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The programming language PASCAL-XSC (PASCAL eXtension for Sci-
entific Computation) significantly simplifies programming in the area of
scientific and technical computing. PASCAL-XSC provides a large num-
ber of predefined data types with arithmetic operators and predefined
functions of highest accuracy for real and complex numbers, for real and
complex intervals, and for the corresponding vectors and matrices. Thus
PASCAL-XSC makes the computer more powerful concerning the arith-
metic.

Through an implementation in C, compilers for PASCAL-XSC are avail-
able for a large variety of computers such as personal computers, worksta-
tions, mainframes, and supercomputers. PASCAL-XSC provides a module
concept, an operator concept, functions and operators with general result
type, overloading of functions, procedures, and operators, dynamic arrays,
access to subarrays, rounding control by the user, and accurate evaluation
of expressions. The language is particularly suited for the development
of numerical algorithms that deliver highly accurate and automatically
verified results. A number of problem-solving routines with automatic re-
sult verification have already been implemented. PASCAL-XSC contains
Standard PASCAL. It is immediately usable by PASCAL programmers.
PASCAL-XSC is easy to learn and ideal for programming education.
The book can be used as a textbook for lectures on computer program-
ming. It contains a major chapter with sample programs, exercises, and
solutions. A complete set of syntax diagrams, detailed tables, and indices
complete the book.
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Preface

This manual describes a PASCAL extension for scientific computation with the
short title PASCAL-XSC (PASCAL eXtension for Scientific Computation). The
language is the result of a long term effort of members of the Institute for Applied
Mathematics of Karlsruhe University and several associated scientists. PASCAL-
XSC is intended to make the computer more powerful arithmetically than usual. It
makes the computer look like a vector processor to the programmer by providing
the vector/matrix operations in a natural form with array data types and the usual
operator symbols. Programming of algorithms is thus brought considerably closer
to the usual mathematical notation. As an additional feature in PASCAL-XSC, all
predefined operators for real and complex numbers and intervals, vectors, matrices,
and so on, deliver an answer that differs from the exact result by at most one
rounding.

Numerical mathematics has devised algorithms that deliver highly accurate and
automatically verified results by applying mathematical fixed point theorems. That
is, these computations carry their own accuracy control. However, their imple-
mentation requires arithmetic and programming tools that have not been available
previously. The development of PASCAL-XSC has been aimed at providing these
tools within the PASCAL setting.

Work on the subject began during the 1960’s with the development of a general
theory of computer arithmetic. At first, new algorithms for the realization of the
arithmetic operations had to be developed and implemented. The design and devel-
opment of appropriate programming languages began around 1975 with preliminary
implementation studies first on the basis of PASCAL and also as an extension of
FORTRAN. As the next step, complete compilers for the extended language had
to be developed. Since about 1980, algorithms for standard problems of numeri-
cal analysis with automatic result verification and for many applications have been
systematically developed.

Many colleagues and scientists closely related with the Institute have contributed
to the project by useful discussions, by a long term collaboration, or other kinds of
support. The main participants of this developement are: U. Allendorfer, J. H. Ble-
her, H. Bohm, G. Bohlender, K. Braune, D. M. Claudio, D. Cordes, G. F. Corliss,
A. Davidenkoff, H. C. Fischer, S. Georg, K. Griiner, R. Hammer, E. Kaucher,
R. Kelch, R. Kirchner, R. Klatte, W. Klein, W. Kramer, U. Kulisch, R. Lohner,
M. Metzger, W. L. Miranker, M. Neaga, L.. B. Rall, D. Ratz, S. M. Rump, R. Saier,
L. Schmidt, G. Schumacher, D. Shiriaev, Ch. Ullrich, W. Walter, M. Weichelt,
H. W. Wippermann, and J. Wolff von Gudenberg. The authors would like to ex-

il



iv

press sincere and cordial thanks to each one for his cooperation. Thanks are also
due to the many students who used and applied PASCAL-XSC in an early stage of
the development and thus helped to stabilize both the language and the compiler.

This manual provides a complete description of PASCAL-XSC. The part dealing
with ISO Standard PASCAL is only briefly discussed, while the extensions marked
by [ "M 5T are presented in full detail. A detailed chapter with exercises
and solutions is included in this manual to help the reader to get familiar with the
new language constructs. A full set of syntax diagrams, appendices, and indices
complete the book.

Finally, we would like to mention that a programming language is never com-
plete. Improvements are always possible and often necessary. The main concern
developing this language was to provide a useful and appropriate tool for numerical
applications in the field of engineering and scientific computation. Benevolent and
critical comments for improvements of the language are very welcome.

This book is a translation of a German version also published by Springer-Verlag.
The authors are very grateful to George Corliss who helped to polish the text and
the contents.

Karlsruhe, October 1991 The Authors

The Realization of this Book

This manual was completely written in the text system KETEX or TEX. Co-Author
Dietmar Ratz gathered the text, designed the necessary macros and environments,
developed the syntax diagrams, carried out corrections, and drew up the final version
including the appendices and indices. He was also responsible for the final layout of
this book.

The Authors
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Chapter 1

Introduction

This book describes the language PASCAL-XSC. The core of the language de-
scription consists of three chapters: language description, arithmetic modules, and
eTercises.

In chapter 1 (Introduction), we describe the notation used in this book. We
sketch the historical development of PASCAL-XSC, the axiomatic definition of com-
puter arithmetic, and its embedding in programming languages. The last section is
a short survey of the language PASCAL-XSC.

Chapter 2 (Language Reference) comprises the formal language definition. The
ISO PASCAL Standard is only touched upon. The extensions of PASCAL-XSC are
described in detail.

PASCAL—-XSC supports arithmetic on real, complex, interval, or complex inter-
val objects, as well as on vectors and matrices over these types. Chapter 3 (The
Arithmetic Modules) describes the modules supporting these types with their op-
erators, functions, and procedures. The succeeding chapter 4 (Problem Solving
Routines) summarizes the routines which have been developed in PASCAL-XSC
for solving frequently occurring numerical problems.

The closing chapter 5 (Exercises with Solutions) encourages the reader to ap-
ply the new language elements to easy exercises to extend his or her knowledge.
Solutions are provided.

Finally, the Appendix contains the syntax diagrams of PASCAL-XSC, as well
as complete lists of reserved words, predefined identifiers, operators, functions, and
procedures of the language core and the arithmetic modules.

This book does not deal with implementation details of the language. For all
implementation-dependencies in the following chapters, we refer to the correspond-
ing user manual supplied with the special compiler version.

1.1 Typography

To mark or emphasize certain words, names, or paragraphs, we use the following
type faces:

italics serves to emphasize certain words in the text.

1



2 CHAPTER 1. INTRODUCTION

boldface is used to mark reserved words of PASCAL-XSC (e.g. begin,
module) in the text or in excerpts of programs.

slanted characterizes predefined identifiers of PASCAL-XSC (e.g. integer,
real) and identifiers from programming examples when they appear
in the body of the text.

typewriter is used for listings and run-time outputs of programs that are directly
copied from a file or from printer output.

References are always indicated as [nr]. The number nr corresponds to an entry in
the bibliography.

1.2 Historical Remarks and Motivation

In general, electronic computers for engineering and scientific computations are
equipped with a floating point arithmetic to approximate mathematical operations
with real numbers. All higher programming languages permit these operations to
be denoted with the usual operation symbols so that the programmer is able to
write down simple expressions, formulas, or functions in their usual mathematical
notation. In mathematics and the natural sciences, the concept of the arithmetic
operation or function is by no means restricted to real numbers. For example, op-
erations in vector spaces and even vector-valued functions occur. It is not at all
efficient to program these concepts on the computer using basic floating point op-
erations and then realize them via clumsy procedure calls, since this may result in
many unnecessary computing errors.

Therefore, intensive research in the field of computer arithmetic has been con-
ducted at Professor Kulisch’s Institute for Applied Mathematics at the University
of Karlsruhe since the 1960’s. To achieve satisfactory results in many applications,
the computer must support an arithmetic which is much more powerful than the
usual floating-point arithmetic. That is, every computer, whether large or small,
used for scientific computation should be a vector computer!' in the mathematical
sense. Its arithmetic should support operators in the common mathematical vec-
tor spaces such as real numbers, complex numbers, intervals of real and complex
numbers, or vectors and matrices with elements of these types. The results of these
operations should be provided with higher accuracy than can be achieved using the
usual floating-point arithmetic. By 1976, a complete mathematical analysis of these
demands led to the publication of two books ([24], [28]).

To realize these demands, algorithms and fast hardware circuits have been de-
veloped and implemented completely. Today, a variety of realizations is available
for all kinds of computers, e.g. personal computers, workstations, general-purpose
computers, mainframes, as well as supercomputers. The new operations, e.g. the
product of two matrices, always deliver a result which differs from the exact result

IThe term vector processor is often used as a synonym for a computer that is equipped with
pipeline operations. Here, we do not mean this. The concept is used in a more mathematical sense.



1.2. HISTORICAL REMARKS AND MOTIVATION 3

by at most one single rounding in each component. Assuming that the same technol-
ogy (software, microcode, hardware, pipeline technique) is used, the new operations
are not only more accurate, but also faster in general than those simulated via the
traditional floating point arithmetic. Gradually, the manufacturers have realized
the correctness and usefulness of this procedure. Thus, over the years, more and
more products that support the new demands of arithmetic have appeared on the
market.

Immediately, however, difficulties arose concerning the programming languages.
Traditional programming languages as ALGOL, FORTRAN, PL/1, PASCAL, or
MODULA do not allow access to a hardware-supported matrix product, a mul-
tiplication of complex numbers with maximum accuracy, or an interval operation
via the traditional operation symbols. Thus, a further development of program-
ming languages was necessary to support the requirements of high quality arith-
metic. Between 1976 and 1979, two institutes from the Universities of Karlsruhe
and Kaiserslautern (Prof. Kulisch and Prof. Wippermann) cooperated to develop
and implement a PASCAL extension called PASCAL-SC (PASCAL for Scientific
Computation). In the following years, in cooperation with IBM, a corresponding
FORTRAN 77 extension was developed and implemented for IBM /370 computers
at the Institute for Applied Mathematics at the University of Karlsruhe. Today, the
result is available as an IBM program product under the name of ACRITH-XSC.

ACRITH-XSC contains some constructs such as dynamic arrays and overload-
ing of function names which were not considered in PASCAL-SC. So the language
PASCAL-XSC was developed in parallel with the development of ACRITH-XSC.
PASCAL-XSC is implemented using a PASCAL-XSC-to-C preprocessor (itself writ-
ten in C) and a run-time system written in C. Hence, PASCAL-XSC may be in-
stalled and used in a nearly identical way on almost any computer system which
supports C. In particular, PASCAL-XSC runs on nearly all UNIX systems. Thus,
the programmer may develop PASCAL-XSC programs on a personal computer or
a workstation and run them on a mainframe or a supercomputer.

