete declaration is also introduced with the reserved word procedure,function, or operator and the corresponding identi�ers. In contrast to Stan-dard PASCAL, the formal parameter list, the result identi�er (for operators),and the result type speci�cation (for functions and operators) must be listedonce again.An external-declaration allows separately compiled procedures, functions,or operators written in a di�erent language or in assembler to be linked. Thereserved word external appears instead of the declaration part and body of theroutine. Optionally, a string constant may follow. The identi�er of the externalsubroutine is either the identi�er of the procedure or function, the result identi�er(for operators), or the value of the string constant following the reserved wordexternal. This means that external subroutines may be overloaded, because thesame internal name can be used for di�erent external routines. The speci�cationof the formal parameter list only serves for the syntactical control of the subrou-tine calls. A detailed description of the use of external subroutines in connectionwith external is given in the implementation-dependent user manual.
2.7.9 Modi�ed Call by Reference for Structured TypesPASCAL{XSCUsually, operators and functions are used in a nested way. Within an expression,operators or functions are called repeatedly. Thus, expressions should be permit-ted as actual operands or as actual parameters. In the strict sense of PASCAL,this means that the formal operands and formal parameters must be declaredand used as value parameters, because otherwise no expressions can take theplaces of the parameters. So, the use of the operator or the call of the functioncauses local memory to be allocated for the copies of the actual parameters. Thisis very ine�cient with large structured types.

2.7. SUBROUTINES 99PASCAL{XSCTo avoid this, PASCAL{XSC allows a modi�ed call by reference for structuredtypes. The actual parameters corresponding to formal var-parameters may begiven by expressions. During execution of the routine, the formal var-parameteris used as an access to the anonymous auxiliary quantity allocated by the compilerduring evaluation of the expression and containing the value of the expression.Example 2.7.8:With the declarationsconstn = 100;typematrix = array [1..n, 1..n] of real;varm1, m2, m3, m4, m5 : matrix;operator + (var a, b: matrix) resplus : matrix;var i, j: integer;beginfor i:= 1 to n dofor j:= 1 to n doresplus[i,j] := a[i,j] + b[i,j];end;function component sqr (var a: matrix) : matrix;var i, j: integer;beginfor i:= 1 to n dofor j:= 1 to n docomponent sqr[i,j] := sqr (a[i,j]);end;an assignment statement of the formm1 := m1 + m2 + component sqr (m3 + m4 + m5);is permitted.

100 CHAPTER 2. LANGUAGE REFERENCE2.7.10 Overloading of Procedures, Functions, andOperators PASCAL{XSCPASCAL{XSC procedures, function and operators are identi�ed by their names(symbols) and by number, type, and order of parameters. Thus, in contrast toStandard PASCAL, several procedures, functions, and operators with the samename may be de�ned within a block, as long as the compiler can distinguishthem by their parameters. This feature is called overloading of the identi�ers.In Standard PASCAL, an exponential function for complex numbers must bedeclared by the use of a name di�erent from exp, which is used for the prede�nedreal function. In PASCAL{XSC, however, the prede�ned function identi�er expmay be overloaded for use with parameters of user-de�ned types.Example 2.7.9:type complex = record re, im : real end;� � �function exp (c : complex) : complex;beginexp.re:= exp (c.re) � cos (c.im);exp.im:= exp (c.re) � sin (c.im);end;The real function exp is called with the real parameter c.re within thebody. Hence, this is not a recursive call of the newly de�ned function exp.The following rules apply to the overloading of procedures, functions, and oper-ators (called routines in the following):� The formal parameter lists of overloaded routines must be di�erent, i.e. theparameters must not agree in number, type, and order simultaneously. Inthis context, the di�erence between value- and var-parameter is insigni�-cant. Compatible types are handled as the same types.� The result type of functions and operators is not signi�cant for the identi-�cation.� Functions may be overloaded only by functions, operators only by opera-tors, and procedures only by procedures.� Within the same block, a routine identi�er may not be used as identi�erfor a constant, a variable, or a type simultaneously.

2.7. SUBROUTINES 101PASCAL{XSCThe rules of concealment are the same as in Standard PASCAL. An identi�eris concealed if the same identi�er is declared in an inner block. Routines ofthe outer block are not concealed if they are overloaded in the inner block withdi�erent parameter lists. The following rules apply to the call of an overloadedsubroutine:� A call by reference requires the actual parameters to be compatible withthe formal parameters.� A call by value requires the actual parameters to be assignment compatiblewith the formal parameters. If no routine with parameters of compatibletype is available, then the assignment compatible actual parameters maybe converted automatically. This context assumes the strict interpretationof the assignment compatibility, i.e. an overloading of the assignment op-erator does not make the corresponding types assignment compatible forthe automatic conversion (see section 2.3.5 and section 2.7.12).If a routine call matches several overloaded procedures, functions, and operators,then the ambiguity is resolved as follows. If there is a routine whose formalparameters exactly match with the actual parameters of the call (concerningreference and value parameters), then this one is chosen. If this is not the case,then a routine is chosen that allows assignment of the actual value parametersto formal reference parameters (see also section 2.7.9) without conversion ofconforming type. Otherwise, the routine is chosen which has the �rst parameterwhose type is compatible, and not merely conforming.Example 2.7.10:operator +� (a: integer; b: real) ir res: real;� � �operator +� (a: real; b: integer) ri res: real;� � �vari : integer;r, res : real;� � �res:= i +� r; f 1st operator is used gres:= r +� i; f 2nd operator is used gres:= i +� i; f 1st operator is used gres:= r +� r; f assignment not possible gIn the third assignment statement, neither the �rst nor the second operatormatches exactly. Either one could be used by converting the integer i to a realnumber. According to the rule above, we choose the �rst operator because its�rst operand is an integer.

102 CHAPTER 2. LANGUAGE REFERENCE2.7.11 Overloading of read and write PASCAL{XSCThe overloading described in the preceding section also applies to the proceduresread and write. Since these procedures have some special features in StandardPASCAL, the concept of overloading has been modi�ed for these input/outputroutines.In section 2.5.2, we mentioned that read and write in connection with text�les permit� an optional �rst parameter of type text,� an arbitrary number of di�erent parameters, and� optional format speci�cations following an input/output element separatedby a colon.By overloading of read and write in PASCAL{XSC, these features are also sup-ported for user-de�ned input/output procedures. We must consider some rulesfor the declaration and call.DeclarationThe �rst parameter of a newly declared input/output procedure must be a var-parameter of type text or of any arbitrary �le type. The second parameterrepresents the quantity to be input or output, and must not be a �le type.All following parameters are interpreted as format speci�cations for the secondparameter.Example 2.7.11:type interval = record inf, sup : real end;: : :procedure write (var f: text; int: interval; m, n: integer);CallThe �le parameter may be omitted when calling an overloaded input/outputprocedure. This corresponds to a call with the standard �le input or output.If a �le parameter is given, the second actual parameter (otherwise the �rst)is the input/output object. The format parameters for this parameter follow,separated by a colon.

2.7. SUBROUTINES 103PASCAL{XSCExample 2.7.12:With int of type interval and f of type text, the output procedure declaredabove may be called bywrite (int : 10 : 5); or write (f, int : 12 : 6);Several input statements or output statements can be combined to a single state-ment as in Standard PASCAL.Example 2.7.13:With a real variable a, the statementwriteln (f, a : 20 : 9, int : 50 : 10, true : 4);is equivalent to the statementswrite (f, a : 20 : 9);write (f, int : 50 : 10);write (f, true : 4);writeln (f);For each of these write-calls, the compiler is looking for a user-de�ned procedurewith corresponding parameters interpreting every colon as a comma. If there isno such procedure available, the standard input or output procedure is used, ifpossible.To supply the input or output for various number of format parameters, theuser must implement a procedure for every number of format parameters (seeExample 2.7.15).Example 2.7.14:If we do not want to specify the rounding of real numbers by the inte-ger parameter as usual, we could implement the following procedures forexample:procedure write (var f: text; r: real;w, n: integer; rd: boolean);beginif rd thenwrite (f, r : w : n : +1)elsewrite (f, r : w : n : �1);end;

104 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCExample 2.7.15:Further variants of the format speci�cation:procedure write (var f: text; r: real;w: integer; rd: boolean);beginwrite (f, r : w : 0 : rd)end;procedure write (var f: text; r: real; rd: boolean);beginwrite (f, r : 20 : 0 : rd)end;With these declarations, the output of the real expressions a, b, c can bedone bywriteln (output, a : 10 : 5 : true, b : 10 : false, c : true);A �nal example demonstrates the universal applicability of overloading of readand write.Example 2.7.16:constformat1 = ' [] ';format2 = '<>';format3 = ' () ';: : :procedure write (var f: text; int: interval; parenth: string);var l, r: char;beginl:= parenth[1];r:= parenth[2];write (f, l, int.inf : 20 : 13, ',', int.sup : 20 : 13, r);end;With these declarations, intervals may be written in di�erent forms:with write (int : format1); in the form [: : : , : : :]with write (int : format2); in the form < : : : , : : : >with write (int : format3); in the form (: : : , : : :)Using the possibilities of overloading, even format speci�cations similar tothose of FORTRAN may be realized.

2.7. SUBROUTINES 1052.7.12 Overloading of the Assignment Operator :=PASCAL{XSCThe programmer can overload the assignment operator := as an operator withno result. The overloaded assignment operator makes it possible to use a math-ematical notation for algorithms or programs. Thus, the assignment may bede�ned for types that are not assignment compatible.The declaration has the formoperator := (FormalOperand1, FormalOperand2);Declaration; ...beginStatement; ...end;which is very similar to the declaration of a procedure. The main di�erence be-tween the above declaration and the declaration of operators described in section2.7.6 is that there is no result identi�er and no type speci�cation. Moreover, theformal operand 1 must be speci�ed byvar Identi�er : TypeSeci�cationwhereas the formal operand 2 can be speci�ed byvar f may be omitted gIdenti�er : TypeSpeci�cationThe algorithm for passing the right side (operand 2) to the left side (operand 1)is usually expressed in the statement part of the assignment operator. In general,the var-parameter operand 1 is the parameter returned from this operator.An overloaded assignment operator is used in the usual assignment statement:Variable := ExpressionNow, the left and right sides of the assignment statement are to be considered tobe assignment compatible according to the type combinations of the overloading(see section 2.3.5).This new assignment compatibility is not extended to the call by value ofsubroutines (see section 2.7.10 on page 101).

106 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCIn the following example dealing with intervals and vectors, we demonstrate howthe work with numbers of embedded spaces or the initialization of vectors ormatrices is simpli�ed by using overloaded assignment operators.Example 2.7.17:: : :varx : interval;iv : ivector[1..n];im : imatrix[1..n,1..n];: : :operator := (var x: interval; r: real); f Op1 gbeginx.inf := r;x.sup := r;end;operator := (var iv: ivector; r: real); f Op2 gvar i: integer;beginfor i:= lb (iv) to ub (iv) doiv[i] := r; f call of Op1 gend;operator := (var im: imatrix; r: real); f Op3 gvar i : integer;beginfor i:= lb (im) to ub (im) doim[i]:= r; f call of Op2 gend;: : :x := 5.3; f call of Op1 delivers point interval giv := 0; f call of Op2 delivers interval zero vector gim := 0; f call of Op3 delivers interval zero matrix g

2.8. MODULES 1072.8 Modules PASCAL{XSCIn Standard PASCAL, a program can only be given as one single program textthat must be completely written before it can be compiled and executed. Incontrast to this, PASCAL{XSC allows the splitting of a program in several partscalled modules which can be developed and compiled separately.Modules are collections of procedures, functions, operators, a�liated constantand type de�nitions, and variable declarations. Modules are declared similarly toprograms, but they are compiled separately. A module has the following syntax:module name;UseClause; ...global declaration; ... f global may be omitted gbegin f may be omitted together with the statement part gstatement; ...end.The module identi�er follows the reserved word module.Declarations have the same form as de�ned in the declaration part of a pro-gram. If a declaration is introduced by the reserved word global, then all objectsdeclared in this module are global quantities of this module, i.e. they are availableto be exported into other modules or into the main program. All other declaredobjects are local quantities of the module.In the de�nition of a global type, the reserved word global may occur on theright-hand side of the equal sign. In this case, the structure of the global typecan also be exported. The type de�nitionglobal type complex = record re, im: real end;exports the type complex, but does not export its structure. Thus, access to thecomponents of the data structure is only possible within the module containingthe type de�nition itself. The declarationglobal type complex = global record re, im: real end;exports both the type identi�er complex and also the record component identi-�ers re, im.

108 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCExample 2.8.1:A simple module de�nition to provide a complex arithmetic may have thefollowing form:module ComplexArithmetic;global type complex = global record re, im: real end;global operator + (z, w: complex) res: complex;beginres.re := z.re + w.re;res.im := z.im + w.im;end;global operator � (z, w: complex) res: complex;beginres.re := z.re � w.re � z.im � w.im;res.im := z.re � w.im + z.im � w.re;end;end.A program or another module employs a use-clause to make visible objectsexported from the used modules (import of objects). If the reserved word globaloccurs in a use-clause, then all objects being imported by this clause are availablefor export as well. A use-clause is de�ned by:use global ModuleIdenti�erList f global may be omitted gExample 2.8.2:The following module provides an addition for complex vectors on the basisof the module ComplexArithmetic:module ComplexVectorArithmetic;use global ComplexArithmetic;global typecomplexvector = global dynamic array [�] of complex;global operator + (x, y: complexvector)res: complexvector [lbound(x)..ubound(x)];var i: integer;beginfor i:= lbound(x) to ubound(x) dores[i] := x[i] + y[i];end;end.

2.8. MODULES 109PASCAL{XSCIf another program or module includes the use-clauseuse ComplexVectorArithmetic;then the type complexvector and the appropriate operator + are visible. Thetype complex and the appropriate operators + and � are also available, since thede�ning module is globally linked viause global ComplexArithmetic;That is, the program or module does not need to include the module Com-plexArithmetic in order to have objects from the ComplexArithmetic modulevisible. However, if the module ComplexVectorArithmetic included only theclauseuse ComplexArithmetic;then this clause would also be necessary in the module or in the main programthat imports ComplexVectorArithmetic.The use-clauses build up a module hierarchy among the individual modulesand the main program. The modules may be represented in an acyclic graph thatis similar to a tree structure whose root is represented by the main program. Themodules imported into the main program are given as the children.

basic modulemodule A1 module A2 module C1module A module B module Cmain program
QQQ ������ QQQ��� QQQ

This is not strictly a tree structure since one module (basic module in this �gure)can be used by more than one other module. The use-clauses impose a strictpartial order. A mutual or cyclic importation is not allowed, not even indirectly.The module hierarchy determines the order of the compilation of the modules.A module may not be compiled until all imported modules have been compiled.In every module which has to be compiled, at least the exported quantities haveto be declared or de�ned, although their implementation does not need to becomplete. In the case of procedures for example, empty statement parts aresu�cient.

110 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCThus, after the �rst planning stage determining the structure of the individ-ual modules and checking their interfaces, the complete implementation of themodules may be executed in parallel by possibly di�erent teams.If no more changes are made in the de�nition part of the modules, i.e. atthe declarations of objects being available to be exported, the compilation ofthe modules is su�cient. Otherwise, all modules which depend on the alteredmodule must be recompiled along with the main program.A module may contain a statement part after the declaration part. Thestatement part is executed just once at the beginning of program execution. Thestatement parts of several modules are executed in an order consistent with thepartial ordering of the module hierarchy. In the statement part of a module, thelocal and global variables can be initialized by using an arbitrary set of state-ments using the quantities of the module. In the module hierarchy shown in thepreceding �gure, the statement part of the basic module has to be executed be-fore the statement part of the module A2 which has to occur before the statementpart of module A.

2.9. STRING HANDLING AND TEXT PROCESSING 1112.9 String Handling and Text ProcessingStandard PASCAL o�ers only poor features for processing �les of type text, char-acters (char), and strings (packed array [1..n] of char). Except of the lexicalcomparisons of strings or characters, there are no expressions involving these types.Manipulation of strings or an input statement for a string variable is not supported.PASCAL{XSCThe dynamic string type (section 2.3.2), the string expression (section 2.4.3.2),and the string functions, comparisons, assignment statements, and input/outputof strings support convenient text processing.The following functions and procedures are provided for the operations whichare normally used for text processing:function image (i: integer) : string;Converts the numerical value i into a string. Similar to theresult from write (i) with a current length like the default outputformat for integer values.function image (i, len: integer) : string;Converts the numerical value i into a string with a current lengthlen (possibly �lled by leading blanks). Similar to the output ofinteger values.function image (r: real) : string;Converts the numerical value r into a string with a current lengthlike the default output format for real values.function image (r: real; width: integer) : string;Converts the numerical value r into a string with a current lengthwidth (possibly �lled by leading blanks). Similar to the outputof real values.function image (r: real; width, fracs: integer) : string;Converts the numerical value r into a string with current lengthwidth (possibly �lled with leading blanks) and with fracs placesafter the decimal point. Similar to the output of real values.

112 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCfunction image (r: real; width, fracs, round: integer) : string;Converts the numerical value r into a string with a current lengthwidth and fracs places after the decimal point. The value isrounded according to round:round 8><>: < 0 rounded downwardly directed= 0 rounded to the nearest> 0 rounded upwardly directed 9>=>;function substring (s: string; p, l: integer) : string;Returns a substring containing l characters from s starting atposition p.function length (s: string) : integer;Returns the current length of s.function maxlength (var s: string) : integer;Returns the maximum length of the variable s.function pos (sub, s: string) : integer;Scans the string s to �nd the �rst occurrence of sub in s. If thepattern is not found, pos returns the value 0.function ival (s: string) : integer;Converts the �rst part of the string s, which represents a nu-meric value according to the rules of integer constants, into aninteger value. Leading blanks as well as trailing characters areneglected.function ival (s: string; var rest: string) : integer;Converts the �rst part of the string s, which represents a numericvalue according to the rules of integer constants, into an integervalue. Leading blanks are neglected, whereas trailing charactersare passed back in the string rest.function rval (s: string) : real;Converts the �rst part of the string s, which represents a numericvalue according to the rules of real constants, into a real value.Leading blanks as well as trailing characters are neglected.

2.9. STRING HANDLING AND TEXT PROCESSING 113PASCAL{XSCfunction rval (s: string; var rest: string) : real;Converts the �rst part of the string s, which represents a numericvalue according to the rules of real constants, into a real value.Leading blanks are neglected, whereas trailing characters arepassed back in the string rest.function rval (s: string; round: integer) : real;Converts the �rst part of the string s, which represents a numericvalue according to the rules of real constants, into a real valuerounded according to round (see image). Leading blanks as wellas trailing characters are neglected.function rval (s: string; round: integer; var rest: string) : real;Converts the �rst part of the string s, which represents a numericvalue according to the rules of real constants, in a real valuerounded according to round (see image). Leading blanks areneglected, whereas trailing characters are passed back in thestring rest.procedure setlength (var s: string; len: integer);Sets the current length of the string variable s to len. The valuelen must lie within the range 0..maxlength(s).Example 2.9.1:image (4728,5) delivers ' 4728'image (3.14159,7,4,1) delivers ' 3.1416'substring ('AAABB',3,3) delivers 'ABB'length ('abcde') delivers 5pos ('AB','AAABB') delivers 3ival ('512') delivers 512rval ('�1.5E6') delivers �1.5E+06The relational operators=, <>, <=, <, >=, >applied to strings have their usual meaning derived from lexical ordering. For astring s1 with the length n and a string s2 with a length m > n, both coincidingon the �rst m positions, the comparison s1 < s2 is true.

114 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCThe additional operatorinfor two string operands tests substrings. The expression s1 in s2 delivers trueif s1 is a substring of s2 and false otherwise.Example 2.9.2:Let s5 := 'AAABB';then 'A' in s5 delivers trueand 'BBA' in s5 delivers false.The use of assignment statementStringVariable := StringExpressionis always possible if the string variable is of type string and if the string expressionis of type string or of any array string type.If the actual length of the string expression exceeds the maximum lengthof the variable, the extra characters on the end of the string expression aretruncated.Example 2.9.3:The following types and variables are given:type string 10 = string[10];string 20 = string[20];var s5 : string[5];s10 : string 10;s20 : string 20;s : string; f length implementation-dependent gThen it is possible to write:s5 := 'ABCDE';s10 := s5;s20 := 'AABBCC';s5 := s20; f s5 contains the value 'AABBC' gs20 := ' '; f empty string gs5 := 'AAA' + 'BBB' f s5 contains the value 'AAABB' g

2.9. STRING HANDLING AND TEXT PROCESSING 1152.9.1 Input of Characters and StringsWhile the output of characters and strings in PASCAL is processed according tothe programmer's intention, the entering of these types from the console very oftenproduces unexpected results.To read in a char variable c using the statementread (c);the statementsc := input";get (input);are executed according to the de�nition of read (see section 2.5.2). With the �rstread on input, a blank is assigned to the variable c. This blank corresponds to theend-of-line character, since immediately after the start of the program, eoln (input)= true .Example 2.9.4:The programprogram testread1 (input, output);var c : char;beginread (c);writeln (c);end.would input the end-of-line character and output a blank without acceptingany input via the user's console.Hence, we have to take special care of the end-of-line character while reading charac-ters, in contrast to the input of integer or real numbers which neglects the end-of-linecharacter as it neglects a blank. Appropriate use of readln or get (see section 2.5.2)is necessary.If we use a procedure read char declared byprocedure read char (var f: text; var c: char);beginif eoln (f) thenreadln (f);read (f, c);end;we can read a character (not equal to the end-of-line character) without having toworry about end-of-line arrangements or unexpected e�ects.

116 CHAPTER 2. LANGUAGE REFERENCEExample 2.9.5:The following program enables the user to enter a character, which is printedimmediately afterwards.program testread2 (input, output);var c : char;procedure read char ...f same procedure declaration as above g. . .beginread char (input, c);writeln (c);end. PASCAL{XSCThe particularity of PASCAL concerning the input of characters also applies tothe input of strings in PASCAL{XSC. In the following tables, some examplesillustrate this fact. In these tables, - denotes the Return key for input fromthe console or the end-of-line character for input from a �le, and t denotes theblank character. The variables S5 and S10 are de�ned as strings with a maximumlength 5 and 10, respectively. The �le variable f is of type text.String Input from ConsoleStatements Input Outputread (S5, S10) not possiblewriteln (S5); twriteln (S10); treadln (S5, S10) ABCDEFGHIJKLMNO -writeln (S5); twriteln (S10); treadln; ABCDEFGHIJKLMNO -read (S5, S10);writeln (S5); ABCDEwriteln (S10); FGHIJKLMNOreadln; ABCDE -readln (S5, S10); FGHIJKLMNO -writeln (S5); ABCDEwriteln (S10); treadln; ABCDE -read (S5); FGHIJKLMNO -readln;read (S10);writeln (S5); ABCDEwriteln (S10); FGHIJKLMNO

2.9. STRING HANDLING AND TEXT PROCESSING 117PASCAL{XSCString Input from FileStatements File Contents Outputread (f, S5, S10); ABCDEFGHIJKLMNOwriteln (S5); ABCDEwriteln (S10); FGHIJKLMNOread (f, S5, S10); ABCDEFGHIJKLMNOwriteln (S5); ABCDEwriteln (S10); treadln (f, S5); ABCDEreadln (f, S10); FGHIJKLMNOwriteln (S5); ABCDEwriteln (S10); FGHIJKLMNOFor the type string , the appropriate use of readln avoids the unexpected inputof the end-of-line character. For instance, we can use an overloaded procedureread (see section 2.7.11) declared by:procedure read (var f : text; var s: string);var c : char;beginif eoln (f) thenreadln (f);s := ' '; f empty string gwhile not eoln (f) dobeginread (f, c);s := s + c;end;end;For an arbitrary text �le f and a string variable s, this procedure can be appliedin the formsread (s); read (input, s); read (f, s);to read in dynamic strings line by line (due to overloading of read and write asdescribed in section 2.7.11).

118 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCExample 2.9.6:Let us write a PASCAL{XSC program to convert German text written inlower-case letters containing the strings (umlauts) ae, oe, and ue, into aform which can serve as input for the text system LATEX using the documentstyle option german. It is necessary to replace:ae by "aoe by "oue by "uFor simplicity, special cases like aee may be neglected. Furthermore, theword PASCAL should be changed into Pascal and marked for typing inboldface by enclosing the word in the form:{\bf Pascal}The following PASCAL{XSC program enters the text from the text �letexin.txt, processes the changes, writes the changed text to the text �letexout.txt, and terminates.program umlauts (output, in�le, out�le);operator �� (line, umlaut: string) res : string;f Replaces the umlauts contained in the gf line by the corresponding TeX sequence. gvarp : integer;beginp := pos (umlaut, line);while (p > 0) dobeginline[p] := '"';line[p+1] := umlaut[1];p := pos (umlaut, line);end;res := line;end;varline, help1, help2 : string;in�le, out�le : text;len, position : integer;

2.9. STRING HANDLING AND TEXT PROCESSING 119PASCAL{XSCbeginreset (in�le, 'texin.txt');rewrite (out�le, 'texout.txt');while not eof (in�le) dobeginreadln (in�le, line);line := line �� 'ae';line := line �� 'oe';line := line �� 'ue';len := length (line);position := pos ('PASCAL', line);while (position > 0) dobeginhelp1:= substring (line, 1, position-1) + 'fnbf Pascalg';help2:= substring (line, position+6, len�position�5);line:= help1 + help2;len:= length (line);position:= pos ('PASCAL', line);end;writeln (out�le, line);end;end.

120 CHAPTER 2. LANGUAGE REFERENCE2.10 How to Use Dynamic Arrays PASCAL{XSCTrue dynamic allocation of array lengths can only occur when declaring dynamicarray variables within procedures or functions as described in section 2.3.2. Inthe declaration part of these routines, global quantities or formal parameters areused in the expressions for the index bounds of the arrays. In the body of themain program, only constants, imported variables, or expressions that can beevaluated at the point of the declaration may be used in the index expressions.An experienced programmer might be able to realize full dynamic arraylengths in the main program by using a special module initialization part orfunction calls for the index bounds. Nevertheless, in this section we discuss theusual manner of working with dynamic arrays. Usually, the original main pro-gram, which works with dynamic arrays, is moved into a procedure or function.The body of the new main program then consists only of the entering of valueswhich are necessary for the calculation of the index bounds and of the call of thenew \main procedure" or \main function".The template of a PASCAL{XSC program which uses dynamic arrays isprogram dynprog (input, output);typedyntype = dynamic array [�] of comptype;f further declarations g: : :varlow, upp: integer;f further declarations g: : :procedure main (low, upp: integer);vara, b, c: dyntype [low..upp];f further declarationsg: : :beginf main program, moved into the procedure g: : :end;begin f new main programgread (low,upp);main (low,upp);end.

2.10. HOW TO USE DYNAMIC ARRAYS 121PASCAL{XSCIn the new main program, the procedure main could also be called within a loop,within which new index bounds low and upp are entered. This might be usefulin an algorithm which improves a computed result by enlarging the dimensionof the dynamic arrays employed.Example 2.10.1:program longnumber (input, output);typelong = dynamic array [�] of real;varlen: integer;: : :function ok (len: integer) : boolean;varlz1, lz2, lz3: long [1..len];erg: real;: : :beginf algorithm g: : :writeln ('result using length ', len:1, ': ', erg);if f precision of res ok g thenok := trueelseok := false;end;beginrepeatwrite ('length of type long: ');read (len);until ok (len);end.As a �nal example for the handling of dynamic arrays, we list a program tocompute the transposed matrix for arbitrary (square or rectangular) matrices ofarbitrary dimension.

122 CHAPTER 2. LANGUAGE REFERENCEPASCAL{XSCExample 2.10.2:program transpose (input,output);typematrix = dynamic array [�,�] of real;function transp (var a: matrix) :matrix [lbound(a,2)..ubound(a,2), lbound(a,1)..ubound(a,1)];vari, j: integer;beginfor i:=lbound (a,1) to ubound (a,1) dofor j:=lbound (a,2) to ubound (a,2) dotransp[j,i] := a[i,j];end;procedure main (no of rows, no of columns: integer);vari, j: integer;A: matrix [1..no of rows,1..no of columns];T: matrix [1..no of columns,1..no of rows];beginwriteln ('Enter the matrix elements of A (row by row) ');for i:=1 to no of rows dofor j:=1 to no of columns doread(A[i,j]);writeln ('Transposed matrix of A:');T:= transp(A);for i:=1 to no of columns dobeginfor j:=1 to no of rows dowrite (T[i,j]);writeln;end;end;varno of rows, no of columns: integer;beginwriteln ('Size of A:');write ('Number of rows: ');read (no of rows);write ('Number of columns: ');read (no of columns);

2.10. HOW TO USE DYNAMIC ARRAYS 123PASCAL{XSCwhile (no of rows > 0) and (no of columns > 0) dobeginmain (no of rows,no of columns);writeln ('Size of A:');write ('Number of rows: ');read (no of rows);write ('Number of columns: ');read (no of columns);end;end.

Chapter 3The Arithmetic ModulesNumerical methods require computations not only in the space of real numbers,but also with complex numbers, and vectors and matrices over these numbers (see[1], [2], [19], or [33]). To ful�ll all these requirements, PASCAl{XSC provides thecorresponding types with the necessary operators and functions.All arithmetic operators are of maximum accuracy as described in section 1.3or for real operations in section 2.4.1.2. The result is computed to at least 1 ulpaccuracy.PASCAL{XSC provides a complete expression concept for the additional numer-ical typescomplex for complex numbersinterval for real intervalscinterval for complex intervalsrvector for real vectorscvector for complex vectorsivector for interval vectorscivector for complex interval vectorsrmatrix for real matricescmatrix for complex matricesimatrix for interval matricescimatrix for complex interval matricesThis expression concept is not restricted to operands of the same type. Moreover,almost every operation which is usually applied to di�erent operand types in themathematics is provided. Therefore, more than 1000 arithmetic operators are pro-vided. In addition, PASCAL{XSC enables the user to form logical expressions withthese types by providing a comparably large number of relational operators. Thislarge number of operators and functions makes it possible to transfer mathemati-cal computations of engineering and science into a clearly structured programmingcode. 125

126 CHAPTER 3. THE ARITHMETIC MODULESIn most cases, the original theoretical formulas or algorithms can be used as programparts with only few changes. This fact is supported by prede�ned overloadings ofthe assignment operator :=.The following table 1 is a survey of the prede�ned arithmetic operators for thearithmetic types.
Table 1: Prede�ned Arithmetical OperatorsQQQQQQQQleftoperand rightoperand integerrealcomplex intervalcinterval rvectorcvector ivectorcivector rmatrixcmatrix imatrixcimatrix1) +;� +;� +;� +;� +;� +;�integerrealcomplex 2)�; �<; �>;+� +;�; �; =;+� �; �<; �> � �; �<; �> �intervalcinterval +;�; �; =;+� +;�; �; =;+�; �� � � � �rvectorcvector �; �<; �>;=; =<; => �; = 3)�; �<; �>;+� 4)+;�; �;+�ivectorcivector �; = �; = 4)+;�; �;+� 4)+;�; �;+�; ��rmatrixcmatrix �; �<; �>;=; =<; => �; = �; �<; �> � 3)�; �<; �>;+� 4)+;�; �;+�imatrixcimatrix �; = �; = � � 4)+;�; �;+� 4)+;�; �;+�; ��1) The operators of this row are monadic (i.e. there is no left operand).2) � 2 f+;�; �; =g3) � 2 f+;�; �g, where � denotes the scalar or matrix product.4) The � denotes the scalar or matrix product.+� : Interval hull (smallest interval enclosing both operands)�� : Interval Intersection

127Remark: The block of table 1 which is marked by 2) contains the operators for realand integer operands of Standard PASCAL. The operators � (scalar product),+� (interval hull), and �� (interval intersection) are provided in the corre-sponding matrix/vector modules and interval modules, respectively.Table 2 gives an overview of the relational operators for the arithmetic types availablein PASCAL{XSC. Table 2: Prede�ned Relational OperatorsQQQQQQQQleftoperand rightoperand integerrealcomplex intervalcinterval rvectorcvector ivectorcivector rmatrixcmatrix imatrixcimatrixintegerrealcomplex =; <>;<=; <;>=; > in=; <>intervalcinterval =; <> 1)in; ><;=; <>;<=; <;>=; >rvectorcvector =; <>;<=; <;>=; > in=; <>ivectorcivector =; <> 1)in; ><;=; <>;<=; <;>=; >rmatrixcmatrix =; <>;<=; <;>=; > in=; <>imatrixcimatrix =; <> 1)in; ><;=; <>;<=; <;>=; >1) The operators <= and < denote the \subset" relation;>= and > denote the \superset" relation>< : Test for disjointedness of intervalsin : Test for membership of a point in an interval or test forstrict inclusion of an interval in the interior of an interval

128 CHAPTER 3. THE ARITHMETIC MODULESThe large number of operators are provided in special arithmetic modules whichcontain the operators listed above and a set of prede�ned functions. For the typescomplex, interval, and cinterval, this set contains all mathematical functions whichare provided for type real (see section 2.4.1.2).Hence, the following modules are available:C ARI complex arithmeticI ARI interval arithmeticCI ARI complex interval arithmeticMV ARI real matrix/vector arithmeticMVC ARI complex matrix/vector arithmeticMVI ARI interval matrix/vector arithmeticMVCI ARI complex interval matrix/vector arithmeticEach of these modules is described in the following sections. All types, opera-tors, transfer functions, overloadings of :=, prede�ned arithmetic functions, andinput/output procedures are systematically explained. The domains and ranges ofthe functions are implementation-dependent. The rules of overloading for read andwrite described in section 2.7.11 apply to the input/output procedures of the mod-ules, i.e. they can be used with an optional �le parameter and with an arbitrarynumber of input/output parameters. Therefore, the description of these proceduresis restricted to the explanation of the possible input and output formats.These shortened module names are chosen due to the implementation-dependentmaximum number of signi�cant characters in the module name which must be equalto the corresponding �le name. Some systems have special requirements concerningthe length of �le names or the length of entry names for linker interfaces. Withthese short names, modules are portable across all systems.De�nition of the Arithmetic OperatorsThe type of the result of scalar arithmetic operations is de�ned in the mathematicalsense according to the following hierarchy of types:
realcomplex intervalcinterval���� eeee@@@@ ����

129The result is always the lowest type containing both operand types.For the matrix/vector operations, the structure of the result follows from thestructures of the operands:v + v = vm + m = mv � v = vm � m = mv = s = vm = s = m
v � v = ss � v = vv � s = vm � v = vs � m = mm � s = mm � m = mStructure of the Result Type for Matrix/Vector Operationss = scalar, v = vector, m = matrixThe type of the result follows from the above hierarchy of types depending on thetwo component types.All matrix/vector operations assume the number of corresponding componentsof the operands is equal, i.e. the corresponding index ranges must have the samelength. The index ranges themselves may be di�erent as invarp : complex;a : rvector[1..10];b : cvector[11..20];. . .p := a � b;In the de�nitions of the operators in the following sections, the descriptions given as-sume that the index ranges are identical. For example, the scalar product p = a � bis described as#� (for i:= lb(a) to ub(a) sum(a[i] � b[i]))but it is implemented as#� (for i:= lb(a) to ub(a) sum(a[i] � b[i + lb(b) � lb(a)]))De�nition of the Relational OperatorsThe relational operators in these modules are based upon the set of relational oper-ators for the type real. This set of operators is used to de�ne the operators <= and= for a structured numerical data type SNDT (Structured Numerical Data Type).The operator = is implemented in such a manner that it delivers true if and only ifall components of the SNDT ful�ll the equality. The de�nition of the operator <=depending on the type of the operands is explained in the corresponding section ofthe de�ning modules.All further relational operators for elements a, b 2 SNDT are de�ned by:

130 CHAPTER 3. THE ARITHMETIC MODULES(RD) a <> b := not (a = b)a < b := (a <= b) and (a <> b)a > b := b < aa >= b := b <= aOverloading of the Assignment OperatorThe assignment operator is overloaded to provide several basic type conversionsand some array type initializations. All type conversions are de�ned according tothe mathematical embedding (for example, the real numbers are embedded in thecomplex numbers), i.e. the value is invariant. Initializations by means of assignmentsof scalar types to vector or matrix types are de�ned componentwise, i.e. the samevalue is assigned to all components of the array type. For all these overloadedassignment operators, there are no rounding or conversion errors.Nevertheless, we have to remember the special problematic nature of conversiondescribed in section 2.3.1 in connection with literal constants on the right side of theassignment. For the reasons described in section 2.3.1, a real constant is convertedinto the internal real format before the assignment is executed.Accuracy of the Prede�ned FunctionsAll complex functions deliver results of at least 1 ulp accuracy.The interval functions always compute a oating-point interval that contains theexact interval result. In most cases, the smallest enclosing interval is computed, butthere are some special cases in which the bounds di�er by 2 ulp.The complex interval functions achieve the same accuracies for their real andimaginary parts.

3.1. THE MODULE C ARI 1313.1 The Module C ARIComplex ArithmeticThis module supplies all operators, functions, and procedures necessary for compu-tations with complex numbers.TypeThe type complex de�ned bytype complex = record re, im : real end;is part of the language core of PASCAL{XSC. It is based upon the cartesian repre-sentation of a complex number z in the formz = x+ iy;where x denotes the real part and y denotes the imaginary part of z.OperatorsAll prede�ned arithmetic operators of this module deliver the result type complex.There are the monadic operators +;� and the four basic operations +;�; �; =, eachwith three di�erent kinds of rounding. All roundings are interpreted componentwise.The relational operators =; <>;<;<=; >;>= are de�ned on the base of = and<= according to (RD) (see page 130). If a and b are of type complex thena <= b () (a.re <= b.re) and (a.im <= b.im).Comparison with an integer or real operand is allowed as well.QQQQQQQQleftoperand rightoperand integerreal complexmonadic +;�integerreal �_complex �_ �_The Operators of Module C ARI� 2 f+, +<, +>, �, �<, �>, �, �<, �>, =, =<, =>g_ 2 f=, <>, <, <=, >, >=g

132 CHAPTER 3. THE ARITHMETIC MODULESTransfer FunctionsThe following transfer functions are provided for type conversions between the typesreal and complex:Function Result Type Meaningcompl (r1,r2) complex Complex number with real part r1 andimaginary part r2compl (r) complex Complex number with real part r andimaginary part 0re (c) real Real part of cim (c) real Imaginary part of cr, r1, r2 = real Expression, c = complex ExpressionExample 3.1.1:The imaginary unit i can be generated using the expressioncompl (0,1) .
Overloading of the Assignment OperatorThe type conversion real to complex is provided as an overloading of the assignmentoperator: Assignment Meaningc := r c := compl (r)c = complex variabler = real expression

3.1. THE MODULE C ARI 133Prede�ned FunctionsAll mathematical functions of PASCAL{XSC available for real arguments are alsosupplied for complex arguments. Moreover, functions for the computations of theangle component ' of the exponential representation z = r �ei' of a complex numberz and for the conjugation (reection about the real axis) are provided.Function Result Type Meaningsqr (c) complex c2 = c � c Squaresqrt (c) complex pc Square Root (Real part > 0)exp (c) complex ec Exponential Functionexp2 (c) complex 2c Power Function, Base 2exp10 (c) complex 10c Power Function, Base 10ln (c) complex ln (c) Natural Logarithmlog2 (c) complex log2(c) Logarithm, Base 2log10 (c) complex log10(c) Logarithm, Base 10sin (c) complex sin (c) Sinecos (c) complex cos (c) Cosinetan (c) complex tan (c) Tangentcot (c) complex cot (c) Cotangentarcsin (c) complex arcsin (c) Arc Sinearccos (c) complex arccos (c) Arc Cosinearctan (c) complex arctan (c) Arc Tangentarccot (c) complex arccot (c) Arc Cotangentsinh (c) complex sinh (c) Hyperbolic Sinecosh (c) complex cosh (c) Hyperbolic Cosinetanh (c) complex tanh (c) Hyperbolic Tangentcoth (c) complex coth (c) Hyperbolic Cotangentarsinh (c) complex arsinh (c) Inverse Hyperbolic Sinearcosh (c) complex arcosh (c) Inverse Hyperbolic Cosineartanh (c) complex artanh (c) Inverse Hyperbolic Tangentarcoth (c) complex arcoth (c) Inverse Hyperbolic Cotangentconj (c) complex �c = x� iy Conjugation of c = x + iyarg (c) real ' Argument of c = r � ei'abs (c) real r = px2 + y2 Absolute value of c = r � ei' =x+ iyc = complex expressionThe domains and ranges of the prede�ned functions are implementation-dependentand are described in the user manual.

134 CHAPTER 3. THE ARITHMETIC MODULESInput/Output ProceduresThis module supplies the proceduresprocedure read (var f: text; var a: complex);procedure write (var f: text; a: complex);with optional �le parameters, arbitrarily many input/output parameters, but with-out format speci�cations.A complex number c = x+ iy must be entered in the form(x; y)or in the formx:In the second case, the imaginary part y is set to 0. x and y are real constantsthat are rounded to the nearest oating-point numbers. The output of a complexnumber rounds both the real and imaginary parts to the nearest decimal numbers.It is displayed in the form(x; y)with an implementation-dependent default format for the real values x and y.Example 3.1.2:If c is of type complex, then the statementsread (c);writeln (c);accept the input data�1.23456789,and write the complex data(�1.234567890000E+00, 0.000000000000E+00).Another real representation may be used depending on the implementation.

3.2. THE MODULE I ARI 1353.2 The Module I ARIInterval ArithmeticThis module supplies all operators, functions, and procedures necessary for compu-tations with intervals.TypeThe type interval de�ned bytype interval = record inf, sup : real end;is part of the language core of PASCAL{XSC. It is based upon the representationof a real interval x in the formx = [xinf; xsup]representing the set fy 2 IRjxinf � y � xsupg. inf denotes the in�mum (lowerbound), and sup denotes the supremum (upper bound) of x.OperatorsAll prede�ned arithmetic and lattice operators deliver the result type interval. Thereare the monadic operators +;� and the four basic operations +;�; �; =, each withthe rounding to the smallest enclosing interval. The relational operators =; <>;<;<=; >;>= are to be interpreted as the corresponding set operators. Their meaningis = equal<> not equal< proper subset<= subset> proper superset>= supersetThese operators are de�ned on the base of = and <= according to (RD) (see page130). If x and y are of type interval, thenx <= y () (x.inf >= y.inf) and (x.sup <= y.sup).Moreover, this module supplies the operator in for the relation \is contained in"or \is contained in the interior" between a real- and an interval operand or betweentwo interval operands. The operator in satis�esx in y () (x.inf > y.inf) and (x.sup < y.sup).The operator >< tests for disjointedness of two intervals. Two intervals x and yare disjoint if x \ y = � (empty set). The lattice operators +� and �� denote theinterval hull and the interval intersection, respectively. The operator +� delivers thesmallest interval enclosing both operands. The operator �� delivers the intersection.It is an error if the intersection is empty.

136 CHAPTER 3. THE ARITHMETIC MODULESQQQQQQQQleftoperand rightoperand integerreal intervalmonadic +;�integerreal +� �in;=; <>+�interval �=; <>+� �in;_; ><+�; ��The Operators of Module I ARI� 2 f+, �, �, =g_ 2 f=, <>, <, <=, >, >=gExample 3.2.1:If a and b of type interval are de�ned asa = [�1,3]b = [3,4],then the operators +, �, �, ><, +�, and �� yield the results:Expression Resulta + b [2,7]a � b [�5,0]a � b [�4,12]a +� b [�1,4]a �� b [3,3]a >< b false

3.2. THE MODULE I ARI 137Transfer FunctionsThe following transfer functions are provided for type conversions between the typesreal and interval:Function Result Type Meaningintval (r1,r2) interval Interval with inf = r1 and sup = r2 (�)intval (r) interval Interval with inf = sup = rinf (i) real Lower bound of isup (i) real Upper bound of ir, r1, r2 = real expression, i = interval expression(�): r1 <= r2 is assumed, otherwise an error occurs.Overloading of the Assignment OperatorThe type conversion real to interval is provided as an overloaded assignment oper-ator: Assignment Meaningi := r i := intval (r)i = interval variabler = real expressionPrede�ned FunctionsAll mathematical functions of PASCAL{XSC available for real arguments are sup-plied for interval arguments i. These interval functions F satisfy F (i) � f(i) =ff(r) : r 2 ig. Moreover, functions for the computation of the midpoint and diam-eter of intervals are available. In connection with enclosure methods, the functionblow is provided for the epsilon ination (see [46]).Function Result Type Meaningsqr (i) interval i2 = fr2 : r 2 ig Interval Squaresqrt (i) interval pi Square Rootexp (i) interval ei Exponential Functionexp2 (i) interval 2i Power Function, Base 2exp10 (i) interval 10i Power Function, Base 10ln (i) interval ln (i) Natural Logarithmlog2 (i) interval log2(i) Logarithm, Base 2log10 (i) interval log10(i) Logarithm, Base 10i = interval expression

138 CHAPTER 3. THE ARITHMETIC MODULESFunction Result Type Meaningsin (i) interval sin (i) Sinecos (i) interval cos (i) Cosinetan (i) interval tan (i) Tangentcot (i) interval cot (i) Cotangentarcsin (i) interval arcsin (i) Arc Sinearccos (i) interval arccos (i) Arc Cosinearctan (i) interval arctan (i) Arc Tangentarctan2 (i1,i2) interval arctan (i1/i2) Arc Tangentarccot (i) interval arccot (i) Arc Cotangentsinh (i) interval sinh (i) Hyperbolic Sinecosh (i) interval cosh (i) Hyperbolic Cosinetanh (i) interval tanh (i) Hyperbolic Tangentcoth (i) interval coth (i) Hyperbolic Cotangentarsinh (i) interval arsinh (i) Inverse Hyperbolic Sinearcosh (i) interval arcosh (i) Inverse Hyperbolic Cosineartanh (i) interval artanh (i) Inverse Hyp. Tangentarcoth (i) interval arcoth (i) Inverse Hyp. Cotangentabs (i) interval jij = fjrj : r 2 ig Absolute Valuemid (i) real m = #�(0.5�inf(i)+ 0.5�sup(i)) Midpoint of idiam (i) real d = sup(i) �> inf(i) Diameter of iblow (i,r) interval z Epsilon Inationi, i1, i2 = interval expression r, m, d = real expressionz : y := (1 + r) � i � r � i;blow := intval (pred(inf(y)), succ(sup(y)));The domains and ranges of the prede�ned functions are implementation-dependentand are described in the user manual.Example 3.2.2:If a and b of type interval are de�ned asa := intval (�1,3)b := intval (2)then the functions abs, sqr, mid, and diam deliver the results:

3.2. THE MODULE I ARI 139Expression Resultabs (a) [0,3]abs (b) [2,2]sqr (a) [0,9]sqr (b) [4,4]mid (a) 1diam (a) 4Input/Output ProceduresThis module supplies the proceduresprocedure read (var f: text; var a: interval);procedure write (var f: text; a: interval);with optional �le parameters, arbitrarily many input/output parameters, but with-out format speci�cations.An interval i = [x; y] must be entered in the form[x; y]or in the formx:In the �rst case, the values of x and y are rounded to the next-smaller and the next-larger oating-point number, respectively (i.e. rounding to the smallest enclosinginterval). The second case is a simpli�ed notation for i = [x; x]. If x is not exactlyrepresentable, the smallest interval enclosing x is generated.The output of an interval is done with interval rounding (x rounded downwardly,y rounded upwardly) in the form[x; y]with an implementation-dependent default format for the real values x and y.Example 3.2.3:If int is of type interval, then the statementsread (int);writeln (int);accept the input data0.245,and write the interval[2.4499...99E�001, 2.4500...01E�001],if 0.245 is not exactly representable. Another real representation may be useddepending on the the implementation.

140 CHAPTER 3. THE ARITHMETIC MODULES3.3 The Module CI ARIComplex Interval ArithmeticThis module supplies all operators, functions, and procedures necessary for compu-tations with complex intervals.TypeThe type cinterval de�ned bytype cinterval = record re, im : interval end;is part of the language core of PASCAL{XSC. It is based upon the usual represen-tation of a complex interval z in the formz = [xinf; xsup] + i � [yinf; ysup]representing a rectangle in the complex plane (rectangular interval).OperatorsAll prede�ned arithmetic and lattice operators deliver the result type cinterval.There are the monadic operators +;� and the four basic operations +;�; �; =, eachwith the rounding to the smallest enclosing complex interval. The relational opera-tors =; <>;<;<=; >;>= are to be interpreted as the corresponding set operators.Their meaning is= equal<> not equal< propper subset<= subset> propper superset>= supersetThese operators are de�ned on the base of = and <= according to (RD) (see page130). If v and w are of type cinterval, thenv <= w () (v.re <= w.re) and (v.im <= w.im).The operators on the right side of the equivalence are the ones for intervals.Moreover, this module supplies the operator in for the relations \is containedin" and \is contained in the interior" For two complex intervals v and w , the operatorin satis�esv in w () (v.re in w.re) and (v.im in w.im).The operator >< tests for disjointedness of two complex intervals. Two complexintervals v; w are disjoint if v \ w = �. The lattice operators +� and �� denotethe complex interval hull and the complex interval intersection, respectively. Theoperator +� delivers the smallest complex interval enclosing both operands. Theoperator �� delivers the intersection. It is an error if the intersection is empty.

3.3. THE MODULE CI ARI 141QQQQQQQQleftOperand rightOperand integerreal complex interval cintervalmonadic +;�integerreal +� �in, =, <>+�complex +� +� �in, =, <>+� �in, =, <>+�interval �=, <>+� �in, _, ><+�, ��cinterval �=, <>+� �=, <>+� �_, ><+�, �� �in, _, ><+�, ��The Operators of Module CI ARI� 2 f+, �, �, =g_ 2 f=, <>, <, <=, >, >=gExample 3.3.1:If ca of type cinterval isca = [�1,3] + i [3,4],then the operators +, �, and � deliverExpression Resultca + ca [�2,6] + i [6,8]ca � ca [�4,4] + i [�1,1]ca � ca [�19,0] + i [�8,24]

142 CHAPTER 3. THE ARITHMETIC MODULESTransfer FunctionsThe following transfer functions are provided for type conversions between the typesreal, complex, interval, and cinterval:Function Result Type Meaningcompl (i1,i2) cinterval Complex interval with real part i1 andimaginary part i2compl (r,i) cinterval Complex interval with real part r andimaginary part icompl (i,r) cinterval Complex interval with real part i andimaginary part rcompl (i) cinterval Complex interval with real part i andimaginary part 0intval (c1,c2) cinterval Complex interval withreal part [c1.re,c2.re] andimaginary part [c1.im,c2.im] (�)intval (r,c) cinterval Complex interval withreal part [r,c.re] andimaginary part [0,c.im] (�0)intval (c,r) cinterval Complex interval withreal part [c.re,r] andimaginary part [c.im,0] (�00)intval (c) cinterval Complex interval withreal part [c.re,c.re] andimaginary part [c.im,c.im]re (ci) interval Real part of ciim (ci) interval Imaginary part of ciinf (ci) complex Complex lower bound z of ci withz = (ci.re.inf,ci.im.inf)sup (ci) complex Complex upper bound z of ci withz = (ci.re.sup,ci.im.sup)r = real expression, i, i1, i2 = interval expression,c, c1, c2 = complex expression, ci = cinterval expression(�) : c1 <= c2 is assumed, otherwise an error occurs.(�0) : r <= c is assumed, otherwise an error occurs.(�00) : c <= r is assumed, otherwise an error occurs.

3.3. THE MODULE CI ARI 143Overloading of the Assignment OperatorThe type conversions real, complex, or interval to cinterval are provided as over-loaded assignment operators:Assignment Meaningci := r ci := compl (intval (r))ci := c ci := intval (c)ci := i ci := compl (i)ci = cinterval variable, i = interval expressionc = complex expression, r = real expressionPrede�ned FunctionsAll mathematical functions of PASCAL{XSC available for real arguments are sup-plied for complex interval arguments ci. These complex interval functions F satisfyF (ci) � f(ci) = ff(c) : c 2 cig. Moreover, functions for the computation of theangle component of the exponential representation, for the conjugation, and for thecomputation of midpoint, diameter, and epsilon ination of a complex interval areavailable.Function Result Type Meaningsqr (ci) cinterval (ci)2 Squaresqrt (ci) cinterval pci Square Rootexp (ci) cinterval eci Exponential Functionexp2 (ci) cinterval 2ci Power Function, Base 2exp10 (ci) cinterval 10ci Power Function, Base 10ln (ci) cinterval ln (ci) Natural Logarithmlog2 (ci) cinterval log2(ci) Logarithm, Base 2log10 (ci) cinterval log10(ci) Logarithm, Base 10sin (ci) cinterval sin (ci) Sinecos (ci) cinterval cos (ci) Cosinetan (ci) cinterval tan (ci) Tangentcot (ci) cinterval cot (ci) Cotangentarcsin (ci) cinterval arcsin (ci) Arc Sinearccos (ci) cinterval arccos (ci) Arc Cosinearctan (ci) cinterval arctan (ci) Arc Tangentarccot (ci) cinterval arccot (ci) Arc Cotangentci = cinterval expression

144 CHAPTER 3. THE ARITHMETIC MODULESFunction Result Type Meaningsinh (ci) cinterval sinh (ci) Hyperbolic Sinecosh (ci) cinterval cosh (ci) Hyperbolic Cosinetanh (ci) cinterval tanh (ci) Hyperbolic Tangentcoth (ci) cinterval coth (ci) Hyperbolic Cotangentarsinh (ci) cinterval arsinh (ci) Inverse Hyperbolic Sinearcosh (ci) cinterval arcosh (ci) Inverse Hyperbolic Cosineartanh (ci) cinterval artanh (ci) Inverse Hyperbolic Tangentarcoth (ci) cinterval arcoth (ci) Inverse Hyperb. Cotangentconj (ci) cinterval ci = a� ib Conjugation of ci = a + ibabs (ci) interval j = pci.re2 + ci.im2 Absolute Value of ciarg (ci) interval ' Angle component of the expo-nential representation of cimid (ci) complex m Midpoint of cidiam (ci) real d Diameter of ciblow (ci,r) cinterval z Epsilon Inationci = cinterval expression, r = real expressionz : blow := compl (blow(ci.re,r),blow(ci.im,r))The domains and ranges of the prede�ned functions are implementation-dependentand are described in the user manual.Example 3.3.2:If a of type cinterval is de�ned asa := compl (intval (�1,3), intval (3,4)),then the functions abs and sqr deliver the results:Expression Resultabs (a) [3,5]sqr (a) [�16,0] + i [�8,24]Input/Output ProceduresThis module supplies the proceduresprocedure read (var f: text; var a: cinterval);procedure write (var f: text; a: cinterval);with optional �le parameters, arbitrarily many input/output parameters, but with-out format speci�cations.

3.3. THE MODULE CI ARI 145A complex interval ci = [x; y] + i[v; w] must be entered in the form([x; y]; [v; w]) general complex intervalor in the form(x; [v; w]) with x = yor in the form([x; y]; v) with v = wor in the form[x; y] with v = w = 0or in the form(x; v) with x = y and v = wor in the formx with x = y and v = w = 0.The rounding of real and imaginary part is done as described in section 3.2.The output of a complex interval is done with the interval rounding described insection 3.2 for the real and imaginary parts. The result has the form([x; y]; [v; w]);with an implementation-dependent default format for the real values x, y, v, and w.Example 3.3.3:If ci1, ci2, and ci3 are of type cinterval, then the statementsread (ci1, ci2, ci3);writeln (ci1);writeln (ci2);writeln (ci3);accept the input data[4,5](8,10)100and write the complex intervals([4.0E+00, 5.0E+00],[0.0E+00, 0.0E+00])([8.0E+00, 8.0E+00],[1.0E+01, 1.0E+01])([1.0E+02, 1.0E+02],[0.0E+00, 0.0E+00])Another real representation may be used depending on the implementation.

146 CHAPTER 3. THE ARITHMETIC MODULES3.4 The Module MV ARIReal Matrix/Vector ArithmeticThis module supplies all operators, functions, and procedures necessary for compu-tations with real vectors and matrices.TypesThe dynamic types for representing real vectors and matrices de�ned bytype rvector = dynamic array [�] of real;rmatrix= dynamic array [�] of rvector;are part of the language core of PASCAL{XSC. The actual index bounds are spec-i�ed in connection with the declaration of variables of these types.OperatorsMany of the basic matrix/vector operations known from mathematics are prede�nedin this module. There are the monadic operators +;� and the four basic operations+;�; �; =, each with three di�erent kinds of rounding. Special combinations of mixedtypes of operands are permitted. The operations + and � for vectors and matricesare de�ned componentwise byc := a � b with c[i] := a[i] � b[i]C := A � B with C[i, j] := A[i, j] � B[i, j]with a, b, c of type rvector, and A, B, C of type rmatrix. The operators � and =are de�ned bys := a � b with s := #� (for i:=lbound(a) to ubound(a)sum (a[i]�b[i])) zc := r � a with c[i] := r � a[i]c := a � r with c[i] := a[i] � rc := a = r with c[i] := a[i] = rc := A � b with c[i] := A[i] � b zC := r � A with C[i, j] := r � A[i, j]C := A � r with C[i, j] := A[i, j] � rC := A = r with C[i, j] := A[i, j] = rC := A � B with C[i, j] := A[i] � B[�, j] zz: Scalar productwith maximum accuracywith r, s of type real, a, b, c of type rvector and A, B, C of type rmatrix. Theoperations with directed rounding are de�ned in a corresponding way.The de�nition of the relational operators =; <>;<;<=; >;>= is based upon = and<=. It is realized according to (RD) (see page 130). If a and b are of type rvector,and A and B are of type rmatrix, then

3.4. THE MODULE MV ARI 147a <= b () a[i] <= b[i] for all iA <= B () A[i, j] <= B[i, j] for all i, jThe operators on the right side of the equivalences are the ones for values of typereal. QQQQQQQQleftOperand rightOperand integerreal rvector rmatrixmonadic +;� +;�integerreal �, �<, �> �, �<, �>rvector �, �<, �>=, =<, => �_rmatrix �, �<, �>=, =<, => �, �<, �> �_The Operators of Module MV ARI� 2 f+, +<, +>, �, �<, �>, �, �<, �>g_ 2 f=, <>, <, <=, >, >=gExample 3.4.1:A Runge-Kutta method can be used for the approximate solution of initialvalue problems of the formY 0 = F (x; Y); Y (x0) = Y 0;with Y = 0BB@ y1(x)...yn(x) 1CCA ; Y 0 = 0BB@ y01(x)...y0n(x) 1CCAand F (x; Y) = 0BB@ f1(x; y1; : : : ; yn)...fn(x; y1; : : : ; yn) 1CCA :

148 CHAPTER 3. THE ARITHMETIC MODULESTo determine an approximation of the solution Y at x+ h, the formulasK1 = h � F (x; Y)K2 = h � F (x+ h2 ; Y + K12)K3 = h � F (x+ h2 ; Y + K22)K4 = h � F (x+ h; Y +K3)and Y (x + h) = Y (x) + (K1 + 2K2 + 2K3 +K4)=6are applied. After the de�nition of the rvector function F and the declarationof the variables k1, k2, k3, k4, Y of type rvector and h, x of type real, theseformulas can directly be transferred into PASCAL{XSC source code:k1 := h � F (x , Y);k2 := h � F (x + h/2, Y + k1/2);k3 := h � F (x + h/2, Y + k2/2);k4 := h � F (x + h , Y + k3);Y := Y + (k1 + 2 � k2 + 2 � k3 + k4) / 6;Overloading of the Assignment OperatorThe componentwise initialization of rvector and rmatrix variables is provided asoverloaded assignment operators:Assignment Meaningrv := r rv[j] := r j = lb(rv),...,ub(rv)rM := r rM[j,k] := r j = lb(rM,1),...,ub(rM,1)k = lb(rM,2),...,ub(rM,2)r = real expression, rv = rvector variable, rM = rmatrix variable

3.4. THE MODULE MV ARI 149Prede�ned FunctionsThe functions id and null are supplied for generating an identity matrix and a nullmatrix or a null vector. Furthermore, the function transp computes the transposedof a matrix.Function Result Type Meaningnull (v) rvector Null vector with the actual index range ofvvnull (n) rvector Null vector with the index range [1..n]null (M) rmatrix Null matrix with the actual index rangesof Mnull (M1,M2) rmatrix Null matrix with the actual index rangesof the product matrix M1 � M2null (n) rmatrix Null matrix with index range [1..n,1..n]null (n1,n2) rmatrix Null matrix with index range [1..n1,1..n2]id (M) rmatrix Identity matrix with the actual indexranges of Mid (M1,M2) rmatrix Identity matrix with the actual indexranges of the product matrix M1 � M2id (n) rmatrix Identity matrix with the index ranges[1..n,1..n]id (n1,n2) rmatrix Identity matrix with the index ranges[1..n1,1..n2]transp (M) rmatrix Transposed matrix Mt of M withMt[i, j] = M[j, i]n, n1, n2 = integer expression, v = rvector expressionM, M1, M2 = rmatrix expressionExample 3.4.2:If E denotes the identity matrix and R � A�1 an approximate inverse of thesquare matrix A, then the defectD = E � R � Ais often used in the numerical computations. In PASCAL{XSC, the defect canbe computed byD := id (A) � R � A,or with the use of an accurate expression (see section 2.4.4) byD := #� (id (A) � R � A) .In the second form, the defect matrix is computed with only one rounding ineach component.

150 CHAPTER 3. THE ARITHMETIC MODULESInput/Output ProceduresThe proceduresprocedure read (var f: text; var a: rvector);procedure read (var f: text; var A: rmatrix);procedure write (var f: text; a: rvector);procedure write (var f: text; A: rmatrix);are provided with optional �le parameters, arbitrarily many input/output parame-ters, but without any format speci�cations.The input of a vector or a matrix is done componentwise according to the inputof real values. A matrix is entered row by row. The output of a vector or a matrixis also done componentwise using an implementation-dependent default format forthe real components.Example 3.4.3:The statementread (b, A, x)reads the vector b, the matrix A and the vector x.

3.5. THE MODULE MVC ARI 1513.5 The Module MVC ARIComplex Matrix/Vector ArithmeticThis module supplies all operators, functions, and procedures necessary for compu-tations with complex vectors and matrices.TypesThe dynamic types for representing complex vectors and matrices de�ned bytype cvector = dynamic array [�] of complex;cmatrix= dynamic array [�] of cvector;are part of the language core of PASCAL{XSC. The actual index bounds are spec-i�ed in connection with the declaration of variables of these types.OperatorsMany of the basic complex matrix/vector operations known from mathematics areprede�ned in this module. There are the monadic operators +;� and the fourbasic operations +;�; �; =, each with three di�erent kinds of rounding. Specialcombinations of mixed types of operands are permitted. The operations + and �for complex vectors and matrices are de�ned componentwise byc := a � b with c[i] := a[i] � b[i]C := A � B with C[i, j] := A[i, j] � B[i, j]with a, b, and c of type cvector, and A, B, and C of type cmatrix. The operators� and = are de�ned bys := a � b with s := #� (for i:=lbound(a) to ubound(a)sum (a[i]�b[i])) zc := r � a with c[i] := r � a[i]c := a � r with c[i] := a[i] � rc := a = r with c[i] := a[i] = rc := A � b with c[i] := A[i] � b zC := r � A with C[i, j] := r � A[i, j]C := A � r with C[i, j] := A[i, j] � rC := A = r with C[i, j] := A[i, j] = rC := A � B with C[i, j] := A[i] � B[�, j] zz: Scalar productwith maximum accuracywith r and s of type complex, a, b. and c of type cvector, and A, B, and C oftype cmatrix. The operations with mixed operand types and the operations withdirected rounding are de�ned in a corresponding way.The de�nition of the relational operators =; <>;<;<=; >;>= is based upon = and<=. It is realized according to (RD) (see page 130). If a and b are of type cvectorand A and B are of type cmatrix, then

152 CHAPTER 3. THE ARITHMETIC MODULESa <= b () a[i] <= b[i] for all iA <= B () A[i, j] <= B[i, j] for all i, jThe operators on the right side of the equivalences are the ones for values of typecomplex.QQQQQQQQleftOperand rightOperand integerreal complex rvector cvector rmatrix cmatrixmonadic +;� +;�integerreal �, �<, �> �, �<, �>complex �, �<, �> �, �<, �> �, �<, �> �, �<, �>rvector �, �<, �>,=, =<, => �_cvector �, �<, �>,=, =<, => �, �<, �>,=, =<, => �_ �_rmatrix �, �<, �>,=, =<, => �, �<, �> �_cmatrix �, �<, �>,=, =<, => �, �<, �>,=, =<, => �, �<, �> �, �<, �> �_ �_The Operators of Module MVC ARI� 2 f+, +<, +>, �, �<, �>, �, �<, �>g_ 2 f=, <>, <, <=, >, >=gExample 3.5.1:If cv is of type cvector and cM is of type cmatrix, then a stretching with thefactor 1/3 may be produced bycv := cv / 3;cM := cM / 3;The division operation may also be executed with downwardly or upwardlyrounding using /< or />, respectively.

3.5. THE MODULE MVC ARI 153Transfer Functions for Complex VectorsThe following transfer functions are supplied for type conversion between the typesrvector and cvector:
Function Result Type Meaningcompl (rv1,rv2) cvector Complex vector cv withcv[i] = compl (rv1[i], rv2[i])compl (rv) cvector Complex vector cv withcv[i] = compl (rv[i])re (cv) rvector Real part vector rv withrv[i] = re (cv[i])im (cv) rvector Imaginary part vector rv withrv[i] = im (cv[i])rv, rv1, rv2 = rvector expression, cv = cvector expression

Transfer Functions for Complex MatricesThe following transfer functions are supplied for type conversion between the typesrmatrix and cmatrix:
Function Result Type Meaningcompl (rM1,rM2) cmatrix Complex matrix cM withcM[i, j] = compl (rM1[i, j], rM2[i, j])compl (rM) cmatrix Complex matrix cM withcM[i, j] = compl (rM[i, j])re (cM) rmatrix Real part matrix rM withrM[i, j] = re (cM[i, j])im (cM) rmatrix Imaginary part matrix rM withrM[i, j] = im (cM[i, j])rM, rM1, rM2 = rmatrix expression, cM = cmatrix expression

154 CHAPTER 3. THE ARITHMETIC MODULESOverloading of the Assignment OperatorThe componentwise initialization of cvector and cmatrix variables and type conver-sions from rvector to cvector and rmatrix to cmatrix are provided as overloadedassignment operators:Assignment Meaningcv := r cv[j] := compl (r) j = lb(cv),...,ub(cv)cv := c cv[j] := c j = lb(cv),...,ub(cv)cv := rv cv := compl (rv)cM := r cM[j,k] := compl (r) j = lb(cM,1),...,ub(cM,1)k = lb(cM,2),...,ub(cM,2)cM := c cM[j,k] := c j = lb(cM,1),...,ub(cM,1)k = lb(cM,2),...,ub(cM,2)cM := rM cM := compl (rM)c = complex expression, cv = cvector variablecM = cmatrix variable, r = real expressionrv = rvector expression, rM = rmatrix expressionPrede�ned FunctionsThe functions id and null are supplied for generating an identity matrix and a nullmatrix or a null vector. The functions transp and herm compute the transposedand the Hermitian matrices. The function conj for conjugation is available, too.Function Result Type Meaningnull (cv) rvector Null vector with the actual index range ofcvnull (cM) rmatrix Null matrix with the actual index rangesof cMnull (cM1,cM2) rmatrix Null matrix with the actual index rangesof the product matrix cM1 � cM2id (cM) rmatrix Identity matrix with the actual indexranges of cMid (cM1,cM2) rmatrix Identity matrix with the actual indexranges of the product matrix cM1 � cM2cv = cvector expression, cM, cM1, cM2 = cmatrix expression

3.5. THE MODULE MVC ARI 155Function Result Type Meaningconj (cv) cvector Conjugated complex vector cvc withcvc[i] = conj (cv[i])conj (cM) cmatrix Conjugated complex matrix cMc withcMc[i, j] = conj (cM[i, j])transp (cM) cmatrix Transposed matrix cMt of cM withcMt[i, j] = cM[j, i]herm (cM) cmatrix Hermitian matrix cMh of cM withcMh[i, j] = conj (cM[j, i])cv, cvc = cvector expression, cM, cMc, cMt, cMh = cmatrix expressionExample 3.5.2:If cM, cM1, and cM2 are complex matrices of type cmatrix, and the statementscM1 := conj (transp (cM));cM2 := herm (cM);are executed, then the boolean expressioncM1 = cM2delivers true.Input/Output ProceduresThe proceduresprocedure read (var f: text; var a: cvector);procedure read (var f: text; var A: cmatrix);procedure write (var f: text; a: cvector);procedure write (var f: text; A: cmatrix);are provided with optional �le parameters, arbitrary many input/output parameters,but without any format speci�cations.A complex vector or a complex matrix is entered componentwise according tothe input of complex values. A matrix is entered row by row. The output of acomplex vector or a complex matrix is also done componentwise using the defaultoutput format for complex numbers.

156 CHAPTER 3. THE ARITHMETIC MODULES3.6 The Module MVI ARIInterval Matrix/Vector ArithmeticThis module supplies all operators, functions, and procedures necessary for compu-tations with interval vectors and matrices.TypesThe dynamic types for representing interval vectors and matrices de�ned bytype ivector = dynamic array [�] of interval;imatrix= dynamic array [�] of ivector;are part of the language core of PASCAL{XSC. The actual index bounds are spec-i�ed in connection with the declaration of variables of these types.OperatorsMany of the basic interval matrix/vector operations known from the mathematics areprede�ned in this module. There are the monadic operators +;� and the four basicoperations +;�; �; =, each with componentwise rounding to the smallest enclosinginterval. Even special combinations of mixed types of operands are permitted. Theoperations + and � for interval vectors and matrices are de�ned componentwise byc := a � b with c[i] := a[i] � b[i]C := A � B with C[i, j] := A[i, j] � B[i, j]with a, b, and c of type ivector and A, B, and C of type imatrix. The operators �and = are de�ned bys := a � b with s := ## (for i:=lbound(a) to ubound(a)sum (a[i]�b[i])) zc := r � a with c[i] := r � a[i]c := a � r with c[i] := a[i] � rc := a = r with c[i] := a[i] = rc := A � b with c[i] := A[i] � b zC := r � A with C[i, j] := r � A[i, j]C := A � r with C[i, j] := A[i, j] � rC := A = r with C[i, j] := A[i, j] = rC := A � B with C[i, j] := A[i] � B[�, j] zz: Scalar productwith maximum accuracywith r and s of type interval, a, b, and c of type ivector, and A, B, and C of typeimatrix. The operations with mixed operand types are de�ned in a correspondingway.The de�nition of the relational operators =; <>;<;<=; >;>= is based upon = and<=. It is realized according to (RD) (see page 130). If a and b are of type ivector,and A and B of type imatrix, then

3.6. THE MODULE MVI ARI 157a <= b () a[i] <= b[i] for all iA <= B () A[i, j] <= B[i, j] for all i, jThe operators on the right side of the equivalences are the ones for values of typeinterval.Moreover, the operators in for the relations \is contained in" and \is containedin the interior" and the operator >< to test for disjointedness are provided forinterval vectors and interval matrices. These operators are de�ned componentwise.The lattice operators +� and �� denote the interval hull and the interval inter-section as described for the type interval in section 3.2 (I ARI).QQQQQQQQleftOperand rightOperand integerreal interval rvector ivector rmatrix imatrixmonadic +;� +;�integerreal � �interval � � � �rvector �; = +� �=; <>, in+�ivector �; = �; = �=; <>+� �in;_; ><+�; ��rmatrix �; = � +� �=; <>, in+�imatrix �; = �; = � � �=; <>+� �in;_; ><+�; ��The Operators of Module MVI ARI� 2 f+, �, �g_ 2 f=, <>, <, <=, >, >=g

158 CHAPTER 3. THE ARITHMETIC MODULESExample 3.6.1:If we want to execute the Runge-Kutta method mentioned in section 3.4(MV ARI) using interval arithmetic, we only have to change a few thingsin the original program. The variables k1, k2, k3, k4, Y must be declared oftype ivector, and the function F must be de�ned with result type ivector. Ifwe now use the module MVI ARI instead of MV ARI, the program statementsk1 := h � F (x , Y);k2 := h � F (x + h/2, Y + k1/2);k3 := h � F (x + h/2, Y + k2/2);k4 := h � F (x + h , Y + k3);Y := Y + (k1 + 2 � k2 + 2 � k3 + k4) / 6;need not be changed in any way. Now, all operators denote the correspondinginterval operations. Although we have an interval result Y , we do not havean enclosure for the true solution of the ordinary di�erential equation. Tocompute an enclosure, we would also have to enclose the truncation error ofthe method.
Transfer Functions for Interval VectorsThe following transfer functions are supplied for type conversions between the typesrvector and ivector:Function Result Type Meaningintval (rv1,rv2) ivector Interval vector iv withiv[i] = intval (rv1[i],rv2[i]) (�)intval (rv) ivector Interval vector iv withiv[i] = intval (rv[i])inf (iv) rvector Vector rv of lower bounds withrv[i] = inf (iv[i])sup (iv) rvector Vector rv of upper bounds withrv[i] = sup (iv[i])rv, rv1, rv2 = rvector expression, iv = ivector expression(�): rv1 <= rv2 is assumed, otherwise an error occurs.