Mathematicians have used PASCAL-SC, ACRITH-XSC, and PASCAL-XSC to
solve a variety of problems. Easy access to interval operations played a major role.
We can use intervals to represent bounds for the solution of the problem or to repre-
sent a continuum of the real or complex numbers. A single evaluation of a function
over an interval may be sufficient to state in a strict mathematical sense that the
function does not possess a zero in this interval. In continuation of these ideas,
mathematical fixed point theorems of the Brouwer or Schauder type may be applied
to obtain statements on existence and uniqueness concerning numerical problems
by the computer itself or to have the correctness of a computed result automatically
verified by the computer. Thus, program packages have been developed for the so-
lution of boundary value and eigenvalue problems of ordinary differential equations
and systems of linear and nonlinear integral equations. These programs verify the
existence as well as uniqueness, and compute narrow bounds for the solution itself
(see [27]). The new tools are applied in many fields of application, including me-
chanics, chemistry, chaos theory, or in the search for periodic solutions of differential
equations. Moreover, researchers have been able to discover surprising solutions to
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problems not previously solvable. For further information, see the References.

1.3 Advanced Computer Arithmetic

When the programming languages ALGOL and FORTRAN were developed in the
1950’s, specification of the arithmetic was left to the manufacturer. As a conse-
quence, the programmer does not know what happens when the symbols +, -, x, or
/ are applied. Besides that, two computers from different vendors may also differ in
the properties of arithmetic. Consequently, numerical analysis could not be based
on universally valid axioms of computer arithmetic.

The increasing efficiency and speed of computers requires a more precise defini-
tion of the arithmetic. Since a computer may represent only a finite set of numbers,
the set IR of the real numbers has to be mapped onto a subset R, called floating
point numbers. This mapping O : IR — R is called a rounding if it satisfies the
properties:

(R1) Oa=a, foralla€ R, and (projection)

(R2) a<b=0Oa<0Ob forallabe R. (monotonicity)

A rounding possessing the property
(R3) O(—a)=-0Oa, foralla€e R (antisymmetry)

is called antisymmetric. The commonly used antisymmetric roundings are rounding
to zero, rounding away from zero, or rounding to the nearest floating point num-
ber. The approximating operations B, &, &, and 1 for floating point numbers are
required to satisfy

(RG) amb=0O(aob), foralla,be R,ando e {+,—,- /}.

Here +, —, -, and / denote the operations for real numbers.

If a mapping satisfies the properties (R1), (R2), (R3), and (RG), we call it a
semimorphism.

All operations defined by (RG), (R1), and (R2) are of maximum accuracy in the
sense that there is no element of R lying between the exact result a o b executed in
IR and its approximation a@b executed in R. To realize this, we assume that a and
[ are adjacent elements of R with the property

a<aob<p.
Applying (R2), (R1), and (RG) we get:
a<a@b < f.

That is, al@b is either equal to a or to .
For special applications, a programming language should also provide the di-
rected roundings 7 and A which are defined by the properties (R1), (R2), and

(R4) wa<a or a<Aa, forallac€ R.
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These roundings, as well as the operations defined by (RG)

awb:=v(aob)
or
adb:=NA(aob)

are determined unique ([24], [28]).

Besides the real numbers, vectors and matrices over the real numbers frequently
appear in scientific computation. We denote these sets by VIR and MIR, respectively.
Occasionally, the complex numbers €', vectors V€' and matrices MC' over the complex
numbers are used. All these spaces are ordered according to the order relation <,
which is defined componentwise in the product spaces. Intervals may be defined
via this relation. Numerical algorithms often use intervals in the above-mentioned
spaces. If we denote the set of intervals over an ordered set by a preceding I, the
spaces IIR, IVIR, IMIR, and IC, IVC, and I MC occur. All these spaces are listed in
the first column of the following table. Their subsets, which may be represented on a
computer, are described by the symbols listed in the second column of the following
table.

Basic Spaces of Subsets Representable
Scientific Computation on the Computer

R R

VIR VR

MIR MR

IIR IR

IVIR VIR

IMIR MIR
C CR

Ve VCR

MC MCR
(o CIR

AU VCIR

IMC MCIR

Table 1: Vector Spaces for Scientific Computation

Next, we define the arithmetic for a vector processor (in our mathematical sense)
for all inner and outer operations occurring in the second column of Table 1. We
demand that all these operations fulfill the properties of semimorphism. Since these
operations in the product spaces differ essentially from the operations executed
traditionally on a computer, we would like to briefly repeat their definition here.
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Let S be an element of the left column of Table 1, and let 7" be the corresponding
subset in the right column. Furthermore, let a rounding

a:S—T

be given that rounds the elements of S into those of T. Again, this rounding is
assumed to satisfy

(R1) Oa=a, forallaeT, and (projection)

(R2) a<b=0a<Ob foralabes. (monotonicity)

This rounding is called antisymmetric, if it also satisfies

(R3) 0O(—a)=-0Oa, forallaeS. (antisymmetry)
The operations in T" are defined by

(RG) a@b:=0O(aob), foralla,beT,ando € {+,—,-, /],

with o denoting the exact operations in S in the mathematical sense, if they exist.
The operations defined in the product spaces (e.g. for complex matrices) are
again of maximum accuracy in the sense that there is no element of 7" lying between
the exact result a o b executed in S and its approximation a@b in T
In case of the interval spaces occurring in Table 1, the order relation < in (R2)
is replaced by the inclusion relation C. The rounding O : .S — IT is assumed to
satisfy the additional property

(R4) aCOa, forallacelS. (upwardly directed)

The theory developed in [24] and [28] shows that this rounding is uniquely defined.

The usual definition of computer arithmetic differs considerably from our defi-
nition. Traditionally, computer arithmetic comprises only the operations in R. All
other operations in the second column of Table 1 have to be implemented by the
user. In general, this is done by procedures where every operation occurring in an
algorithm requires its own procedure call. This procedure is cumbersome, inefficient
for both programmers and computers, and often subject to inaccuracies. Let us con-
sider the example of the matrix multiplication C' = A - B, requiring the execution
of a scalar product for each component of C. This is usually done on the basis of
real floating point operations of the form

C = (Cz'j) = (ail Dblj Eaiglﬂbgﬂﬂ ... @amlﬂbnj)

with 2n — 1 roundings. By contrast, the formula (RG) requires an implementation
of the rule C' = ADB with

C = (Cz'j) = (D((Lil . blj + a;o - bgj + ..ot ay bn]))

with only one rounding for each component. A computer which satisfies our axioms
calculates this formula for arbitrary n with one single rounding. This optimal scalar
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product plays a significant part in all product spaces of Table 1. In addition, the
scalar product is very often used in numerical algorithms to achieve high accuracy.

A vector processor in the mathematical sense, as we define it here, is required
to provide all inner and outer operations in the spaces of the right column of Table
1 by semimorphism. In PASCAL-XSC, the sets in the right column of Tabel 1 are
predefined types. Variables and values of these types may be combined by means of
the usual operator symbols +, -, *, and /. In PASCAL-XSC, the operator symbols
denote the operations M, B, [, 1 used above and defined by means of semimor-
phism. Expressions of these types may be written down easily and clearly. All inner
and outer operations fulfill the demands of the semimorphism. The arithmetic we
are describing can be implemented in hardware, in firmware, or in software. If the
basic hardware of the processor in use supports these requirements, the operations
are even faster than those traditionally implemented and executed via operations
in k. In case an appropriate support by the hardware is lacking, the operations
according to semimorphism in the spaces of the second column of Table 1 are simu-
lated in software via the run-time system of PASCAL-XSC. The software arithmetic
of PASCAL-XSC is realized using integer arithmetic. In case an IEEE arithmetic
coprocessor is available, its operations can be used. However, a software simulation
of the optimal dot product for accumulation of numbers and products is still neces-
sary. The latter is the most useful operation for automatic verification of computed
results.

Of course, a software simulation of the arithmetic increases the execution time.
On the other hand, the user has a well defined and comprehensive arithmetic. He
can fully rely on its properties and build upon them in numerical algorithms. From
the perspective of arithmetic and programming languages, PASCAL-XSC is an ideal
vector language. Programming of algorithms in engineering and scientific computa-
tion is facilitated by the language extensions. PASCAL-XSC is particularly suited
for the development of numerical algorithms that deliver highly accurate and auto-
matically verified results.

1.4 Connection with Programming Languages

The demands of a high quality computer arithmetic lead quite naturally to the
concepts of a programming language for vector processors like PASCAL-XSC or
ACRITH-XSC. Usual programming languages like ALGOL, FORTRAN, PASCAL,
MODULA, or PL/1 possess only the integer, real, and (perhaps) complex arithmetic
as elementary operations. All other arithmetic operations, especially those in the
product spaces shown in the second column of Table 1, have to be based upon the
integer and real arithmetic.

In contrast, PASCAL-XSC provides all operations in the product spaces for
predefined types via the usual operator symbols. Each of these operations calls el-
ementary operations which are implemented directly and with maximum accuracy.
In general, the operations in the product spaces could even be carried out in paral-
lel. Unlike the other languages listed above, PASCAL-XSC provides the following
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language elements and features:

Explicit language support for the directed roundings 7 and A.

Explicit language support for the corresponding operations w and A for all
o€f{+ -/}

— An optimal scalar product for vectors of arbitrary length.

— Interval types with appropriate operators.

— Functions with arbitrary result type.

— A universal operator concept.

— Overloading of function identifiers and operators.

— Dynamic and structured numerical types

— A large number of mathematical functions with high accuracy for the numerical

types real, complex, interval, and complex interval.

A library of problem solving routines with results of highest accuracy and auto-
matic result verification (see also [27]) for many standard problems of numerical
mathematics has been implemented in PASCAL-XSC. Via interval input data the
accuracy of the elementary functions becomes immediately visible to the user.

PASCAL-XSC is a true vector language in the mathematical sense. The vector
notation of the operations in the product spaces is already expressed in the pro-
gramming language. An additional vectorization of programs by the compiler is
often superfluous. The execution of these operations may be essentially accelerated
by parallel processing and pipeline techniques.

1.5 Survey of PASCAL-XSC

The programming language PASCAL-XSC was developed to supply a powerful tool
for the numerical solution of scientific problems based upon a properly defined and
implemented computer arithmetic in the usual spaces of numerical computation (see
[24], [28]). The main concepts of PASCAL-XSC are

e ISO Standard PASCAL

e Universal operator concept (user-defined operators)

e Functions and operators with arbitrary result type

e Overloading of procedures, functions, and operators

e Module concept

e Dynamic arrays

e Access to subarrays

e String concept

e Controlled rounding
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Optimal (exact) scalar product

Predefined type dotprecision (a fixed point format to cover the whole range of
floating-point products)

Additional arithmetic built-in types such as complex, interval, rvector,
rmatrix, etc.

Highly accurate arithmetic for all built-in types
Highly accurate elementary functions

Exact evaluation of expressions within accurate expressions (#-expressions)

Interval arithmetic, complex arithmetic, complex interval arithmetic, and the cor-
responding vector and matrix arithmetics are provided.

Application modules have been implemented in PASCAL-XSC for solving com-
mon numerical problems, such as

Linear systems of equations

Matrix inversion

Nonlinear systems of equations

Eigenvalues and eigenvectors

Evaluation of arithmetic expressions

Evaluation of polynomials and zeros of polynomials

Numerical quadrature

Initial and boundary value problems in ordinary differential equations
Integral equations

Automatic differentiation

Optimization problems

All these problem-solving routines provide automatically verified results.