3.6. THE MODULE MVI ARI 159Transfer Functions for Interval MatricesThe following transfer functions are supplied for type conversions between the typesrmatrix and imatrix:Function Result Type Meaningintval (rM1,rM2) imatrix Interval vector iM withiM[i, j] = intval (rM1[i, j],rM2[i, j])(�)intval (rM) imatrix Interval vector iM withiM[i, j] = intval (rM[i, j])inf (iM) rmatrix Vector rM of lower bounds withrM[i, j] = inf (iM[i, j])sup (iM) rmatrix Vector rM of upper bounds withrM[i, j] = sup (iM[i, j])rM, rM1, rM2 = rmatrix expression, iM = imatrix expression(�): rM1 <= rM2 is assumed, otherwise an error occurs.
Overloading of the Assignment OperatorThe componentwise initialization of ivector and imatrix variables and type conver-sions from rvector to ivector and rmatrix to imatrix are provided as overloadedassignment operators:Assignment Meaningiv := r iv[j] := intval (r) j = lb(iv),...,ub(iv)iv := i iv[j] := i j = lb(iv),...,ub(iv)iv := rv iv := intval (rv)iM := r iM[j,k] := intval (r) j = lb(iM,1),...,ub(iM,1)k = lb(iM,2),...,ub(iM,2)iM := i iM[j,k] := i j = lb(iM,1),...,ub(iM,1)k = lb(iM,2),...,ub(iM,2)iM := rM iM := intval (rM)i = interval expression, iv = ivector variable, iM = imatrix variabler = real expression, rv = rvector expression, rM = rmatrix expression

160 CHAPTER 3. THE ARITHMETIC MODULESPrede�ned FunctionsThe functions id and null are supplied for generating an identity matrix and a nullmatrix or a null vector. The function transp computes the transposed matrix. Thefunctions mid, diam, and blow compute midpoint, diameter, and epsilon inationcomponentwise.Function Result Type Meaningnull (iv) rvector Null vector with the actual index range ofivnull (iM) rmatrix Null matrix with the actual index rangesof iMnull (iM1,iM2) rmatrix Null matrix with the actual index rangesof the product matrix iM1 � iM2id (iM) rmatrix Identity matrix with the actual indexranges of iMid (iM1,iM2) rmatrix Identity matrix with the actual indexranges of the product matrix iM1 � iM2mid (iv) rvector Midpoint vector rv withrv[i] = mid (iv[i])diam (iv) rvector Diameter vector rv withrv[i] = diam (iv[i])mid (iM) rmatrix Midpoint matrix rM withrM[i, j] = mid (iM[i, j])diam (iM) rmatrix Diameter matrix rM withrM[i, j] = diam (iM[i, j])transp (iM) imatrix Transposed matrix iMt of iM withiMt[i, j] = iM[j, i]blow (iv,r) ivector Vector epsilon ination ive withive[i] = blow (iv[i],r)blow (iM,r) imatrix Matrix epsilon ination iMe withiMe[i, j] = blow (iM[i, j],r)r = real expression iv, ive = ivector expressioniM, iM1, iM2, iMt, iMe = imatrix expressionExample 3.6.2:An interval enclosure for the defectD = E � R � Amentioned in section 3.4 (MV ARI) can be computed by using MVI ARI, thevariables A, D, and R of type imatrix, and the statementD := id (A) � R � A.The tightest possible enclosing interval matrix can be computed using an ac-curate expression (see section 2.4.4)

3.6. THE MODULE MVI ARI 161D := ## (id (A) � R � A).Input/Output ProceduresThe proceduresprocedure read (var f: text; var a: ivector);procedure read (var f: text; var A: imatrix);procedure write (var f: text; a: ivector);procedure write (var f: text; A: imatrix);are provided with optional �le parameters, arbitrarily many input/output parame-ters, but without any format speci�cations.An interval vector or an interval matrix is entered componentwise as individualinterval values. A matrix is entered row by row. The output of an interval vectoror an interval matrix is also done componentwise using the default output formatfor intervals.

162 CHAPTER 3. THE ARITHMETIC MODULES3.7 The Module MVCI ARIComplex Interval Matrix/Vector ArithmeticThis module supplies all operators, functions, and procedures necessary for compu-tations with complex interval vectors and matrices.TypesThe dynamic types for representing complex interval vectors and matrices de�nedby type civector = dynamic array [�] of cinterval;cimatrix= dynamic array [�] of civector;are part of the language core of PASCAL{XSC. The actual index bounds are spec-i�ed in connection with the declaration of variables of these types.OperatorsMany of the basic complex interval matrix/vector operations known from the mathe-matics are prede�ned in this module. There are the monadic operators +;� and thefour basic operations +;�; �; =, each with componentwise rounding to the smallestenclosing complex interval. Even special combinations of mixed types of operandsare permitted. The operations + and � for complex interval vectors and matricesare de�ned componentwise byc := a � b with c[i] := a[i] � b[i]C := A � B with C[i, j] := A[i, j] � B[i, j]with a, b, and c of type civector and A, B, and C of type cimatrix. The operators� and = are de�ned bys := a � b with s := ## (for i:=lbound(a) to ubound(a)sum (a[i]�b[i])) zc := r � a with c[i] := r � a[i]c := a � r with c[i] := a[i] � rc := a = r with c[i] := a[i] = rc := A � b with c[i] := A[i] � b zC := r � A with C[i, j] := r � A[i, j]C := A � r with C[i, j] := A[i, j] � rC := A = r with C[i, j] := A[i, j] = rC := A � B with C[i, j] := A[i] � B[�, j] zz: Scalar productwith maximum accuracywith r and s of type cinterval, a, b, and c of type civector, and A, B, and C of typecimatrix. The operations with mixed operand types are de�ned in a correspondingway.

3.7. THE MODULE MVCI ARI 163The de�nition of the relational operators =; <>;<;<=; >;>= is based upon =and <=. It is realized according to (RD) (see page 130). If a and b are of typecivector and A and B are of type cimatrix, thena <= b () a[i] <= b[i] for all iA <= B () A[i, j] <= B[i, j] for all i, jThe operators on the right side of the equivalences are the ones for complex intervals.Moreover, the operators in for the relations \is contained in" and \is containedin the interior", and the operator >< for the test on disjointedness are provided forcomplex interval vectors and complex interval matrices. These operators are de�nedcomponentwise.The lattice operators +� and �� denote the complex interval hull and the complexinterval intersection as described for the type cinterval in section 3.3 (CI ARI).The review of the operators de�ned in Module MVCI ARI is given in two tablesdue to the large number of operators. The �rst table has no matrix types as rightoperands, while the second table has only matrix types as right operands.

164 CHAPTER 3. THE ARITHMETIC MODULESQQQQQQQleftOperand rightOperand integerreal complex interval cinterval rvector cvector ivector civectormonadic +;�integerreal �complex � �interval � �cinterval � � � �rvector �; = +� �=; <>; in+�cvector �; = �; = +� +� �=; <>; in+� �=; <>; in+�ivector �; = �; = �;=; <>;+� �in;_; ><;+�; ��civector �; = �; = �; = �; = �;=; <>;+� �;=; <>;+� �_; ><;+�; �� �in;_; ><;+�; ��rmatrix �; = �cmatrix �; = �; = � �imatrix �; = �; = � �cimatrix �; = �; = �; = �; = � � � �The Operators of Module MVCI ARI (Part 1)� 2 f+, �, �g_ 2 f=, <>, <, <=, >, >=g

3.7. THE MODULE MVCI ARI 165QQQQQQQleftOperand rightOperand rmatrix cmatrix imatrix cimatrixmonadic +;�integerreal �complex � �interval � �cinterval � � � �rvectorcvectorivectorcivectorrmatrix +� �=; <>; in+�cmatrix +� +� �=; <>; in+� �=; <>; in+�imatrix �;=; <>;+� �in;_; ><;+�; ��cimatrix �;=; <>;+� �;=; <>;+� �_; ><;+�; �� �in;_; ><;+�; ��The Operators of Module MVCI ARI (Part 2)� 2 f+, �, �g_ 2 f=, <>, <, <=, >, >=g

166 CHAPTER 3. THE ARITHMETIC MODULESTransfer Functions for Complex Interval VectorsThe following transfer functions are supplied for type conversions between the typesrvector, cvector, ivector, and civector:Function Result Type Meaningcompl (iv1,iv2) civector Complex interval vector civ withciv[i] = compl (iv1[i],iv2[i])compl (rv,iv) civector Complex interval vector civ withciv[i] = compl (rv[i],iv[i])compl (iv,rv) civector Complex interval vector civ withciv[i] = compl (iv[i],rv[i])compl (iv) civector Complex interval vector civ withciv[i] = compl (iv[i])intval (cv1,cv2) civector Complex interval vector civ withciv[i] = intval (cv1[i],cv2[i])intval (rv,cv) civector Complex interval vector civ withciv[i] = intval (rv[i],cv[i])intval (cv,rv) civector Complex interval vector civ withciv[i] = intval (cv[i],rv[i])intval (cv) civector Interval vector civ withciv[i] = intval (cv[i])re (civ) ivector Real part vector iv withiv[i] = re (civ[i])im (civ) ivector Imaginary part vector iv withiv[i] = im (civ[i])inf (civ) cvector Complex vector cv of the lowerbounds with cv[i] = inf (civ[i])sup (civ) cvector Complex vector cv of the upperbounds with cv[i] = sup (civ[i])rv = rvector expression, cv, cv1, cv2 = cvector expression,iv, iv1, iv2 = ivector expression, civ = civector expression

3.7. THE MODULE MVCI ARI 167Transfer Functions for Complex Interval MatricesThe following transfer functions are supplied for type conversions between the typesrmatrix, cmatrix, imatrix, and cimatrix:Function Result Type Meaningcompl (iM1,iM2) cimatrix Complex interval matrix ciM withciM[i, j] = compl (iM1[i, j],iM2[i, j])compl (rM,iM) cimatrix Complex interval matrix ciM withciM[i, j] = compl (rM[i, j],iM[i, j])compl (iM,rM) cimatrix Complex interval matrix ciM withciM[i, j] = compl (iM[i, j],rM[i, j])compl (iM) cimatrix Complex interval matrix ciM withciM[i, j] = compl (iM[i, j])intval (cM1,cM2) cimatrix Complex interval matrix ciM withciM[i, j] = intval (cM1[i, j],cM2[i, j])intval (rM,cM) cimatrix Complex interval matrix ciM withciM[i, j] = intval (rM[i, j],cM[i, j])intval (cM,rM) cimatrix Complex interval matrix ciM withciM[i, j] = intval (cM[i, j],rM[i, j])intval (cM) cimatrix Complex interval matrix ciM withciM[i, j] = intval (cM[i, j])re (ciM) imatrix Real part matrix iM withiM[i, j] = re (ciM[i, j])im (ciM) imatrix Imaginary part matrix iM withiM[i, j] = im (ciM[i, j])inf (ciM) cmatrix Complex matrix cM of the lowerbounds with cM[i, j] = inf (ciM[i, j])sup (ciM) cmatrix Complex matrix cM of the upperbounds with cM[i, j] = sup (ciM[i, j])rM = rmatrix expression, cM, cM1, cM2 = cmatrix expressioniM, iM1, iM2 = imatrix expression, ciM = cimatrix expression

168 CHAPTER 3. THE ARITHMETIC MODULESOverloading of the Assignment OperatorsThe componentwise initialization of civector and cimatrix variables and type conver-sions from rvector, cvector, or ivector to civector and rmatrix, cmatrix, or imatrixto cimatrix are provided as overloaded assignment operators:Assignment Meaningciv := r civ[j] := compl (intval (r)) j = lb(civ),...,ub(civ)civ := c civ[j] := intval (c) j = lb(civ),...,ub(civ)civ := i civ[j] := compl (i) j = lb(civ),...,ub(civ)civ := ci civ[j] := ci j = lb(civ),...,ub(civ)civ := rv civ := compl (intval (rv))civ := cv civ := intval (cv)civ := iv civ := compl (iv)ciM := r ciM[j,k] := compl (intval (r)) j = lb(ciM,1),...,ub(ciM,1)k = lb(ciM,2),...,ub(ciM,2)ciM := c ciM[j,k] := intval (c) j = lb(ciM,1),...,ub(ciM,1)k = lb(ciM,2),...,ub(ciM,2)ciM := i ciM[j,k] := compl (i) j = lb(ciM,1),...,ub(ciM,1)k = lb(ciM,2),...,ub(ciM,2)ciM := ci ciM[j,k] := ci j = lb(ciM,1),...,ub(ciM,1)k = lb(ciM,2),...,ub(ciM,2)ciM := rM ciM := compl (intval (rM))ciM := cM ciM := intval (cM)ciM := iM ciM := compl (iM)ci = cinterval expression, civ = civector variable, ciM = cimatrix variablei = interval expression, iv = ivector expression, iM = imatrix expressionc = complex expression, cv = cvector expression, cM = cmatrix expressionr = real expression, rv = rvector expression, rM = rmatrix expression

3.7. THE MODULE MVCI ARI 169Prede�ned FunctionsThe functions id and null are supplied for generating an identity matrix and a nullmatrix or a null vector. The functions transp and herm compute the transposedmatrix and the Hermitian matrix. The functions mid, diam, and blow compute themidpoint, diameter, and epsilon ination componentwise. The function conj for theconjugation of complex interval vectors and matrices is also supplied.Function Result Type Meaningnull (civ) rvector Null vector with the actual index range ofcivnull (ciM) rmatrix Null matrix with the actual index rangesof ciMnull (ciM1,ciM2) rmatrix Null matrix with the actual index rangesof the product matrix ciM1 � ciM2id (ciM) rmatrix Identity matrix with the actual indexranges of ciMid (ciM1,ciM2) rmatrix Identity matrix with the actual indexranges of the product matrix ciM1 � ciM2mid (civ) cvector Midpoint vector cv withcv[i] = mid (civ[i])diam (civ) rvector Diameter vector rv withrv[i] = diam (civ[i])mid (ciM) cmatrix Midpoint matrix cM withcM[i, j] = mid (ciM[i, j])diam (ciM) rmatrix Diameter matrix rM withrM[i, j] = diam (ciM[i, j])conj (civ) civector Conjugated complex interval vectorcivc with civc[i] = conj (civ[i])conj (ciM) cimatrix Conjugated complex interval matrixciMc with ciMc[i, j] = conj (ciM[i, j])transp (ciM) cimatrix Transposed matrix ciMt of ciM withciMt[i, j] = ciM[j, i]herm (ciM) cimatrix Hermitian matrix ciMh of ciM withciMh[i, j] = conj (ciM[j, i])blow (civ,r) civector Vector epsilon ination cive withcive[i] = blow (civ[i],r)blow (ciM,r) cimatrix Matrix epsilon ination ciMe withciMe[i, j] = blow (ciM[i, j],r)n, n1, n2 = integer expression, r = real expression, rv = rvector expressioncv = cvector expression, civ, civc, cive = civector expressionrM = rmatrix expression, cM = cmatrix expressionciM, ciM1, ciM2, ciMc, ciMt, ciMh, ciMe = cimatrix expression

170 CHAPTER 3. THE ARITHMETIC MODULESInput/Output ProceduresThe Proceduresprocedure read (var f: text; var a: civector);procedure read (var f: text; var A: cimatrix);procedure write (var f: text; a: civector);procedure write (var f: text; A: cimatrix);are provided with optional �le parameters, arbitrary many input/output parameters,but without any format speci�cations.A complex interval vector or a complex interval matrix is entered componentwiseas individual cinterval values. A matrix is entered row by row. The output of acomplex interval vector or a complex interval matrix is also done componentwiseusing the default output format for complex intervals.

3.8. THE HIERARCHY OF THE ARITHMETIC MODULES 1713.8 The Hierarchy of the Arithmetic ModulesThe dependencies between the arithmetic modules generate a hierarchy which isrepresented in the following diagram. Nevertheless, each arithmetic module that isused in a user-de�ned program or module must appear in a use-clause, since the\lower" modules are linked into the \higher" modules by using a use-clause withoutthe reserved word global.For example, a program which uses MVCI ARI must also use I ARI when thebasic interval operations should be used in the program.
MV ARI MVC ARI MVCI ARI MVI ARI

C ARI CI ARI I ARI
r r r r rr rr r rr r

? ?- -
-

�
�6 6 666

Hierarchy of the PASCAL{XSC Arithmetic Modulesr - stands for \ r is used by-"

172 CHAPTER 3. THE ARITHMETIC MODULES3.9 A Complete Sample ProgramHere is a complete PASCAL{XSC program which demonstrates the use of some ofthe arithmetic modules. The module LIN SOLV is used to enclose the solution ofa system of linear equations in an interval vector by successive interval iterations.This module is described later in this section.The proceduremain, which is called in the body of lin sys, is only used for readingthe dimension of the system and for allocating the dynamic variables. The numericalmethod itself is started by the call of procedure linear system solver de�ned inmodule LIN SOLV. This procedure may be called with arrays of arbitrary dimension.For detailed information on iteration methods with automatic result veri�cationsee [46], for example. The use of our program is demonstrated by an example at theend of this section.The Main Programprogram lin sys (input, output);f Program for veri�ed solution of linear systems of equations. The gf matrix A and the right-hand side b of the system are to be read in. gf The program delivers either a veri�ed solution or an appropriate gf failure message. guse lin solv, f linear system solver gmv ari, f matrix/vector arithmetic gmvi ari; f matrix/vector interval arithmetic gvarn : integer;f- -gprocedure main (n : integer);f The matrix A and the vectors b and x are allocated dynamically. gf The matrix A and the right-hand side b are read in, and gf linear system solver is called. gvarok : boolean;b : rvector[1..n];x : ivector[1..n];A : rmatrix[1..n,1..n];

3.9. A COMPLETE SAMPLE PROGRAM 173beginwriteln ('Please enter the matrix A:');read (A);writeln ('Please enter the right-hand side b:');read (b);linear system solver (A, b, x, ok);if ok thenbeginwriteln ('The matrix A is non-singular. The solution ');writeln ('of the linear system is contained in:');write (x);endelsewriteln ('No solution found !');end; fprocedure maingf- -gbeginwrite ('Please enter the dimension n of the linear system: ');read (n);if n > 0 thenmain (n)elsewriteln ('Dimension > 0 expected!');end. fprogram lin sysg

174 CHAPTER 3. THE ARITHMETIC MODULESThe Module LIN SOLVmodule lin solv;f Veri�ed solution of the linear system of equations Ax = b. guse i ari, f interval arithmetic gmv ari, f matrix/vector arithmetic gmvi ari; f matrix/vector interval arithmetic gpriorityinflated by = �; f priority level 2 gf- -goperator inflated by (a : ivector; eps : real) infl: ivector[1..ubound(a)];f Computes the epsilon ination of an interval vector. gvari : integer;x : interval;beginfor i:= 1 to ubound(a) dobeginx:= a[i];if (diam (x) <> 0) thena[i] := (1+eps)�x � eps�xelsea[i] := intval (pred (inf (x)), succ (sup (x)));end; fforginfl := a;end; foperator inflated bygf- -g

3.9. A COMPLETE SAMPLE PROGRAM 175function approximate inverse (A: rmatrix): rmatrix[1..ubound(A),1..ubound(A)];f Computation of an approximate inverse of the (n,n)-matrix A gf by Gauss elimination. gvari, j, k, n : integer;factor : real;R, Inv, E : rmatrix[1..ubound(A),1..ubound(A)];beginn := ubound (A); f dimension of A gE := id (E); f identity matrix gR := A;f Gaussian elimination step with unit vectors as gf right-hand sides. Division by R[i,i]=0 indicates gf that the matrix A is probably singular. gfor i:= 1 to n dofor j:= (i+1) to n dobeginfactor := R[j,i]/R[i,i];for k:= i to n do R[j,k] := #�(R[j,k] � factor�R[i,k]);E[j] := E[j] � factor�E[i];end; ffor j:= ...gf Backward substitution delivers the rows of the inverse of A. gfor i:= n downto 1 doInv[i] := #�(E[i] � for k:= (i+1) to n sum(R[i,k]�Inv[k]))/R[i,i];approximate inverse := Inv;end; ffunction approximate inversegf- -g

176 CHAPTER 3. THE ARITHMETIC MODULESglobal procedure linear system solver (A : rmatrix; b : rvector;var x : ivector; var ok : boolean);f Computation of a veri�ed inclusion vector for the solution of the gf linear system of equations. If an inclusion is not achieved after gf a certain number of iteration steps, then the algorithm is stopped, gf and the parameter ok is set to false. gconstepsilon = 0.25; f Constant for the epsilon ination gmax steps = 10; f Maximum number of iteration steps gvari : integer;y, z : ivector[1..ubound(A)];R : rmatrix[1..ubound(A),1..ubound(A)];C : imatrix[1..ubound(A),1..ubound(A)];beginR := approximate inverse (A);f R�b is an approximate solution of the linear system and z is an inclusion gf of this vector. However, z does not usually include the true solution. gz := R � intval (b);f An inclusion of I � R�A is computed with maximum accuracy. gf The (n,n) identity matrix is generated by the function call id(A). gC := ##(id(A) � R�A);x := z; i := 0;repeati := i + 1;y := x inflated by epsilon; f To obtain a true inclusion, the interval gf vector x is slightly enlarged. gx := z + C�y; f The new iterate is computed. gok := x in y; f Is x contained in the interior of y? guntil ok or (i = max steps);end; fprocedure linear system solvergf- -gend. fmodule lin solvg

3.9. A COMPLETE SAMPLE PROGRAM 177ExampleIf we use a 10�10 Boothroyd/Dekker matrix (see chapter 5, Exercise 5) to test thisprogram, then the output is:Please enter the dimension n of the linear system: 10Please enter the matrix A:10 45 120 210 252 210 120 45 10 155 330 990 1848 2310 1980 1155 440 99 10220 1485 4752 9240 11880 10395 6160 2376 540 55715 5148 17160 34320 45045 40040 24024 9360 2145 2202002 15015 51480 105105 140140 126126 76440 30030 6930 7155005 38610 135135 280280 378378 343980 210210 83160 19305 200211440 90090 320320 672672 917280 840840 517440 205920 48048 500524310 194480 700128 1485120 2042040 1884960 1166880 466752 109395 1144048620 393822 1432080 3063060 4241160 3938220 2450448 984555 231660 2431092378 755820 2771340 5969040 8314020 7759752 4849845 1956240 461890 48620Please enter the right-hand side b:1 1 1 1 1 1 1 1 1 1The matrix A is non-singular. The solutionof the linear system is contained in:[9.999999999999998E-001, 1.000000000000001E+000][-1.000000000000001E+000, -9.999999999999998E-001][9.999999999999998E-001, 1.000000000000001E+000][-1.000000000000001E+000, -9.999999999999998E-001][9.999999999999998E-001, 1.000000000000001E+000][-1.000000000000001E+000, -9.999999999999998E-001][9.999999999999998E-001, 1.000000000000001E+000][-1.000000000000001E+000, -9.999999999999998E-001][9.999999999999998E-001, 1.000000000000001E+000][-1.000000000000001E+000, -9.999999999999998E-001]

Chapter 4Problem-Solving RoutinesRoutines for solving common numerical problems have been developed in PASCAL{XSC. They are supplied by means of an additional module library. The methods usedcompute a highly accurate inclusion of the true solution of the problem and verifythe existence and uniqueness of the solution in the given interval. The advantagesof these new routines are:� The solution is computed with high accuracy, even for many ill-conditionedcases.� The accuracy of the computed solution is always controlled.� The correctness of the result is automatically veri�ed, i.e. an inclusion set iscomputed which guarantees the existence and uniqueness of the exact solutionwithin the bounds computed.� If no solution exists, or if the problem is extremely ill-conditioned, an errormessage is returned.PASCAL{XSC routines have been developed for:� linear systems of equations{ full systems (real, complex, interval, cinterval){ matrix inversion (real, complex, interval, cinterval){ least squares problems (real, complex, interval, cinterval){ computation of pseudo inverses (real, complex, interval, cinterval){ band matrices (real){ sparse matrices (real)� polynomial evaluation{ in one variable (real, complex, interval, cinterval){ in several variables (real)� zeros of polynomials (real, complex, interval, cinterval)179

180 CHAPTER 4. PROBLEM-SOLVING ROUTINES� eigenvalues and eigenvectors{ symmetric matrices (real){ arbitrary matrices (real, complex, interval, cinterval)� initial and boundary value problems of ordinary di�erential equations{ linear{ nonlinear� evaluation of arithmetic expressions� nonlinear systems of equations� numerical quadrature� integral equations� automatic di�erentiation� optimization problemsFor further information about the individual routines and modules, see the docu-mentation enclosed with the PASCAL{XSC numeric library.In addition to solving the basic problems, these routines can be used for otherexplorations. They provide answers to rather interesting and important questions,such as� Determination of the condition of problems by the use of interval input.� Determination of local exclusion domains (regions in which a solution can beguaranteed not to exist).� Veri�cation of processes such as determination of the minimum rank of amatrix or determination of a sphere or a half plane including all zeros of acomplex polynomial. Thus, it is possible, to guarantee stability of technicaldevices as far as the mathematical model corresponds to reality.� Parameter control of models. It is easy to determine how sensitively any modeldata a�ects a model formula and vice versa. We can compute how accuratelythe data must be measured in order to guarantee a prede�ned accuracy forquantities depending on these data.� In critical cases where there may not be su�cient processing power availableto use inclusion methods in real time control problems, it may still be possibleto use inclusion methods running in the background to monitor the accuracyand reliability of the foreground processing. A special �eld of application is thescope of security problems (navigation and control of satellites and aircraft,spacecraft, as well as highly-sensitive, large technical equipment).Verifying methods are unilateral decision processes which, on the basis of givencomputing resources (run-time, memory requirements, mantissa length, etc.), detectsolvable problems and enclose their solution to a desired accuracy. For example,

4. Problem-Solving Routines 181an enclosure algorithm for solving a system of linear equations may validate theexistence of a unique solution and compute an enclosure of the solution. If thealgorithm does not succeed, that does not imply that the system is singular. Itmight be that the same algorithm could solve the problem with more time, memory,or precision. Other algorithms might be used to verify that a matrix is singular.There is an extensive literature in the area of interval analysis, enclosure meth-ods, and self-validating computation. Neumaier [38] contains an extensive bibliogra-phy. The bibliography of our book includes some of the more signi�cant references.Especially noteworthy are the introductory texts [1], [2], [34], [35], and collectionsof conference papers in [16], [27], [30], [31], [32], [36], [39], [40], [41], [50], and [51].

Chapter 5Exercises with SolutionsHere are some exercises with which the reader can practice the language PASCAL{XSC by solving various exercises and applying the new language elements to thedevelopment of complete programs.A series of simple exercises is given which use the most important languageelements of PASCAL{XSC. This series covers� introductory exercises� exercises to go more deeply into the new concepts of PASCAL{XSC (operatorconcept, functions with arbitrary result type, dynamic arrays, module concept,etc.)� easy exercises to treat problems of accuracy in arithmetic operations and nu-merical computations (use of the type dotprecision)� exercises dealing with various arithmetics (interval arithmetic, complex arith-metic, matrix/vector arithmetic, etc.)� exercises concerning physical and engineering applications of programminglanguages and numerical methods.Most of the exercises are taken from a collection that has been developed in connec-tion with lectures on programming languages held at the University of Karlsruhe.Our proposed solutions, the complete program listings, and some results followeach exercise. The results were produced on an HP 9000 Workstation using animplementation of PASCAL{XSC with 53 bit binary arithmetic.The results computed with binary arithmetic may di�er from the results com-puted with decimal arithmetic according to the problems of conversion described inchapter 2. In this case, some deviations in the run-time outputs may be possible.
183

184 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 1: Test of RepresentabilityWrite a PASCAL{XSC program to determine whether a pair of integer numbersz; n (n 6= 0) have a quotient z=n which is exactly representable as a real number (inthe computer's set of oating-point numbers).Hint: z=n is exactly representable on the computer if and only ifz=< n = z=> n:Your program should loop to read and check an arbitrary number of such pairs. Ifthe condition is ful�lled, then z, n, and z=n are to be printed. If the condition is notful�lled, write a message to that e�ect. Use n = 0 to terminate the loop. After thetermination of the loop, the percentage of the pairs with an exactly representablequotient is to be computed and reported (rounded to one place past the decimalpoint).Solution:program represent (input, output);{ Exercise 1: Test of Representability }var n, z : integer;no_of_exacts,no_of_pairs : integer;quotient : real;beginwriteln ('Exercise 1: Test of Representability');writeln;no_of_exacts:= 0;no_of_pairs := 0;write ('Enter z and n for quotient test: ');read (z, n);while n <> 0 dobeginquotient := z/<n;no_of_pairs:= no_of_pairs+1;if quotient = z/>n thenbeginno_of_exacts := no_of_exacts+1;writeln ('Quotient is exactly representable!');writeln (z:1,'/',n:1,' = ',quotient);endelsewriteln ('Quotient is not exactly representable!');

Exercise 1 185writeln;write ('Enter z and n for quotient test: ');read (z, n);end;if no_of_pairs <> 0 thenbeginwriteln;writeln (no_of_pairs, ' data pairs were entered');writeln (no_of_exacts, ' quotients are exactly representable');writeln ('These are ', no_of_exacts/no_of_pairs*100:5:1:-1,'%');end;end.

186 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 2: Summation of Exponential SeriesThe function ex is approximated by a partial sum of its Taylor series:Sn = nXi=0 ai with ai = xii! and i! = (1 for i = 01 � 2 � � � � � i for i > 0The partial sum may be computed according to the following algorithm:start: S1 = 1; a1 = xrecursion: Si = Si�1 + ai�1; ai = ai�1xi ; i = 2; : : : ; nWrite a PASCAL{XSC program with n = 100 which reads x and computes Sn usingthree di�erent rounding controls:� downwardly directed,� rounded to the next oating-point number,� upwardly directed.The computation of the sum should be terminated before handling the n-th sum-mand if the upwardly directed sum Si satis�esjaij < eps � jSij with eps = 10�12.You should report the correct value of exp(x) and the �nal values of i and Si.Hint: Use negative values (< �50) for x when testing your program since theydemonstrate very clearly rounding errors occurring during summation.Solution:program expo (input, output);{ Exercise 2: Summation of the exponential series }const eps = 1e-12;n = 100;var Sdown, Snext, Sup : real;adown, anext, aup : real;i : integer;x, help : real;beginwriteln ('Exercise 2: Summation of the exponential series');writeln;write ('Enter an argument x for computing exp(x): ');read (x);

Exercise 2 187writeln ('Summation of the exponential series :');writeln ('Step Summand Sum');adown:= x; anext:= x; aup:= x;Sdown:= 1; Snext:= 1; Sup:= 1;i:= 1;repeati := i+1;Sdown:= Sdown +< adown;Snext:= Snext + anext;Sup := Sup +> aup;anext:= anext * x / i;if x >= 0 thenbeginadown:= adown *< x /< i;aup := aup *> x /> i;endelsebeginhelp := adown;adown:= aup *< x /< i;aup := help *> x /> i;end;writeln (i :7,' ', adown, ' ', Sdown);writeln (' ':7,' ', anext, ' ', Snext);writeln (' ':7,' ', aup, ' ', Sup);until (i >= n) or (abs(adown) < eps*abs(Sdown));writeln('Exact value of the function exp(x) : ',exp(x));end.

188 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 3: Inuence of Rounding ErrorsWrite a PASCAL{XSC program to demonstrate the inuence of rounding errorsduring computation of the expressionz = x4 � 4y4 � 4y2for di�erent values of x and y. The program should accept the real-values x and yand compute z according to the following methods1) z = x � x � x � x� 4 � y � y � y � y � 4 � y � y usinga) the oating point operators * and -b) the directed-rounding operators *<, *>, and -< to deliver a lower boundfor the expressionc) the directed-rounding operators *<, *>, and -> to deliver an upper boundfor the expression2) z = x2 � x2 � 4 � y2 � y2 � 4 � y2 using the prede�ned function sqr and theoperators * and -3) z = (x2)2 � (2 � y2)2 � (2 � y)2 using sqr, *, and -4) z = (x2)2 � (2 � y)2 � (y2 + 1) using sqr, *, and -5) z = # � (a � a� b � b� c � c) with a = x2, b = 2 � y2 and c = 2 � y.The seven computed values should be reported with an accompanying comment foreach operation. Test your program by using the valuesx = 665857:0 and y = 470832:0:In this special case, the true value for z is the number 1. For a detailed descriptionof rounding error e�ects see [52], for example.Solution:program rounding (input, output);{ Exercise 3: Influence of Rounding Errors }var x,y,z: real;a,b,c: real;beginwriteln('Exercise 3: Influence of Rounding Errors');writeln;write('x = '); read(x);write('y = '); read(y);

Exercise 3 189writeln;writeln('Computation of the expression z = x^4 - 4y^4 - 4y^2');writeln;z:= x*x*x*x-4*y*y*y*y-4*y*y;writeln('Comp.: x*x*x*x-4*y*y*y*y-4*y*y = ',z);z:= (x*<x)*<(x*<x) -< 4*>(y*>y)*>(y*>y) -< 4*>(y*>y);writeln('Comp.: (x*<x)*<(x*<x)-<4*>(y*>y)*>(y*>y)-<4*>(y*>y)= ',z);z:= (x*>x)*>(x*>x) -> 4*<(y*<y)*<(y*<y) -> 4*<(y*<y);writeln('Comp.: (x*>x)*>(x*>x)->4*<(y*<y)*<(y*<y)->4*<(y*<y)= ',z);z:= sqr(x)*sqr(x) - 4*sqr(y)*sqr(y) - 4*sqr(y);writeln('Comp.: x^2*x^2-4*y^2*y^2-4*y^2 = ',z);z:= sqr(sqr(x))-sqr(2*sqr(y)) - sqr(2*y);writeln('Comp.: (x^2)^2-(2*y^2)^2-(2*y)^2 = ',z);z:= sqr(sqr(x))-sqr(2*y) * (sqr(y)+1);writeln('Comp.: (x^2)^2-(2*y)^2*(y^2+1) = ',z);a:=sqr(x);b:=2*sqr(y);c:=2*y;z:=#*(a*a-b*b-c*c);writeln('Comp.: #*(x^2*x^2-(2*y^2)*(2*y^2)-(2*y)*(2*y)) = ',z);end.Runtime Output:Influence of rounding errorsx = 665857.0y = 470832.0Computation of the expression z = x^4-4y^4-4y^2Comp.: x*x*x*x-4*y*y*y*y-4*y*y = 1.1885568000000E+007Comp.: (x*<x)*<(x*<x)-<4*>(y*>y)*>(y*>y)-<4*>(y*>y)= -5.5223296000000E+007Comp.: (x*>x)*>(x*>x)->4*<(y*<y)*<(y*<y)->4*<(y*<y)= 1.1885568000000E+007Comp.: x^2*x^2-4*y^2*y^2-4*y^2 = 1.1885568000000E+007Comp.: (x^2)^2-(2*y^2)^2-(2*y)^2 = 1.1885568000000E+007Comp.: (x^2)^2-(2*y)^2*(y^2+1) = 0.0000000000000E+000Comp.: #*(x^2*x^2-(2*y^2)*(2*y^2)-(2*y)*(2*y)) = 1.0000000000000E+000Remark: The #-expression delivers the exact result. This is because all operands(here a; b; c) are exact since x = 665875 and y = 470832 are exactly repre-sentable.

190 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 4: Scalar ProductWrite a PASCAL{XSC program to compute the value of a scalar productx � y = nXi=1 xi � yiof two real vectors x; y 2 IRn. Compare the value computed with maximum accuracywith the value computed in the usual manner.Write a function Scalp producing the scalar product in the usual manner and afunction Max Acc Scalp computing the scalar product by summing up the productsxi � yi in a variable of the type dotprecision and by a single �nal rounding to a realvalue.The vectors x and y should be entered in the main program. The values computedvia Scalp and Max Acc Scalp should be reported together with comments. Choosen = 5 for the declaration of the vector types. Test your program with the vectorsx = 0BBBBBB@ 2:718281828E10�3:141592654E101:414213562E105:772156649E93:010299957E9
1CCCCCCA ; y = 0BBBBBB@ 1:4862497E128:783669879E14�2:237492E104:773714647E151:85049E5

1CCCCCCA :The function Max Acc Scalp of this program simulates the functionality of the op-erator � for type rvector supplied by module MV ARI.Solution:program Scalar_Product (input, output);{ Exercise 4: Scalar Product }const n = 5;type vector = array [1..n] of real;var x, y : vector;i : integer;function Scalp (x, y : vector) : real;var s : real;i : integer;begins:= 0;for i:=1 to n do s:= s + x[i]*y[i];Scalp:= s;end;

Exercise 4 191function Max_Acc_Scalp (x, y : vector) : real;var d : dotprecision;i : integer;begind:= #(0);for i:=1 to n do d:= #(d + x[i]*y[i]);Max_Acc_Scalp:= #*(d);end;beginwriteln('Exercise 4: Scalar Product');writeln;writeln('Enter 1. vector (with ',n:1,' components):');for i:=1 to n do read(x[i]);writeln('Enter 2. vector (with ',n:1,' Components):');for i:=1 to n do read(y[i]);writeln;writeln('Scalar product in the usual manner : ',Scalp(x,y));writeln('Scalar product with dotprecision : ',Max_Acc_Scalp(x,y));end.Runtime Output:Exercise 4: Scalar ProductEnter 1. vector (with 5 components):2.718281828e10-3.141592654e101.414213562e105.772156649e93.010299957e9Enter 2. vector (with 5 components):1.4862497e128.783669879e14-2.237492e104.773714647e151.85049e5Scalar product in the usual manner : 4.328386285000000E+009Scalar product with dotprecision : -1.006571070000000E+008

192 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 5: Boothroyd/Dekker MatricesThe (integer) elements of a n-dimensional Boothroyd/Dekker matrix (see [53]) D =(dij) are given bydij = n+ i� 1i� 1 ! � n� 1n� j! � ni+ j � 1 :Write a PASCAL{XSC program to compute an n-dimensional Boothroyd/Dekkermatrix. Use an operator Choose for the (integer) computation of the binominalcoe�cient �mk�. Write the values of the matrix row by row. The value n (� 10)should be entered.Hint: Compute �mk� this way:c0 := 1; ci := ci�1 � m� i + 1i ; i = 1; : : : ; k mk! := ck;Use the integer division div.Solution:program BDM (input, output);{ Exercise 5: Boothroyd/Dekker Matrices }var i, j, n, d : integer;priority Choose = *;operator Choose (m, k: integer) ChooseResult : integer;var i, c: integer;beginc:= 1;for i:=1 to k doc:= (c*(m-i+1)) div i;ChooseResult:= c;end;beginwriteln('Exercise 5: Boothroyd/Dekker Matrices');writeln;write('Enter the desired dimension of the matrix (<=10): ');read (n);

Exercise 5 193writeln;for i:=1 to n dobeginfor j:=1 to n dobegind:=(((n+i-1) Choose (i-1))*((n-1) Choose (n-j))*n) div (i+j-1);write (d:8);end;writeln;end;end.Runtime Output:Exercise 5: Boothroyd/Dekker MatricesEnter the desired dimension of the matrix (<=10): 88 28 56 70 56 28 8 136 168 378 504 420 216 63 8120 630 1512 2100 1800 945 280 36330 1848 4620 6600 5775 3080 924 120792 4620 11880 17325 15400 8316 2520 3301716 10296 27027 40040 36036 19656 6006 7923432 21021 56056 84084 76440 42042 12936 17166435 40040 108108 163800 150150 83160 25740 3432

194 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 6: Complex FunctionsWrite a PASCAL{XSC program which simulates some features supplied in moduleC ARI to compute the values ez, cos z, sin z, cosh z, and sinh z for 20 complexnumbers z = x + iy and produces a table of these values.Use the prede�ned type complex and de�ne� a monadic operator I times to multiply a complex number by the imaginaryunit i,� a monadic operator - for complex numbers,� two operators + and - for the addition and subtraction of two complex num-bers,� an operator * for the multiplication of a real number by a complex number,� functions exp, cos, sin, cosh, and sinh using the prede�ned functions sin, cos,and exp for real quantities, and� procedures for the input and output.Hints: (u; z 2C ; x; y; v; w 2 IR)If z = x + iy, then u = iz with u = v + iw is given by v = �y and w = x.Division by i is replaced by a multiplication by �i.real divisions are replaced by multiplications.If z = x + iy, then ez = ex cos y + iex sin y (Euler's formula)cos z = eiz + e�iz2 cosh z = ez + e�z2sin z = eiz � e�iz2i sinh z = ez � e�z2Solution:program complex_functions (input, output);{ Exercise 6: Complex Functions }varz : complex;c : array [1..20] of complex;i : integer;

Exercise 6 195priority I_times = ^;operator I_times (z : complex) multiplied_by_i : complex;{ Monadic operator for the multiplication of the argument }{ with the imaginary unit i (with sqr(i) = -1). }beginmultiplied_by_i.re:= -z.im;multiplied_by_i.im:= z.re;end;operator + (a, b: complex) plus : complex;beginplus.re:= a.re + b.re;plus.im:= a.im + b.im;end;operator - (a, b: complex) minus : complex;beginminus.re:= a.re - b.re;minus.im:= a.im - b.im;end;operator - (a: complex) negate : complex;beginnegate.re:= -a.re;negate.im:= -a.im;end;operator * (r: real; z: complex) mulrc : complex;beginmulrc.re:= r * z.re;mulrc.im:= r * z.imend;function exp (z: complex) : complex;beginexp.re:= exp (z.re) * cos(z.im);exp.im:= exp (z.re) * sin(z.im);end;function cos (z: complex) : complex;begincos:= 0.5 * (exp (I_times z) + exp (- I_times z))end;function sin (z: complex) : complex;beginsin:= 0.5 * - I_times (exp (I_times z) - exp (-I_times z))end;

196 CHAPTER 5. EXERCISES WITH SOLUTIONSfunction cosh (z: complex) : complex;begincosh:= 0.5 * (exp (z) + exp (-z))end;function sinh (z: complex) : complex;beginsinh:= 0.5 * (exp (z) - exp (-z));end;procedure write (var f: text; c: complex; s: integer);beginwrite (f,'(',c.re:s,',',c.im:s,') ');end;procedure read (var f: text; var c: complex);beginread (f, c.re, c.im);end;beginwriteln('Exercise 6: Complex Functions');writeln;for i:=1 to 20 dobeginwrite ('Enter ', i:2, '. complex number: ');read (c[i]);end;writeln;writeln(' z ':11,' exp(z)':25,' cos(z) ':25,' sin(z) ':25);for i:=1 to 20 dobeginz:= c[i];write (z:8);write (exp(z):8);write (cos(z):8);writeln (sin(z):8);end;writeln;writeln(' z ':11,' cosh(z)':25,' sinh(z) ':25);for i:=1 to 20 dobeginz:= c[i];write (z:8);write (cosh(z):8);writeln (sinh(z):8);end;end.

Exercise 7 197Exercise 7: Surface Area of a Parallelepipedab c -���*

����������������������������������

��� ���

Compute the surface area of a 3-dimensional parallelepiped. We use the followingnotation� a = 0B@ a1a2a3 1CA, b = 0B@ b1b2b3 1CA, and c = 0B@ c1c2c3 1CA are vectors in IR3.� The scalar product a � b (dot product) of two vectors a and b is de�ned asa � b = 3Xi=1 ai � bi = a1 � b1 + a2 � b2 + a3 � b3:� The length L of a vector a is computed as L(a) := pa � a.� The vector product a� b (cross product) of two vectors yields a vectora� b := 0B@ a2 � b3 � a3 � b2a3 � b1 � a1 � b3a1 � b2 � a2 � b1 1CA :� The area of a parallelogram de�ned by the vectors a and b is Area (a; b) :=L(a� b).� The surface area of a parallelepiped de�ned by the vectors a, b, and c isdetermined bySurf (a; b; c) := 2 � (Area (a; b) + Area (b; c) + Area (c; a)):Write a PASCAL{XSC program with these parts:a) a type Vector declared as an array of length 3 whose component type is real,b) an operator � for the scalar product of two vectors,c) a function Length for the length L of a vectord) an operator Cross for the vector product of two vectors,e) a function Area for the area of a parallelogram,f) a function Surface for the surface area of a parallelepiped,

198 CHAPTER 5. EXERCISES WITH SOLUTIONSg) a main program which repetitively reads in three vectors from a �le withcomponent type Vector and computes the surface of the corresponding paral-lelepiped. Write the result. The loop should terminate when the end of theinput �le is reached.Hint: The number of vectors in the input �le is a multiple of 3.The vector products b) and d) should be computed with maximum accuracyvia dotprecision expressions or accurate expressions.Solution:program parallelepiped (datafile, input, output);{ Exercise 7: Surface Area of a Parallelepiped }type Vector = array [1..3] of real;operator * (a, b: Vector) scalp : real;var i : integer;beginscalp:= #* (for i:=1 to 3 sum (a[i]*b[i]));end;function Length (a: Vector) : real;beginLength:= sqrt (a*a);end;priority cross = *;operator cross (a, b: Vector) cprod : Vector;begincprod[1]:= #*(a[2]*b[3]-a[3]*b[2]);cprod[2]:= #*(a[3]*b[1]-a[1]*b[3]);cprod[3]:= #*(a[1]*b[2]-a[2]*b[1]);end;function Area (a, b : VECTOR) : real;beginArea:= Length (a cross b);end;function Surface (a, b, c : VECTOR) : real;beginSurface:= 2 * (Area(a,b) + Area(b,c) + Area(c,a));end;

Exercise 7 199var datafile : file of VECTOR;a, b, c : VECTOR;begin { main program }writeln ('Exercise 7: Surface Area of a Parallelepiped');writeln;reset (datafile);repeatread (datafile, a);read (datafile, b);read (datafile, c);writeln ('a : ',a[1],' ',a[2],' ',a[3]);writeln ('b : ',b[1],' ',b[2],' ',b[3]);writeln ('c : ',c[1],' ',c[2],' ',c[3]);write ('Surface area of the parallelepiped : ');writeln (Surface (a,b,c));until eof(datafile)end.

200 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 8: Parallelism and Intersection of LinesInvestigate two lines of the form a1x+ b1y = c1 and a2x+ b2y = c2 in the Euclideanplane for parallelism. In case the two lines are not parallel, �nd their intersectionpoint S. Write a PASCAL{XSC program includinga) a type declaration Line de�ning a line as an array consisting of 3 componentswith component type real,b) a type declaration Point de�ning a point as a record with the components xand y of type real,c) a real function Determinant with the parameters a; b; c; d of type real for com-puting the determinantdet (a; b; c; d) = a bc d = a � d� b � c;using a dotprecision expression with rounding away from zero,d) a logical operator Parallel To delivering the value TRUE for two lines g1 andg2 if and only if det (a1; b1; a2; b2) = 0,e) an operator �� for the intersection of two variables g1 given by a1; b1; c1 andg2 given by a2; b2; c2 of type Line. The result is of type Point and contains thecoordinates of the intersection point s = (xs; ys) of the lines g1 and g2. Usepart c) and the de�nitionsxs = c1 b1c2 b2a1 b1a2 b2 ; ys = a1 c1a2 c2a1 b1a2 b2 :f) a main program which uses a loop to read in the parameters of two lines anduses the operator Parallel To to check whether the two lines are parallel. Ifthe lines are parallel, the program should announce, \the lines are parallel".If not, then compute intersection point using part e) and report it. The loopis to be repeated until one of the conditions a1 = b1 = 0 or a2 = b2 = 0 hold.

Exercise 8 201Solution:program parallel (input, output);{ Exercise 8: Parallelism and Intersection of Lines }typeComp = (a,b,c);Line = array [Comp] of real;Point = recordx, y : real;end;varg1, g2 : Line;s : Point;function Determinant (a, b, c, d: real): real;vardp : dotprecision;begindp:= #(a*d - b*c);if sign(dp) = 0 thenDeterminant:= 0else if sign(dp) < 0 thenDeterminant:= #< (dp)elseDeterminant:= #> (dp);end;priority Parallel_To = =;operator Parallel_To (g1, g2: line) par: boolean;beginpar:= (Determinant(g1[a],g1[b],g2[a],g2[b]) = 0);end;operator ** (g1, g2: line) intersection: point;vardet : real;begindet:= Determinant (g1[a],g1[b],g2[a],g2[b]);intersection.x:= Determinant (g1[c],g1[b],g2[c],g2[b]) / det;intersection.y:= Determinant (g1[a],g1[c],g2[a],g2[c]) / det;end;begin {main program}writeln ('Exercise 8: Parallelism and Intersection of Lines');writeln;

202 CHAPTER 5. EXERCISES WITH SOLUTIONSrepeatwriteln ('Enter the values a1, b1, and c1 for line g1: ');read (g1[a], g1[b], g1[c]);writeln;writeln ('Enter the values a2, b2, and c2 for line g2: ');read (g2[a], g2[b], g2[c]);writeln;if g1 Parallel_To g2 thenwriteln ('The two lines are parallel!')elsebegins:= g1 ** g2;writeln ('The two lines intersect in point ');writeln ('(xs,ys) = (',s.x,',',s.y,')');end;writeln; writeln;until ((g1[a]=0) and (g1[b]=0)) or ((g2[a]=0) and (g2[b]=0));end.

Exercise 9 203Exercise 9: Transposed Matrix, SymmetryAn n � n matrix A = (aij) is called symmetric if aij = aji for all i; j 2 f1; : : : ; ng.The transposed matrix T = (tij) = AT of a matrix A is de�ned by tij = aji for alli; j 2 f1; : : : ; ng.Write a program which� de�nes a dynamic type Matrix for integer matrices,� de�nes an operator = for two matrices of type Matrix,� declares a monadic operator Transposed delivering the transpose of a matrix,� declares a boolean function Is Symmetric computing the value TRUE if andonly if its parameter (of the type Matrix) is symmetric,� contains a procedure Main declaring two square matrices A and B dependingon a parameter n, reading in A and B, ascertaining whether A and B aresymmetric or whether AT = B, and reporting the appropriate information,� reads the value n in the main program and calls the procedure Main.Hint: The function Is Symmetric may be very easily formulated by means of theoperators = and Transposed.Solution:program Transposed_and_Symmetry (input, output);{ Exercise 9: Transposed Matrix and Symmetry }type Matrix = dynamic array [*,*] of real;operator = (a, b: Matrix) equal: boolean;var help : boolean;i, j : integer;beginhelp:= true;for i:= lbound(a,1) to ubound (a,1) dofor j:= lbound(a,2) to ubound(a,2) doif a[i,j] <> b[i,j] thenhelp:= false;equal:= help;end;priority Transposed = ^;

204 CHAPTER 5. EXERCISES WITH SOLUTIONSoperator Transposed (a: matrix) TransposedResult:matrix[lbound(a,2)..ubound(a,2),lbound(a,1)..ubound(a,1)];var i, j :integer;beginfor i:=lbound(a,2) to ubound(a,2) dofor j:=lbound(a,1) to ubound(a,1) doTransposedResult[i,j]:= a[j,i];end;function Is_Symmetric (a: matrix): boolean;beginIs_Symmetric:= a = Transposed a;end;procedure read (var f: text; var A: matrix);varn, i, j: integer;beginn:= ubound (A);for i:=1 to n dobeginwrite (i:3,'. row: ');for j:=1 to n doread (A[i,j]);end;end;procedure write (var f: text; var A: matrix);varn, i, j: integer;beginn:= ubound (A);for i:=1 to n dobeginfor j:=1 to n dowrite (A[i,j]:5:1);writeln;end;end;procedure Main (n: integer);var i, j : integer;A, B, At : matrix[1..n,1..n];beginwriteln('Enter the elements of matrix A:');read (A);writeln('Enter the elements of matrix B:');read (B);

Exercise 9 205writeln ('Transposed of the matrix A:');At:= Transposed A;writeln (At);if Is_Symmetric (A) thenwriteln('A is symmetric ');if Is_Symmetric (B) thenwriteln('B is symmetric ');if At = B thenwriteln('Transposed (A) is equal to B ');end;var n : integer;beginwriteln('Exercise 9: Transposed Matrix and Symmetry');writeln;write('Enter the dimension of the matrices: ');read (n);Main (n);end.

206 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 10: Rail Route MapFor a German railroad line, a rail route map is to be prepared. Beginning at thestarting point Place 0, a destination station Place 9 has to be reached by visiting 8intermediate stations Place 1,. . . ,Place 8 with a two-minute stop at every station.Write a program which reads in the time of departure from Place 0 and thedistances between the stations Place i and Place i+1 for i = 0; : : : ; 8. Based uponan average speed of 115 km/h, compute the times of arrival and departure at thestations. Print a rail route map which uses a 24-hour clock!For this purpose, de�nea) a type Time as a record with the components Hour and Minute,b) a function RouteTime computing the railroad time required by the rail routesection,c) an operator for the addition of the railroad time and duration of stay to thecurrent time,d) a main program reading in the necessary data, computing railroad time andduration of stay, and producing a table consisting of columns for place, timesof arrival and departure, and distance to the next station.Hint: In order to compute railroad times within the function RouteTime and toimplement the operator, it is rather useful to compute in seconds and to convertthem to whole minutes.Solution:program map (input, output);{ Exercise 10: Rail Route Map }typeTime = recordHour : 0..23;Minute: 0..59;end;vari : integer;route : array [1..9] of real;curr_time,departure,arrival,stop_time : Time;

Exercise 10 207function RouteTime (place_i: integer) : Time;varhours : real;help : Time;beginhours := route[place_i]/115;help.Hour := trunc(hours);hours := hours - help.Hour;help.Minute:= trunc(hours*60);RouteTime := help;end;operator + (a, b: Time) sm: Time;varhelp : 0..119;beginhelp := a.Minute + b.Minute;sm.Minute:= help mod 60;help := a.Hour + b.Hour + help div 60;sm.Hour := help mod 24end;beginwriteln ('Exercise 10: Rail Route Map');writeln;stop_time.Hour := 0;stop_time.Minute:= 2;write('Enter the departure time (hh mm): ');read (departure.Hour, departure.Minute);for i:=1 to 9 dobeginwrite ('Enter the distance between station ',i-1:1, ' and ', i:1, ' (in km) : ');read (route[i]);end;writeln;writeln('Station Arrival Departure Distance to next station');writeln('==');curr_time := departure;writeln('PLACE_', '0 --:-- ',curr_time.Hour:2, ':', curr_time.Minute:2,' ', route[1]:10:2, ' km');

208 CHAPTER 5. EXERCISES WITH SOLUTIONSfor i:=1 to 8 dobeginarrival := curr_time + RouteTime(i);curr_time := arrival + stop_time;writeln('PLACE_', i:1, ' ',arrival.Hour:2, ':', arrival.Minute:2, ' ',curr_time.Hour:2, ':', curr_time.Minute:2,' ', route[i+1]:10:2,' km');end;arrival := curr_time + RouteTime(9);writeln('PLACE_','9 ',arrival.Hour:2, ':', arrival.Minute:2, ' ','--:--',' --.-- km');end.Runtime Output:Station Arrival Departure Distance to next Station==PLACE_0 --:-- 10:00 12.00 kmPLACE_1 10:06 10:08 23.00 kmPLACE_2 10:20 10:22 34.00 kmPLACE_3 10:40 10:42 45.00 kmPLACE_4 11:05 11:07 56.00 kmPLACE_5 11:37 11:39 67.00 kmPLACE_6 12:14 12:16 78.00 kmPLACE_7 12:56 12:58 89.00 kmPLACE_8 13:45 13:47 91.00 kmPLACE_9 14:34 --:-- --.-- --

Exercise 11 209Exercise 11: Inventory ListsWrite a PASCAL{XSC program summing up several individual inventory lists ofbranches of a chain of department stores in one total list. Use� a linear linked list (pointer) with elements consisting of the components Ident(string with a maximum of 20 characters) and Number (0..maxint),� a procedure for entering of an inventory list,� an operator + for summing up two lists into one single list by addition of thetwo Number components with the same label or by inserting new list elements,� a procedure to print the complete inventory list in tabular form.In the main program, �rst the number n of the individual lists and then the n liststhemselves should be entered. Finally, use of the operator + to sum the individuallists into one single list. Report the inventory in a tabular form.Solution:program lists (input, output);{ Exercise 11: Investory Lists }typegoods_pointer = ^goods;goods = recordident : string[20];number : 0..maxint;next : goods_pointer;end;procedure list_input (var list: goods_pointer);varh : goods_pointer;beginlist:= nil;repeatnew (h);write ('ident: ');readln;read (h^.ident);write ('number: ');read (h^.number);h^.next:= list;list:= h;until list^.number < 0;

210 CHAPTER 5. EXERCISES WITH SOLUTIONSlist:= list^.next;end;operator + (list1, list2: goods_pointer) total_list: goods_pointer;vartotal, h1, h2 : goods_pointer;flag : boolean;beginif (list1 = nil) thentotal := list2elsebegintotal := list1;h2 := list2;while h2 <> nil dobeginh1 := total;repeatflag:= h1 <> nil;if flag thenflag:= h1^.ident <> h2^.ident;if flag thenh1:= h1^.next;until not flag;if h1 <> nil thenbeginh1^.number := h1^.number + h2^.number;list2 := list2^.next;endelsebeginlist2 := list2^.next;h2^.next := total;total := h2;end;h2 := list2;end;end;total_list := total;end;procedure list_output (list: goods_pointer);varh : goods_pointer;beginh := list;writeln('ident number ');repeat

Exercise 11 211writeln (h^.ident:24, h^.number);h := h^.next;until h = nil;end;varn, i : integer;list, total : goods_pointer;begin {main program}writeln('Exercise 11: Investory Lists');writeln;total := nil;write('How many individual lists do you want to enter? ');read (n);writeln;for i:=1 to n dobeginwriteln (i:3,'. inventory list:');list_input (list);writeln;list_output (list);writeln;total:= total + list;end;writeln;writeln(' *** Here is the total list *** ');list_output (total);end.

212 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 12: Complex Numbers and Polar RepresentationA complex number z = a + ib = (a; b) with a; b 2 IR can be represented in polarcoordinates as z = rei' = (r; ') with r; ' 2 IR, 0 � ' < 2�.Write a PASCAL{XSC program working with this representation. Proceed asfollows:a) De�ne an appropriate record-type polar complex with the components r andphi for the representation of complex numbers in polar coordinates.b) Write a function pi yielding the value � (hint: � = 4 arctan(1)).c) Overload the assignment operator := to enable the assignment of a complexnumber z = a+ ib of type complex to a variable of type polar complex withcomponents r and phi. The type conversion has to be done according to theformulasr = pa2 + b2' = 8>>>>>><>>>>>>: �=2 for a = 0 and b � 03=2 � � for a = 0 and b < 0arctan(b=a) for a > 0 and b � 02 � � + arctan(b=a) for a > 0 and b < 0� + arctan(b=a) for a < 0:To compute r, use a #-expression in order to increase accuracy (as far aspossible).d) De�ne an operator � to compute the product w = (r; ') = u � v of twocomplex numbers u = (r1; '1) and v = (r2; '2) of type polar complex in polarrepresentation byr = r1 � r2; and' = ('1 + '2 for '1 + '2 < 2�'1 + '2 � 2 � � otherwise.e) De�ne an operator = to compute the quotient w = (r; ') = u=v of two com-plex numbers u = (r1; '1) and v = (r2; '2) of type polar complex in polarrepresentation byr = r1=r2; and' = ('1 � '2 for '1 � '2 � 0'1 � '2 + 2 � � otherwise.

Exercise 12 213f) Write a main program which1. reads in two complex numbers u and v of type complex,2. produces the corresponding values pu and pv using the overloaded as-signment operator,3. computes the values w = u � v / u / v and pw = pu � pv / pu / pv ,4. reports the radius r and the angle ' of pw , and5. reports pw2 = pcompl(w) as a comparison.Hint: Use the prede�ned type complex and link the module C ARI providing theoperators and input/output procedures which are necessary for this type.Solution:program polar (input, output);{ Exercise 12: Complex Numbers and Polar Representation }use c_ari;typepolar_complex = recordr, phi : real;end;varu, v, w : complex;pu, pv, pw, pw2 : polar_complex;function pi : real;beginpi:= 4 * arctan (1);end;operator := (var pz: polar_complex; z: complex);vara, b, ph : real;begina := z.re;b := z.im;pz.r := sqrt (#*(a * a + b * b));if (a = 0) and (b >= 0) thenph := pi/2else if (a = 0) and (b < 0) thenph := 3 / 2 * pielse if (a > 0) and (b >= 0) thenph := arctan (b/a)

214 CHAPTER 5. EXERCISES WITH SOLUTIONSelse if (a > 0) and (b < 0) thenph := 2 * pi + arctan (b/a)elseph := pi + arctan (b/a);pz.phi := ph;end;operator * (u, v : polar_complex) resmul : polar_complex;varph : real;beginresmul.r := u.r * v.r;ph := u.phi + v.phi;if ph < 2 * pi thenresmul.phi := phelseresmul.phi := ph - 2 * pi;end;operator / (u, v : polar_complex) resdiv : polar_complex;varph : real;beginresdiv.r := u.r / v.r;ph := u.phi - v.phi;if ph >= 0 thenresdiv.phi := phelseresdiv.phi := ph + 2 * pi;end;begin {main program}writeln ('Exercise 12: Complex Numbers and Polar Representation');writeln;write ('Enter complex number u: ');read (u);write ('Enter complex number v: ');read (v);pu := u;pv := v;w := u * v / u / v;pw2 := w;pw := pu * pv / pu / pv;writeln ('Radius of pw : ',pw.r);writeln ('Angle of pw : ',pw.phi);writeln ('Radius of pw2: ',pw2.r);writeln ('Angle of pw2: ',pw2.phi);end.

Exercise 13 215Exercise 13: Complex DivisionThe quotient of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 may becomputed asz1z2 = z1z2z2z2 = (x1 + iy1)(x2 � iy2)x22 + y22 = x1x2 + y1y2x22 + y22 + iy1x2 � x1y2x22 + y22a) Write a PASCAL{XSC program which includes the declaration of an operatorCdiv realizing this complex division for two complex numbers of the typecomplex by application of the operators +;�; �; = for real numbers. In themain program, two numbers of type complex should be read in, divided, andthe result should be printed.b) Extend your program in such a manner that you link the module C ARI . Callyour operator Cdiv and then the operator = prede�ned in C ARI . Comparethe output of the two values.c) Test your program by using the values z1 = x1 + iy1 and z2 = x2 + iy2 withx1 = 1254027132096; y1 = 886731088897x2 = 886731088897; y2 = 627013566048 :You will notice a clear di�erence in the imaginary parts of the results.d) Design another operator NewCdiv yielding better results than Cdiv by theuse of accurate expressions. Compare the three operators in a test run oncemore.Solution:program ComplDiv (input, output);{ Exercise 13: Complex Division }use c_ari;var z1, z2 : complex;priority Cdiv = *;operator Cdiv (z1, z2 : complex) result : complex;var denom : real;begindenom := sqr(z2.re) + sqr(z2.im);result.re:= (z1.re*z2.re + z1.im*z2.im)/denom;result.im:= (z2.re*z1.im - z1.re*z2.im)/denom;end;

216 CHAPTER 5. EXERCISES WITH SOLUTIONSpriority NewCdiv = *;operator NewCdiv (z1, z2 : complex) NewResult : complex;var denom : real;begindenom := #*(z2.re*z2.re + z2.im*z2.im);NewResult.re:= #*(z1.re*z2.re + z1.im*z2.im)/denom;NewResult.im:= #*(z2.re*z1.im - z1.re*z2.im)/denom;end;beginwriteln ('Exercise 13: Complex Division');writeln;write ('Numerator z1 = '); read (z1);write ('Denominator z2 = '); read (z2);writeln;write ('z1 Cdiv z2 = '); writeln (z1 cdiv z2);write ('z1 NewCdiv z2 = '); writeln (z1 NewCdiv z2);write ('z1 / z2 = '); writeln (z1 / z2);end.Runtime Output:Exercise 13: Complex DivisionNumerator z1 = (1254027132096, 886731088897)Denominator z2 = (886731088897, 627013566048)z1 Cdiv z2 = (1.414213562373095E+000, 0.000000000000000E+000)z1 NewCdiv z2 = (1.414213562373095E+000, 8.478614131951457E-025)z1 / z2 = (1.414213562373095E+000, 8.478614131951457E-025)

Exercise 14 217Exercise 14: Electric Circuit
� �-� Ugesl lRR Riii���One to three light bulbs with a resistance of R = 240
 are connected to a voltageU = 220V via a wire of the length l = 100m with the diameter d = 1:5mm and aspeci�c resistance of � = 0:02857
mm2=m. All data are given with an error of 0.5%.Write a PASCAL{XSC program using the module I ARI and the type interval.For three cases (1, 2, 3 bulbs connected), compute intervals for the range of thevalues Rtot (total resistance of the circuit), Itot (total current), Uw (portion of thevoltage at the wire) and Ubu (bulb voltage). Use the formulasRtot = Rl +R=nItot = U=RtotUw = Rw � ItotUbu = U � Uw :Proceed as follows:1) Read the values �, R, l, d, �, and U . Use the error of 0.5% to compute theintervals R, L, D, Rho, and U which enclose the given values. Compute PIenclosing �. Print the values of the intervals.2) Compute and print the inclusion Rw of the wire resistanceRw = (8 � � � l)=(� � d2):3) Compute and report the intervals Rtot, Itot, Uw , and Ubu for n = 1; 2; 3.4) Finally, print the interval Us representing the total range of Ubu for the dif-ferent number of bulbs.Hint: An interval inclusion PI for � is computed byPI = 4 � arctan ([1,1]).Use the prede�ned type interval and the module I ARI containing the neces-sary interval operators.

218 CHAPTER 5. EXERCISES WITH SOLUTIONSSolution:program circuit (input, output);{ Exercise 14: Electric Circuit }use i_ari;varerror,U, L, D, Rho, R, Us, pi,Rw, Rtot, Itot, Uw, Ubu : interval;n : integer;procedure write (var f: text; int: interval; long: boolean);{ Overloading of write to allow output of intervals with }{ a long mantissa. The default output of intervals is }{ made according to the width of the interval. }beginif long thenwrite (f,'[',int.inf:20:0:-1 ,',',int.sup:20:0:+1 ,']'){ Output with more digits }elsewrite (f,int);{ Default output predefined in I_ARI }end;beginwriteln ('Exercise 14: Electric Circuit');writeln;write ('U = '); read (u);write ('L = '); read (l);write ('D = '); read (d);write ('Rho = '); read (rho);write ('R = '); read (r);pi := 4 * arctan (intval(1));error := intval ((<0.995) , (>1.005));r := r * error;l := l * error;d := d * error;Rho:= Rho * error;u := u * error;writeln;writeln ('Intervals:');writeln ('PI = ',pi : true);writeln ('R = ',R : true);writeln ('L = ',L : true);writeln ('D = ',D : true);

Exercise 14 219writeln ('Rho = ',Rho: true);writeln ('U = ',U : true);writeln;Rw:= (8*Rho*L)/(pi*sqr(D));writeln ('Inclusion of the wire resistance:');writeln ('Rw = ',Rw : true);for n:= 1 to 3 dobeginwriteln;Rtot:= Rw + r/n;Itot:= U / Rtot;Uw := Rw * Itot;Ubu := U - Uw;if n = 1 thenUs:= UbuelseUs:= Us +* Ubu;write('With ',n:1,' bulb');if n <> 1 then write ('s');writeln(', the following inclusions are computed:');writeln('- total resistance: Rtot = ',Rtot : true);writeln('- total current: Itot = ',Itot : true);writeln('- wire voltage: Uw = ',Uw : true);writeln('- bulb voltage: Ubu = ',Ubu : true);write('press return'); readln; writeln;end;writeln ('The bulb voltage Ubu has the total range interval');writeln (Us : true);end.Runtime Output:Exercise 14: Electric CircuitU = 220l = 100d = 1.5rho = 0.02857R = 240Intervals:PI = [3.141592653589E+000, 3.141592653590E+000]R = [2.387999999999E+002, 2.412000000001E+002]L = [9.949999999999E+001, 1.005000000001E+002]D = [1.492499999999E+000, 1.507500000001E+000]Rho = [2.842714999999E-002, 2.871285000001E-002]

220 CHAPTER 5. EXERCISES WITH SOLUTIONSU = [2.188999999999E+002, 2.211000000001E+002]Inclusion of the wire resistance:Rw = [3.169435182649E+000, 3.298783385817E+000]With 1 bulb, the following inclusions are computed:- total resistance: Rtot = [2.419694351826E+002, 2.444987833859E+002]- total current: Itot = [8.953009784698E-001, 9.137517713058E-001]- wire voltage: Uw = [2.837598420222E+000, 3.014269161944E+000]- bulb voltage: Ubu = [2.158857308380E+002, 2.182624015798E+002]press returnWith 2 bulbs, the following inclusions are computed:- total resistance: Rtot = [1.225694351826E+002, 1.238987833859E+002]- total current: Itot = [1.766764725351E+000, 1.803875490416E+000]- wire voltage: Uw = [5.599646279992E+000, 5.950594497863E+000]- bulb voltage: Ubu = [2.129494055021E+002, 2.155003537201E+002]press returnWith 3 bulbs, the following inclusions are computed:- total resistance: Rtot = [8.276943518264E+001, 8.369878338582E+001]- total current: Itot = [2.615330726982E+000, 2.671275930688E+000]- wire voltage: Uw = [8.289121220362E+000, 8.811960659084E+000]- bulb voltage: Ubu = [2.100880393409E+002, 2.128108787797E+002]press returnThe bulb voltage Ubu has the total range interval[2.100880393409E+002, 2.182624015798E+002]

Exercise 15 221Exercise 15: Alternating Current Measuring Bridge
�������R3 R4

R1 R2KC1 C2
����

The capacity of the unknown capacitance C1 and the resistance of the unknownresistor R1 may be determined by the circuit diagrammed above. This is done byvarying the capacity C2 and the resistance R2 until the sound in the loudspeaker Kreaches a minimum or vanishes. Then, the capacitances and the resistances satisfyC1 = R4 � C2=R3R1 = R3 �R2=R4 :According to the data supplied by the manufacturer, the values of R3 and R4 satisfy9:9
 � R3 � 10:1
6:8
 � R4 � 6:9
 :Due to uncertainties of perception, we obtain the estimates for C2 and R240:2mF � C2 � 41:5mF18:3
 � R2 � 19:8
 :Write a PASCAL{XSC program that� reads in the boundary values of R3, R4, C2, and R2,� computes and prints the interval enclosures of C1 and R1, and� repeats the computation of enclosures of C1 and R1 assuming that the amountof the error for C2 and R2 is 10% higher.Hint: The 10% increase of the errors for C2 and R2 should be handled by enlargingthe radius of the corresponding intervals by 10%.