In the subsequent sections, the most important new concepts are considered briefly.
The details are described in chapter 2.

1.5.1 Universal Operator Concept and

Arbitrary Result Type

PASCAL-XSC makes programming easier by allowing the programmer to define
functions and operators with arbitrary result type. The advantages of these con-
cepts are illustrated by the simple example of polynomial addition. Define the type
polynomial by

const maximum_degree = 20;
type polynomial = array [0..maximum_degree] of real;
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in Standard PASCAL, the addition of two polynomials is implemented as a procedure

procedure add (a, b: polynomial; var c: polynomial);
{ Computes ¢ = a + b for polynomials }
var i: integer;
begin
for i:= 0 to maximum_degree do
c[il:= a[i]l + b[il;
end;

Several calls of add have to be used to compute the expression z =a + b+ ¢+ d:

add (a,b,z);
add (z,c,z);
add (z,d,z);

In PASCAL-XSC, we define a function with the result type polynomial

function add (a, b: polynomial): polynomial;
{ Delivers the sum a + b for polynomials }
var i: integer;
begin
for i:= 0 to maximum_degree do
add[il:= al[i]l + b[il;
end;

Now, the expression z = a + b + ¢ + d may be computed as
z:= add(a,add(b,add(c,d))).
Even clearer is the operator in PASCAL-XSC
operator + (a, b: polynomial) result_polynomial : polynomial;
{ Delivers the sum a + b for polynomials }
var i: integer;
begin
for i:= 0 to maximum_degree do
result_polynomial[i]:= a[i] + b[i];
end;
Now, the expression may be written in the common mathematical notation

Zz:= atb+c+d.

A programmer may also define a new name as an operator. A priority is assigned
in a preceding priority declaration.
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1.5.2 Overloading of Procedures, Functions, and Operators

PASCAL-XSC permits the overloading of function and procedure identifiers. A
generic name concept allows the programmer to apply the identifiers sin, cos, exp, In,
arctan, and sqrt not only for real numbers but also for intervals, complex numbers,
or elements of other mathematical spaces. Overloaded functions and procedures are
distinguished by number, order, and type of their parameters. The result type is
not used for distinction.

As illustrated above, operators may also be overloaded. Even the assignment
operator (:=) may be overloaded so that the mathematical notation may be used
for assignments:

var
c: complex;
r: real;

operator := (var c : complex; r: real);
begin
c.re :

r;
0;

c.im :
end;

1.5;
c:=r; {complex number with real part 1.5 and imaginary part 0}

1.5.3 Module Concept

The module concept allows the programmer to separate large programs into modules
and to develop and compile them independently of each other. The control of syntax
and semantics may be carried out beyond the bounds of the modules. Modules are
introduced by the reserved word module followed by a name and a semicolon. The
body of a module is built up quite similarly to that of a common PASCAL program.
The significant exception is that the objects to be exported from the module are
characterized by the reserved word global directly in front of the reserved words
const, type, var, procedure, function, and operator and directly after use and
the equality sign in type declarations. Thus, private types as well as non-private
types can be declared and exported.

Modules are imported into other modules or programs via a use-clause. The
semantics of the use-clause are that all objects declared global in the imported
module are also known in the importing module or program.

The example of a polynomial arithmetic module illustrates the structure of a
module:

module poly;
use {other modules}
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{local declarations}

{global declarations}
global type polynomial = ...

éiébal procedure read (...
éiébal procedure write (...
éiébal operator + (...
éiébal operator * (...

begin
{initialization part of the module}

end. {module poly}

1.5.4 Dynamic Arrays and Subarrays

The concept of dynamic arrays enables the programmer to implement algorithms
independently of the length of the arrays used. The index ranges of dynamic arrays
are not to be defined until run-time. Procedures, functions, and operators may be
programmed in a fully dynamic manner, since allocation and release of local dynamic
variables are executed automatically. Hence, the memory is used optimally.

For example, a dynamic type polynomial may be declared in the following
form:

type polynomial = dynamic array [*] of real;
When declaring variables of this dynamic type, the index bounds have to be specified:
var p, q : polynomial [0..2*n];

where the values of the expressions for the index range are computed during program
execution. To get access to the bounds of dynamic arrays which are specified only
during execution of the program, the two functions Ibound(...) and ubound(...)
and their abbreviations Ib(...) and ub(...) are supplied. The multiplication of two
polynomials may be realized dynamically as follows:

operator * (a, b: polynomial)
product: polynomial[0..ubound(a)+ubound(b)];
{ Delivers the product a * b of two polynomials a, b }

var i, j : integer;
result : polynomiall0..ubound(a)+ubound(b)];
begin

for i:= 0 to ubound(a)+ubound(b) do
result[i]:= O;
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for i:= 0 to ubound(a) do
for j:= 0 to ubound(b) do
result[i+j]:= result[i+j] + a[i] * b[j];
product:= result;
end;

A PASCAL-XSC program using dynamic arrays for polynomials follows the tem-
plate

program dynatest (input, output);

é&fe polynomial = dynamic array [*] of real;
var maximum_degree : integer;

éférator * (a, b:polynomial)...

procedure write (var f : text; p: polynomial);

procedure main (degree : integer);

var
p,q : polynomiall[O..degree];
r : polynomial[0..2*degree];
begin
r:=p * q;

writeln (’pxq = ’, r);
end;

begin {main program}
read (maximum_degree);
main (maximum_degree) ;
end. {main program}

The following example demonstrates that it is possible to access a row or a column
of dynamic arrays as a single object. This is called slice notation.

type vector = dynamic array [*] of real;
type matrix dynamic array [*] of vector;
var v : vector[l..n];

m : matrix[1..n,1..n];

m[i]; { i-th row of m }
v; { j-th column of m }

v
m[*,j]

1.5.5 String Concept

A string concept is integrated into the language PASCAL-XSC to handle character
strings of variable length. Declaration, input, and output of strings are simpli-
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fied extensively compared to the facilities of Standard PASCAL. Special predefined
functions and operators enable the programmer to formulate and manipulate string
expressions.

1.5.6 Arithmetic and Rounding

Compared with Standard PASCAL, the set of operators for real numbers is extended
by the directed-rounding operators o< and o> with o € {+, —, %, /}. These symbols
denote the operations with upwardly and downwardly directed rounding. In the
arithmetic modules, the common operators are also provided for complex numbers,
intervals, complex intervals, and also for vectors and matrices over these spaces.

1.5.7 Accurate Expressions

The implementation of inclusion algorithms with high accuracy requires the exact
evaluation of scalar products. For this purpose, the new type dotprecision was
introduced into PASCAL-XSC representing a fixed-point format covering the whole
range of floating-point products. This format allows scalar results — especially sums
of floating-point products — to be stored exactly.

Furthermore, scalar product expressions (dot product expressions) with vector
and matrix operands with only one rounding per component can be computed via
exact evaluation within accurate expressions (#-expressions).



Chapter 2

Language Reference

PASCAL-XSC is based on the programming language PASCAL defined in the report
of Jensen and Wirth [13]. Since PASCAL-XSC is an extension of PASCAL, we do
not give a detailed description of the complete language (for this purpose see [9],
[13], or [14] for example). Instead, we give a concise description of the standard
elements of PASCAL and a rather more detailed introduction into the additional
language elements of PASCAL-XSC.

The syntax is specified in an easy readable, simplified Backus-Naur-Form, very
similar to usual program code. It is marked by a black bar at the margin. The
representation of the syntax consists of

e basic symbols written according to the typographical notation of section 2.1,
e syntax variables,

e predefined identifiers,

e repetition symbols ..., and

e comments enclosed in braces { }.

Syntax variables are English nouns or composite nouns which serve as abbreviations
for other syntactical units. If a syntax variable denotes a list, then it stands for
a non-empty sequence of corresponding objects separated by commas. Predefined
identifiers are written in slanted characters. The repetition symbol ... denotes an
arbitrary number of repetitions of a part of the syntax, i.e. the preceding group of
language elements within the same line. This group may occur zero or more times
if no comment to the contrary (enclosed in braces) is given.

To generate PASCAL code by means of this syntax representation, we have to
read line after line from left to right and note the basic symbols, the predefined
identifiers, and the syntax variables in the suitable number of repetitions. Then
to eliminate the syntax variables, we must successively replace them by their own
definitions. This process ends when all syntax variables are eliminated.

An example for a syntax description is

15
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var
IdentifierList: Type; ... { not empty }

Assuming that we know what to replace for Type and what kind of Identifiers are
allowed, we consider an example:

Example 2.0.1:

The syntax for variable declarations in the example above allows the following
source code:

var i, j, k : integer;
X,y : real;
m  : array [1..10, 1..10] of real;

The extensions provided by PASCAL-XSC beyond ISO Standard PASCAL are high-
lighted in this chapter by a box:

PASCAL-XSC —

All extensions provided by PASCAL-XSC beyond the ISO Standard PASCAL
are enclosed in frames like this!

A concise survey of the complete syntax of the language PASCAL-XSC is given by
the syntax diagrams in Appendix A starting from 269.

For all implementation-dependencies mentioned in this chapter and in the fol-
lowing chapters, we refer to the corresponding user manual supplied with the special
compiler version.



2.1. BASIC SYMBOLS
2.1 Basic Symbols
The source code of a program consists of the following basic symbols:
letters: a,b,c, ...,z
digits: 0,1,2,...,9
special characters: <= < > >= = <>
( ) [ ] {3
+ - * /
= . , : : ’ L
The character U denotes a blank.
Instead of { 3y [ 1
the characters (x %) (. .) @or "~ may be used.
reserved words: and, array, begin, case, const, div, do, downto, else,

end, file, for, forward, function, goto, if, in, label,
mod, nil, not, of, or, packed, procedure, program,
record, repeat, set, then, to, type, until, var, while,

with

17

Letters may be used in either upper or lower case, but they are treated as equivalent.
For example, the identifiers PASCAL and Pascal are identical. A reserved word may
be written in any mixture of upper case or lower case letters. PASCAL-XSC is not

case sensitive as C is.
Reserved words may not be used as identifiers.

PASCAL-XSC ——
Additional basic symbols
letters: _  (underscore)
special characters: $ #
#x #< #> ##
>< +x %
+> —> *> />
+< —-< * < /<
reserved words: dynamic, external, global, module,
operator, priority, sum, use
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2.2 Identifiers

Identifiers are names denoting different objects like constants, variables, types, func-
tions, procedures, modules etc. occurring within a program.

An identifier consists of an arbitrary sequence of letters and digits beginning
with a letter.

Example 2.2.1:

variablel, NorthWest, extreme, ab
Two identifiers are considered to be identical if they both consist of the same se-
quence of characters, ignoring the case of letters.

Reserved words may not be used as identifiers. When defining a new identifier,
note that the following identifiers have predefined meanings:

abs eof In pred round trunc
arctan eoln maxint put sin write
boolean exp new read sqr writeln
char false odd readln sqrt

chr get ord real succ

cos input output reset text

dispose integer page rewrite true

These identifiers can be used in their predefined meaning without being declared
explicitly. If they are given a new meaning by an explicit declaration, any occurrence
of such an identifier refers to the new meaning. The usual meaning provided by the
language becomes invisible.