222 CHAPTER 5. EXERCISES WITH SOLUTIONSSolution:program measure_bridge (input, output);{ Exercise 15: Alternating Current Measuring Bridge }use i_ari;varc1, c2, r1, r2, r3, r4 : interval;d : real;procedure write (var f: text; int: interval; long: boolean);{ Overloading of write to allow output of intervals with }{ a long mantissa. The default output of intervals is }{ made according to the width of the interval. }beginif long thenwrite (f,'[',int.inf:20:0:-1 ,',',int.sup:20:0:+1 ,']'){ Output with more digits }elsewrite (f,int);{ Default output predefined in I_ARI }end;beginwriteln ('Exercise 15: Alternating Current Measuring Bridge');writeln;write('lower bound of R3: '); read(r3.inf:-1);write('upper bound of R3: '); read(r3.sup:+1);write('lower bound of R4: '); read(r4.inf:-1);write('upper bound of R4: '); read(r4.sup:+1);write('lower bound of C2: '); read(c2.inf:-1);write('upper bound of C2: '); read(c2.sup:+1);write('lower bound of R2: '); read(r2.inf:-1);write('upper bound of R2: '); read(r2.sup:+1);{ Computing C1 and R1 }c1:= r4 * c2 / r3;r1:= r3 * r2 / r4;writeln;writeln('C1 = ', c1 : true);writeln('R1 = ', r1 : true);{ Compute: "10% of the radius", that is "diameter / 20" }d := diam(c2) /> 20;{ Enlarge the interval radius to that amount }c2:= intval (c2.inf -< d , c2.sup +> d);{ Compute: "10% of the radius", that is "diameter / 20" }d := diam(r2) /> 20;

Exercise 15 223{ Enlarge the interval radius to that amount }r2:= intval (r2.inf -< d , r2.sup +> d);{ Computing C1 and R1 }c1:= r4 * c2 / r3;r1:= r3 * r2 / r4;writeln;writeln('Results, with the error for C2 and R2 10% higher:');writeln;writeln('C1 = ', c1 : true);writeln('R1 = ', r1 : true);end.Runtime Output:Exercise 15: Alternating Current Measuring Bridgelower bound of R3: 9.9upper bound of R3: 10.1lower bound of R4: 6.8upper bound of R4: 6.9lower bound of C2: 40.2upper bound of C2: 41.5lower bound of R2: 18.3upper bound of R2: 19.8C1 = [2.706534653465E+001, 2.892424242425E+001]R1 = [2.625652173913E+001, 2.940882352942E+001]Results, with the error for C2 and R2 10% higher:C1 = [2.702158415841E+001, 2.896954545455E+001]R1 = [2.614891304347E+001, 2.952022058824E+001]Remark: This exercise illustrates how interval arithmetic may be easily applied toerror computations in engineering.

224 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 16: Optical Lens6
?-� -� -�

HHHHHHHHHHHHHHHHHHHH
llllllllllllG Bfg bWith a lens having a focal length f = (20� 1) cm, an image distance b = (25� 1)cm was measured for the image B of the object G. The lens equation to determinethe object distance g of a thin lens is given by1f = 1b + 1g :Hence, g satis�es the equationg = 11f � 1b :Usually, the value g = g0�4g is computed with the approximation g0 and the errorterm 4g. This is done byg0 = 11f0 � 1b0and by the linearization4g = 4f(1� f0b0)2 + 4b(b0f0 � 1)2 :Let f0 = 20cm, b0 = 25cm, and 4f = 4b = 1cm. Write a PASCAL{XSC programthat� reads the values for f0, b0, 4f , and 4b,� calculates the interval g = g0 �4g by the method described above,� calculates the interval g from the intervals f and b applying interval arithmeticaccording tog = 11f � 1b ;and� prints f , b, and the two di�erent values of g along with appropriate comments.

Exercise 16 225Does the usual method deliver a correct result? Compare it with the enclosure forg computed with interval arithmetic.Solution:program opt_lens (input, output);{ Exercise 16: Optical Lens }use i_ari;varg0, dg, f0, df, b0, db : real;g, f, b : interval;procedure write (var f: text; int: interval; long: boolean);{ Overloading of write to allow output of intervals with }{ a long mantissa. The default output of intervals is }{ made according to the width of the interval. }beginif long thenwrite (f,'[',int.inf:20:0:-1 ,',',int.sup:20:0:+1 ,']'){ Output with more digits }elsewrite (f,int);{ Default output predefined in I_ARI }end;beginwriteln ('Exercise 16: Optical Lens');writeln;write('f0 = '); read(f0);write('df = '); read(df);write('b0 = '); read(b0);write('db = '); read(db);writeln;f:= intval (f0 - df , f0 + df);b:= intval (b0 - db , b0 + db);writeln ('f = ', f : true);writeln ('b = ', b : true);writeln;g0 := 1 / (1/f0 - 1/b0);dg := df / sqr(1 - f0/b0) + db / sqr(b0/f0 - 1);g := intval (g0 - dg , g0 + dg);writeln ('g = g0 +/- dg = ', g : true);g:= 1/(1/f - 1/b);writeln ('g = 1 / (1/f - 1/b) = ', g : true);end.

226 CHAPTER 5. EXERCISES WITH SOLUTIONSRuntime Output:Exercise 16: Optical Lensf0 = 20df = 1b0 = 25db = 1f = [1.900000000000E+001, 2.100000000000E+001]b = [2.400000000000E+001, 2.600000000000E+001]g = g0 +/- dg = [5.899999999999E+001, 1.410000000000E+002]g = 1 / (1/f - 1/b) = [7.057142857142E+001, 1.680000000001E+002]Remark: The method normally used for error evalution calculates an interval whichis incorrect.
Hint: Exercises 14, 15, and 16 were inspired by the contribution Technical Calcu-lations by Means of Interval Mathematics, by P. Thieler [48].

Exercise 17 227Exercise 17: Interval Evaluation of a PolynomialWrite a PASCAL{XSC program which uses the module I ARI to evaluate the poly-nomialp(X) = 1 + 3X � 10X2using interval arithmetic. Compare the results for the following representations(with X of type interval):1) (1� 2 �X) � (1 + 5 �X)2) 1 + 3 �X � 10 � sqr(X)3) 1 +X � (3� 10 �X) (Horner sheme)4) 1 + 3 �m(X)� 10 � sqr(m(X)) + (3� 20 �X)(X �m(X))(mean value form (see [43]), with m(X) as the midpoint of X)As examples forX, choose both narrow intervals (about one unit in the 14th decimalplace) and intervals with other diameters. Intervals around the zeros (x = 0:5 andx = �0:2) and around the extreme value (x = 0:15) should also be considered.Hint: For the evaluation of the midpoint of an interval, implement a function usingan #-expression to obtain maximum accuracy.Solution:program int_poly (input, output);{ Exercise 17: Interval Evaluation of a Polynomial }use i_ari;var x : interval;function midpoint (x : interval) : real;beginmidpoint:= #* (0.5 * x.inf + 0.5 * x.sup);end;beginwriteln ('Exercise 17: Interval Evaluation of a Polynomial');writeln;repeatwrite ('Enter X : '); read(x);writeln;writeln ('Method 1: p(X) = ', (1-2*x)*(1+5*x));

228 CHAPTER 5. EXERCISES WITH SOLUTIONSwriteln ('Method 2: p(X) = ', 1+3*x-10*sqr(x));writeln ('Method 3: p(X) = ', 1+x*(3-10*x));writeln ('Method 4: p(X) = ', 1+3*midpoint(x)-10*sqr(midpoint(x))+(3-20*x)*(x-midpoint(x)));writeln; writeln;until x = 0;end.Runtime Output:Exercise 17: Interval Evaluation of a PolynomialEnter X : [0.5,0.5]Method 1: p(X) = [0.000000000000000E+000, 0.000000000000000E+000]Method 2: p(X) = [0.000000000000000E+000, 0.000000000000000E+000]Method 3: p(X) = [0.000000000000000E+000, 0.000000000000000E+000]Method 4: p(X) = [0.000000000000000E+000, 0.000000000000000E+000]Enter X : [0.4999999999,0.5]Method 1: p(X) = [0.0E+000, 7.1E-010]Method 2: p(X) = [-3.1E-010, 1.1E-009]Method 3: p(X) = [0.0E+000, 7.1E-010]Method 4: p(X) = [0.0E+000, 7.1E-010]Enter X : [-0.2000000000001,-0.1999999999999]Method 1: p(X) = [-7.1E-013, 7.1E-013]Method 2: p(X) = [-7.1E-013, 7.1E-013]Method 3: p(X) = [-7.1E-013, 7.1E-013]Method 4: p(X) = [-7.1E-013, 7.1E-013]Enter X : [0.1499999999999,0.1500000000001]Method 1: p(X) = [1.224999999999E+000, 1.225000000001E+000]Method 2: p(X) = [1.224999999999E+000, 1.225000000001E+000]Method 3: p(X) = [1.224999999999E+000, 1.225000000001E+000]Method 4: p(X) = [1.224999999999999E+000, 1.225000000000001E+000]Enter X : [0.1,0.2]

Exercise 17 229Method 1: p(X) = [8.9E-001, 1.7E+000]Method 2: p(X) = [8.9E-001, 1.6E+000]Method 3: p(X) = [1.0E+000, 1.5E+000]Method 4: p(X) = [1.1E+000, 1.3E+000]Enter X : 0Method 1: p(X) = [1.000000000000000E+000, 1.000000000000000E+000]Method 2: p(X) = [1.000000000000000E+000, 1.000000000000000E+000]Method 3: p(X) = [1.000000000000000E+000, 1.000000000000000E+000]Method 4: p(X) = [1.000000000000000E+000, 1.000000000000000E+000]

230 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 18: Calculations for Interval MatricesLet the interval matrices A and B be given:A = [1; 1] [0; 1][1; 1] [�1; 1] ! ; B = [�1; 2] [3; 4][2; 2] [�6;�4] ! :A PASCAL{XSC program shoulda) calculate A +B; A�B; A �B,b) demonstrate (by calculation) that A � (A � A) 6= (A � A) � A,c) demonstrate (by calculation) that A � (B + A) �6= A �B + A � A.Hint: Use the operators supplied in module MVI ARI.Solution:program int_matr (input, output);{ Exercise 18: Calculations for Interval Matrices }use i_ari, mvi_ari;varA, B, C : imatrix[1..2,1..2];beginwriteln ('Exercise 18: Calculations for Interval Matrices');writeln;A[1,1]:= 1;A[1,2]:= intval(0,1);A[2,1]:= 1;A[2,2]:= intval(-1,1);B[1,1]:= intval(-1,2);B[1,2]:= intval(3,4);B[2,1]:= 2;B[2,2]:= intval(-6,-4);writeln ('A = '); writeln;writeln (A);writeln ('B = '); writeln;writeln (B);writeln ('A + B = '); writeln;writeln (A+B);

Exercise 18 231writeln ('A - B = '); writeln;writeln (A-B);writeln ('A * B = '); writeln;writeln (A*B);writeln ('A * (A * A) = '); writeln;writeln (A*(A*A));writeln ('(A * A) * A = '); writeln;writeln ((A*A)*A);writeln ('A * (B + A) = '); writeln;writeln (A*(B+A));writeln ('A * B + A * A = '); writeln;writeln (A*B+A*A);end.Runtime Output:Exercise 18: Calculations for Interval MatricesA =[1.0E+00, 1.0E+00] [0.0E+00, 1.0E+00][1.0E+00, 1.0E+00] [-1.0E+00, 1.0E+00]B =[-1.0E+00, 2.0E+00] [3.0E+00, 4.0E+00][2.0E+00, 2.0E+00] [-6.0E+00,-4.0E+00]A + B =[0.0E+00, 3.0E+00] [3.0E+00, 5.0E+00][3.0E+00, 3.0E+00] [-7.0E+00,-3.0E+00]A - B =[-1.0E+00, 2.0E+00] [-4.0E+00,-2.0E+00][-1.0E+00,-1.0E+00] [3.0E+00, 7.0E+00]A * B =[-1.0E+00, 4.0E+00] [-3.0E+00, 4.0E+00][-3.0E+00, 4.0E+00] [-3.0E+00, 1.0E+01]A * (A * A) =[1.0E+00, 4.0E+00] [-2.0E+00, 4.0E+00][-1.0E+00, 4.0E+00] [-3.0E+00, 4.0E+00]

232 CHAPTER 5. EXERCISES WITH SOLUTIONS(A * A) * A =[0.0E+00, 4.0E+00] [-2.0E+00, 4.0E+00][-1.0E+00, 4.0E+00] [-2.0E+00, 4.0E+00]A * (B + A) =[0.0E+00, 6.0E+00] [-4.0E+00, 5.0E+00][-3.0E+00, 6.0E+00] [-4.0E+00, 1.2E+01]A * B + A * A =[0.0E+00, 6.0E+00][-4.0E+00, 6.0E+00][-3.0E+00, 6.0E+00][-4.0E+00, 1.2E+01]

Exercise 19 233Exercise 19: Di�erentiation ArithmeticWith the help of di�erentiation arithmetic (see [42]), compute the values of thefunctionf(x) = x � 4 + x3� xand the values of its derivative f 0(x) in the domain �4 � x � 2 for the pointsxk = �4 + kh, k = 0; : : : ; 48 with h = 0:125 .Di�erentiation arithmetic is an arithmetic for ordered pairs of the formU = (u; u0) with u; u0 2 IR:The �rst component of U contains the value of the function. The second containsthe value of the derivative. The rules for the arithmetic areU + V = (u; u0) + (v; v0) = (u+ v; u0 + v0)U � V = (u; u0)� (v; v0) = (u� v; u0 � v0)U � V = (u; u0) � (v; v0) = (u � v; u � v0 + u0 � v)U=V = (u; u0)=(v; v0) = (u=v; (u0 � u=v � v0)=v); v 6= 0;where the corresponding di�erentiation rules have to be used in the second compo-nent. The independent variable x and the arbitrary constant c correspond toX = (x; 1) and C = (c; 0);because dxdx = 1, and dcdx = 0. To use the di�erentiation arithmetic in a PASCAL{XSCprogram, declare a type Derivative Type as record of two real values. Now, de�nea function f with parameters and result of type Derivative Type. The operators+;�; �; = perform di�erentiation arithmetic. Iff(X) = X � ((4; 0) +X)=((3; 0)�X);then an automatic di�erentiation is done because off(X) = f((x; 1)) = (f(x); f 0(x)):That is, the value of the function and the value of the derivative are automaticallyand simultaneously calculated. Write a PASCAL{XSC module which containsa) the type declaration Derivative Type andb) the declarations for the operators +;�; �; = according to the rules for the dif-ferential arithmetic given above.Write a PASCAL{XSC program which containsa) a function F, using the operators of the module and thus delivering the valueof the function f and the automatically calculated value of its derivative and

234 CHAPTER 5. EXERCISES WITH SOLUTIONSb) a main program that calculates and tabulates the values of f(x) and f 0(x) atthe speci�ed points.Hint: The constants 4 and 3 of type Derivative Type in the function f are repre-sented by (4; 0) and (3; 0), respectively. The independent variable x is repre-sented as (x; 1).Solution:module diff_ari;{ Exercise 19: Module Providing Differentiation Arithmetic }global type Derivative_Type = global recordf, df : real;end;global operator := (var a: Derivative_Type; r: real);begina.f := r;a.df := 0;end;global operator + (a,b: Derivative_Type) Result_add: Derivative_Type;beginResult_add.f := a.f + b.f;Result_add.df := a.df + b.df;end;global operator - (a,b: Derivative_Type) Result_sub: Derivative_Type;beginResult_sub.f := a.f - b.f;Result_sub.df := a.df - b.df;end;global operator * (a,b: Derivative_Type) Result_mul: Derivative_Type;beginResult_mul.f := a.f * b.f;Result_mul.df := a.f * b.df + a.df * b.f;end;

Exercise 19 235global operator / (a,b: Derivative_Type) Result_div: Derivative_Type;beginResult_div.f := a.f / b.f;Result_div.df := (a.df - a.f * b.df / b.f) / b.f ;end;end.program Automatic_Differentiation (input, output);{ Exercise 19: Differentiation Arithmetic }use diff_ari;function f (x: Derivative_Type): Derivative_Type;varthree, four : Derivative_Type;beginthree := 3;four := 4;f:= x*((four+x)/(three-x));end;varx, y : Derivative_Type;h : real;i : integer;beginwriteln ('Exercise 19: Differentiation Arithmetic');writeln;x.df := 1;h := 0.125;writeln(' x ', ' ',' f(x) ', ' ',' f''(x) ');for i:= 0 to 48 dobeginx.f := -4 + i * h;y := f(x);writeln (x.f,' ',y.f,' ',y.df);end;end.

236 CHAPTER 5. EXERCISES WITH SOLUTIONSRuntime Output:Exercise 19: Differentiation Arithmeticx f(x) f'(x)-4.000000000000000E+000 0.000000000000000E+000 -5.714285714285714E-001-3.875000000000000E+000 -7.045454545454545E-002 -5.557024793388429E-001-3.750000000000000E+000 -1.388888888888889E-001 -5.390946502057612E-001-3.625000000000000E+000 -2.051886792452830E-001 -5.215379138483447E-001-3.500000000000000E+000 -2.692307692307693E-001 -5.029585798816567E-001-3.375000000000000E+000 -3.308823529411765E-001 -4.832756632064591E-001-3.250000000000000E+000 -3.900000000000000E-001 -4.624000000000000E-001-3.125000000000000E+000 -4.464285714285714E-001 -4.402332361516035E-001-3.000000000000000E+000 -5.000000000000000E-001 -4.166666666666667E-001-2.875000000000000E+000 -5.505319148936170E-001 -3.915799004074241E-001-2.750000000000000E+000 -5.978260869565217E-001 -3.648393194706995E-001-2.625000000000000E+000 -6.416666666666666E-001 -3.362962962962963E-001-2.500000000000000E+000 -6.818181818181818E-001 -3.057851239669422E-001-2.375000000000000E+000 -7.180232558139534E-001 -2.731206057328286E-001-2.250000000000000E+000 -7.500000000000000E-001 -2.380952380952381E-001-2.125000000000000E+000 -7.774390243902439E-001 -2.004759071980964E-001-2.000000000000000E+000 -8.000000000000000E-001 -1.599999999999999E-001-1.875000000000000E+000 -8.173076923076923E-001 -1.163708086785009E-001-1.750000000000000E+000 -8.289473684210525E-001 -6.925207756232682E-002-1.625000000000000E+000 -8.344594594594594E-001 -1.826150474799126E-002-1.500000000000000E+000 -8.333333333333334E-001 3.703703703703709E-002-1.375000000000000E+000 -8.250000000000000E-001 9.714285714285709E-002-1.250000000000000E+000 -8.088235294117647E-001 1.626297577854672E-001-1.125000000000000E+000 -7.840909090909092E-001 2.341597796143251E-001-1.000000000000000E+000 -7.500000000000000E-001 3.125000000000000E-001-8.750000000000000E-001 -7.056451612903225E-001 3.985431841831426E-001-7.500000000000000E-001 -6.500000000000000E-001 4.933333333333334E-001-6.250000000000000E-001 -5.818965517241379E-001 5.980975029726516E-001-5.000000000000000E-001 -5.000000000000000E-001 7.142857142857143E-001-3.750000000000000E-001 -4.027777777777778E-001 8.436213991769548E-001-2.500000000000000E-001 -2.884615384615384E-001 9.881656804733727E-001-1.250000000000000E-001 -1.550000000000000E-001 1.150400000000000E+0000.000000000000000E+000 0.000000000000000E+000 1.333333333333333E+0001.250000000000000E-001 1.793478260869565E-001 1.540642722117202E+0002.500000000000000E-001 3.863636363636364E-001 1.776859504132231E+0003.750000000000000E-001 6.250000000000000E-001 2.047619047619048E+0005.000000000000000E-001 9.000000000000000E-001 2.360000000000000E+0006.250000000000000E-001 1.217105263157895E+000 2.722991689750693E+0007.500000000000000E-001 1.583333333333333E+000 3.148148148148148E+0008.750000000000000E-001 2.007352941176471E+000 3.650519031141868E+0001.000000000000000E+000 2.500000000000000E+000 4.250000000000000E+0001.125000000000000E+000 3.075000000000000E+000 4.973333333333333E+0001.250000000000000E+000 3.750000000000000E+000 5.857142857142857E+0001.375000000000000E+000 4.548076923076922E+000 6.952662721893491E+0001.500000000000000E+000 5.500000000000000E+000 8.333333333333332E+0001.625000000000000E+000 6.647727272727272E+000 1.010743801652893E+0011.750000000000000E+000 8.049999999999999E+000 1.244000000000000E+0011.875000000000000E+000 9.791666666666666E+000 1.559259259259259E+0012.000000000000000E+000 1.200000000000000E+001 2.000000000000000E+001

Exercise 20 237Exercise 20: Newton's Method with Automatic Di�erentiationThe zero of a function f(x) may be computed by Newton's method and a feasiblex0: xn+1 = xn � f(xn)f 0(xn) ; n = 0; 1; 2; : : :Using the module de�ned in the last exercise, the values of the function f and thevalues of its derivative can be computed simultaneously by using the correspondingoperators within the function f .Write a PASCAL{XSC program to implement Newton's method with the helpof di�erential arithmetic. Use the functionf(x) = ex � x� 5to test your program. Your program should read the starting value x0, compute �veNewton iterations, and print the values xi and f(xi) at each iteration.Test your program with the starting values x0 = 2:0, and x0 = �5:0. The zeroslie at x = 1:9368470722 and x = �4:99321618865.Hint: The function eU can be implemented for the variable U = (u; u0) of typeDerivative Type byeU = e(u;u0) = (eu; u0 � eu):Solution:program newt_diff (input, output);{ Exercise 20: Newton's Method with Automatic Differentiation }use diff_ari;function exp (x: Derivative_Type) : Derivative_Type;beginexp.f := exp(x.f);exp.df:= x.df * exp(x.f);end;function f (x: Derivative_Type) : Derivative_Type;varfive : Derivative_Type;beginfive := 5;f := exp(x) - x - five;end;

238 CHAPTER 5. EXERCISES WITH SOLUTIONSvarx, y : Derivative_Type;i : integer;beginwriteln ('Exercise 20: Newton''s Method with');writeln (' Automatic Differentiation');writeln;write ('Enter starting value x0 : '); read (x.f);x.df := 1;for i:= 1 to 5 dobeginy := f(x);x.f := x.f - y.f/y.df;writeln ('x',i:1,' : ',x.f);end;end.Runtime Output:Exercise 20: Newton's Method withAutomatic DifferentiationEnter starting value x0 : 2.0x1 : 1.939105856497994E+000x2 : 1.936850383714592E+000x3 : 1.936847407225395E+000x4 : 1.936847407220219E+000x5 : 1.936847407220219E+000Exercise 20: Newton's Method withAutomatic DifferentiationEnter starting value x0 : -5.0x1 : -4.993216345093695E+000x2 : -4.993216188647903E+000x3 : -4.993216188647903E+000x4 : -4.993216188647903E+000x5 : -4.993216188647903E+000

Exercise 21 239Exercise 21: Measurement of TimeThe time of a clock with the portions hours (h), minutes (m), and seconds (s) be-tween 00:00:00 o'clock and 23:59:59 o'clock is to be represented by a record typeClock. Write a PASCAL{XSC declaration for an operator + that adds two suchtimes and, depending on the input, subtracts 24 h, so that the result is again rep-resentable in type Clock. Use this declaration in a program that reads as many asmaxint times, adds them to a total time, and prints each time subtotal. The inputloop is terminated by the input of 0.00.00.The input of the times should be given as a string in the form hh.mm.ss. Thisinput string should be converted to the type Clock using the string functions ofPASCAL{XSC. The opposite is done with the total time for the output, i.e. afterconversion from type Clock to string , the time is printed in the form hh.mm.ss.Solution:program times (input, output);{ Exercise 21: Measurement of Time }typeClock = recordhours : 0..23;minutes : 0..59;seconds : 0..59;end;vara, b : string[8];time, total : Clock;i, p : integer;operator + (a, b: Clock) sum : Clock;varhelp : 0..119;beginhelp := a.seconds + b.seconds;sum.seconds:= help mod 60;help := a.minutes + b.minutes + help div 60;sum.minutes:= help mod 60;help := a.hours + b.hours + help div 60;sum.hours := help mod 24;end;

240 CHAPTER 5. EXERCISES WITH SOLUTIONSbeginwriteln ('Exercise 21: Measurement of Time');writeln;total.hours := 0;total.minutes := 0;total.seconds := 0;i:= 0;repeati:= succ (i);write ('Please enter difference of time: ');readln;read (a);p := pos ('.', a);time.hours := ival(substring(a,1,p-1));a := substring(a,p+1,8);p := pos ('.', a);time.minutes := ival(substring(a,1,p-1));a := substring(a,p+1,8);time.seconds := ival(substring(a,1,8));total := total + time;b := image (total.hours,2) + '.' +image (total.minutes,2) + '.' +image (total.seconds,2);writeln ('New time : ', b);until (i=maxint) or (time.hours+time.minutes+time.seconds=0);end.

Exercise 22 241Exercise 22: Iterative MethodConsider the vector iteration method(�) x(k+1) = c + Ax(k); k = 0; 1; 2; : : :with c; x(k) 2 IRn, k = 0; 1; 2; : : : and A 2 IRn�n. Assume that the spectral radius ofA is less than 1 so that the iteration is convergent.Write a PASCAL{XSC program that implements this method. Design a moduleMatVec that makes available the necessary types, operators, and procedures. Thismodule should contain the following parts:a) a dynamic type declaration vector de�ned as a one-dimensional array withcomponent type real,b) a dynamic type declaration matrix de�ned as a two-dimensional array withcomponent type real,c) an equality operator = for the comparison of two vectors a = (ai) and b = (bi)according toa = b () ai = bi, for all i,d) an operator + for the addition of two vectors a = (ai) and b = (bi) accordingto c = a+ b with ci = ai + bi, for all i,e) an operator � for the multiplication of a matrixA = (aij) with a vector x = (xi)according toy = A � x where yi =Xj aijxj; for all i,by use of the datatype dotprecision to ensure that the computation of yi isdone with only one rounding,f) an overloading of the procedure read for the input of a vector,g) an overloading of the procedure read for the input of a matrix,h) an overloading of the procedure write for the output of a vector.Implement a program Iteration which uses the module MatVec and contains thefollowing parts:1) A procedure Main with formal parameter n that works with the types, pro-cedures, and operators of module MatVec. Main should declare the variablesc, A, and x(0) necessary for the iteration as vectors (or matrices) with indexrange 1; : : : ; n, and read these variables. Furthermore, Main should processthe iteration (�) until x(k+1) = x(k) or until k = 20. Finally, the result vectorx(k+1) from the �nal iteration should be printed.2) A main program should read the dimension n and call the procedure main.

242 CHAPTER 5. EXERCISES WITH SOLUTIONSSolution:module MatVec;{ Exercise 22: Module with Matrix/Vector Operations }global typevector = dynamic array [*] of real;matrix = dynamic array [*,*] of real;global operator = (a, b: vector) equ: boolean;{ Corresponding index ranges of a and b are assumed }vari : integer;begini:= lbound(a) - 1;repeati:= i + 1;until (a[i] <> b[i]) or (i = ubound(a));equ:= (a[i] = b[i]);end;global operator + (a,b: vector) vadd: vector[lbound(a)..ubound(a)];{ Corresponding index ranges of a and b are assumed }vari : integer;beginfor i:= lbound(a) to ubound(a) dovadd[i] := a[i] + b[i];end;global operator * (A: matrix; x: vector)mvmul: vector[lbound(x)..ubound(x)];{ Corresponding index ranges of A and x are assumed }vari, j : integer;d : dotprecision;beginfor i:= lbound(A) to ubound(A) dobegind:= #(0);for j:= lbound(A,2) to ubound(A,2) dod:= #(d + a[i,j] * x[j]);mvmul[i]:= #*(d);end;end;

Exercise 22 243global procedure read (var f: text; var c: vector);vari : integer;beginfor i:= lbound(c) to ubound(c) doread (f, c[i]);end;global procedure read (var f: text; var A: matrix);vari, j : integer;beginfor i:= lbound(A) to ubound(A) dofor j := lbound(A,2) to ubound(A,2) doread(f, A[i,j]);end;global procedure write (var f: text; c: vector);vari : integer;beginfor i:= lbound(c) to ubound(c) dowriteln (f, c[i]);end;end. {module MatVec}
program iterate (input, output);{ Exercise 22: Iterative Method }use matvec;varn : integer;procedure main (n: integer);vari, j, k : integer;c, x_k, x_k_plus_1, y : vector[1..n];A : matrix[1..n,1..n];

244 CHAPTER 5. EXERCISES WITH SOLUTIONSbeginwriteln ('Enter vector c');read (c);writeln ('Enter matrix A');read (A);writeln ('Enter vector x0');read (x_k_plus_1);{Iteration}k:= -1;repeatx_k := x_k_plus_1;k := k + 1;x_k_plus_1:= c + A * x_k;until (x_k_plus_1 = x_k) or (k = 20);writeln ('Last iterate: ');write (x_k_plus_1);end;begin {Main program}writeln ('Exercise 22: Iterative Method x_k+1 := c + A x_k');writeln;write ('Dimension of vectors and matrices? ');read (n);main (n);end.Remark: Module MatVec is a prototype of the prede�ned module MV ARI ofPASCAL{XSC, which uses the prede�ned types rvector and rmatrix. Notethat our prototype module does not check the matching of the index ranges.

Exercise 23 245Exercise 23: Trace of a Product MatrixThe trace of a n� n matrix A = (aij) is de�ned byTrace (A) := nXi=1 aii = a11 + � � �+ ann;i.e. the sum of the diagonal elements. Write a PASCAL{XSC program that acceptsthe dimension n and the two corresponding n� n matrices A and B, computes thetrace of the product matrix C = A �B, and prints the value.Use the module MV ARI which declares the procedures and operators for thedynamic types rvector and rmatrix. Implement a function Trace1 that determinesthe trace of the product of two matrices with usual arithmetic operations, and afunction Trace2 that uses an #-expression with the same operations to computatethe trace with maximum accuracy. Furthermore, implement a function Trace3 thatdoes the summation in the usual way, but uses a scalar product for the calculation ofthe diagonal elements of the product matrix. Finally, implement a function Trace4that uses an #-expression for the summation used in Trace3. Compare the fourversions by means of some examples. Test your program also using the matricesA = 0BBB@ 109 8 126 �237100 2 �12 1105 10 �107 8113 �3 30 10�7 1CCCA ; B = 0BBB@ 108 85 8 612 3 103 1563 14 1010 132 �8332 �104 �10�8 1CCCA :
Solution:program trace (input, output);{ Exercise 23: Trace of a Product Matrix }use mv_ari;var n: integer;function trace1 (a, b: rmatrix): real;vari, j : integer;s : real;begins:= 0;for i:= lbound(a,1) to ubound(a,1) dofor j:= lbound(a,2) to ubound(a,2) dos:= s + a[i,j] * b[j,i];trace1:= s;end;

246 CHAPTER 5. EXERCISES WITH SOLUTIONSfunction trace2 (a, b: rmatrix): real;vari, j : integer;begintrace2:= #* (for i:= lbound(a,1) to ubound(a,1) sum(for j:= lbound(a,2) to ubound(a,2) sum(a[i,j]*b[j,i])));end;function trace3 (a, b: rmatrix): real;vari : integer;s : real;begins:= 0;for i:= lbound(a,1) to ubound(a,1) dos:= s + a[i] * rvector(b[*,i]);trace3:= s;end;function trace4 (a, b: rmatrix): real;vari : integer;begintrace4:= #* (for i:= lb(a,1) to ub(a,1) sum(a[i] * rvector (b[*,i])));end;procedure main (n: integer);vara, b : rmatrix[1..n,1..n];tr1, tr2, tr3, tr4 : real;beginwriteln('Enter matrix A:');read (A);writeln('Enter matrix B:');read (B);tr1:= trace1 (A,B);tr2:= trace2 (A,B);tr3:= trace3 (A,B);tr4:= trace4 (A,B);writeln('Trace of A*B computed conventionally : ',tr1);writeln('and with corresponding #-expression : ',tr2);writeln('Trace of A*B computed with scalar product : ',tr3);writeln('and with corresponding #-expression : ',tr4);end;

Exercise 23 247begin {program trace}writeln ('Exercise 23: Trace of a Product Matrix');writeln;write('Enter dimension of the matrices: ');read (n);main(n);end. {program trace}Runtime Output:Exercise 23: Trace of a Product MatrixEnter dimension of the matrices: 4Enter matrix A:1e9 8 126 -237100 2 -12 11e5 10 -1e7 8113 -3 30 1e-7Enter matrix B:1e8 85 8 612 3 1e3 1563 14 1e10 132 -8332 -1e4 -1e-8Trace of A*B computed conventionally : -1.600000000000000E+001and with corresponding #-expression : 5.999999999999999E+000Trace of A*B computed with scalar product : -9.999999999999999E-016and with corresponding #-expression : 5.999999999999999E+000

248 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 24: Calculator for PolynomialsWrite a PASCAL{XSC program that provides a calculator for the addition andmultiplication of polynomials with real coe�cients. The degree n of the polynomialsshould be no more than 5. For two polynomials p and q of degree n withp(x) = nXi=0 aixi and q(x) = nXi=0 bixi;the sum s is de�ned bys(x) = p(x) + q(x) = nXi=0(ai + bi)xi;and the product r byr(x) = p(x) � q(x) = nXi=0 nXj=0 aibjxi+j:A module should be written containinga) a dynamic type de�nition Polynomial where a polynomial is de�ned as a dy-namic real array,b) a procedure to read the coe�cients of a polynomial,c) an operator + with two operands of type Polynomial and with a resultingpolynomial of the same degree as the operands,d) an operator � with two operands of type Polynomial and with a resultingpolynomial of appropriate degree, implemented with maximum accuracy,e) a procedure for the output of polynomials.A program testing this module should contain a procedure Main with parameter n(� 5), that declares the three polynomials (p; q; s) of degree n and a polynomial (r)of degree 2n, and reads p and q. Depending upon the user's input, the procedureshould compute and print the sum s or the product r. In the main program ofthis test program, only the degree of the polynomials should be entered and theprocedure Main be called.Solution:module poly;{ Exercise 24: Calculator for Polynomials }global type Polynomial = dynamic array [*] of real;

Exercise 24 249global procedure read (var f: text; var a: Polynomial);var i: integer;beginfor i:= 0 to ub(a) doread (f, a[i]);end;global operator + (a, b: Polynomial) Result_Add: Polynomial[0..ub(a)];var i: integer;beginfor i:= 0 to ub(a) doResult_Add[i]:= a[i] + b[i];end;global operator * (a, b: Polynomial) Result_Mul: Polynomial[0..2*ub(a)];var i, j, n: integer;beginn:= ub(a);for i:= 0 to n doResult_Mul[i]:= #* (for j:= 0 to i sum (a[j] * b[i-j]));for i:= n+1 to 2*n doResult_Mul[i]:= #* (for j:= i-n to n sum (a[j] * b[i-j]));end;global procedure write (var f: text; a: Polynomial);var i: integer;beginwrite (f, a[0], ' ');for i:= 1 to ub(a) dobeginwriteln(f, ' + ');write(' ', a[i], ' x^' ,i:1);end;writeln(f);end;end. {module poly}program test_poly (input, output);use poly;var n, option : integer;procedure Main (n : integer; var option : integer);varp, q, s : Polynomial[0..n];r : Polynomial[0..2*n];

250 CHAPTER 5. EXERCISES WITH SOLUTIONSbeginwriteln('Enter the coefficients of p (0 to n):');read (p);writeln;writeln('Enter the coefficients of q (0 to n):');read (q);writeln;repeatwriteln('Please select:');writeln(' p + q ==> 0');writeln(' p * q ==> 1');writeln(' New polynomials p,q ==> 2');writeln(' Terminate program ==> 9');writeln;write ('Selection ==> '); read(option);writeln;if option = 0 thenbegins:= p+q;write('p = '); writeln(p);write('q = '); writeln(q);write('p+q = '); writeln(s);endelse if option = 1 thenbeginr:= p*q;write('p = '); writeln(p);write('q = '); writeln(q);write('p*q = '); writeln(r);end;until (option <> 0) and (option <> 1);writeln;end;begin { test_poly }writeln('Exercise 24: Calculator for Polynomials');writeln;repeatrepeatwrite('Degree n of the polynomials (>= 0 and <= 5) : ');read (n);until (0<=n) and (n<=5);writeln;Main (n, option);until (option = 9);end.

Exercise 24 251Runtime Output:Exercise 24: Calculator for PolynomialsDegree n of the polynomials (>= 0 and <= 5) : 4Enter the coefficients of p (0 to n):99 11 22 33 44Enter the coefficients of q:0 1 2 3 4Please select:p + q ==> 0p * q ==> 1New polynomials p,q ==> 2Terminate program ==> 9Selection ==> 0p = 9.900000000000000E+001 +1.100000000000000E+001 x^1 +2.200000000000000E+001 x^2 +3.300000000000000E+001 x^3 +4.400000000000000E+001 x^4q = 0.000000000000000E+000 +1.000000000000000E+000 x^1 +2.000000000000000E+000 x^2 +3.000000000000000E+000 x^3 +4.000000000000000E+000 x^4p+q = 9.900000000000000E+001 +1.200000000000000E+001 x^1 +2.400000000000000E+001 x^2 +3.600000000000000E+001 x^3 +4.800000000000000E+001 x^4Please select:p + q ==> 0p * q ==> 1New polynomials p,q ==> 2Terminate program ==> 9Selection ==> 1

252 CHAPTER 5. EXERCISES WITH SOLUTIONSp = 9.900000000000000E+001 +1.100000000000000E+001 x^1 +2.200000000000000E+001 x^2 +3.300000000000000E+001 x^3 +4.400000000000000E+001 x^4q = 0.000000000000000E+000 +1.000000000000000E+000 x^1 +2.000000000000000E+000 x^2 +3.000000000000000E+000 x^3 +4.000000000000000E+000 x^4p*q = 0.000000000000000E+000 +9.900000000000000E+001 x^1 +2.090000000000000E+002 x^2 +3.410000000000000E+002 x^3 +5.060000000000000E+002 x^4 +2.200000000000000E+002 x^5 +2.750000000000000E+002 x^6 +2.640000000000000E+002 x^7 +1.760000000000000E+002 x^8Please select:p + q ==> 0p * q ==> 1New polynomials p,q ==> 2Terminate program ==> 9Selection ==> 9

Exercise 25 253Exercise 25: Interval Newton MethodThe interval inclusion Xn of a zero of a function f(x) whose derivative is continuousand not equal to zero on the interval [a; b] can be improved under the assumptionf(a) � f(b) < 0 with help of the interval Newton method ([1],[2],[34])Xn+1 := m(Xn)� f(m(Xn))f 0(Xn) ! \Xn:m(X) is the midpoint of the interval X.Write a PASCAL{XSC program that uses the module I ARI and computes theinterval inclusion of the zero off(x) = px + (x+ 1) cos xwith the method described above. Your program should include� a function F that computes f(X) with interval arithmetic� a function DF that computes the derivative f 0(x) with interval arithmetic� a function midpoint that computes the midpointm of the interval X = [x1; x2]with maximum accuracy by means of an #-expression� a main program that accepts the starting interval X = [a; b], checks the twocriteria f(a) � f(b) < 0 and 0 62 DF (X), and computes the iterates using theNewton method. Print the newly calculated interval at each iteration. Theiteration should terminate when Xn+1 = Xn (for the �nite convergence see[34]).Hint: Use [2:0; 3:0] as the starting interval for the iteration. Note, that for thecomputation of f(m(X)) with the interval function F, the midpoint deliveredby midpoint must be converted in an interval.Solution:program i_newton (input, output);{ Exercise 25: Interval Newton Method }use i_ari;var x, y : interval;function F (x : interval) : interval;beginF:= sqrt(x) + (x+1) * cos(x);end;

254 CHAPTER 5. EXERCISES WITH SOLUTIONSfunction DF (x : interval) : interval;beginDF:= 0.5/sqrt(x) + cos(x) - (x + 1) * sin(x);end;function midpoint (x : interval) : real;beginmidpoint:= #* (0.5 * x.inf + 0.5 * x.sup);end;function criterion_satisfied (x : interval) : boolean;vara, b: interval;begina:= intval(inf(x));b:= intval(sup(x));criterion_satisfied:= (sup(F(a)*F(b)) < 0) and (not (0 in DF(x)));end;beginwriteln('Exercise 25: Interval Newton Method'); writeln;write ('Starting interval: '); read (y); writeln;writeln ('Iteration'); writeln;if criterion_satisfied (y) thenrepeatwriteln (y);x:= y;y:= (midpoint(x) - F (intval(midpoint(x))) / DF(x)) ** x;until y = xelsewriteln ('Criterion not satisfied!');end.Runtime Output:Exercise 25: Interval Newton MethodStarting interval: [2,3]Iteration[2.0E+000, 3.0E+000][2.0E+000, 2.3E+000][2.05E+000, 2.07E+000][2.05903E+000, 2.05906E+000][2.059045253413E+000, 2.059045253417E+000][2.059045253415143E+000, 2.059045253415145E+000]

Exercise 26 255Exercise 26: Runge-Kutta MethodThe Runga-Kutta method [47] is used for approximating a solution for initial valueproblems of the formY 0 = F (x; Y); Y (x0) = Y 0;whereY = 0BB@ y1(x)...yn(x) 1CCA ; Y 0 = 0BB@ y01(x)...y0n(x) 1CCAand F (x; Y) = 0BB@ f1(x; y1; : : : ; yn)...fn(x; y1; : : : ; yn) 1CCA :De�ne the coe�cients KiK1 = h � F (x; Y)K2 = h � F (x+ h2 ; Y + K12)K3 = h � F (x+ h2 ; Y + K22)K4 = h � F (x+ h; Y +K3):An approximation for the solution Y at the point x + h is given by the formulaY (x + h) = Y (x) + (K1 + 2K2 + 2K3 +K4)=6:Write a PASCAL{XSC program that uses the module MV ARI. Starting fromY (0) = 0B@ 101 1CA, the values of Y at the points xi = i � h, i = 1; : : : ; 10 shouldbe computed with h = 0:125. As an example, use the functionF (x; Y) = 0B@ Y1 � Y2ex � Y3(Y1 � Y2)=ex 1CA :The output should be presented as a table. De�ne the vector function F (x; Y).Compute the expressions K1, K2, K3, K4, and the value of Y (xi) in a loop usingthe prede�ned operators in MV ARI.

256 CHAPTER 5. EXERCISES WITH SOLUTIONSSolution:program Runge_Kutta (input, output);{ Exercise 26: Runge-Kutta Method }use mv_ari;constn = 3;varh, x : real;Y : rvector[1..n];i : integer;function F (x : real; Y : rvector) : rvector[1..n];vari: integer;beginF[1]:= Y[1] - Y[2];F[2]:= exp(x) * Y[3];F[3]:= (Y[1] - Y[2]) / exp(x);end;function One_Step (x, h : real; var Y : rvector) : rvector[1..n];{ This function executes one step of the Runge-Kutta method }vark1, k2, k3, k4 : rvector[1..n];begink1 := h * F (x , Y);k2 := h * F (x + h/2, Y + k1/2);k3 := h * F (x + h/2, Y + k2/2);k4 := h * F (x + h , Y + k3);One_Step := Y + (k1 + 2 * k2 + 2 * k3 + k4) / 6;end;beginwriteln('Exercise 26: Runge-Kutta Method');writeln;x:= 0; Y[1]:= 1; Y[2]:= 0; Y[3]:= 1; h:= 0.125;writeln (' x Y');write ('--');writeln ('--');writeln (xi:7:4,' ',Y[1],' ',Y[2],' ',Y[3]);

Exercise 26 257for i:=1 to 10 dobeginx := i*h;Y := One_Step (x, h, Y);writeln (x:7:4,' ',Y[1],' ',Y[2],' ',Y[3]);end;end.Runtime Output:Exercise 26: Runge-Kutta Methodx Y--0.0000 1.000000000000000E+000 0.000000000000000E+000 1.000000000000000E+0000.1250 1.123177059359435E+000 1.589550140041404E-001 1.102222238011605E+0000.2500 1.239209386091870E+000 3.550710525572459E-001 1.187244664965584E+0000.3750 1.341958893792722E+000 5.919581434349622E-001 1.253740540716452E+0000.5000 1.424014481447932E+000 8.728079152996371E-001 1.300672225680391E+0000.6250 1.476592898728182E+000 1.200161743578859E+000 1.327307372755333E+0000.7500 1.489460043511421E+000 1.575636069976619E+000 1.333230355256656E+0000.8750 1.450881281820536E+000 1.999602458523678E+000 1.318348752540877E+0001.0000 1.347610792483193E+000 2.470820861695647E+000 1.282894792112784E+0001.1250 1.164931397828429E+000 2.986025793442226E+000 1.227421725713755E+0001.2500 8.867578092820163E-001 3.539466687473293E+000 1.152795195942419E+000Remark: The solutions of both of the last exercises demonstrate that the generaloperator concept in PASCAL{XSC substantially simpli�es the transfer of nu-merical algorithms into program code. In principle, the mathematical formulascan be used directly as program statements.

258 CHAPTER 5. EXERCISES WITH SOLUTIONSExercise 27: Rational ArithmeticImplement a PASCAL{XSC module for a rational arithmetic [23]. A rational num-ber p = n=d should be represented as a record type with integer components nu-merator and denominator (> 0). The module should make the following globallyavailable1) the type Rational,2) the operators +,-,*,/, which deliver a reduced fraction of type Rational asresult,3) a procedure for the input and for the output of rational numbers, respectively,using the form:integer=integerYou will need to write functions to compute the greatest common denominator (gcd)and to reduce fractions. These should be declared locally for use only within themodule.A test program should test each operator and compute the value of the expression(a+ b) � (b� c)=(c+ d)for a = 3=4, b = 2=7, c = 4=5, and d = 7=9.Hint: The function to reduce a rational number to lowest terms should use integerdivision (div) of the denominator and the numerator by the greatest commondivisor . The function for the greatest common divisor should use the followingalgorithm:a; b > 0; z0 := a; n0 := b; i := 0;set (ni+1 := didi+1 := ni mod di) for i = 0; 1; 2; : : :until di+1 = 0.then ni+1 (or di) is the greatest common divisor of a and b.Notice: gcd(0; x) = x for every x 6= 0.

Exercise 27 259Solution:module rational;{ Exercise 27: Rational Arithmetic }global typepositive = 1..maxint;rational = recordnumerator : integer;denominator : positive;end;function gcd (a, b : integer) : positive;varn, d, r : integer;beginif a = 0 thengcd:= belse if b = 0 thengcd:= aelsebegind:= a;r:= b;repeatn:= d;d:= r;r:= n mod d;until r = 0;gcd:= abs(d);end;end;function reduce (a: rational) : rational;varg : positive;beging:= gcd (abs(a.numerator),a.denominator);if (g = 0) or (g = 1) thenreduce := aelsebeginreduce.numerator := a.numerator div g;reduce.denominator:= a.denominator div g;end;end;

260 CHAPTER 5. EXERCISES WITH SOLUTIONSglobal operator + (a,b : rational) respl : rational;vars: rational;begins.numerator := a.numerator*b.denominator + b.numerator*a.denominator;s.denominator:= a.denominator*b.denominator;respl:= reduce (s);end;global operator - (a,b : rational) resmi : rational;vars: rational;begins.numerator := a.numerator*b.denominator - b.numerator*a.denominator;s.denominator:= a.denominator*b.denominator;resmi:= reduce (s);end;global operator * (a,b : rational) resmu : rational;vars: rational;begins.numerator := a.numerator*b.numerator;s.denominator:= a.denominator*b.denominator;resmu:= reduce (s);end;global operator / (a,b : rational) resdi : rational;varhelp : integer;s : rational;begins.numerator:= a.numerator*b.denominator;help := a.denominator*b.numerator;if help > 0 thens.denominator:= helpelse if help < 0 thenbegins.numerator := -s.numerator;s.denominator:= -help;endelse { force division by zero to generate an error }help:= help div help;resdi:= reduce (s);end;

Exercise 27 261global procedure read (var f: text; var r: rational);vars, sn, sd: string;i, l : integer;beginif eoln (f) thenreadln (f);read (f,s);i:= pos ('/',s);l:= length (s);sn:= substring (s,1,i-1);sd:= substring (s,i+1,l-i);r.numerator:= ival (sn);l:= ival (sd);if l > 0 thenr.denominator:= lelse if l < 0 thenbeginr.numerator := - r.numerator;r.denominator:= - l;endelse { force devision by zero to generate an error }l:= l div l;r:= reduce (r);end;global procedure write (var f: text; a: rational);beginwrite (f, a.numerator:1, '/', a.denominator:1);end;end. {module rational}
program test_ratio (input, output);{ Exercise 27: Rational Arithmetic - Test Program }use rational;vara,b,c,d : rational;

262 CHAPTER 5. EXERCISES WITH SOLUTIONSbeginwriteln('Exercise 27: Rational Arithmetic - Test Program');writeln;write ('a = '); read (a);writeln (a);write ('b = '); read (b);writeln (b);write ('c = '); read (c);writeln (c);write ('d = '); read (d);writeln (d);writeln;writeln ('a+b = ', a+b);writeln ('b-c = ', b-c);writeln ('c+d = ', c+d);writeln ('(a+b)*(b-c)/(c+d) = ', (a+b)*(b-c)/(c+d));end.Runtime Output:Exercise 27: Rational Arithmetica = 3/4b = 2/7c = 4/5d = 7/9a+b = 29/28b-c = -18/35c+d = 71/45(a+b)*(b-c)/(c+d) = -2349/6958

Exercise 28 263Exercise 28: Evaluation of PolynomialsWrite a PASCAL{XSC program to evaluate a polynomialp(t) = antn + � � �+ a1t+ a0with maximum accuracy. Use the module LSS from the PASCAL{XSC numericlibrary for the veri�ed solution of a system of linear equations. Horner's schemep(t) = (: : : (an � t + an�1) � t+ an�2) � � �) � t + a1) � t + a0for the evaluation of a polynomial can be done via the solution of the system oflinear equationsx0 = anx1 = tx0 + an�1...xn�1 = txn�2 + a1xn = txn�1 + a0by introducing the n+ 1 variables x0; x1; : : : ; xn�1; xn. The value of the polynomialp at point t is then given by xn, i.e. xn = p(t).Hence, we wish to solve the system of linear equations0BBBBBBB@ 1 0�t 1.�t 10 �t 1
1CCCCCCCA �0BBBBBBB@ x0x1...xn�1xn

1CCCCCCCA = 0BBBBBBB@ anan�1...a1a0
1CCCCCCCAor Ax = bwhereA = (aij); aij = 8><>: 1 for i = j�t for i = j + 10 else 9>=>; ; i; j = 0; : : : ; nand b = (bi); bi = an�i; i = 0; : : : ; n:Write a PASCAL{XSC program that contains the following parts:(a) a dynamic type declaration polynomial (component type real),

264 CHAPTER 5. EXERCISES WITH SOLUTIONS(b) a procedure read for the coe�cients of a polynomial,(c) a function Horner to compute the value of a polynomial by the Horner scheme,(d) a procedure set A b, that generates the matrix A and the vector b from apolynomial p and a real number t,(e) a procedure main with formal parameter n that{ declares a variable p of type polynomial, a vector b of type rvector, aninterval vector X of type ivector, and a square matrix A of type rmatrixwith index range 0; : : : ; n,{ reads the polynomial coe�cients a0; : : : ; an using the procedure read ofpart (b),{ generates the matrix A and the vector b using the procedure from part(d),{ computes an inclusion of X of the solution of the system Ax = b withmaximum accuracy using the procedure lss,{ and �nally, if lss is executed without errors, prints the lower and upperbounds of the interval inclusion Xn of the polynomial value xn = p(t)and the value calculated by the Horner method (part (c)) for the sake ofcomparison.(f) a main program that accepts the degree of the polynomial n and calls theprocedure main.Hint: Use the module LSS from the PASCAL{XSC numeric library. This modulesupplies the procedure lss which delivers a veri�ed inclusion vector X for thesolution x of Ax = b using the matrix A and the right-hand side b as input.The interface of this procedure isprocedure lss (var A: rmatrix; var b: rvector;var X: ivector; var errcode: integer);where:errcode = 0 : errorfree execution,errcode = 1 : system is too poorly conditioned,errcode = 2 : matrix is possibly singular.Test your program with the following examples:Example 1:degree of polynomial 3coe�cients a0 = 1536796802a1 = �1086679440a2 = �768398401a3 = 543339720point of evaluation t = 1:4142135

Exercise 28 265Example 2:degree of polynomial 3coe�cients a0 = 191971912515a1 = �135744641136a2 = �95985956257a3 = 67872320568point of evaluation t = 1:41421353154Solution:program Polynomial_Evaluation (input, output);{ Exercise 28: Evaluation of Polynomials }use i_ari, mv_ari, lss;type polynomial = dynamic array [*] of real;procedure read (var f: text; var p: polynomial);vari: integer;beginfor i:= 0 to ub(p) dobeginwrite ('Coeff. ',i:2,': ');read (f, p[i]);end;end;function Horner (p : polynomial; t: real) : real;varh: real;i: integer;beginh:= 0;for i:= ub(p) downto 0 doh:= p[i] + t * h;horner:= h;end;procedure set_A_b (p : polynomial; t : real;var A: rmatrix; var b: rvector);vari, j, ub_p: integer;beginA:= null (A);A[0,0]:= 1;

266 CHAPTER 5. EXERCISES WITH SOLUTIONSfor i:= 1 to ub(A) dobeginA[i,i-1]:= -t; { sub diagonal := -t }A[i,i] := 1; { diagonal := 1 }end;ub_p:= ub(p);for i:= 0 to ub(b) dob[i] := p[ub_p-i];end;procedure main (n: integer);varp: polynomial[0..n];b: rvector[0..n];X: ivector[0..n];A: rmatrix[0..n,0..n];t: real;error: integer;beginwriteln ('Enter a polynomial');read (p);write ('Enter the point of evaluation t = '); read(t);writeln;set_A_b (p,t,A,b);lss (A,b,X,error);if error=0 thenbeginwriteln ('Horner scheme : ', horner (p,t));writeln ('Inclusion : ', X[n]);endelsewriteln ('Error ',error:1,' ocurred');end;var n: integer;beginwriteln('Exercise 28: Evaluation of Polynomials');writeln;write ('Degree of polynomial: '); read (n);main (n);end.

Exercise 28 267Runtime Output:Example 1Degree of polynomial: 3Enter polynomialCoeff. 0 = 1536796802Coeff. 1 = -1086679440Coeff. 2 = -768398401Coeff. 3 = 543339720Enter the point of evaluation t = 1.4142135Horner scheme : 5.960464477539062E-006Inclusion : [5.978758733249328E-006, 5.978758733249330E-006]Example 2Degree of polynomial: 3Enter polynomialCoeff. 0 = 191971912515Coeff. 1 = -135744641136Coeff. 2 = -95985956257Coeff. 3 = 67872320568Enter the point of evaluation t = 1.41421353154Horner scheme : 1.000183105468750E+000Inclusion : [1.000182503810985E+000, 1.000182503810986E+000]Remark: This last exercise shows how to use the routine for the veri�ed solution oflinear equations to evaluate poynomials with maximum accuracy. The veri�edresults show that the frequently used Horner method may deliver incorrectresults.The procedure lss is used for simplicity. The reader might wish to designand implement a more e�cient algorithm which takes advantage of the specialstructure of the matrix A as an advanced exercise (see [8]).

Appendix ASyntax DiagramsAs a supplement to the syntax description of the language reference (chapter 2)using the simpli�ed Backus-Naur-Form, we now give a complete description of thePASCAL{XSC syntax. For this purpose, we use syntax diagramms in a special formbeing already mentioned in [6], [7] or [14]. The following rules apply to the usage ofthe diagrams.� Each diagram is marked by a number followed by a special identi�er (sequenceof upper case letters). This identi�er is called a syntax variable. It is chosento refer to the represented language element.� A diagram consists of syntax variables, terminal symbols (reserved words con-sisting of boldfaced sequences of lower case letters, symbols enclosed in circles,or sequences of symbols enclosed in ovals), and solid or dotted lines.� Within a diagram, a syntax variable may occur in connection with a semanticpre�x. For instance, the variable IDENTIFIER (ID) is used with the pre�xCOMP indicating a special kind of identi�er, i.e. a component identi�er. Nev-ertheless, the de�nition of the variable COMP IDENTIFIER is given by thesyntax diagram IDENTIFIER.Furthermore, these semantic attributes appear as italicized remarks which arestated immediately beneath or beside a variable. If a list of semantic attributesis given, then the comma is read as \or". The following abbreviations are used:A ArrayB booleanCH charCIR cinterval (complex intervals)COMP Component (of a record)CONST ConstantCR complex (complex numbers)DOT dotprecisiondyadop dyadic operatordyna dynamic array 269

270 APPENDIX A. SYNTAX DIAGRAMSET Enumeration TypeF FileFCT FunctionFL Field ListFS File Structure TypeI integerid identi�erIR interval (real intervals)MCIR cimatrix (complex interval matrices)MCR cmatrix (complex matrices)MIR imatrix (interval matrices)MR rmatrix (real matrices)monop monadic operatorP pointerR realREC RecordRES ResultST stringTF Text FileVCIR civector (complex interval vectors)VCR cvector (complex vectors)VIR ivector (interval vectors)VR rvector (real vectors)VAR VariableAn index of all syntax variables (identi�ers) is listed in alphabetical order after thediagrams in Appendix B.1 to simplify working with the diagrams.While editing a program, the syntax diagrams are used according to the followingrules:� The traversing of a diagram starts at the upper left.� Solid lines must be followed from left to right or from top to bottom. Dottedlines must be followed from right to left or from bottom to top.� The traversing of a diagram ends at the lower right.� Wherever a syntax variable appears while traversing over a diagram, we haveto traverse through the diagram of this syntax variable. Then we continuewith the original diagram.

A. Syntax Diagrams 271P1 COMPILATION UNIT

MDBIDmodule id ;�
�	module IDmodule id ;�
�	 use global ,�
�| {z }use{clause

PDB;�
�	 use IDmodule id ;�
�	program IDprogram id (�
�	 IDprogramparameter)�
�	 ,�
� ,�
�| {z }use{clause

P2 PROGRAM DECLARATION AND BODY (PDB)
DECLARATION PART begin STMT end .�
� ;�
�

272 APPENDIX A. SYNTAX DIAGRAMSP3 MODULE DECLARATION AND BODY (MDB)
begin STMT end .�
� ;�
�

MODULE DECLARATION
....

P4 MODULE DECLARATION

PRIORITY DEFINITION ;�
�	OPERATOR HEAD ;�
�	 BODY ;�
�	PROCEDURE FUNCTION HEAD ;�
�	 BODY ;�
�	var VARIABLE DECLARATION ;�
�type MODULE TYPE DEFINITION ;�
�global const CONSTANT DEFINITION ;�
�label DIGIT SEQUENCElabel, max. 4 digits ;�
� ,�
�

.........

.........

.........

.........

........

procedure/functiondeclara-tionoperatordeclara-tion

A. Syntax Diagrams 273P5 DECLARATION PART

;�
�	 ;�
�	;�
�	
;�
�	 ;�
�	;�
�	

;�
�	
;�
�	
;�
�	

OPERATOR HEAD BODYPRIORITY DEFINITIONPROCEDURE FUNCTION HEAD BODYvar VARIABLE DECLARATIONtype TYPE DEFINITIONconst CONSTANT DEFINITIONlabel DIGIT SEQUENCElabel, max. 4 digits ,�
�

.........

.........

.........

.........

.........

.... .

procedure/functiondeclarationoperatordeclaration
P6 CONSTANT DEFINITION

B, CH, ET, STCONSTI, RCONSTID =�
�	constant id +�
�	��
�	

274 APPENDIX A. SYNTAX DIAGRAMSP7 CONSTANT (CONST)

nil'�
�	 CHARACTER '�
�false�
 �	true�
 �	

(�
�	 <�
�	>�
�	 +�
�	��
�	 DS :�
�	 DS e�
�	 +�
�	��
�	 DS)�
�	

DS :�
�	 DS e�
�	 +�
�	��
�	 DS
$�
�	 HDS I (integer)maxint�
 �	DSIDconstant id

R (real)B (boolean)CH (char) orST (string)P (pointer)

A. Syntax Diagrams 275P8 TYPE DEFINITION

IDdyna type id IDdyna type idIDdyna type id =�
�	 dynamic array [�
�	 ��
�]�
�	 of TYPE. ,�
�	.IDtype id =�
�	 TYPE....
List of prede�ned PASCAL{XSC type identi�ers:integer I dotprecision DOTreal R rvector VRboolean B rmatrix MRchar CH cvector VCRtext TF cmatrix MCRstring ST ivector VIRcomplex CR imatrix MIRinterval IR civector VCIRcinterval CIR cimatrix MCIRP9 MODULE TYPE DEFINITION

IDdyna type id IDdyna type iddynamic array [�
�	 ��
�]�
�	 of TYPEIDdyna type id =�
�	 global . ,�
�	.TYPEIDtype id =�
�	 global
....

276 APPENDIX A. SYNTAX DIAGRAMSP10 TYPE

�le of TYPEno FSset of TYPEI, B, CH, ETrecord FIELD LIST endarray [�
�	 TYPEI, B, CH, ET]�
�	 of TYPEcomponenttypepacked ,�
�packed array [�
�	 TYPEIlower bound 1]�
�	 of charstring�
 �	 [�
�	 CONSTImaximum length]�
�	CONST ..�
�	 CONST| {z }B, CH, ET ��
�	 CONSTI+�
�	��
�	 CONSTI ..�
�	+�
�	
"�
�	 IDtype id(�
�	 IDET constant)�
� ,�
� IDtype id....

....

ETP
I subrangeB, CH, ETSTST (static)also AA also FS, if comp-type is an FS typeREC also FS, if FLcontains an FS typeSETF also FS

A. Syntax Diagrams 277P11 FIELD LIST (FLIST)

)�
�	 ;�
�	TYPE ID of CHOICE :�
�	(�
�	 FLIST| {z }I, B, CH, ETcomponent idcase ID :�
�	 . ;�
�	. .IDcomponent id :�
�	 TYPE. ,�
� ;�
�
P12 VARIABLE DECLARATION

dynamic array [�
�	EXPRI ..�
�	EXPRI]�
�	 of TYPE. ,�
�DYNA TYPE ID [�
�	EXPRI ..�
�	EXPRI]�
� ,�
�IDvariable id :�
�	 TYPE. ,�
�

278 APPENDIX A. SYNTAX DIAGRAMSP13 CHOICE

CONST ..�
�	 CONST. ,�
�
��
�	 CONST+�
�	��
�	 CONST ..�
�	+�
�	

. ,�
�	. .

.........

.........

......

........
I
B, CH, ET

P14 PROCEDURE FUNCTION HEAD (PFHEAD)
function IDfunction id FORMAL PARAMETER LIST :�
�	 RESTYPEprocedure IDprocedure id FORMAL PARAMETER LIST

A. Syntax Diagrams 279P15 PRIORITY DEFINITION

IDmonopid =�
�	 "�
�	��
�	+�
�	priority IDdyadopid =�
�	 =�
�	. ;�
�	. .
.........
....... relation (level 0)addition (level 1)multiplication (level 2)monadic operator (level 3)

P16 OPERATOR HEAD

:=�
�	 ASG FOR PAR LDYADOPdyadicoperator DYA FOR PAR L IDresult id :�
�	 RESTYPEoperator MONOPmonadicoperator MON FOR PAR L

P17 MONADIC FORMAL PARAMETER LIST (MON FOR PAR L)
IDvariable id :�
�	 TYPESPEC)�
�	(�
�	 var

280 APPENDIX A. SYNTAX DIAGRAMSP18 DYADIC FORMAL PARAMETER LIST (DYA FOR PAR L)
IDvariable id :�
�	TYPESPEC)�
�	IDvariable id :�
�	TYPESPEC ;�
�	 varIDvariable id ,�
�	 IDvariable id :�
�	TYPESPEC(�
�	 var

P19 ASSIGNMENT FORMAL PARAMETER LIST (ASG FOR PAR L)
IDvariable id :�
�	TYPESPEC)�
�	(�
�	 var IDvariable id :�
�	TYPESPEC ;�
�	 var

P20 RESULT TYPE (RESTYPE)
string�
 �	 [�
�	 CONSTI]�
�	DYNA TYPE ID [�
�	 EXPRI ..�
�	 EXPRI]�
� ,�
�TYPE IDIf used in P14 within P22also DYNA TYPE IDpermitted

A. Syntax Diagrams 281P21 BODY

ST CONSTANTexternalforwardDECLARATION PART begin STMT end. ;�
�

P22 FORMAL PARAMETER LIST
PROCEDURE FUNCTION HEAD)�
�	IDvariable id :�
�	 TYPESPEC(�
�	 var ,�
� ;�
�

... call by valuecall by reference
P23 TYPE SPECIFICATION (TYPESPEC)

string�
 �	DYNATYPE IDTYPE ID

282 APPENDIX A. SYNTAX DIAGRAMSP24 STATEMENT (STMT)

STANDARD PROCEDURE CALLINPUT OUTPUT STATEMENTPROCEDURE ID ACTUAL PARAMETER LISTgoto DIGIT SEQUENCELabel end;�
�	else :�
�	STMT ;�
�	case EXPR of CHOICE| {z }I, B, CH, ET :�
�	STMT. ;�
� else STMTif EXPRB then STMTdownto EXPR do STMTfor IDvariable id :=�
�	 EXPR torepeat STMT until EXPRB. ;�
�while EXPRB do STMTRESULTREC do STMTwith VARIABLE. ,�
�
begin STMT end. ;�
�RESULT :=�
�	 EXPRVARIABLEDSlabel :�
�	 assignmentstmtcompoundstmt

with-stmt

conditionalstmt
case-stmtgoto-stmtprocedurecall

9>>>>>>>>>>>>=>>>>>>>>>>>>; repeti-tivestmts

A. Syntax Diagrams 283P25 RESULT

COMP ID.�
�	 ��
�]�
�	[�
�	 EXPR. ,�
�"�
�	. .RES IDFCT ID

........
.........
......

only within awith-statement
subarray

Prede�ned PASCAL{XSC component identi�ersre, im, inf, sup

284 APPENDIX A. SYNTAX DIAGRAMSP26 STANDARD PROCEDURE CALL

setlength�
 �	 (�
�	 VARIABLEST ,�
�	 EXPRI)�
�	
mark�
 �	release�
 �	 (�
�	 VARIABLEP)�
�	

VARIABLEF, TF)�
�	,�
�	 EXPRSTrewrite�
 �	 (�
�	 output�
 �	VARIABLEF, TF)�
�	put�
 �	 (�
�	 output�
 �	
VARIABLEF, TF)�
�	,�
�	 EXPRSTreset�
 �	 (�
�	 input�
 �	VARIABLEF, TF)�
�	get�
 �	 (�
�	 input�
 �)�
�	dispose�
 �	 (�
�	 VARIABLEP ,�
�	 CONSTI, B, CH, ETnew�
 �	

A. Syntax Diagrams 285P27 INPUT OUTPUT STATEMENT (IO STMT)

write�
 �	 (�
�	 VARIABLEF ,�
�	 EXPRcomponent typeof the F variable)�
� ,�
�read�
 �	 (�
�	 VARIABLEF ,�
�	 VARIABLEcomponent typeof the F variable)�
� ,�
�
output�
 �)�
�	writeln�
 �	 (�
�	VARIABLETFpage�
 �)�
�	EXPR :�
�	 EXPR. .output�
 �	 ,�
�	 . ,�
�	. .writeln�
 �	 (�
�	VARIABLETFwrite�
 �	

....
input�
 �)�
�	readln�
 �	 (�
�	VARIABLETF)�
�	VARIABLE :�
�	 EXPR.input�
 �	 ,�
�	 . ,�
�readln�
 �	 (�
�	VARIABLETFread�
 �	

....

286 APPENDIX A. SYNTAX DIAGRAMSP28 EXPRESSION (EXPR). DYADOP .MONOP CONSTANTVARIABLEIDfunction id ACTUAL PARAMETER LISTSTANDARD FUNCTION CALL(�
�	 EXPR)�
�	[�
�	only for SET ;�
�EXPR ..�
�	 EXPR]�
�	| {z }I, B, CH, ETquali�cation TYPE IDA, DYNA (�
�	 EXPRA)�
�	ACCURATE EXPRESSION
.........
.........
.........
.........
.......

P29 ACCURATE EXPRESSION

#�
�	##�
�	#>�
�	#<�
�	#��
�	
(�
�	 EXACT EXPRESSION)�
�	

A. Syntax Diagrams 287P30 EXACT EXPRESSION (EXA EXPR)

All Summands must have the same structure (scalar, vector, or matrix) and the same dimension.No explicit accurate expressions are permitted in the I EXPR of the for-statement.I Ifor IDI variable :=�
�	EXPR todownto EXPR { sum (�
�	EXA EXPR)�
�	
.........
..

(�
�	 EXA EXPR)�
�	FACTOR ��
�	 FACTOR��
�	+�
�	. .

P31 FACTOR
��
�	 OPERAND)�
�	+�
�	(�
�	 OPERAND

P32 OPERAND
Only the functions compl, re, im, conj,intval, inf, sup, id, transp, and hermof the arithmetic modules and the typeconverting functions rvector, cvector,ivector, civector, rmatrix, cmatrix,imatrix, cimatrix are permitted (seesection 2.4.4).)�
�	FUNCTION ID (�
�	 OPERAND ;�
�	 OPERANDVARIABLEarithm. standard typeCONSTANTI, R

288 APPENDIX A. SYNTAX DIAGRAMSP33 DYADIC OPERATOR (DYADOP)

and���
�	=>�
�	=<�
�	=�
�	�>�
�	�<�
�	��
�	divmod 9>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>;
priority 2

or+��
�	�>�
�	�<�
�	��
�	+>�
�	+<�
�	+�
�	 9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;
priority 1

><�
�	in>�
�	<�
�	>=�
�	<=�
�	<>�
�	=�
�	 9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;
priority 0

DYADOP ID

A. Syntax Diagrams 289P34 MONADIC OPERATOR (MONOP) priority 3
not��
�	+�
�	MONOP ID in Standard PASCALpriority 1

P35 ACTUAL PARAMETER LIST

PROCEDURE ID)�
�	FUNCTION IDEXPRESSION(�
�	 VARIABLE. ,�
�	. .
.........
....... call by referencecall by value

290 APPENDIX A. SYNTAX DIAGRAMSP36 VARIABLE (VAR)

COMP ID.�
�	 ��
�]�
�	[�
�	 EXPR. ,�
�"�
�	. .VAR ID
........

.........