PASCAL-XSC —

The underscore (_) may occur at any position of an identifier.

Example 2.2.2:
variable_1, north_west, _extreme_, a__b, _, __
The maximum length of an identifier is the logical line length.

Upper case and lower case letters are not distinguished within identifiers.
This means that north_west and North_West denote the same identifier.
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arccos
arccot
arcsin
arcosh
arcoth
arctan?2
arsinh
artanh
cimatrix
cinterval
civector

Additional predefined identifiers:

cmatrix
comp
complex
cosh

cot

coth
cvector
dotprecision
expo
exp2
expl0

im
image
imatrix
inf
interval
ivector
ival

b
Ibound
length
loc

PASCAL-XSC ———
log2 setlength
log10 sign
mant sinh
mark string
maxlength substring
pos sup
re tan
release tanh
rmatrix ub
rvector ubound
rval

The predefined identifiers of procedures and functions may be overloaded. By
this device, they may be used in the predefined meaning as well as in the new
meaning (see section 2.7.10). However, if they are declared in a manner identical
to the predefined declaration, then the predefined meaning becomes invisible,
and the new meaning is used.

When using a module by means of a use-clause, all identifiers declared in
the used module via global become predefined identifiers in the using module
or program (see section 2.8).

Identifiers are also used to denote operators (see section 2.7.6).

19
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2.3 Constants, Types, and Variables

In ISO Standard PASCAL, the types integer, real, boolean, and char are predefined
together with corresponding operators (see section 2.4). In addition, an enumeration
type may be declared which defines a set of entirely new values and introduces
constant identifiers to denote these values. The values of such simple types are called
(literal) constants. Their syntax is precisely defined (see section 2.3.1). Except for
string constants (in the case of a one dimensional array with char as component
type), there are no literal constants for the structured types array, set, record, and
file. A literal constant of a string is a sequence of characters enclosed in single
quotes.

Identifiers for constants (named constants) may be introduced by a constant
definition:

const
Identifier = Constant; ... { not empty }

The constant on the right-hand side must be a literal constant or a previously defined
named constant.

Example 2.3.1:

const
n = 50;
eps = 10e—13;
k =n;
zf = 'charactersequence’;

Named constants may be used like literal constants within a program. During
execution of a program, they are unchangeable.
Identifiers for types (named types) may be fixed by a type definition:

type
Identifier = Type; ... { not empty }

The type on the right-hand side is either an explicitly defined type or a previously
defined type. All types mentioned above are always predefined.

Example 2.3.2:

type color = (red, blue, yellow);
logical = boolean;
vector = array [1..20] of real;
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Identifiers for variables may be fixed by a variable declaration :

var
IdentifierList: Type; ... { not empty}

The listed identifiers denote variables with the type of the right-hand side. A variable
may therefore be interpreted as a symbolic address of a corresponding storage space.

Example 2.3.3:

var i, j, k : integer;
X,y : real;
f : color;
vecl, vec2 : vector;
m : array [1..20] of vector;

PASCAL-XSC —

The following additional standard types are available: dotprecision, complex,
interval, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix,
cimatrix, and string.

A dynamic array type within a variable declaration must specify the index
bounds by corresponding expressions (see section 2.3.2 concerning dynamic array
types).

A variable is called of anonymous type if there is no related type identifier
in the corresponding declaration (e.g. component variable).

Example 2.3.4:

var vecl, vec2 : vector; { known type }
a : array [1..10] of real; { anonymous type }
m : array [1..20] of vector; { anonymous type }

2.3.1 Simple Types

The simple types in PASCAL are the types integer, real, boolean, char, enumeration
types, and subrange types. They are defined as follows:

integer Implementation-dependent subset of the whole numbers.
The predefined constant maxint denotes the implementation-
dependent maximum integer number. A literal constant of
type integer is a digit sequence (of decimal digits) with or
without a sign + or —. See page 23 for PASCAL-XSC exten-
sions of type integer.
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real

boolean

char
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Example 2.3.5:

128 =30 +4728 007

Implementation-dependent subset R of the real numbers IR.
A literal constant of type real has the representation

+ mantissa E exponent

The mantissa is a sequence of digits with or without a decimal
point, and the exponent is an integer value (with implemen-
tation depended bounds). The notation

+ mantissa

without an exponent part is permitted as well. As a matter of
principle, at least one digit must occur in front of and behind
the decimal point.

Example 2.3.6:

3.1726E-2  —0.08E+5 +1E10 3.1415

We have to bear in mind that the value of the decimal
representation in PASCAL is not always a member of the
implementation-dependent set R of type real. For example,
the decimal floating-point number 1.1 is not exactly repre-
sentable as binary floating-point number. Thus, the literal
constant 1.1 used within a program represents a real value
different from the value 1.1. This problematic nature of con-
version we have to bear in mind every time we use literal
constants as operands within expressions, as parameters in
function and procedure calls, or as input parameters. See
page 24 for the PASCAL-XSC extensions of type real.

The range consists of the logical constants true and false with
false < true.

The range is an implementation-dependent set of characters.
Literal constants are enclosed in single quotes. The order
relation satisfies

N<l<...<’9
and

Al <’b <. <7
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enumeration types

subrange types

The range consists of constants listed in the type definition
(ordered sequence of identifiers). The order relation is defined
by the order of the enumeration. An enumeration type is
defined by the programmer in a type definition. The literal
constants which are the elements of an enumeration type must
not collide with any value of another enumeration type.

Example 2.3.7:

The type definition
type Color = (red, blue, yellow);

specifies the enumeration type Color with the values red,
blue, yellow. Another type

SpecialColor = (yellow, orange);

is not permitted since the value yellow already occurs in
type Color.

Subrange types of each of the predefined types integer,
boolean, char, and all enumeration types (base types) may
be defined by specifying the lower and upper bound by

constant .. constant

The set of values of a subrange consists of the lower and upper
bound and all values of the base type between them. The
important thing here is that the order relation is inherited
from the base type. The lower bound must be less than or
equal to the upper bound, and both must be of the same base

type.
Example 2.3.8:

type
Subrange = 1..100;
SubColor = blue..yellow;
Letters = a’.z’;
OctalDigits = 0..7;

PASCAL-XSC —

PASCAL-XSC allows some additional notations for the types integer and real.
Furthermore, we introduce the new type dotprecision.

integer A value of type integer may also be written as a hexadecimal
constant beginning with the character $ and followed by a hexa-
decimal digit sequence consisting of the digits 0,1,....9 and
the letters A B,...,F and a,b,.. . f.
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real

dotprecision

PASCAL-XSC ——
Example 2.3.9:

$12AFB2 represents the value 1224626

To execute the inevitable conversion of literal real constants into
the internal data format in a controlled way, an additional nota-
tion for these constants is necessary. While the usual PASCAL
notation of real numbers implies the conversion with rounding
to the nearest floating-point (machine) number, it is possible to
specify real constants which are converted with rounding to the
next-smaller or the next-larger floating-point number by the no-
tations

(< £ Mantissa E Exponent ) and
(> £+ Mantissa E Exponent ) ,

respectively. The E and Exponent may be omitted as usual, in
which case Mantissa must contain a decimal point. The paren-
theses are mandatory.

Example 2.3.10:

(< 1.1) round down
(> —1.0E-1) round up

The type dotprecision is based on the type real and permits the
representation of products of two arbitrary real numbers and the
exact summation of an arbitrary number of such products in a
fixed point format of suitable size. If the internal real format
is fixed by the mantissa length [ and the minimum and maxi-
mal exponents emin and emax (see also section 2.4.1.2), then a
dotprecision variable occupies storage space of the form

~ AN ~
g 2-emax 2-1 2-Jemin|

The total length is L = g + 2emax + 2|emin| + 21 digits. Here,
g denotes the implementation-dependent number of guard digits
for accumulating carries during summation (see [28] and [29] for
details).
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PASCAL-XSC —

Values of type dotprecision typically occur during multiplication
of vectors or matrices. These scalar products can be represented
exactly, i.e. without rounding errors, in the format of this type in-
dependent of the dimensions of the vectors or matrices. A Value
of type dotprecision can only be generated by an #-expression
(see section 2.4.2) in the form

# ( ExactExpression )

There are no constants of this type.

2.3.2 Structured Types

There are four composite data types in ISO Standard PASCAL:
e arrays
o files
e records
e sets

They differ in their manner of combining elements of the predefined types into
a higher structure and accessing their components. Composite types of arbitrary
complexity may be built up by using components of arbitrary composite types.
Any type definition may start with the reserved word packed which causes
the components to be stored in a compact fashion. The storage pattern is
implementation-dependent. The reserved word packed has no semantic effect.

2.3.2.1 Arrays

An array consists of a fixed number of components having the same type. Each
component is indicated by one or more indices which are values of index expressions.
The type definition of an array must specify index types and the component type:

I array [IndexTypeList] of ComponentType

An index type is a subrange type of type integer, boolean, char, or an enumeration
type, or of one of the last three types itself. The component type may be of any
type. Note that the use of the component type dotprecision may be very memory-
consuming.
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Example 2.3.11:

array [1..10] of real { real vector with }
{ 10 components }
array [1..10, 1..20] of real { real matrix with }
{ 10 rows and 20 columns }
array ['a’..’z’] of boolean { logical vector with }
{ 26 components }
array [1..10] of array ['a’..’z’] of boolean { logical matrix with }
{ 10 rows and 26 columns }

array [(red, yellow, blue, black)] of 0..10 { subrange type vector with }
{ 4 components }

The components of an array themselves may be used as variables (component vari-
ables). The access to these component variables is done by

| Arrayldentifer [IndexExpressionList]

or

Arrayldentifier[IndexExpressionList]
[IndexExpressionList] ...

The relation of index expressions (indices) and index ranges works from left to right.
The indices must be contained in the corresponding index range.

Example 2.3.12:

declaration component variables
var v: array [1..10] of real; v[1], ..., v[10]
var m: array [1..10,1..20] of real; m[1,1 ] m[1,20],
m[2, J, .., m[2,20],
m[lO,l], ..., m[10,20]
also possible:
m(1][1], ...
var x: array [1..10] of x[1]['a’], ..., x[1]['2],
array ['a’..’z’] of boolean; :
x[10][a’],. .., x[10]['7]
also possible
x[1,a’], ...
x[1,a] only works if a is a vari-
able of type char.
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2.3.2.2 Subarrays

If the number k of specified indices of a component variable of an array is less than
the number n of index ranges of the corresponding array (n dimensional array), then
the component variable is an n — k dimensional subarray. The specified indices refer
to the first k£ index ranges within the array declaration.

PASCAL-XSC —

A component variable is called of anonymous type if there is no corresponding
explicit type identifier (see also section 2.3.5 referring to compatibility of types).

Example 2.3.13:

Let the variable m be a two-dimensional array declared by
var m: array [1..10, 1..20] of real;

Then the component variable m[5] is a one-dimensional subarray of anony-
mous type, i.e. a vector of 20 components consisting of the row of the
matrix m.

Arbitrary subarrays (component variables) of an array may be accessed by spec-
ifying corresponding index ranges by placing the character x within the index
expression list. If there is no index expression following a x, then it may be
omitted.

Example 2.3.14:

According to the declaration
var m: array [1..10, 1..20] of real;

the component variable m[*,1] denotes an array variable, i.e. a vector with
10 elements, where the elements correspond to the elements of the first
column of the matrix m.

The notations

m([l,%] and m[l] as well as

m and m[x] and m[x,x*]

are equivalent.
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2.3.2.3 Access to Index Bounds
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The access to index bounds without using the quantities of the array declara-
tion (absolutely necessary in case of using dynamic arrays) is provided by two
standard functions

Ibound (ArrayVariable, IntegerConstant) and
ubound (ArrayVariable, IntegerConstant).

Their result is the lower and upper bound of the i-th index range (i = value of the
integer constant) of the array variable. In case the integer constant is missing,
the first index range is addressed implicitly. The access to index ranges that do
not exist is not allowed.

The notations Ib (instead of Ibound) and ub (instead of ubound) may be
used as short forms.

Example 2.3.15:

type matrix = array [1..n,1..k]| of real;
function sum(var m: matrix): real;
var

i, j: integer;

s: real;
begin

s := 0;

for i := Ibound(m) to ubound(m) do

for j:= 1b(m,2) to ub(m,2) do
s :=s + mlij];

sum:= s;

end;

2.3.2.4 Dynamic Arrays

ISO Standard PASCAL does not provide dynamic arrays. A certain dynamic capa-
bility is given in level 1 of the standard (see [9]) by conformant array schemes as
specification of array parameters within functions and procedures (see section 2.7.1).
Thus, the call of the corresponding procedures and functions is possible with actual
parameters which need not necessarily be of a definite type.
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PASCAL-XSC provides the dynamic array declaration, similar to that provided
by other well-known programming languages (e.g. ALGOL 60, ALGOL 68 [49],
ADA [15]). This means that within subroutines, array variables need not be
declared statically as in Standard PASCAL.
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The index bounds may be given by expressions which result in new index bounds
at each subroutine call. Especially, the dynamic array concept and its use in
the specification of formal parameters includes the complete functionality of the
conformant array scheme of Standard PASCAL using only a slightly different
syntactical notation.

A dynamic array type may be declared similar to the declaration of a static
array type:

| dynamic array [DimensionList] of ComponentType

Every index range within the dimension list is marked by the character .

A dynamic array type must not occur as component type of a structured
type, except in a dynamic array type itself. The dynamic array type definition
specifies only the number of the index ranges and the component type.

Example 2.3.16:

type DynPolynomial = dynamic array [*] of real;
DynVector = dynamic array [] of real;
DynMatrix = dynamic array [,x| of real;

Not allowed is

type WrongType = dynamic array [1..n,x| of real;

Dynamic array types may occur within a variable declaration by specifying cor-
responding index expressions either by using a previously declared type identifier
or by explicitly denoting the dynamic type.

Example 2.3.17:

var matl: dynmatrix [1..n,1..2%n];
mat2: dynamic array [1..n,1..2xn] of real;

In both cases, the computation of the corresponding index expressions must be
determined at the time of processing of the variable declaration. Thus, true
dynamic allocation in array declaration is only possible within procedures and
functions by using global quantities or formal parameters in the index expressions
(see section 2.10).

The declaration part of a program can contain expressions in the index bounds
only if they can be evaluated at time of declaration. The reserved word packed
must not occur in a dynamic array declaration, i.e. sequences like packed dy-
namic array or dynamic packed array are not permitted.
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2.3.2.5 Strings

The string type of ISO Standard PASCAL is a special static packed array type, a
vector with the component type char:

| packed array [1..Length] of char

with the integer constant Length > 1.

Example 2.3.18:

The declaration
packed array [1..15] of char

defines strings with 15 characters of type char. Examples for constants of this
type are

"PASCAL-XSC TOPS’ or ’string constant’

with exactly 15 characters occurring between the two quotes.

2.3.2.6 Dynamic Strings
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The declaration of string variables is facilitated by the type specification

| string [Length]
or just
I string

Length must be a positive integer constant which is bounded by an implemen-
tation dependent maximum length, e.g. 255. The maximum length is assumed if
the length specification is missing. The range of this dynamic string type consists
of all character sequences with 0, 1, 2, .., Length—1, Length characters.

The current length of a string variable is called its actual length. It is dy-
namically managed at run-time of the program and may be accessed to by the
function length and changed by the procedure setlength (see section 2.9).
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Variables of type string may be indexed. So s[i] denotes the i-th character of the
string s and is of type char. Access to components outside the declared length
is not permitted. A change of the actual length of a string variable may only be
effected by the procedure setlength or an assignment to the string variable.

See string expressions (section 2.4.3.2) and text processing (section 2.9) for
the discussion of the use of dynamic strings.

2.3.2.7 Records

A record is a structure consisting of a fixed number of components, called fields.
Fields may be of different types and each field is given a name, the field identifier,
which is used to select it. The definition has the form:

I record FieldList end

A field list is an enumeration of fields of the form
| FieldIdentifierList: Type; ...

Each field identifier in FieldldentifierList denotes a component of the record. A field
identifier is required to be unique only within the record in which it is defined. A
field is referenced by the variable identifier and the field identifier separated by a
period:

I RecordIdentifier.FieldIdentifier

Example 2.3.19:

record

hour: 0..23;

minute, second: 0..59;
end;

record
re, im : real;
end;

var date: record month: (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);
day: 1..31;
year : integer;
end;

The component variables of the variable date are accessible by

date.month  date.day  date.year
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2.3.2.8 Records with Variants

A record may be extended by so-called variants, i.e. additional components which
are all stored in the same storage space. The programmer has to keep this space
under his control. The variants allow the passing of values without the strong type
control of PASCAL. In the type definition, the variant part is listed following the
fixed components in the form

case
TagField: { may be omitted }
TagType of
TagList: (FieldList); ... { not empty }

The tag field is actually a fixed component. It is denoted by an identifier. The tag
type is the type of the tag field and of the following tag list elements (constants
of the tag type). The types integer, boolean, char, enumeration types, and their
subrange types are permitted tag types.

An access to a variant should occur only after activation of the desired variant,
by the assignment of the corresponding value to the tag field component. If a tag
field component is missing, a variant becomes activated by the first access to one of
its components.

The components of a variant are accessed like fixed components of a record.

Example 2.3.20:
Let a variant record type TrafficSignType be defined by

type
form = (circle, rectangle, triangle);
TrafficSignType = record
serialnumber: integer;
material: (metal, synthetic);

price: real;
case figure: form of
circle:  (radius : real);

rectangle:(length, height: real);
triangle: (baseline, angleleft,
angleright: real);
end;

A variable TrafficSign declared by
var TrafficSign : TrafficSignType;
has three variants, the components of which may be accessed by

TrafficSign.figure := circle;
TrafficSign.radius := 3.5;
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or
TrafficSign.figure := rectangle;
TrafficSign.length := 7.8;
TrafficSign.height = 4.4;

or
TrafficSign.figure := triangle;
TrafficSign.baseline = b
TrafficSign.angleleft — := 18.1;
TrafficSign.angleright := 45;
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With the exception of the type string, a dynamic array type may not occur as a
component of a record.

2.3.2.9 Sets

The range of values of a set type consists of all subsets of a given basetype. Therefore,
the type definition of a set should only specify the base type:

I set of BaseType

A base type may be a subrange of integer, boolean, char, and enumeration type or
one of the last three types itself. In most implementations, the ordinal values of the
base type must be within the range 0 through 255 (0 < ord(z) < 255). An access
to elements of a set M corresponding to component variables of arrays and records
is not provided. However, a test for x € M is available

| x in M

with the result false or true.
The simplest method to generate a set is the enumeration of the desired elements
of the base type by

| [ElementList]|
The empty set is member of any set type and is denoted by [ ].

Example 2.3.21:
The values of the set type

type digitset = set of 1..3;
are the subsets
L1, (1], 121, 3], [1,2], [1,3], [2,3], and [1,2,3].

Values of the character set
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set of char
are for example
[a’,’b’)c¢’] or [a'.'z’,’0..9", 'L
The latter may also be denoted in form of a set expression:

[al.'z] + [0.797] + (U],

2.3.2.10 Files

A file consists of a sequence of arbitrarily many components of the same type.
Therefore, the type definition of a file only fixes the type of the components:

I file of ComponentType

The component type may be any type except a file type or a dynamic array type.

The number of components in a file (the actual size of a file) is not determined by
the definition of the file. It depends on the file operations applied to a file. Random
access to the components of a file in the same manner as to the component variables
of arrays and records is not available. Instead, a buffer variable of component type
is provided which is declared automatically by the declaration of the corresponding
file f. This buffer variable f1 facilitates the access to a special component of a file,
called the actual component. The actual component is determined by the preceding
file operations like reset, rewrite, put, or get:

rewrite(f) initializes f for succeeding output operations. The first component of
the file variable f is actual component. The procedure rewrite sets
eof(f) = true, and the buffer variable f1 is undefined.

put(f) assigns the value of f1 to the actual component, the following com-
ponent becomes the actual component, and eof(f) = true. The buffer
variable {7 is undefined.

reset(f) initializes f for succeeding input operations. The first component be-
comes the actual component. If eof(f) = true, then the file is empty,
and it is not possible to read anything. Thus, f1 is undefined. If eof(f)
= false, i.e. the file is not empty, then the value of the actual component
is assigned to the buffer variable.

get(f) the succeeding component of the actual component becomes the new
actual component. If eof(f) = false, then the value of the actual compo-

nent is assigned to the buffer variable f1. Otherwise, the buffer variable
f71 is undefined.

The logical function eof (end of file) returns false if the actual component is a
defined component of the file. Otherwise the result is true.

Input and output using files are sequential processes beginning at the first com-
ponent of the file. While reading, eof(f) = false must be valid. While writing, eof(f)
= true.
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Example 2.3.22:

program in_and_out;
var f : file of integer;

begin

rewrite(f); { Initialization for output }
for i:=1 to 100 do  { File f consists of }
begin { 100 components with }
ft =1 { values 1 to 100 }
put (f);
end;
reset(f); { Initialization for input }
while not eof(f) do { The components of f are }
begin
writeln (sqr(ff));  { read sequentially and }
get(f); { the squares of their values are printed }
end;
end.

2.3.2.11 Text Files

A special file type is the predefined text file type text with the component type
char. In principle, the handling of text files is the same as for other files. Since text
files usually have a line structure, text files may additionally contain end-of-line
characters which may be recognized by the logical function eoln (end of line).

If eoln(t) = true, the value of the actual component of the textfile variable ¢t is
the end-of-line character. In this case, the buffer variable f1 has the value U (blank).

The input/output procedures read, readln, write, and writeln simplify the han-
dling of text file variables. They are used with a parameter for the file variable and
with an input/output list (see section 2.5.2). If the file parameter is missing, the
standard textfile variables input and output are assumed.