......

only within awith-statement
subarray

Prede�ned PASCAL{XSC component identi�ersre, im, inf, sup

A. Syntax Diagrams 291P37 STANDARD FUNCTION CALLord�
 �	 (�
�	 EXPRI, B, CH, ET)�
�	succ�
 �	pred�
 �	 (�
�	 EXPRI, R, B, CH, ET)�
�	odd�
 �	chr�
 �	 (�
�	 EXPRI)�
�	abs�
 �	sqr�
 �	sqrt�
 �	exp�
 �	exp2�
 �	exp10�
 �	ln�
 �	log2�
 �	log10�
 �	sin�
 �	cos�
 �	tan�
 �	cot�
 �	sinh�
 �	cosh�
 �	tanh�
 �	coth�
 �	arcsin�
 �	arccos�
 �	arctan�
 �	arccot�
 �	arsinh�
 �	arcosh�
 �	artanh�
 �	arcoth�
 �	 (�
�	 EXPRI, R, CR, IR, CIR)�
�	trunc�
 �	round�
 �	 (�
�	 EXPRI, R)�
�	arctan2�
 �	 (�
�	 EXPRI, R, CR, IR, CIR ;�
�	 EXPRI, R, CR, IR, CIR)�
�	

292 APPENDIX A. SYNTAX DIAGRAMSP37 STANDARD FUNCTION CALL (continued)sign�
 �	 (�
�	 EXPRI, R, DOT)�
�	mant�
 �	expo�
 �	 (�
�	 EXPRR)�
�	comp�
 �	 (�
�	 EXPRR ;�
�	 EXPRI)�
�	eof�
 �	 (�
�	 VARIABLEF, TFinput�
 �)�
�	eoln�
 �	 (�
�	 VARIABLETFinput�
 �)�
�	loc�
 �	 (�
�	 VARIABLE)�
�	lb�
 �	lbound�
 �	ub�
 �	ubound�
 �	 (�
�	 VARIABLEA ;�
�	 CONSTANTI)�
�	ival�
 �	 (�
�	 EXPRST ;�
�	 VARIABLEST)�
�	rval�
 �	 (�
�	 EXPRST ;�
�	 I EXPRrounding ;�
�	VARIABLEST)�
�	length�
 �	 (�
�	 EXPRST)�
�	maxlength�
 �	 (�
�	 VARIABLEST)�
�	pos�
 �	 (�
�	 EXPRCH, ST ;�
�	 EXPRST)�
�	substring�
 �	 (�
�	 EXPRST ;�
�	 I EXPRposition ;�
�	 I EXPRnumber ofcharacters)�
�	image�
 �	 (�
�	 I EXPR ;�
�	 I EXPRformatR EXPR ;�
�	 I EXPR ;�
�	 I EXPR ;�
�	 I EXPR)�
�	| {z }format

A. Syntax Diagrams 293P37 STANDARD FUNCTION CALL (continued; use of arithmetic modules assumed)compl�
 �	 (�
�	 EXPRI, R, IR, VR, VIR,MR, MIR ;�
�	 EXPRI, R, IR, VR, VIR,MR, MIR)�
�	re�
 �	im�
 �	conj�
 �	arg�
 �	 (�
�	 EXPRCR, CIR, VCR, VCIR,MCR, MCIR)�
�	intval�
 �	 (�
�	 EXPRI, R, CR, VR, VCR,MR, MCR ;�
�	 EXPRI, R, CR, VR, VCR,MR, MCR)�
�	inf�
 �	sup�
 �	mid�
 �	diam�
 �	 (�
�	 EXPRIR, CIR, VIR, VCIR,MIR, MCIR)�
�	null�
 �	 (�
�	 EXPRI, VR, VCR, VIR, VCIR,MR, MCR, MIR, MCIR ;�
�	 EXPRI, MR, MCR, MIR, MCIR)�
�	vnull�
 �	 (�
�	 EXPRI)�
�	id�
 �	 (�
�	 EXPRI, MR, MCR, MIR, MCIR ;�
�	 EXPRI, MR, MCR, MIR, MCIR)�
�	transp�
 �	herm�
 �	 (�
�	 EXPRMR, MCR, MIR, MCIR)�
�	blow�
 �	 (�
�	 EXPRIR, CIR, VIR, VCIR,MIR, MCIR ;�
�	 EXPRR)�
�	

294 APPENDIX A. SYNTAX DIAGRAMSP38 IDENTIFIER (ID)
LETTER DIGIT LETTER

P39 DIGIT SEQUENCE (DS)
DIGIT

P40 HEX DIGIT SEQUENCE (HDS)
HEX DIGIT

P41 CHARACTER
t�
�	

DIGITLETTER... additional charactersimplementation-dependent

A. Syntax Diagrams 295P42 LETTER

�
�	Z�
�	
A�
�	z�
�	
a�
�	
...
...

P43 DIGIT
9�
�	
1�
�	0�
�	...

P44 HEX DIGIT

DIGITF�
�	
A�
�	f�
�	
a�
�	
...
...

Appendix BIndices and Lists
B.1 Syntax DiagramsNo. Diagram Identi�er (Syntax Variable) PageP29 ACCURATE EXPRESSION . 286P35 ACTUAL PARAMETER LIST . 289P19 ASSIGNMENT FORMAL PARAMETER LIST(ASG FOR PAR L) . 280P21 BODY . 281P41 CHARACTER . 294P13 CHOICE . 278P1 COMPILATION UNIT . 271P7 CONSTANT (CONST) . 274P6 CONSTANT DEFINITION . 273P5 DECLARATION PART . 273P43 DIGIT . 295P39 DIGIT SEQUENCE (DS) . 294P18 DYADIC FORMAL PARAMETER LIST(DYA FOR PAR L) . 280P33 DYADIC OPERATOR (DYADOP) . 288P30 EXACT EXPRESSION (EXA EXPR) . 287297

298 APPENDIX B. INDICES AND LISTSP28 EXPRESSION (EXPR) . 286P31 FACTOR . 287

B.1. SYNTAX DIAGRAMS 299No. Diagram Identi�er (Syntax Variable) PageP11 FIELD LIST (FLIST) . 277P22 FORMAL PARAMETER LIST . 281P44 HEX DIGIT . 295P40 HEX DIGIT SEQUENCE (HDS) . 294P38 IDENTIFIER (ID) . 294P27 INPUT OUTPUT STATEMENT (IO STMT) . 285P42 LETTER . 295P9 MODULE TYPE DEFINITION . 275P4 MODULE DECLARATION . 272P3 MODULE DECLARATION AND BODY (MDB) . 272P17 MONADIC FORMAL PARAMETER LIST(MON FOR PAR L) . 279P34 MONADIC OPERATOR (MONOP) . 289P32 OPERAND . 287P16 OPERATOR HEAD . 279P15 PRIORITY DEFINITION . 279P14 PROCEDURE FUNCTION HEAD (PF HEAD) . 278P2 PROGRAM DECLARATION AND BODY (PDB) . 271P25 RESULT . 283P20 RESULT TYPE (RES TYPE) . 280P37 STANDARD FUNCTION CALL . 291P26 STANDARD PROCEDURE CALL . 284P24 STATEMENT (STMT) . 282P10 TYPE . 276P8 TYPE DEFINITION . 275P23 TYPE SPECIFICATION (TYPESPEC) . 281P36 VARIABLE (VAR) . 290P12 VARIABLE DECLARATION . 277

300 APPENDIX B. INDICES AND LISTSB.2 Reserved Wordsand arraybegincase constdiv do downto dynamicelse end external�le for forward functionglobal gotoif inlabelmod modulenil notof operator orpacked priority procedure programrecord repeatset sumthen to typeuntil usevarwhile with

B.3. PREDEFINED IDENTIFIERS 301B.3 Prede�ned Identi�ersSubsequently, the prede�ned identi�ers of the language core as well as those of thearithmetic modules are listed. The latter are marked by the use of italicized letters.Constants falsemaxinttrueTypes booleanchar cimatrix cinterval civector cmatrixcomplex cvectordotprecisionimatrix integer interval ivectorreal rmatrix rvectorstringtextVariables inputoutputComponent Identi�ers im infresupFunctions abs arccos arccot arcosh arcoth arcsinarctan arctan2 arg arsinh artanhblowchr comp compl conj cos cosh cotcothdiameof eoln exp exp2 exp10 expohermid im image inf intval ivallb lbound length ln loc log2 log10mant maxlength midnullodd ordpos predre round rvalsign sin sinh sqr sqrt substring succsuptan tanh transp truncub uboundvnullProcedures disposeget

302 APPENDIX B. INDICES AND LISTSmarknewpage putread readln release reset rewritewrite writeln

B.4. OPERATORS 303B.4 OperatorsThe tables in this section list all of the prede�ned operators in the language coreand in the arithmetic modules.B.4.1 Basic OperatorsQQQQQQQQleftoperand rightoperand integer boolean char string setmonadic +;� notinteger +;�; �; =;div, mod;_ inboolean or, and,=, <>,<=, >= inchar +_ +_in instring +_ +_inset +, �, �,=, <>,<=, >=enumerationtype in_ 2 f=, <>, <, <=, >, >=g

304 APPENDIX B. INDICES AND LISTSB.4.2 Arithmetic OperatorsQQQQQQQQleftoperand rightoperand integerrealcomplex intervalcinterval rvectorcvector ivectorcivector rmatrixcmatrix imatrixcimatrixmonadic1) +;� +;� +;� +;� +;� +;�integerrealcomplex 2)�; �<; �>;+� +;�; �; =;+� �; �<; �> � �; �<; �> �intervalcinterval +;�; �; =;+� +;�; �; =;+�; �� � � � �rvectorcvector �; �<; �>;=; =<; => �; = 3)�; �<; �>;+� 4)+;�; �;+�ivectorcivector �; = �; = 4)+;�; �;+� 4)+;�; �;+�; ��rmatrixcmatrix �; �<; �>;=; =<; => �; = �; �<; �> � 3)�; �<; �>;+� 4)+;�; �;+�imatrixcimatrix �; = �; = � � 4)+;�; �;+� 4)+;�; �;+�; ��1) The operators of this row are monadic (i.e. there is no left operand).2) � 2 f+;�; �; =g3) � 2 f+;�; �g, where � denotes the scalar or matrix product.4) � denotes the scalar or matrix product.+� : Interval hull (smallest interval enclosing both operands)�� : Interval intersection

B.4. OPERATORS 305B.4.3 Relational Operators for the Arithmetic TypesQQQQQQQQleftoperand rightoperand integerrealcomplex intervalcinterval rvectorcvector ivectorcivector rmatrixcmatrix imatrixcimatrixintegerrealcomplex =; <>;<=; <;>=; > in=; <>intervalcinterval =; <> 1)in; ><;=; <>;<=; <;>=; >rvectorcvector =; <>;<=; <;>=; > in=; <>ivectorcivector =; <> 1)in; ><;=; <>;<=; <;>=; >rmatrixcmatrix =; <>;<=; <;>=; > in=; <>imatrixcimatrix =; <> 1)in; ><;=; <>;<=; <;>=; >1) The operators <= and < denote the \subset" relations;>= and > denote the \superset" relations.>< : Test for disjointedness of intervalsin : Test for membership of a point in an interval orTest for strict inclusion of an interval in the interior of an interval

306 APPENDIX B. INDICES AND LISTSB.4.4 Assignment OperatorsThe subsequent tables give a survey of all possible assignment statements which havebeen made possible by overloading of the operator := in the arithmetic modules.Type of Left Side Type of Right Side Overloading De�ned incomplex integerreal module C ARIinterval integerreal module I ARIcinterval integerrealcomplexinterval module CI ARIrvector integerreal module MV ARIcvector integerrealcomplexrvector module MVC ARI
ivector integerrealintervalrvector module MVI ARI
civector integerrealcomplexintervalcintervalrvectorcvectorivector module MVCI ARI
rmatrix integerreal module MV ARIcmatrix integerrealcomplexrmatrix module MVC ARI
imatrix integerrealintervalrmatrix module MVI ARI

B.4. OPERATORS 307Type of Left Side Type of Right Side Overloading De�ned in
cimatrix integerrealcomplexintervalcintervalrmatrixcmatriximatrix module MVCI ARI

308 APPENDIX B. INDICES AND LISTSB.5 Prede�ned FunctionsIn this section, we supply an alphabetical review of all prede�ned functions withtheir declaration (interface) and a short explanation of their purpose. For functionswhich are overloaded or newly de�ned in the arithmetical modules, the name of thede�ning module is listed. For the generic mathematical functions, consult the extratable at the end of this section. For details about the domain of de�nition or therange of the result, see the user manual of the compiler version you are using.�� �abssee extra table on page 319�� �arccossee extra table on page 319�� �arccotsee extra table on page 319�� �arcoshsee extra table on page 319�� �arcothsee extra table on page 319�� �arcsinsee extra table on page 319�� �arctansee extra table on page 319�� �arctan2see extra table on page 319�� �argfunction arg (c: complex) : real;Purpose: Delivers the argument (angle component) of the expo-nential representation of c.def./overl. in: C ARI

B.5. PREDEFINED FUNCTIONS 309function arg (c: cinterval) : interval;Purpose: Delivers the argument interval (angle component) of theexponential representation of c.def./overl. in: CI ARI�� �arsinhsee extra table on page 319�� �artanhsee extra table on page 319�� �blowfunction blow (x: Type1; eps: real) : Type1;Type1: interval, cinterval, ivector, civector, imatrix, cimatrixPurpose: Delivers the epsilon ination of the interval argument x(componentwise for array types). For x of type interval,blow is computed byy := (1 + eps) � x � eps � x;blow := intval (pred(inf(y)) , succ(sup(y)));def./overl. in: I ARI, CI ARI, MVI ARI, MVCI ARI�� �chrfunction chr (i: integer) : char;Purpose: Delivers the character with the ordinal number i. It isan error if no such value exists.�� �compfunction comp (m: real; e: integer) : real;Purpose: Composition of a mantissa m and an exponent e into aoating point value m � be. It is an error if the values ofb, e, and m do not lie in the implementation-dependentrange.�� �conjfunction conj (c: Type1) : Type1;Type1: complex, cinterval, cvector, civector, cmatrix, cimatrixPurpose: Conjugation (for vector and matrix types in every com-ponent)def./overl. in: C ARI, CI ARI, MVC ARI, MVCI ARI

310 APPENDIX B. INDICES AND LISTS�� �cossee extra table on page 319�� �coshsee extra table on page 319�� �cotsee extra table on page 319�� �cothsee extra table on page 319�� �diamfunction diam (x: Type1) : ResType;Type1: interval, cinterval, ivector, civector, imatrix, cimatrixResType: real, rvector, rmatrix according to the structure ofType1.Purpose: Delivers the diameter of x (for array types in every com-ponent).def./overl. in: I ARI, CI ARI, MVI ARI, MVCI ARI�� �eoffunction eof (var f: Type1) : boolean;Type1: text, �le of ...Purpose: Delivers false if the actual component of the �le variablef is a de�ned component, otherwise true. It is an errorif f is unde�ned.function eof : boolean;Purpose: Corresponds to eof (input).�� �eolnfunction eoln (var f: text) : boolean;Purpose: Delivers true if the actual component of the �le variablef contains the end-of-line character, otherwise false. Itis an error if f is unde�ned.function eoln : boolean;Purpose: Corresponds to eoln (input).

B.5. PREDEFINED FUNCTIONS 311�� �expsee extra table on page 319�� �exp2see extra table on page 319�� �exp10see extra table on page 319�� �expofunction expo (x: real) : integer;Purpose: Delivers the exponent of x corresponding to the normal-ized mantissa and the base.�� �hermfunction herm (x: Type1) : Type1;Type1: cmatrix, cimatrixPurpose: Delivers the Hermitean matrix.def./overl. in: MVC ARI, MVCI ARI�� �idfunction id (x: Type1) : rmatrix[lb(x)..ub(x),lb(x,2)..ub(x,2)];Type1: rmatrix, cmatrix, imatrix, cimatrixPurpose: Delivers an identity matrix with the index range of x.def./overl. in: MV ARI, MVC ARI, MVI ARI, MVCI ARIfunction id (x, y: Type1) : rmatrix[lb(x)..ub(x),lb(y,2)..ub(y,2)];Type1: rmatrix, cmatrix, imatrix, cimatrixPurpose: Delivers an identity matrix with the index ranges of theproduct matrix x � y .def./overl. in: MV ARI, MVC ARI, MVI ARI, MVCI ARIfunction id (n: integer) : rmatrix[1..n,1..n];Purpose: Delivers a n � n square identity matrix (n� 1 assumed).def./overl. in: MV ARIfunction id (n1, n2: integer) : rmatrix[1..n1,1..n2];Purpose: Delivers a rectangular n1 � n2 identity matrix (n1, n2� 1 assumed).def./overl. in: MV ARI

312 APPENDIX B. INDICES AND LISTS�� �imagefunction image (i: integer) : string;Purpose: Converts the integer value i into a string with a currentlength according to the default output of integer values(possibly �lled by leading blanks).function image (i: integer; width: integer) : string;Purpose: Converts the integer value i into a string with the lengthwidth (possibly �lled with leading blanks).function image (r: real) : string;Purpose: Converts the real value r into a string with a currentlength according to the default output for real values(possibly �lled by leading blanks).function image (r: real; width: integer) : string;Purpose: Converts the real value r into a string with the lengthwidth (possibly �lled by leading blanks).function image (r: real; width, fracs: integer) : string;Purpose: Converts the real value r into a string with the lengthwidth (possibly �lled by leading blanks) and fracs placesafter the decimal point.function image (r: real; width, fracs, round: integer) : string;Purpose: Converts the real value r into a string with the lengthwidth (possibly �lled by leading blanks), fracs placesafter the decimal point, and rounded according to round(< 0 downwardly, = 0 to the nearest, > 0 upwardly).�� �ivalfunction ival (s: string) : integer;Purpose: Converts the �rst part of the string s, which representsa numeric value according to the rules for integer con-stants, into an integer value. Leading blanks as well astrailing characters are neglected. It is an error if s doesnot satisfy the syntax of an integer constant.function ival (s: string; var rest: string) : integer;Purpose: Converts the �rst part of the string s, which representsa numeric value according to the rules for integer con-stants, into an integer value. Leading blanks are ne-glected, whereas trailing characters are passed back inthe string rest. It is an error if s does not satisfy thesyntax of an integer constant.

B.5. PREDEFINED FUNCTIONS 313�� �lbfunction lb (var a: Type1; i: integer) : ResType;Type1: Arbitrary array typeResType: Index type of Type1Purpose: Short form of lbound. Delivers the lower bound of thei-th index range of a. It is an error if i exceeds thenumber of dimensions.function lb (var a: Type1) : ResType;Type1: Arbitrary array typeResType: Index type of Type1Purpose: Short form of lbound. Delivers the lower bound of the�rst index range of a.�� �lboundfunction lbound (var a: Type1; i: integer) : ResType;Type1: Arbitrary array typeResType: Index type of Type1Purpose: Delivers the lower bound of the i-th index range of a. Itis an error if i exceeds the number of dimensions.function lbound (var a: Type1) : ResType;Type1: Arbitrary array typeResType: Index type of Type1Purpose: Delivers the lower bound of the �rst index range of a.�� �lengthfunction length (s: string) : integer;Purpose: Delivers the current length of the string expression s.�� �lnsee extra table on page 319�� �locfunction loc (var x: Type1) : integer;Type1: Arbitrary typePurpose: Delivers the implementation-dependent memory addressof the variable x.

314 APPENDIX B. INDICES AND LISTS�� �log2see extra table on page 319�� �log10see extra table on page 319�� �mantfunction mant (x: real) : real;Purpose: Delivers the normalized mantissa m (value rangeimplementation-dependent) of x. It is an error if thevalues of x and m do not lie in the implementation-dependent range.�� �maxlengthfunction maxlength (var s: string) : integer;Purpose: Delivers the maximum length of the string variable s.�� �midfunction mid (x: Type1) : ResType;Type1: interval, cinterval, ivector, civector, imatrix, cimatrixResType: Type of the lower bound (inf) or of the upper bound(sup) of Type1.Purpose: Delivers the midpoint of x (in each component for arraytypes).def./overl. in: I ARI, CI ARI, MVI ARI, MVCI ARI�� �nullfunction null (x: Type1) : rvector[lb(x)..ub(x)];Type1: rvector, cvector, ivector, civectorPurpose: Delivers a zero vector with the index range of x.def./overl. in: MV ARI, MVC ARI, MVI ARI, MVCI ARIfunction null (x: Type2) : rmatrix[lb(x)..ub(x),lb(x,2)..ub(x,2)];Type2: rmatrix, cmatrix, imatrix, cimatrixPurpose: Delivers a zero matrix with the index ranges of x.def./overl. in: MV ARI, MVC ARI, MVI ARI, MVCI ARI

B.5. PREDEFINED FUNCTIONS 315function null (x, y: Type2) : rmatrix[lb(x)..ub(x),lb(y,2)..ub(y,2)];Type2: rmatrix, cmatrix, imatrix, cimatrixPurpose: Delivers a zero matrix with the index ranges of the prod-uct matrix x � y .def./overl. in: MV ARI, MVC ARI, MVI ARI, MVCI ARIfunction null (n: integer) : rmatrix[1..n,1..n];Purpose: Delivers a n � n square zero matrix (n � 1 assumed).def./overl. in: MV ARIfunction null (n1, n2: integer) : rmatrix[1..n1,1..n2];Purpose: Delivers an n1 � n2 zero matrix (n1, n2 � 1 assumed).def./overl. in: MV ARI�� �oddfunction odd (i: integer) : boolean;Purpose: Delivers true if i is an odd number, otherwise false.�� �ordfunction ord (x: Type1) : integer;Type1: integer, boolean, char, enumeration type, pointer typePurpose: Delivers the ordinal number of x or the value of thepointer, if x is of pointer type.�� �posfunction pos (s1, s2: string) : integer;Purpose: Delivers the position of the �rst occurrence of s1 in s2.�� �predfunction pred (x: Type1) : Type1;Type1: integer, real, boolean, char, enumeration typePurpose: Delivers the predecessor of x. It is an error if no prede-cessor exists.

316 APPENDIX B. INDICES AND LISTS�� �roundfunction round (x: Type1) : integer;Type1: integer, realPurpose: Rounding to the nearest integer number. The resultsatis�esround (x) = sign (x) � trunc (abs (x) + 0.5).It is an error if no such integer value exists.�� �rvalfunction rval (s: string) : real;Purpose: Converts the �rst part of the string s, which representsa numeric value according to the rules of real constants,into a real value. Leading blanks as well as trailingcharacters are neglected. It is an error if s does notsatisfy the syntax of an real constant.function rval (s: string; var rest: string) : real;Purpose: Converts the �rst part of the string s, which representsa numeric value according to the rules of real constants,into a real value. Leading blanks are neglected, whereastrailing characters are passed back in the string rest. Itis an error if s does not satisfy the syntax of an realconstant.function rval (s: string; round: integer) : real;Purpose: Converts the �rst part of the string s, which representsa numeric value according to the rules of real constants,into a real value rounded according to round (< 0 down-wardly, = 0 to the nearest, > 0 upwardly). Leadingblanks as well as trailing characters are neglected. Itis an error if s does not satisfy the syntax of an realconstant.function rval (s: string; round: integer; var rest: string) : real;Purpose: Converts the �rst part of the string s, which representsa numeric value according to the rules of real constants,into a real value rounded according to round (< 0 down-wardly, = 0 to the nearest, > 0 upwardly). Leadingblanks are neglected, whereas trailing characters arepassed back in the string rest. It is an error if s doesnot satisfy the syntax of an real constant.

B.5. PREDEFINED FUNCTIONS 317�� �signfunction sign (x: Type1) : integer;Type1: integer, real, dotprecisionPurpose: Delivers the sign of x (�1 for x < 0, 1 for x > 0, 0 forx = 0).�� �sinsee extra table on page 319�� �sinhsee extra table on page 319�� �sqrsee extra table on page 319�� �sqrtsee extra table on page 319�� �substringfunction substring (s: string; pos, number: integer) : string;Purpose: Returns a substring of s containing number charactersstarting from position pos. If pos is larger than thecurrent length of s, an empty string is returned. If s isshorter than pos + number characters, a shorter stringis returned. For pos < 1, pos is set to 1.�� �succfunction succ (x: Type1) : Type1;Type1: integer, real, boolean, char, enumeration typePurpose: Delivers the successor of x. It is an error if no successorexists.�� �tansee extra table on page 319�� �tanhsee extra table on page 319

318 APPENDIX B. INDICES AND LISTS�� �transpfunction transp (x: Type1) : Type1;Type1: rmatrix, cmatrix, imatrix, cimatrixPurpose: Delivers the transposed matrix of x.def./overl. in: MV ARI, MVC ARI, MVI ARI, MVCI ARI�� �truncfunction trunc (x: Type1) : integer;Type1: integer, realPurpose: Rounding to an integer number by truncation of thefractional portion of x. It is an error if no such integervalue exists.�� �ubfunction ub (var a: Type1; i: integer) : ResType;Type1: Arbitrary array typeResType: Index type of Type1Purpose: Short form of ubound. Delivers the upper bound of thei-th index range of a. It is an error if i exceeds thenumber of dimensions.function ub (var a: Type1) : ResType;Type1: Arbitrary array typeResType: Index type of Type1Purpose: Short form of ubound. Delivers the upper bound of the�rst index range of a.�� �uboundfunction ubound (var a: Type1; i: integer) : ResType;Type1: Arbitrary array TypeResType: Index type of Type1Purpose: Delivers the upper bound of the i-th index range of a.It is an error if i exceeds the number of dimensions.function ubound (var a: Type1) : ResType;Type1: Arbitrary array typeResType: Index type of Type1Purpose: Delivers the upper bound of the �rst index range of a.

B.5. PREDEFINED FUNCTIONS 319�� �vnullfunction vnull (n: integer) : rvector[1..n];Purpose: Delivers a zero vector with n components (n � 1 as-sumed).def./overl. in: MV ARIThe Prede�ned Mathematical FunctionsFunction Generic Name1 Absolute Value abs2 Arc Cosine arccos3 Arc Cotangent arccot4 Inverse Hyperbolic Cosine arcosh5 Inverse Hyperbolic Cotangent arcoth6 Arc Sine arcsin7 Arc Tangent arctan8 Inverse Hyperbolic Sine arsinh9 Inverse Hyperbolic Tangent artanh10 Cosine cos11 Cotangent cot12 Hyperbolic Cosine cosh13 Hyperbolic Cotangent coth14 Exponential Function exp15 Power Function (Base 2) exp216 Power Function (Base 10) exp1017 Natural Logarithm (Base e) ln18 Logarithm (Base 2) log219 Logarithm (Base 10) log1020 Sine sin21 Hyperbolic Sine sinh

320 APPENDIX B. INDICES AND LISTSFunction Generic Name22 Square sqr23 Square Root sqrt24 Tangent tan25 Hyperbolic Tangent tanhThe argument type for each of these functions may be any of the types integer,real, complex, interval, and cinterval, i. e. the functions are de�ned not only for thetypes integer and real. They are also provided for the types complex, interval, andcinterval in the arithmetic modules C ARI, I ARI, and CI ARI.We do not explain the interfaces and the formal declarations, because all of thesefunctions are de�ned with only one formal parameter. Normally, the result type isthe same as the type of the argument. For integer arguments, this only holds for thefunctions abs and sqr. All other functions return real values for integer arguments.In addition to the standard functions listed in the table above, the functionarctan2 (x1,x2)is available for two arguments x1, x2 of type real or interval. The result of arctan2(x1, x2) isarctan (x1/x2) .

B.6. TRANSFER FUNCTIONS 321B.6 Transfer FunctionsIn this section, we give an alphabetical review of the transfer functions for typeconversion between the arithmetic types. Beneath their declaration (interface) anda short explanation of their purpose, we list the name of the module, in which thefunctions are de�ned or overloaded.�� �complfunction compl (x1: Type1; x2: Type2) : Type3;Type1: real, interval, rvector, ivector, rmatrix, imatrixType2: real, interval, rvector, ivector, rmatrix, imatrix withthe corresponding structure (scalar, vector, matrix) ofType1Type3: Corresponding complex type of Type1 or Type2 (com-plex, cinterval, cvector, civector, cmatrix, cimatrix)Purpose: Composition of the arguments x1 and x2 (real and imag-inary parts) into the corresponding complex type (com-ponentwise for vector and matrix types).def./overl. in: C ARI, CI ARI, MVC ARI, MVCI ARIfunction compl (x: Type1) : Type2;Type1: real, interval, rvector, ivector, rmatrix, imatrixType2: Corresponding complex type of Type1 (complex, cinter-val, cvector, civector, cmatrix, cimatrix)Purpose: Composition of the argument x (real part) and imagi-nary part 0 to the corresponding complex type (compo-nentwise for vector and matrix types).def./overl. in: C ARI, CI ARI, MVC ARI, MVCI ARI�� �imfunction im (c: Type1) : Type2;Type1: complex, cinterval, cvector, civector, cmatrix, cimatrixType2: Corresponding real or interval type of Type1 (real, in-terval, rvector, ivector, rmatrix, imatrix)Purpose: Delivers the imaginary part of the argument (compo-nentwise for vector and matrix types).def./overl. in: C ARI, CI ARI, MVC ARI, MVCI ARI

322 APPENDIX B. INDICES AND LISTS�� �inffunction inf (i: Type1) : Type2;Type1: interval, cinterval, ivector, civector, imatrix, cimatrixType2: Corresponding real or complex type of Type1 (real, com-plex, rvector, cvector, rmatrix, cmatrix)Purpose: Delivers the lower bound of the interval argument (com-ponentwise for vector and matrix types).def./overl. in: I ARI, CI ARI, MVI ARI, MVCI ARI�� �intvalfunction intval (x1: Type1; x2: Type2) : Type3;Type1: real, complex, rvector, cvector, rmatrix, cmatrixType2: real, complex, rvector, cvector, rmatrix, cmatrix withthe structure (scalar, vector, matrix) of Type1.Type3: Corresponding interval type of Type1 or Type2 (inter-val, cinterval, ivector, civector, imatrix, cimatrix)Purpose: Composition of the arguments x1 and x2 (lower andupper bound) to the corresponding interval type (com-ponentwise for vector and matrix types). It is an errorif x1 > x2.def./overl. in: I ARI, CI ARI, MVI ARI, MVCI ARIfunction intval (x: Type1) : Type2;Type1: real, complex, rvector, cvector, rmatrix, cmatrixType2: Corresponding interval type of Type1 (interval, cinter-val, ivector, civector, imatrix, cimatrix)Purpose: Converting of the argument x into an interval with lowerand upper bound equal to x (componentwise for vectorand matrix types).def./overl. in: I ARI, CI ARI, MVI ARI, MVCI ARI�� �refunction re (c: Type1) : Type2;Type1: complex, cinterval, cvector, civector, cmatrix, cimatrixType2: Corresponding real or interval type of Type1 (real, in-terval, rvector, ivector, rmatrix, imatrix)Purpose: Delivers the real part of the argument (componentwisefor vector and matrix types).def./overl. in: C ARI, CI ARI, MVC ARI, MVCI ARI

B.6. TRANSFER FUNCTIONS 323�� �supfunction sup (i: Type1) : Type2;Type1: interval, cinterval, ivector, civector, imatrix, cimatrixType2: Corresponding real or complex type of Type1 (real, com-plex, rvector, cvector, rmatrix, cmatrix)Purpose: Delivers the upper bound of the interval argument (com-ponentwise for vector and matrix types).def./overl. in: I ARI, CI ARI, MVI ARI, MVCI ARI

324 APPENDIX B. INDICES AND LISTSB.7 Prede�ned ProceduresIn this section, we give an alphabetical review of the prede�ned procedures (includingthe input/output procedures) with their declaration part (interface) and a shortexplanation of their purpose. For the functions which are overloaded or newlyde�ned in the arithmetic modules, we list the name of the de�ning module.�� �disposeprocedure dispose (var p: Type1);Type1: Arbitrary pointer typePurpose: Release of the storage space of an element referenced bythe pointer p. It is an error if p = nil. The proceduredispose may not be used in conjunction with release.procedure dispose (var p: Type1; c1,c2,: : :,cn: Type2);Type1: Arbitary pointer typeType2: integer, boolean, char, enumeration typePurpose: Release of the storage space of an element referenced bythe pointer p. The constants c1, ..., cn enable the accessof special variants (for variant records). It is an errorif p = nil. The procedure dispose may not be used inconjunction with release.�� �getprocedure get (var f: Type1);Type1: text, �le of ...Purpose: The next component of the actual component of the�le variable f becomes the new actual component. Thevalue of the actual component is assigned to the bu�ervariable f ". It is an error if f is unde�ned or if f is notin reading mode.�� �markprocedure mark (var p: Type1);Type1: Arbitrary pointer typePurpose: Marks the heap to enable a release later.�� �newprocedure new (var p: Type1);Type1: Arbitrary pointer typePurpose: Creation of a new element referenced by the pointer p.

B.7. PREDEFINED PROCEDURES 325procedure new (var p: Type1; c1,c2,: : :,cn: Type2);Type1: Arbitrary pointer typeType2: integer, boolean, char, enumeration typePurpose: Creation of a new element, referenced by the pointerp. The constants c1, ..., cn enable the access to specialvaraints (for variant records).�� �pageprocedure page (var f: text);Purpose: Beginning of a new page on the output �le f . It is anerror if f is unde�ned or if f is not in writing mode.procedure page;Purpose: Corresponds to page (output).�� �putprocedure put (var f: Type1);Type1: text, �le of ...Purpose: The value of the bu�er variable f " is assigned to the ac-tual component of f . The next component of the actualcomponent of the �le variable f becomes actual compo-nent. It is an error if f is unde�ned or if f is not inwriting mode.�� �readprocedure read (var f: Type1; var x: Type2);Type1: text, �le of ...Type2: integer, char, string, real, complex, interval, cinter-val, rvector, cvector, ivector, civector, rmatrix, cmatrix,imatrix, cimatrixPurpose: Input of one or several variables of type Type2 from�le f (depending on Type2, format speci�cations arepermitted seperated by colons). It is an error if f isunde�ned or if f is not in reading mode.def./overl. in: C ARI, I ARI, CI ARI, MV ARI, MVC ARI, MVI ARIand MVCI ARIprocedure read (var x: Type2);Type2: integer, char, string, real, complex, interval, cinter-val, rvector, cvector, ivector, civector, rmatrix, cmatrix,imatrix, cimatrixPurpose: Corresponds to read(input, x).

326 APPENDIX B. INDICES AND LISTS�� �readlnprocedure readln (var f: text);Purpose: Terminate an input line by reading the end-of-line char-acter. It is an error if f is unde�ned or if f is not inreading mode.procedure readln;Purpose: Corresponds to readln(input).procedure readln (var f: text; var x: Type2);Type2: integer, char, string, real, complex, interval, cinter-val, rvector, cvector, ivector, civector, rmatrix, cmatrix,imatrix, cimatrixPurpose: Corresponds to read(f, x) followed by readln(f).procedure readln (var x: Type2);Type2: integer, char, string, real, complex, interval, cinter-val, rvector, cvector, ivector, civector, rmatrix, cmatrix,imatrix, cimatrixPurpose: Corresponds to read(x) followed by readln.�� �releaseprocedure release (var p: Type1);Type1: Arbitrary pointer typePurpose: Refreshes the old state of heap marked by mark. Allvariables created since the call ofmark are released. Thepointer p must have the same value as the pointer usedfor the most recent call of the procedure mark. Theprocedure mark may not be used in conjunction withdispose.�� �resetprocedure reset (var f: Type1);Type1: text, �le of ...Purpose: The �le f is initialized for reading (input).

B.7. PREDEFINED PROCEDURES 327procedure reset (var f: Type1; s: string);Type1: text, �le of ...Purpose: The �le f is initialized for reading (input). The physical�le with external name s is associated with the internal�le f .�� �rewriteprocedure rewrite (var f: Type1);Type1: text, �le of ...Purpose: The �le f is initialized for writing (output).procedure rewrite (var f: Type1; s: string);Type1: text, �le of ...Purpose: The �le f is initialized for writing (output). The physical�le with external name s is associated with the internal�le f .�� �setlengthprocedure setlength (var s: Type1; i: Type2);Type1: string[m] or stringType2: 0..m or 0..MPurpose: The actual length of the string variable s is set to i with0 � i � m or 0 � i � M, respectively, where M is theimplementation-de�ned maximum length of strings. Itis an error if i exceeds the maximum string length.�� �writeprocedure write (var f: Type1; x: Type2);Type1: text, �le of ...Type2: integer, boolean, char, string, real, complex, interval,cinterval, rvector, cvector, ivector, civector, rmatrix,cmatrix, imatrix, cimatrixPurpose: Output of one or several expressions of type Type2 intothe �le f (depending on Type2, format speci�cation arepermitted seperated by colons). It is an error if f isunde�ned or if f is not in writing mode.def./overl. in: C ARI, I ARI, CI ARI, MV ARI, MVC ARI,MVI ARI, MVCI ARI

328 APPENDIX B. INDICES AND LISTSprocedure write (x: Type2);Type2: integer, boolean, char, string, real, complex, interval,cinterval, rvector, cvector, ivector, civector, rmatrix,cmatrix, imatrix, cimatrixPurpose: Corresponds to write(output, x).�� �writelnprocedure writeln (var f: text);Purpose: Termination of an output line by writing the end-of-linecharacter. It is an error if f is unde�ned or if f is not inwriting mode.procedure writeln;Purpose: Corresponds to writeln (output).procedure writeln (var f: text; x: Type2);Type2: integer, boolean, char, string, real, complex, interval,cinterval, rvector, cvector, ivector, civector, rmatrix,cmatrix, imatrix, cimatrixPurpose: Corresponds to write(f, x) followed by writeln(f).procedure writeln (x: Type2);Type2: integer, boolean, char, string, real, complex, interval,cinterval, rvector, cvector, ivector, civector, rmatrix,cmatrix, imatrix, cimatrixPurpose: Corresponds to write(x) followed by writeln.