Example 2.3.23:

program make_a_copy (original, copy);
{ A text is copied according to its line structure }
var

original, copy: text;

ch: char;

begin
reset (original);
rewrite (copy);
while not eof (original) do
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begin
while not eoln (original) do
begin
read (original, ch);
write (copy, ch);
end;
readln (original);
writeln (copy);
end;
end.

2.3.3 Structured Arithmetic Standard Types
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PASCAL-XSC provides the additional arithmetic built-in types complex, inter-
val, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, and
cimatrix. They have no constants and no operators within the language itself
and therefore no expressions, either. The use of operators and standard functions
requires the use of the corresponding arithmetic modules (see chapter 3).

2.3.3.1 The Type complex
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The range of complex numbers
z2=x+1y

with the real part z and the imaginary part y (i is the imaginary unit) may be
declared in PASCAL by

type complex = record re, im: real end;
In PASCAL-XSC, this type is a predefined type. The variable declaration
var z: complex;

specifies a complex variable z. The real part and imaginary part of z may be
accessed by z.re and z.im, respectively.
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2.3.3.2 The Type interval
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For real intervals
a=laa:={r€eR|a<z<a}

with lower bound a and upper bound @, PASCAL-XSC provides the predefined
type interval declared by

type interval = record inf, sup: real end;
The variable declaration
var a: interval;

specifies an interval variable a. The lower and upper bound of a may be accessed
by a.inf and a.sup, respectively:

a.inf  { access to lower bound }
a.sup { access to upper bound }

2.3.3.3 The Type cinterval
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Complex intervals are rectangles with sides parallel to the axes in the complex
plane. The predefined type cinterval is defined by

type cinterval = record re, im : interval end;
The components of the complex interval variable ¢, declared by
var c: cinterval;

may be accessed by

cre  { an interval for the real part }
cim { an interval for the imaginary part }

The component variables are intervals. The access to their real bounds may be
done by

cre.inf cre.ssup  c.im.inf c.im.sup
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2.3.3.4 Vector Types and Matrix Types

PASCAL-XSC —
For vectors and matrices with component type real, complex, interval, and cin-
terval, the following dynamic types are available:
type rvector = dynamic array [] of real;

rmatrix = dynamic array [*] of rvector;

cvector = dynamic array [*] of complex;

cmatrix = dynamic array [] of cvector;

ivector = dynamic array [] of interval;

imatrix = dynamic array [*] of ivector;

civector = dynamic array [] of cinterval;

cimatrix = dynamic array [*] of civector;

2.3.4 Pointers

All data types of ISO Standard PASCAL are static. Variables of these types are
allocated at compile time. Their number remains unchanged during execution of
the program. However, we frequently need to use a data structure which allows us
to generate and discard variables as the need arises. For this purpose, the pointer
type is provided.

A pointer variable p is a reference (the value is an address) to a variable p 1
of the referenced type. This referenced variable pT need not to be declared. It is
generated by means of the standard procedure new during execution time of the
program. The pointer variable itself is declared like any other static variable.

The type definition must specify only the referenced type:

I type PointerTypeldentifer = 1 Typeldentifier

The referenced type may be any Standard PASCAL type. In contrast to the principle
that any quantity must be declared before it is used, the definition of the referenced
type may follow the declaration of the pointer type. The values of a pointer type
are references to variables of the referenced type extended by the value nil (pointer
constant) referencing to no variable and belonging to any pointer type. The constant
nil is the only value of a pointer type that is explicitly accessible.

Example 2.3.24:

type DateType = array [1..20] of real;
DatePointer = 1 element;
element = record date: DateType;

successor: DatePointer;
end;

New variables of the referenced type are allocated with the procedure new:
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| new (PointerVariable);
Given the declarations in Example 2.3.24, then the statement
new (DatePointer);

allocates a referenced variable DatePointer? of type element. The pointer variable
DatePointer points to this referenced variable. The value of DatePointer is not
explicitly known.

If the referenced type is a record type with variants, a particular variant may be
allocated by

I new (PointerVariable, TagFieldValue);

Nested variants may be allocated by

I new (PointerVariable, TagFieldValue , - - -, TagFieldValue);

The value of a pointer expression may be assigned to a pointer variable by

I PointerVariable := PointerExpression;

with the pointer expression being the constant nil, a pointer variable, or a function

call with a result of pointer type. Functions with a result of pointer type are allowed.
Since a pointer can point to any object, functions can return pointers to arbitrary

types.

Pointer expressions may be compared by the relational operators = and <>, e.g.
p=mnil or p <>q.

When a dynamic pointer variable is no longer required by the program, the
procedure

| dispose (PointerVariable);
is used to reclaim the memory occupied by the referenced variable. Afterwards,
the value of the pointer variable and all references to the referenced variable are
undefined. Referenced variables allocated by

new (p, ml, m2, - - -, mk);
must be released by

dispose (p, m1, m2, -, mk);

At the call of dispose, the values of m1, ... , mk must be identical with the corre-
sponding values at the call of new.
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Example 2.3.25:

var
p : DatePointer;
begin

new (p);

pT.date := { value corresponding to type DateType };
pT.successor := nil;

work (p); { procedure call for further execution }

dispose(p); { release of memory that is no longer required }
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A referenced type may be any type except dynamic array types.

In addition to dispose, there is another method available to reclaim memory.
The procedure call mark (PointerVariable) assigns the value of the heap pointer
to the specified pointer variable. The subsequent procedure call release (Pointer-
Variable) (with the same unchanged pointer variable as used with mark), sets the
heap pointer to the address contained in its argument. The call release (Point-
erVariable) thus discards all dynamically allocated variables above this address.
After this, the value of the pointer variable used is undefined, and all references
to the released memory range are undefined.

Within a program and all used modules, a programmer may employ either
the dispose construct or the mark/release construct, but not both.

2.3.5 Compatibility of Types

Certain operations are only executable if the types of the corresponding operands
are compatible. Two types t; and t, are called compatible if
(a) t; and ty are the same type.

(b) ty is a subrange of ¢, t5 is a subrange of ¢, or both #; and ¢, are subranges of
the same base type.

(c) t; and ty both are set types of compatible base types, and both are either
packed or unpacked.

(d) t; and ty are (static) string types with the same length.

Moreover, the assignment compatibility of the type t; of the variable on the left-hand
side and the type t5 of the expression on the right-hand side (¢; := t5) is defined by:

(a) t; and ¢, are the same type, except a file type.
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(b) ty is type real, ty is type integer.

(c) t; and ty are compatible scalar types (except real), and the value of type ¢s is
contained in #;.

(d) t; and ty are compatible set types, and the elements of the value of type ¢, are
contained in the base type of ¢;.

(e) t; and ty are compatible (static) string types.

The assignment compatibility is also applied to the formal parameter in connection
with a call by value of a function or procedure and the corresponding actual expres-
sion in case of a procedure or function call. A formal parameter for call by reference
and the corresponding actual parameter must be compatible.

Example 2.3.26:

The declaration

type
vecl = array [1..10] of real;
vec2 = array [1..10] of real;
vecd = vecl;

causes the types vecl and vec3 to be compatible because they are the same
type, whereas vecl and vec2 are not compatible, although they have the same
structure.
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As a consequence of the dynamic types and the dynamic string concept, the
compatibility must be extended, too. These extensions are explained in the
following section.

Furthermore, a programmer may overload the assignment operator := (see
section 2.7.12) in order to explicitly extend assignment compatibility to types
which are otherwise not compatible. This “overloaded compatibility” is valid
only for the assignment statement but not for the call by value of functions and
procedures.

2.3.5.1 Compatibility of Array Types
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As in Standard PASCAL, two array types are compatible only if they are the
same types, i.e. a dynamic type is not compatible with a static type.

A value of the array type ty is assignment compatible with the variable of
array type t; on the left-hand side, if

e both types are compatible, and the lengths of the corresponding index
ranges are equal.
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Thus, the assignment statement (see section 2.5.1) is allowed in the following
cases:
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e ty is an anonymous type, and both are structurally equivalent.

A variable is called of anonymous type if there is no related type identifier
in the corresponding declaration. This may occur in the case of component
variables (subarrays) (see section 2.3.2.2).

Example 2.3.27:

With the declarations

type vector = array [1..5] of integer;
v_matrix = array [1..5] of vector;
a_matrix = array [1..5,1..5] of integer;
var a array [1..10 ] of real;
b array [1..10] of rvector[l 10];
c rmatrix[1..10, 1..10];
d vector;
e v_matrix;
f a_matrix;
the variables (or component variables)
a, b, «c¢[*2], e[x1], and {[3]
are of anonymous type, and the variables (or component variables)
b[3], «¢[2], d, e[l], and f

are of known type.

Two array types are called structurally equivalent if the component types
are the same and the index ranges are identical in number, length, and
base type. If the index ranges of an array type are not yet specified, the
length is always adequate. This is a special case for a formal parameter.

Type of left Side

Type of right Side

Assignment permitted

anonymous dynamic
known dynamic
anonymous static
known static

arbitrary array type
known dynamic
arbitrary array types
known static

if structurally equivalent
if the same type
if structurally equivalent
if the same type

In all other cases, an assignment is only possible by qualification of the array
expression of the right side:

| ArrayTypeldentifier (ArrayExpression)
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In this case, the array type identifier serves as type conversion function (see
section 2.4.3.1). Qualification, however, requires the named type and the type
of the array expression to be structurally equivalent.

Example 2.3.28:
The types poly and vec declared by

const degree = ...;
type poly = dynamic array [«] of real;
vec = dynamic array [«] of real;

are not compatible. If we have provided a vector addition operator for the
type vec, then the polynomials p and q declared by

var p, q: poly[0..degree];
can be added by means of the qualification

p := poly (vec (p) + vec (q)).

2.3.5.2 Compatibility of Strings

In Standard PASCAL, string types (called array-string types in the following) are
compatible and assignment compatible only if their lengths coincide.
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The following rules apply to the new standard type string (called string type in
the following):

e Two string types are always compatible. A string type, however, is not
compatible with any other type.

e A string value of type t; is assignment compatible with a variable of type
ty if t; is a string type and ¢, is an array-string type, a string type, or a
char type.
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2.4 Expressions

In this section, we describe the expression concept of PASCAL. For the additional
types of PASCAL-XSC, we supply the corresponding details. Moreover, we describe
how to create expressions for arbitrary, user-defined types by declaring operators and
functions with arbitrary result for these types. This user-defined expression concept
is processed according to the usual rules of priority and parenthesizing.

2.4.1 Standard Expressions

Expressions for the types integer, real, boolean, char, enumeration type, and set are
composed of operands and operators in the usual manner. All rules and properties
described for the types integer, boolean, char, and enumeration type in the following
apply in the same way to their subrange types.

The evaluation of an expression is done according to the conventional rules of
algebra for left-to-right evaluation of operators and operator precedence. An ex-
pression enclosed within parentheses is evaluated independently of preceding and
following operators. The type of the expression value is given by the operator which
is processed last. An expression is built up by

MonadicOperator
Operand { not empty }
DyadicOperator Operand

An operand is given by the alternatives

e constant
e variable
e function call

e expression, enclosed in parentheses
where a function can be predefined or user-defined.

Example 2.4.1:

Let opl, op2, op3 be operands, — a monadic operator, and +, * dyadic oper-
ators. Then, we can built up the expression

— opl + op2 * opl * op3

using three repetitions of the third line of the above syntax. Moreover, we can
replace op3 by a further expression, for example

op2 + f (opl)
where f is a function with appropriate result type. Then we get

— opl + op2 * opl * (op2 + f (opl) )
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The operators are defined only for special kind of operands. They denote different
operations depending on the operand types:

‘ Monadic Operator ‘ Operand Type ‘ Result Type ‘
+, — integer, real integer, real
not boolean boolean

Dyadic Operator ‘ Operand Type ‘ Result Type ‘
+, —, %, div, mod integer integer
/ real
+,—, %,/ integer and real real
+,—, %,/ real real
or, and boolean boolean
+ (set union), set set

— (set difference),
* (set intersection)

=,<>,<,>,<=,>= | integer, real, char, boolean, boolean
enumeration type, string

=, <>, set boolean
<= (subset inclusion),
>= (superset inclusion)

in (set membership) left operand: boolean
integer, boolean, and
enumeration type
right operand:
corresponding set type

The priority levels of Standard PASCAL are:

‘ Priority ‘ Dyadic Operators ‘ Monadic Operators
0 (lowest) | =, <>, <=, >=, <, >, in
1 +, —, or +, —
2 mod, div, %, /, and
3 (highest) not
PASCAL-XSC —

In contrast to Standard PASCAL, the monadic operators + and — have the
highest priority 3. Several monadic operators can occur in sequence.

MonadicOperator ...
Operand { not empty }
DyadicOperator Operand
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Several monadic operators in sequence are executed from right to left. In addition
to Standard PASCAL, the following operators are available:

‘ Dyadic Operator ‘ Operand Type ‘ Result Type ‘
+<, =<, x<, /< integer or real real
+>, =>, %>, /> integer or real real
+ char or string string
in left operand: string or char boolean
right operand: string

Additionally, the dyadic operator symbols %%, +%, and >< are available. They
get their predefined meaning by using the arithmetic modules (see chapter 3).
In PASCAL-XSC, the priority levels are:

‘ Priority ‘ Dyadic Operators ‘ Monadic Operators ‘
0 (lowest) | =, <>, <=, >=, <, > in, ><
1 or, +, +<, +>, —, —<, —>, ++%*
2 k, k<, x> [0 [< />0 Kk
mod, div, and
3 (highest) +, —, not

2.4.1.1 Integer Expressions

An integer expression is composed of integer operands and the operators +, —, *,
div, and mod. The operators div and mod denote the integer division and the
division remainder, respectively. The following intrinsic functions are available:

‘ Function ‘ Definition ‘

trunc (real expression) Rounding by truncation of the fractional part
round (real expression) | Rounding to the nearest integer number, i.e.

_ | trunc (r +0.5) forr >0
round (r) = { trunc (r — 0.5) forr <0
ord (O-Type expression) | Ordinal number of the parameter. The elements
of these types have the corresponding ordinal
numbers 0,1,2,...
ord (integer expression) | Identity, i.e. ord(v) = v
succ (integer expression) | Successor, i.e. succ(v) = v + 1
pred (integer expression) | Predecessor, i.e. pred(v) = v — 1
abs (integer expression) | Absolute value
sqr (integer expression) | Square, i.e. sqr(v) = v?

O-Type = boolean, char, or enumeration type

PASCAL-XSC ——
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The following additional functions with integer result are available:

‘ Function ‘ Definition ‘
loc (variable) Implementation-dependent address of the
variable
ord (pointer expression) Implementation-dependent value of the
pointer expression
-1 fora < 0
: : Sign, i.e. sign (a) = 0 fora = 0
sign (S-Type expression) 41 fora > 0
Ibound (array variable, Lower bound of an index range
integer constant)
Ib (array variable, Lower bound of an index range
integer constant)
ubound (array variable, Upper bound of an index range
integer constant)
ub (array variable, Upper bound of an index range
integer constant)
expo (real expression) Exponential part of the normalized man-
tissa (see section 2.4.1.2)

S-Type = integer, real, or dotprecision

For an array variable A, the function lbound(A,n) delivers the lower bound of
the index range of the n-th dimension. If there is no second parameter, the first
dimension is chosen. The functions Ib (for Ibound) and ub (for ubound) can be
used as short forms.

The function
ival

for conversion of a string to an integer value (see section 2.9) is provided.
An integer expression may also include user-defined operators and function
calls with integer result type.

2.4.1.2 Real Expressions

A real expression is composed of real or integer operands and the corresponding
floating point operators +, —, %, /. Using +, —, x with two integer operands causes
the integer operation to be executed. The following predefined functions are avail-
able:
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‘ Function ‘ Definition ‘
abs (real expression) Absolute value |z
sqr (real expression) Square  z?
sin (real expression) Sine  sinz
cos (real expression) Cosine  cosz
arctan (real expression) | Arc Tangent arctanx
exp (real expression) Exponential Function e®
In (real expression) Natural Logarithm Inz, z > 0

sqrt (real expression) Square Root v/z, > 0

Further implementation-dependent information about the domain and the range of
the functions can be found in the user manual of the compiler.

Example 2.4.2:
With the declarations

var X,y,v,w : real;
i, ] : integer;
the expressions
sqr(x) + sin(y+1.5)/In(sqr(v)+sqr(w)+1.2)  and
idivj+ le—10

are real expressions.

PASCAL-XSC —

PASCAL-XSC provides floating point operations with three different kinds of
roundings. The following remarks give a review of the fundamentals for the use
of these operations.

A floating point system R is characterized by a base b (for instance 2 or 10), a
finite number n of mantissa digits (for instance 13), and an exponent range with
the smallest exponent emin and the largest exponent emax (see also chapter 1).
A normalized floating point number x can be represented by

€r = iOdlden . beX,

where d; # 0, 0 < d; < b—1, and emin < ex < emax. We denote a floating
point system by R = R(b, n, emin, emax).

A floating point system (see also [28] and [24]) is not closed with respect to the
arithmetic operations +, —, %, /. That means that the mathematical operation
applied to two operands in R does not always produce a result which lies in R.
Using R(10,2,-10,10) for example, x + y with x = 0.58 and y = 0.47 delivers
1.05. This number is not an element of R, so it must be rounded to a number
in R. The best we can do is to round the exact result to one of the adjacent
numbers in R, either 1.0 or 1.1. So the result of the rounded operation is correct
up to one ulp (unit in the last place).
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The smallest local error is produced by using the rounding to the nearest float-
ing point number (1/2 ulp). In PASCAL-XSC, this implementation-dependent
rounding is accessed by the usual operations +, —, %, /. The operations with
downwardly directed rounding and with upwardly directed rounding are denoted
by the symbols +<, —<, x<, /<, and +>, —>, %>, />, respectively.

We need directed roundings if we want to compute guaranteed bounds for
the exact value of a real expression. To get a valid bound, we must be careful
to use the correct rounding mode for each operation. We must also take care to
round literal constants correctly.

Directed roundings are also used to implement an interval arithmetic. In each
interval operation, the lower bound must be rounded downward, and the upper
bound must be rounded upward.

Example 2.4.3:
In R(10,4,—5,5), the real expressions

1/3,1/<3, and 1/>3
deliver the values
0.3333, 0.3333, and 0.3334,

respectively.

If we want to compute a lower and an upper bound for the real expression
Xy — VW,

we can do this in PASCAL-XSC by evaluating
X3y =<V *x>W

and
X*¥>y —>VxI W,

The result of v - w must be rounded the opposite direction as the result of
x - v because of the intervening subtraction operator.

PASCAL-XSC provides the built-in functions succ and pred for both integer
and real arguments.

‘ Function ‘ Definition ‘

succ (real expression) | Next larger floating point number
pred (real expression) | Next smaller floating point number




50 CHAPTER 2. LANGUAGE REFERENCE

PASCAL-XSC —
The following additional mathematical functions are provided:
‘ Function ‘ Definition ‘

exp2 (real expression) Power function, base 2 27

expl0 (real expression) | Power function, base 10  10”

log2 (real expression) Logarithm, base 2 log, x

log10 (real expression) Logarithm, base 10  log,; =

tan (real expression) Tangent tanz

cot (real expression) Cotangent  cotzx

arcsin (real expression) | Arc Sine arcsinz

arccos (real expression) | Arc Cosine arccosx

arccot (real expression) | Arc Cotangent arccotx

arctan2 (real expression, | arctan2(rl,r2) = arctan (rl/r2)
real expression)

sinh (real expression) Hyperbolic Sine  sinhz

cosh (real expression) Hyperbolic Cosine  cosh z
tanh (real expression) Hyperbolic Tangent  tanh x
coth (real expression) Hyperbolic Cotangent  cothx

arsinh (real expression) | Inverse Hyperbolic Sine  arsinhz
arcosh (real expression) | Inverse Hyperbolic Cosine  arcosh
artanh (real expression) | Inverse Hyperbolic Tangent artanhz
arcoth (real expression) | Inverse Hyperbolic Cotangent — arcothz

All real arithmetic functions available in PASCAL-XSC deliver a result of maxi-
mum accuracy in the sense that there is no other floating-point number between
the exact result and the computed floating-point number (1 ulp accuracy). Fur-
ther implementation-dependent information about the domain and the range of
the functions can be found in the user manual of the compiler.

The function

rval

converts strings into real values (see section 2.9 for details). For decomposing
and composing of real numbers, PASCAL-XSC provides the functions mant and
comp (see also expo in section 2.4.1.1).

‘ Function ‘ Definition ‘
mant (real expression) Normalized mantissa m of r. The range of
m is implementation-defined.
comp (real expression, Composition of a mantissa (type R) and

integer expression) | an exponent (type I) to a real number.
The ranges of the real and integer expres-
sions are implementation-defined.
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Example 2.4.4:
The functions mant, expo, and comp satisfy the identities

x = comp ( mant (x), expo (x) ),
e = expo ( comp (m ,e) ),
m = mant ( comp (m , e) ).

Depending on the implementation, we might get

Statement | Result
m := mant (100) |lm = 0.1
e := expo (100) |[e = 3
x = comp (me)|x = 100=0.1E4+03

A real expression may also include user-defined operators and function calls with
real result type.

2.4.1.3 Boolean Expressions

Permissible operands in a boolean expression are the literal constants true and
false, variables, boolean functions, comparisons, expressions in parentheses, and the
following boolean functions:

‘ Function ‘ Definition ‘

pred (boolean expression) | Predecessor according to false < true
succ (boolean expression) | Successor according to false < true

odd (integer expression) | Returns true if the argument is an odd
number, and false if it is an even one.

eof (file variable) Returns true if the end of the file is
reached, and false if not.
eoln (text file variable) Returns true if the end of the line is

reached, and false if not.