B.8. #-EXPRESSIONS 329B.8 #-ExpressionsB.8.1 Real and Complex #-ExpressionsSyntax: #-Symbol (Exact Expression)#-Symbol Result Type Summands Permitted in the Exact Expression# dotprecision � variables, constants, and special function calls oftype integer, real, or dotprecision� products of type integer or real� scalar products of type realreal � variables, constants, and special function calls oftype integer, real, or dotprecision� products of type integer or real� scalar products of type realcomplex � variables, constants, and special function calls oftype integer, real, complex, or dotprecision� products of type integer, real, or complex� scalar products of type real or complex#�#<#> rvector � variables and special function calls of type rvector� products of type rvector (e.g. rmatrix � rvector, real� rvector etc.)cvector � variables and special function calls of type rvector orcvector� products of type rvector or cvector (e.g. cmatrix �rvector, real � cvector etc.)rmatrix � variables and special function calls of type rmatrix� products of type rmatrixcmatrix � variables and special function calls of type rmatrixor cmatrix� products of type rmatrix or cmatrix\Special function calls" are the calls of the functions compl, re, im, conj, intval, inf,sup, id, transp, herm, and the type converting functions rvector, cvector, ivector,and civector.

330 APPENDIX B. INDICES AND LISTSB.8.2 Real and Complex Interval #-ExpressionsSyntax: ## (Exact Expression)#-Symbol Result Type Summands Permitted in the Exact Expressioninterval � variables, constants, and special function calls oftype integer, real, interval, or dotprecision� products of type integer, real, or interval� scalar products of type real or interval
cinterval � variables, constants, and special function calls oftype integer, real, complex, interval, cinterval, ordotprecision� products of type integer, real, complex, interval, orcinterval� scalar products of type real, complex, interval, orcinterval## ivector � variables and special function calls of type rvector orivector� products of type rvector or ivectorcivector � variables and special function calls of type rvector,cvector, ivector, or civector� products of type rvector, cvector, ivector, or civectorimatrix � variables and special function calls of type rmatrixor imatrix� products of type rmatrix or imatrixcimatrix � variables and special function calls of type rmatrix,cmatrix, imatrix, or cimatrix� products of type rmatrix, cmatrix, imatrix, orcimatrix\Special function calls" are the calls of the functions compl, re, im, conj, intval, inf,sup, id, transp, herm, and the type converting functions rvector, cvector, ivector,and civector.

Bibliography[1] Alefeld, G. and Herzberger, J.: Einf�uhrung in die Intervallrechnung. Bibli-ographisches Institut, Mannheim, 1974.[2] Alefeld, G. and Herzberger, J.: Introduction to Interval Computations. Aca-demic Press, New York, 1983.[3] American National Standards Institute / Institute of Electrical and ElectronicEngineers: A Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std.754-1985, New York, 1985.[4] Bauch, H., Jahn, K.-U., Oelschl�agel, D., S�usse, H., and Wiebigke, V.: Inter-vallmathematik . Teubner, Leipzig, 1987.[5] Bleher, J. H., Rump, S. M., Kulisch, U., Metzger, M., Ullrich, Ch., and Wal-ter, W.: FORTRAN-SC: A Study of a FORTRAN Extension for Engineer-ing/Scienti�c Computation with Access to ACRITH. Computing 39, pp 93-110,1987.[6] Bohlender, G., Rall, L., Ullrich, Ch., and Wol� von Gudenberg, J.: PASCAL-SC: A Computer Language for Scienti�c Computation. Academic Press, NewYork, 1987.[7] Bohlender, G., Rall, L., Ullrich, Ch., and Wol� von Gudenberg, J.: PASCAL-SC { Wirkungsvoll programmieren, kontrolliert rechnen. Bibliographisches In-stitut, Mannheim, 1986.[8] B�ohm, H.: Auswertung arithmetischer Ausdr�ucke mit maximaler Genauigkeit.In: Kulisch, U. and Ullrich, Ch. (Eds.): Wissenschaftliches Rechnen und Pro-grammiersprachen. Berichte des German Chapter of the ACM, Band 10, pp 175-184, Teubner, Stuttgart, 1982.[9] British Standards Institution: Speci�cation for Computer Programming Lan-guage PASCAL. BS 6192:1982, UDC 681.3.06, PASCAL:519.682, London, 1982.[10] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). General Infor-mation Manual, GC 33-6163-02, 3rd Edition, 1986.[11] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). Program De-scription and User's Guide, SC 33-6164-02, 3rd Edition, 1986.[12] IBM High Accuracy Arithmetic { Extended Scienti�c Computation (ACRITH{XSC), Reference. SC 33-6462-00, IBM Corp., 1990.331

332 BIBLIOGRAPHY[13] Jensen, K. and Wirth, N.: PASCAL User Manual and Report. ISO PASCALStandard, 3rd ed., Springer, Berlin, 1985.[14] Kaucher, E., Klatte, R., and Ullrich, Ch.: Programmiersprachen im Gri� {Band 2: PASCAL. Bibliographisches Institut, Mannheim, 1981.[15] Kaucher, E., Klatte, R., Ullrich, Ch., and Wol� von Gudenberg, J.: Program-miersprachen im Gri� { Band 4: ADA. Bibliographisches Institut, Mannheim,1983.[16] Kaucher, E., Kulisch, U., and Ullrich, Ch. (Eds.): Computer Arithmetic {Scienti�c Computation and Programming Languages. Teubner, Stuttgart, 1987.[17] Kaucher, E. and Miranker, W. L.: Self-Validating Numerics for Function SpaceProblems. Academic Press, New York, 1984.[18] Kaucher, E. and Rump, S. M.: E-Methods for Fixed Point Equation f(x) = x.Computing 28, pp 31-42, 1982.[19] Kie�ling, I., Lowes, M., and Paulik, A.: Genaue Rechnerarithmetik - Intervall-rechnung und Programmieren mit PASCAL-SC. Teubner, Stuttgart, 1988.[20] Kirchner, R. and Kulisch, U.: Accurate Arithmetic for Vector Processors. Jour-nal of Parallel and Distributed Computing 5, pp 250-270, 1988.[21] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch.: PASCAL{XSC{ Sprachbeschreibung mit Beispielen. Springer-Verlag, Heidelberg, 1991.[22] Klatte, R. and Ullrich, Ch.: Programmiersprachen im Gri� { Band 9:MODULA-2. Bibliographisches Institut, Mannheim, 1988.[23] Knuth, D. E.: The Art of Computer Programming . Vol. 2: SeminumericalAlgorithms. Addison Wesley, Reading, Massachusetts., 1981.[24] Kulisch, U.: Grundlagen des Numerischen Rechnens { Mathematische Begr�un-dung der Rechnerarithmetik. Reihe Informatik, Band 19, Bibliographisches In-stitut, Mannheim, 1976.[25] Kulisch, U. (Ed.): PASCAL-SC: A PASCAL Extension for Scienti�c Compu-tation, Information Manual and Floppy Disks, Version ATARI ST. Teubner,Stuttgart, 1987.[26] Kulisch, U. (Ed.): PASCAL-SC: A PASCAL Extension for Scienti�c Compu-tation, Information Manual and Floppy Disks, Version IBM PC/AT (DOS).Teubner, Stuttgart, 1987.[27] Kulisch, U. (Ed.): Wissenschaftliches Rechnen mit Ergebnisveri�kation { EineEinf�uhrung. Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 1989.[28] Kulisch, U. and Miranker, W. L.: Computer Arithmetic in Theory and Practice.Academic Press, New York, 1981.[29] Kulisch, U. and Miranker, W. L.: The Arithmetic of the Digital Computer: ANew Approach. SIAM Review, Vol. 28, No. 1, pp 1-140, 1986.[30] Kulisch, U. and Miranker, W. L. (Eds.): A New Approach to Scienti�c Com-putation. Academic Press, New York, 1983.

BIBLIOGRAPHY 333[31] Kulisch, U. and Stetter, H. J. (Eds.): Scienti�c Computation with AutomaticResult Veri�cation. Computing Suppl. 6, Springer-Verlag, Vienna, 1988.[32] Kulisch, U. and Ullrich, Ch. (Eds.): Wissenschaftliches Rechnen und Program-miersprachen. Berichte des German Chapter of the ACM, Band 10, Teubner,Stuttgart, 1982.[33] Mayer, G.: Grundbegri�e der Intervallrechnung. In: Kulisch, U. (Ed.): Wis-senschaftliches Rechnen mit Ergebnisveri�kation { Eine Einf�uhrung , pp 101-118, Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 1989.[34] Moore, R. E.: Interval Analysis. Prentice Hall, Engelwood Cli�s, New Jersey,1966.[35] Moore, R. E.: Methods and Applications of Interval Analysis. SIAM, Philadel-phia, Pensylvania, 1979.[36] Moore, R. E. (Ed.): Reliability in Computing: The Role of Interval Methods inScienti�c Computations. Academic Press, New York, 1988.[37] Neaga, M.: PASCAL-SC { Eine PASCAL-Erweiterung f�ur wissenschaftlichesRechnen. In: Kulisch, U. (Ed.): Wissenschaftliches Rechnen mit Ergebnisver-i�kation { Eine Einf�uhrung , pp 69-84. Akademie Verlag, Ost-Berlin, Vieweg,Wiesbaden, 1989.[38] Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univer-sity Press, Cambridge, 1990.[39] Nickel, K. (Ed.): Interval Mathematics. Proceedings of the International Sym-posium, Karlsruhe 1975, Springer-Verlag, Vienna, 1975.[40] Nickel, K. (Ed.): Interval Mathematics 1980 . Proceedings of the InternationalSymposium, Freiburg 1980, Academic Press, New York, 1980.[41] Nickel, K. (Ed.): Interval Mathematics 1985 . Proceedings of the InternationalSymposium, Freiburg 1985, Springer-Verlag, Vienna, 1986.[42] Rall, L. B.: Automatic Di�erentiation, Techniques and Applications. LectureNotes in Computer Science, No. 120, Springer, Berlin, 1981.[43] Ratschek, H. and Rokne, J.: Computer Methods for the Range of Functions.Ellis Horwood Limited, Chichester, 1984.[44] Rump, S. M.: L�osung linearer und nichtlinearer Gleichungssysteme mit maxi-maler Genauigkeit. In: Kulisch, U. and Ullrich, Ch. (Eds.): WissenschaftlichesRechnen und Programmiersprachen. Berichte des German Chapter of the ACM,Band 10, pp 147-174, Teubner, Stuttgart, 1982.[45] Rump, S. M.: Wie zuverl�assig sind die Ergebnisse unserer Rechenanlagen. In:Jahrbuch �Uberblicke Mathematik, Bibliographisches Institut, Mannheim, 1983.[46] Rump, S. M.: Solving Algebraic Problems with High Accuracy. In: Kulisch,U. and Miranker, W. L. (Eds.): A New Approach to Scienti�c Computation,pp 51-120. Academic Press, New York, 1983.

334 BIBLIOGRAPHY[47] Stoer, J. and Bulirsch, R.: Introduction to Numerical Analysis. Springer-Verlag,New York, 1980.[48] Thieler, P.: Technical Calculations by Means of Interval Mathematics. In:Nickel, K. (Ed.): Interval Mathematics 1985 , Lecture Notes in Computer Sci-ence, pp 197-208, Springer Verlag, Berlin, 1986.[49] van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Kester, C. H. A.: Reporton the Algorithmic Language ALGOL-68. Numerische Mathematik 14, pp 79-218, 1969.[50] Ullrich, Ch. (Ed.): Computer Arithmetic and Self-Validating Numerical Meth-ods. Academic Press, San Diego, 1990.[51] Ullrich, Ch. (Ed.): Contributions to Computer Arithmetic and Self-ValidatingNumerical Methods. J. C. Baltzer AG, Scienti�c Publishing Co., IMACS, Basel,1990.[52] Wilkinson, J. H.: Rounding Errors in Algebraic Processes. Prentice Hall, En-glewood Cli�s, New Jersey, 1963.[53] Zurm�uhl, R., Falk, S.: Matrizen und ihre Anwendungen. Teil 2: NumerischeMethoden. Springer-Verlag, Heidelberg, 1984.

IndexAbbreviations{ for semantic attributes 269abs (function) 46, 48, 133, 138, 144, 319Accuracy{ , maximum 4, 6, 50, 125{ of the prede�ned functions 130Accurate expression 14, 54{ , complex 61, 69, 328{ , complex interval 61, 70{ , extended 60{ for arithmetic types 61{ for matrices 64{ for vectors 63{ , interval 61, 70, 329{ , operands in 66{ , overview of the general 69, 328{ , real 54, 61, 69, 328Accurate symbol 54Actual{ length of strings 114{ parameter 76, 86Addition, errorless 55Advanced computer arithmetic 4Alternating current measuring bridge(exercise) 221and (operator) 45Angle component of complex number 133Anonymous type 21, 27, 42Antisymmetry 4, 6Arbitrary result type 9, 90arccos (function) 50, 133, 138, 143, 319arccot (function) 50, 133, 138, 143, 319arcosh (function) 50, 133, 138, 144, 319arcoth (function) 50, 133, 138, 144, 319arcsin (function) 50, 133, 138, 143, 319arctan (function) 48, 133, 138, 143, 319arctan2 (function) 50, 133, 138, 143, 319arg (function) 133, 144, 307Arithmetic 14{ , complex 131{ , complex interval 140{ , complex interval matrix/vector162{ , complex matrix/vector 151{ , di�erentiation 233

{ , interval 135{ , interval matrix/vector 156{ modules 125{ operators 126, 128, 303{ , rational (exercise) 258{ , real matrix/vector 146{ standard types 36Array 25{ , dynamic 12, 28, 87, 120{ expression 57{ expression, dynamic 58{ type 25array (reserved word) 25arsinh (function) 50, 133, 138, 144, 319artanh (function) 50, 133, 138, 144, 319Assignment compatibility 40, 41, 86, 101,105Assignment operator, overloading of the105Assignment statement 71, 105{ for strings 114Assignment to the function result 90Base 48Base type 33Basic symbols 17begin (reserved word) 78Beginning condition 79Bibliography 331Binomial coe�cient 192blow (function) 138, 144, 160, 169, 308boolean (type) 22Boolean expression 51Boothroyd/Dekker matrices (exercise) 192Bu�er variable 34Calculator for polynomials (exercise) 248Call by reference 41, 77, 85, 86, 87, 101{ , modi�ed 77, 87, 90, 96, 98Call by value 41, 77, 85, 86, 87, 101, 105case-statement 78{ with else 79Case constants 79char (type) 22Character expression 52chr (function) 52, 308

336 INDEXcimatrix (type) 38, 162cinterval (type) 37, 140Circuit (exercise) 217civector (type) 38, 162cmatrix (type) 38, 151comp (function) 50, 308Comparisons of dotprecision 52Compatibility 40{ assignment 40{ of array types 41{ of strings 43{ of types 40{ , overloaded 41compl (function) 132, 142, 153, 166, 167,320complex (type) 36, 131Complex division (exercise) 215Complex functions (exercise) 194Complex interval 37Complex number 36{ , conjugation of a 133{ , imaginary part of a 36{ , polar representation of a 212{ , real part of a 36Component{ type 25, 34{ variable 26Compound statement 78Computer arithmetic 4Concealment{ of identi�ers 101{ of operators 95Conditional statements 78Conformant array scheme 85conj (function) 133, 144, 155, 169, 308Conjugation of a complex number 133const (reserved word) 20Constants{ , case 79{ , conversion of 22, 24{ , de�nition of 20{ false 22{ , hexadecimal 23{ , literal 20{ , logical 22{ maxint 21{ , named 20{ nil 38, 60{ , rounded 24, 49{ true 22Control expression 74, 75Conversion of constants 22, 24cos (function) 48, 133, 138, 143, 319cosh (function) 50, 133, 138, 144, 319

cot (function) 50, 133, 138, 143, 319coth (function) 50, 133, 138, 144, 319Cross product 197cvector (type) 38, 151Declaration{ , external- 98{ , forward- 98{ , global- 107Declaration part{ in PASCAL{XSC 84{ in Standard PASCAL 83Defect 149, 160diam (function) 138, 144, 160, 169, 309Diameter of an interval 137Di�erentiation{ arithmetic 233{ automatic 233Disjointedness 136dispose (procedure) 39, 323div (operator) 46do (reserved word) 79, 81dotprecision (type) 14, 24, 60downto (reserved word) 55, 81Dyadic operators 45, 46dynamic (reserved word) 29Dynamic array expression 58Dynamic arrays 12, 28, 87, 120{ declaration 29{ , how to use 120{ type de�nition 29Dynamic strings 30Electric circuit (exercise) 217else (reserved word) 78Empty loop 81Empty statement 76Enclosure 179end (reserved word) 31, 78End condition 80End-of-line character 35, 72, 115, 117Enumeration{ expression 53{ type 23eof (function) 34, 51, 309eoln (function) 35, 51, 309Epsilon ination 137Equivalence, logical 51Evaluation of an expression 44Exact{ expression 54, 61{ matrix product 65{ matrix/vector product 63{ representable 184

INDEX 337{ scalar product 61Execution of programs 83Exercises with solutions 183{ Alternating current measuring bridge221{ Boothroyd/Dekker matrices 192{ Calculator for polynomials 248{ Circuit 217{ Complex division 215{ Complex functions 194{ Di�erentiation arithmetic 233{ Electric circuit 217{ Evaluation of Polynomials 263{ Exponential series 186{ Intersection of lines 200{ Interval evaluation of a polynomial227{ Interval matrix calculations 230{ Interval Newton method 253{ Inventory lists 209{ Iterative method 241{ Lens 224{ Measurement of time 239{ Measuring bridge 221{ Newton's method 237{ Optical lens 224{ Polar representation 212{ Rail route map 206{ Rational arithmetic 258{ Rounding errors 188{ Runge-Kutta method 255{ Scalar product 190{ Surface area of a parallelepiped 197{ Symmetry 203{ Test of representability 184{ Trace 245{ Transposed matrix 203exp (function) 48, 133, 137, 143, 319expo (function) 47, 50, 310Exponent 48Exponential{ representation of a complex number133{ series (exercise) 186Export of objects 107, 108Expression 44{ , accurate 14, 54, 60, 328{ , array 57{ , boolean 51{ , character 52{ concept 44, 125{ , dynamic array 58{ , enumeration 53{ evaluation 44

{ , exact 54, 61{ for arithmetic types 57{ for structured types 57{ , integer 46{ , logical 51{ , pointer 57, 60{ , real 47{ , record 59{ , set 59{ , standard 44{ , string 58, 111exp10 (function) 50, 133, 137, 143, 319exp2 (function) 50, 133, 137, 143, 319Extended accurate expressions 60external-declaration 98false (logical constant) 22Field{ list 31{ width 74�le (reserved word) 34File operations 34{ get 34{ put 34{ reset 34{ rewrite 34Files 34, 72{ , opening of 72Final value 81Floating-point{ number, normalized 48{ operations 47, 48{ system 48for-statement 80Formal{ parameter 76, 86, 87{ parameter list 85Format{ parameter 75, 102{ speci�cation 75, 102{ speci�cations 74forward-declaration 98function (reserved word) 89Function call 89Function result 90{ , dynamic type as 90Functions 85, 89, 307{ abs 46, 48, 133, 138, 144, 319{ arccos 50, 133, 138, 143, 319{ arccot 50, 133, 138, 143, 319Functions (continued){ arcosh 50, 133, 138, 144, 319{ arcoth 50, 133, 138, 144, 319{ arcsin 50, 133, 138, 143, 319

338 INDEX{ arctan 48, 133, 138, 143, 319{ arctan2 50, 133, 138, 143, 319{ arg 133, 144, 307{ arsinh 50, 133, 138, 144, 319{ artanh 50, 133, 138, 144, 319{ as formal parameter 91{ blow 138, 144, 160, 169, 308{ , call of 89{ cat 133{ chr 52, 308{ comp 50, 308{ compl 132, 142, 153, 166, 167, 320{ conj 133, 144, 155, 169, 308{ cos 48, 133, 138, 143, 319{ cosh 50, 133, 138, 144, 319{ cot 50, 138, 143, 319{ coth 50, 133, 138, 144, 319{ diam 138, 144, 160, 169, 309{ eof 34, 51, 309{ eoln 35, 51, 309{ exp 48, 133, 137, 143, 319{ expo 47, 50, 310{ exp10 50, 133, 137, 143, 319{ exp2 50, 133, 137, 143, 319{ herm 155, 169, 310{ id 149, 154, 160, 169, 310{ im 132, 142, 153, 166, 167, 320{ image 111, 311{ , index of 307{ inf 137, 142, 158, 159, 166, 167, 321{ intval 137, 142, 158, 159, 166, 167,321{ ival 47, 112, 311{ lb 47, 52, 53, 312{ lbound 28, 47, 52, 53, 312{ length 112, 312{ ln 48, 133, 137, 143, 319{ loc 47, 312{ log10 50, 133, 137, 143, 319{ log2 50, 133, 137, 143, 319{ mant 50, 313{ maxlength 112, 313{ mid 138, 144, 160, 169, 313{ null 149, 154, 160, 169, 313{ odd 51, 314{ ord 46, 314{ , overloading of 100{ pos 112, 314{ pred 46, 49, 51, 52, 53, 314{ , prede�ned 91, 93{ re 132, 142, 153, 166, 167, 321{ , recursive 90{ round 46, 315{ rval 50, 112, 315

{ sign 47, 52, 316{ sin 48, 133, 138, 143, 319{ sinh 50, 133, 138, 144, 319{ sqr 46, 48, 133, 137, 143, 319{ sqrt 48, 133, 137, 143, 319{ substring 112, 316{ succ 46, 49, 51, 52, 53, 316{ sup 137, 142, 158, 159, 166, 167, 322{ tan 50, 133, 138, 143, 319{ tanh 50, 133, 138, 144, 319{ , transfer 132, 137, 142, 153, 158,159, 166, 167, 320{ transp 149, 155, 160, 169, 317{ trunc 46, 317{ , type converting 58{ , type of 89{ ub 47, 52, 53, 317{ ubound 28, 47, 52, 53, 317{ vnull 149, 318{ with arbitrary result type 90get (procedure) 34, 323Global{ objects 86{ quantities 107global-declaration 107goto-statement 77herm (function) 155, 169, 310Hermitian matrix 155, 169Hexadecimal constant 23Hierarchy{ , module 109{ of the arithmetic modules 171{ of types 128Hull, interval 136id (function) 149, 154, 160, 169, 310Identi�ers 18{ as operators 95{ , concealment of 101{ , prede�ned 18, 19, 300{ , result 94, 105Identity matrix 149, 154, 160, 169if-statement 78im (function) 132, 142, 153, 166, 167, 320image (function) 111, 311Imaginary part 36imatrix (type) 38, 156Implication, logical 51Import of objects 108in (operator) 33, 45, 46, 135, 140Inclusion 14, 179Index 297{ of accurate expressions 328

INDEX 339{ of operators 302{ of prede�ned functions 307{ of prede�ned identi�ers 300{ of prede�ned procedures 323{ of reserved words 299{ of syntax diagrams 297{ of transfer functions 320Index bounds 28{ , access to 28Index type 25inf (function) 137, 142, 158, 159, 166, 167,321Initial value 81Input{ of a complex interval 144{ of a complex interval matrix 170{ of a complex interval vector 170{ of a complex matrix 155{ of a complex number 134{ of a complex vector 155{ of a real matrix 150{ of a real vector 150{ of an interval 139{ of an interval matrix 161{ of an interval vector 161{ of characters 115{ of strings 116input (�le variable) 72Input statements 72, 88{ read 72, 134, 139, 144, 150, 155,161, 170{ readln 73{ reset 72integer (type) 21Integer expression 46Intersection 136Intersection of lines (exercise) 200Interval 37{ , complex 37{ diameter 137{ hull 136{ matrix calculations (exercise) 230{ midpoint 137, 227interval (type) 37, 135Interval evaluation of a polynomial(exercise) 227Interval Newton method 253intval (function) 137, 142, 158, 159, 166,167, 321Inventory lists (exercise) 209is-contained-in relation 135, 140is-contained-in-the-interior relation 135,140Iterative method

{ exercise 241{ with automatic result veri�cation172ival (function) 47, 112, 311ivector (type) 38, 156Label 77label (reserved word) 77Language elements 15lb (function) 47, 52, 53, 312lbound (function) 28, 47, 52, 53, 312length (function) 112, 312Length of string 114Lens (exercise) 224Lists 15Literal constants 20ln (function) 48, 133, 137, 143, 319loc (function) 47, 312Local objects 86Logical{ equivalence 51{ expression 51{ implication 51log10 (function) 50, 133, 137, 143, 319log2 (function) 50, 133, 137, 143, 319Loop, empty 81Main program 83mant (function) 50, 313Mantissa 48mark (procedure) 40, 323Mathematical exact operation 55, 60Matrix product, exact 65Matrix/vector product, exact 63Maximum accuracy 4, 6, 50, 125maxint (constant) 21maxlength (function) 112, 313Measurement of time (exercise) 239Measuring bridge (exercise) 221mid (function) 138, 144, 160, 169, 313Midpoint of an interval 137, 227mod (operator) 46Modi�ed call by reference 77, 87, 90, 96,98Module 83, 107{ , arithmetic 125{ C ARI 131{ CI ARI 140{ concept 11{ declaration 107{ declaration part 110{ de�nition part 110{ hierarchy 109{ I ARI 135

340 INDEX{ implementation 109{ library for numerical problems 179{ MV ARI 146{ MVC ARI 151{ MVCI ARI 162{ MVI ARI 156{ processing 84{ statement part 110module (reserved word) 107Monadic operators 45Monotonicity 4, 6Named constant 20new (procedure) 38, 323Newton's method 237{ , interval 253{ with automatic di�erentiation(exercise) 237nil (reserved word) 38Normalized oating-point number 48not (operator) 45null (function) 149, 154, 160, 169, 313Null matrix 149, 154, 160, 169Null vector 149, 154, 160, 169Number, complex 36Numeric library 180Objects{ , export of 107, 108{ , global 86{ , import of 108{ , local 86odd (function) 51, 314of (reserved word) 25Opening of �les 72Operations, mathematical exact 55, 60Operator{ body 94{ call 96{ concept 9operator (reserved word) 94, 105Operators 93, 302{ and 45{ , arithmetic 45, 46, 126, 128, 131,135, 140, 146, 151, 156, 162, 303{ , assignment 105, 130, 132, 137,143, 148, 154, 157, 159, 168, 305{ , basic 302{ , concealment of 95{ , declaration of 94{ , de�nition of the arithmetic 128{ , de�nition of the relational 129{ div 46{ , dyadic 45, 46, 94{ in 33, 135, 140

{ in accurate expression 66{ , index of 302{ , lattice 136, 141, 157, 163{ , logical 45{ mod 46{ , monadic 45, 94{ not 45{ of C ARI 131{ of CI ARI 140{ of I ARI 135{ of MV ARI 146{ of MVC ARI 151{ of MVCI ARI 162{ of MVI ARI 156{ or 45{ , overloading of 95, 100, 105{ , overloading of the assignment 130{ , prede�ned 97{ , recursive 96{ , relational 45, 46, 127, 129, 131,135, 140, 147, 152, 163, 304{ , set 45{ with no result 105Optical lens (exercise) 224or (operator) 45ord (function) 46, 314Output{ of a complex interval 144{ of a complex interval matrix 170{ of a complex interval vector 170{ of a complex matrix 155{ of a complex number 134{ of a complex vector 155{ of a real matrix 150{ of a real vector 150{ of an interval 139{ of an interval matrix 161{ of an interval vector 161output (�le variable) 72Output statements 72, 88{ page 74{ rewrite 72{ write 73, 134, 139, 144, 150, 155,161, 170{ writeln 74Overloading 11, 100{ , call of 101{ of := 105, 305{ of read, write 75, 102{ of functions 100{ of input/output 102{ of operators 95, 100, 105{ of procedures 100{ of the assignment operator 105, 305

INDEX 341{ relation to several routines 101{ , rules for 100packed (reserved word) 30page (procedure) 324Parallelepiped surface area 197Parameter{ , actual 76, 86{ , formal 76, 85, 87{ list 85Parentheses 44Pointer{ expression 57, 60{ type 38Polar representation (exercise) 212Polynomial{ addition 248{ calculator (exercise) 248{ evaluation with maximum accuracy(exercise) 263{ interval evaluation (exercise) 227{ multiplication 248pos (function) 112, 314pred (function) 46, 49, 51, 52, 53, 314Prede�ned functions 91, 93, 307{ , accuracy of the 130{ , boolean 51, 52{ , char 52, 53{ , cimatrix- 169{ , cinterval 143{ , civector- 169{ , cmatrix- 154{ , complex- 133{ , cvector- 154{ , enumeration 53{ , imatrix- 160{ , index of 307{ , integer 46, 47{ , interval- 137{ , ivector- 160{ , real 47, 49, 50{ , rmatrix- 149{ , rvector- 149{ , string- 111Prede�ned identi�ers 18, 19, 300Prede�ned operators 97, 302Prede�ned procedures 88, 323Priority{ declaration 95{ levels 45, 46{ symbol 95priority (reserved word) 95Problem-solving routines 179procedure (reserved word) 85

Procedure statement 76, 86Procedures 85, 323{ , call of 86{ , declaration of 85{ dispose 39, 323{ get 34, 323{ , index of 323{ mark 40, 323{ new 38, 323{ , overloading of 100{ page 74, 324{ , prede�ned 88{ put 34, 324{ read 72, 102, 134, 139, 144, 150,155, 161, 170, 324{ readln 73, 325{ , recursive 87{ release 40, 325{ reset 34, 72, 74, 325{ rewrite 34, 72, 74, 326{ setlength 113, 326{ write 73, 102, 134, 139, 144, 150,155, 161, 170, 326{ writeln 74, 327Product{ , exact 55{ of double length 55Program{ declaration part 83, 84{ execution 83, 84{ head 83{ , main 83{ parameter 83{ statement part 83{ structure 83program (reserved word) 83Projection 4, 6put (procedure) 34, 324Quali�cation 58Quantities, global 107Rail route map (exercise) 206Rational arithmetic (exercise) 258re (function) 132, 142, 153, 166, 167, 321read (procedure) 72, 102, 134, 139, 144,150, 155, 161, 170, 324Reading from a �le 34readln (procedure) 73, 325real (type) 22, 24Real expression 47Real part of a complex number 36Record{ component 31

342 INDEX{ expression 59{ type 31{ with variants 32record (reserved word) 31Rectangular representation of a complexinterval 140Recursive{ function 90{ operator 96{ procedure 87Reference 38referenced{ type 38{ variable 38Relational operators 127, 304{ , de�nition of 129release (procedure) 40, 325Remarks, historical 2repeat-statement 80Repetitive statements 79{ for 80{ repeat 80{ while 79Reserved words 17, 299{ and 45{ array 25{ begin 78{ case 32, 78{ const 20{ div 46{ do 79, 81{ downto 55, 81{ dynamic 29{ else 78{ end 31, 78{ external 98{ �le 34{ for 55, 80{ forward 98{ function 89{ global 107{ goto 77{ if 78{ in 33, 45, 46, 135, 140{ label 77{ mod 46{ module 107{ nil 38{ not 45{ of 25{ operator 94, 105{ or 45{ packed 30{ priority 95

{ procedure 85{ program 83{ record 31{ repeat 80{ set 33{ sum 55{ then 78{ to 55, 81{ type 20{ until 80{ use 107{ var 21, 85{ while 79{ with 81reset (procedure) 34, 72, 325Result identi�er 94, 105Result type, arbitrary 9, 90rewrite (procedure) 34, 72, 326rmatrix (type) 38, 146round (function) 46, 315Rounded constant 24Rounding 14{ , directed 61{ downwardly 48{ , mode 75{ to interval 61{ upwardly 48Rounding errors (exercise) 188Runge-Kutta method 147, 158, 255{ exercise 255rval (function) 50, 112, 315rvector (type) 38, 146Scalar product{ , exact 61{ exercise 190{ , optimal 7Scheme for handling dynamic arrays 120Semantic attributes in syntax diagrams269Semimorphism 4, 5Separating symbol 83Set { constructors 59{ di�erence 45, 59{ expression 59{ intersection 45, 59{ union 45, 59Set (type) 33setlength (procedure) 113, 326sign (function) 47, 52, 316Simple{ statements 71{ types 21

INDEX 343sin (function) 48, 133, 138, 143, 319sinh (function) 50, 133, 138, 144, 319Solution of a system of linear equations172Special characters 17sqr (function) 46, 48, 133, 137, 143, 319sqrt (function) 48, 133, 137, 143, 319Standard expression 44Standard �les{ input 72{ output 72Standard types 20, 21Statement part{ of a module 110{ of a program 83Statements 71{ assignment 71, 105{ , case- 78{ , compound 78{ , conditional 78{ , empty 76{ , for- 80{ , goto- 77{ , if- 78{ , input 72{ , marked 77{ , output 72, 73{ , procedure 76{ , repeat- 80{ , repetitive 79{ , simple 71{ , structured 71{ , while- 79{ , with- 81String 30{ concept 14{ , dynamic 30{ expression 58string (type) 30, 111Structurally equivalent 42Structured{ statements 71{ types 25Subarrays 27Subrange type 23Subroutine 85Subset 135substring (function) 112, 316Subtraction, errorless 55succ (function) 46, 49, 51, 52, 53, 316sum-notation 55sup (function) 137, 142, 158, 159, 166,167, 322Superset 135

Surface area of a parallelepiped (exercise)197Symbols, basic 17Symmetry 203{ exercise 203Syntax 15{ , complete 269{ representation in the languagereference 15{ variable 15, 269Syntax diagrams 269{ , application of 270{ , index of 297System of linear equations 172Tag �eld 32tan (function) 50, 133, 138, 143, 319tanh (function) 50, 133, 138, 144, 319Taylor series 186Terminal symbol 269Test of representability (exercise) 184text (type) 35Text �les 35Text processing 111then (reserved word) 78to (reserved word) 55, 81Trace 245{ exercise 245Transfer functions 320{ , cimatrix- 167{ , cinterval- 142{ , civector- 166{ , cmatrix- 153{ , complex- 132{ , cvector- 153{ , imatrix- 159Transfer functions (continued){ , index of 320{ , interval- 137{ , ivector- 158transp (function) 149, 155, 160, 169, 317Transposed matrix 149, 155, 160, 169{ exercise 203true (logical constant) 22trunc (function) 46, 317type (reserved word) 20Type compatibility 40, 86Type converting function 58Type de�nition 20Types{ , anonymous 21, 27, 42{ , arithmetic 36{ boolean 22{ char 22

344 INDEX{ cimatrix 38, 162{ cinterval 37, 140{ civector 38, 162{ cmatrix 38, 151{ complex 36, 131{ , component 25{ cvector 38, 151{ dotprecision 14, 24, 60{ enumeration type 23{ �le 34{ , hierarchy of 128{ imatrix 38, 156{ , index 25{ integer 21{ interval 37, 135{ ivector 38, 156{ pointer 38{ real 22, 24{ record 31{ rmatrix 38, 146

{ rvector 38, 146{ set 33{ , simple 21{ , standard 20, 21{ string 111{ string (dynamic) 30{ string (static) 30{ , structured 25{ subrange type 23{ text 35Typography 1ub (function) 47, 52, 53, 317ubound (function) 28, 47, 52, 53, 317Ulp 48Underscore 18until (reserved word) 80use-clause 19, 108var (reserved word) 21, 85Variable 21{ , component 26{ declaration 21{ input 72{ output 72Variants of a record 32Veri�cation 172vnull (function) 149, 318while-statement 79with-statement 81write (procedure) 73, 102, 134, 139, 144,150, 155, 161, 170, 326writeln (procedure) 74, 327Writing to a �le 34