If one of the operands is a comparison, then it has to be put in parentheses. The
symbol <> stands for # (not equal to). The relational operators <= and >= denote
the logical implication — and <—, respectively. The symbol = denotes the logical
equivalence.
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Additional built-in functions:
‘ Function ‘ Definition ‘
Ibound (array variable, integer constant) | Lower bound of an index range
Ib (array variable, integer constant) Lower bound of an index range
ubound (array variable, integer constant) | Upper bound of an index range
ub (array variable, integer constant) Upper bound of an index range

For an array variable A with index type boolean, Ibound(A,n) delivers the lower
bound of the index range of the n-th dimension. If there is no second parameter,
the first dimension is chosen. This rule also holds for ubound. Ib (for Ibound)
and ub (for ubound) can be used as short forms.

Comparisons for values of the arithmetic types
complex, interval, cinterval

and

rvector, cvector, ivector, civector,
rmatrix, cmatrix, imatrix, cimatrix

are defined in the corresponding arithmetic modules. A detailed description is
given in chapter 3 (Arithmetic Modules).

It is not possible to compare dotprecision values directly. Two dotprecision
values can be compared by subtracting them and then using the sign function:

1 for d>0
sign (d) := 0 for d=0
—1 for d<0,

where d is an expression of type dotprecision.
A boolean expression may also include user-defined operators and function
calls with boolean result type.

2.4.1.4 Character Expressions

A character expression is given by a constant, a variable, or a function call. There
are no character operators. Predefined functions with result type char are:

‘ Function ‘ Definition ‘

pred (char expression) | Predecessor

succ (char expression) | Successor

chr (integer expression) | Returns the character with the ordi-
nal value of the integer expression

The results of these char functions depend on the implementation.
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Additional predefined functions:
‘ Function ‘ Definition ‘
Ibound (array variable, integer constant) | Lower bound of an index range
Ib (array variable, integer constant) Lower bound of an index range
ubound (array variable, integer constant) | Upper bound of an index range
ub (array variable, integer constant) Upper bound of an index range

For an array variable A with its index type char, Ibound(A,n) delivers the lower
bound of the index range of the n-th dimension. If there is no second parameter,
the first dimension is chosen. This rule also holds for ubound. Ib (for Ibound)
and ub (for ubound) can be used as short forms.

A char expression may also include user-defined operators and function calls
with char result type.

2.4.1.5 Enumeration Expressions

The enumeration expression consists of enumeration constants, variables, and func-
tion calls of the built in functions pred and succ.

‘ Function ‘ Definition ‘

pred (enumeration expression) | Predecessor in the enumeration type
succ (enumeration expression) | Successor in the enumeration type

PASCAL-XSC ——
Additional predefined functions:
‘ Function ‘ Definition ‘
Ibound (array variable, integer constant) | Lower bound of an index range
Ib (array variable, integer constant) Lower bound of an index range
ubound (array variable, integer constant) | Upper bound of an index range
ub (array variable, integer constant) Upper bound of an index range

For an array variable A with an enumeration type as its index type, lbound(A,n)
delivers the lower bound of the n-th dimension. If there is no second parameter,
the first dimension is chosen. This rule also holds for ubound. Ib (for Ibound)
and ub (for ubound) can be used as short forms.
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Example 2.4.5:
type precipitation = (rain, hail, snow);
var p: precipitation;
pset: array [precipitation] of real;

p:= succ (rain); { the value hail is assigned to p }
p:= ubound (pset); { the value snow is assigned to p }

An enumeration expression may also include user-defined operators and function
calls with enumeration result type. There are no predefined operators available.

2.4.2 Accurate Expressions (#-Expressions)

PASCAL-XSC —

The usual real expressions of almost every programming language are simply
evaluated by executing each operation and immediately rounding the result to the
given real format. The problem with this kind of evaluation is that the influence
of the roundings may falsify the final result. To avoid such uncontrollable effects,
PASCAL-XSC provides the dotprecision expressions and accurate expressions.
Accurate expressions (#-expressions) are marked by the preceding #-symbol.
There are three different forms of basic accurate expressions: the dotprecision
expression

| # (real ExactExpression) { exact dotprecision result }

the real accurate expression

#x (real ExactExpression) { rounded to the nearest real number }
#< (real ExactExpression) { rounded to the next smaller real number }
#> (real ExactExpression) { rounded to the next larger real number }

and the interval accurate expression
| #+# (real ExactExpression) { rounded to the smallest enclosing interval }

The exact expression enclosed in parentheses is always evaluated exactly without
any rounding. An exact expression must be mathematically equivalent to a scalar
product (dot product) 3 u;-v;. It is built up according to the following syntactic
structure:
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4+ Summand
Operator

more of the following forms:

Summand

Only the operators + and — can be used in the exact expression. They denote
the exact (errorless) addition and subtraction of operands (summands) of one or

PASCAL-XSC —

‘ Summand

Definition

dotprecision variable
real operand

real operand * real operand
(real exact expression)

for i:= s to e sum
(real exact expression)

for i:= s downto e sum
(real exact expression)

dotprecision-variable
real operand with the alternatives

integer variable
integer constant
real variable
real constant

exact double length product of two
real operands

exact expression enclosed in paren-
theses

for-statement for summation, with
i an integer variable and s, e integer
expressions

for-statement for summation, with
i an integer variable and s, e integer
expressions

Notice: Within the exact expression,

for i:= s to e sum (EE;)

the operators +, —, * denote the exact
operations in the mathematical sense without any rounding. Therefore,
they can not be overloaded by user-defined operators.

The for-statement with sum is a short form for summation. In this state-
ment, the exact expression enclosed in parentheses may depend on the
control variable i. An expression of the form

EEs; + EEgy1 + ... + EE. 1 + EE,

with exact expressions EE; can be abbreviated by

(see also section 2.5.8.3 for-statement).

%)
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An empty loop (for-statement) corresponds to a summand with the value
zero. The same applies to downto.

The integer expressions s (start index) and e (end index) themselves must
not contain explicit #-expressions.

Example 2.4.6:

The value of the scalar product

10
s:=Y a; b
i=1

can be computed with only one rounding. Assuming the declarations

var a,b : array [1..10] of real;
s . real;
d . dotprecision;
i . integer;

this can be realized via

d = # (0);
for i:=1 to 10 do d := # (d + a[i]*bl[i]);
s := #x (d); { rounding to the nearest real number }

Using the short form, this can be done by
s := #x (for i:=1 to 10 sum (a[i]*b[i]));

Example 2.4.7:

To compute the nearest, the next smaller, and the next larger floating point
number of the value of the expression E = x %y — v x w, we can write

Enearest::#*(x*y_v*w)a
Esmaller := #< (x*xy — v* w ), and
Elarger = #> (X %y — Vv w),

respectively. The results satisfy

pred (Elarger) - Esmaller S Enearest S Elarger = succ (Esmaller>-

Notice: If literal constants are used as real operands within an #-expression,
the programmer should understand that these constants are converted into
the internal data format first. Thus, depending on the implementation,
inevitable errors may arise with the necessary conversions.
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For example, with an internal binary representation, the expression

## (0.1)

does not deliver an interval inclusion of the real number 0.1, but a point
interval corresponding to the value of the converted constant. An inclusion
for the real value 0.1 may be computed by

intval ( (<0.1), (>0.1))

(see also section 3.2).

2.4.3 Expressions for Structured Types and
Pointer Expressions

The set type is the only structured type of Standard PASCAL for which expressions
can be built up in the usual manner with operations. There are no operators in
array or record expressions. There are no file expressions or text file expressions.

PASCAL-XSC —

The operator concept of PASCAL-XSC (see section 2.7.6) enables us to declare
operators for arbitrary predefined types and user-defined types. Thus, we can
define expressions of any type.

The syntax of a general expression in PASCAL-XSC is identical to the syntax
described in section 2.4.1 on page 45 for standard expressions.

PASCAL—-XSC provides expressions for the arithmetic types complex, inter-
val, cinterval, rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, and
cimatrix. It also provides many operators and functions for these types. A de-
tailed description of these features is given in chapter 3 (Arithmetic Modules)
in the corresponding sections describing the modules C_ARI, I_ARI, CI_ARI,
MV_ARI, MVC_ARI, MVI_ARI, and MVCI_ARI.

2.4.3.1 Array Expressions

An array expression comprises no operators. It consists only of variables.

PASCAL-XSC —

In PASCAL-XSC, an array expression can be composed of user-defined opera-
tors, variables, function calls and qualification (similar to the casting in C).
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The qualification has the form

I ArrayTypeldentifier (ArrayExpression)

where the array type identifier serves as a type converting function. If the array
expression is structurally equivalent, then it is converted into the type named by
the identifier.

There are no predefined operators for operands of an array type.

Example 2.4.8:

type
vector = array [1..8] of real;
polynomial = array [0..7] of real;
var
v : vector;
p : polynomial;

p := polynomial (v);
v := vector (p);

The type converting function or qualification is used in connection with dynamic
arrays and with operators (see section 2.7.6).

A dynamic array expression has the same syntactical structure as the array
expression, except that dynamic array operands can be used.

2.4.3.2 String Expressions

There are no predefined operators or functions for strings in Standard PASCAL. A
string expression is either a string constant or a string variable.

PASCAL-XSC —
The operator + defined by

operator + (a, b : string) conc: string;

concatenates two dynamic string operands. The strings are concatenated in the
order a followed by b. The current length of the result is the sum of the current
lengths of a and b. If the maximum length of the type string is exceeded, then
the result is implementation-defined.
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The operands of + may be string constants and variables, string function calls
(for the predefined functions, see section 2.9), and string expressions enclosed
in parentheses. A character expression can be used as special kind of a string
operand.

Example 2.4.9:

var sl, s2: string [6];
s3 : string [11];

sl := "PASCAL’;
s2 := -XSC’;
$3 := sl + s2; { the value 'PASCAL-XSC’ is assigned to s3 }

2.4.3.3 Record Expressions

PASCAL-XSC —

A record expression may include user-defined operators, record variables, and
function calls with record result type. There are no predefined operators avail-
able.

2.4.3.4 Set Expressions

A set can be given by a set constructor of the form
| [ExpressionList]

The expressions in the expression list are element specifications. Such an element
specification is an expression of the base type of the set or a subrange expressed by

Expression .. Expression.

An empty expression list is permitted, so that [ ] defines an empty set.

Set constructors, set variables, set function calls, and set expressions enclosed in
parentheses can be operands in set expressions.

The operators +, —, and * denote the set union, set difference, and set intersec-
tion, respectively.

Example 2.4.10:
var set_of_vowels, set_of_consonants : set of 'a’..’z’;

set_of vowels := ['a’, 'e’, ', '0’, "u];

set_of_consonants := ['a’..’z’] — set_of_vowels;
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2.4.3.5 Pointer Expressions

A pointer expression consists of the constant nil, a pointer variable, or a pointer
function call. There are no predefined operators for pointer operands.

If the function ord is applied to an argument of pointer type, it delivers the value
of the pointer, i.e. the implementation-dependent address of the object which the
pointer references. If p is a pointer, then

PASCAL-XSC —

ord (p) = loc (p?)

2.4.4 Extended Accurate Expressions (#-Expressions)

The concept of real accurate expressions (#-expressions) based upon the type
dotprecision can be extended to the arithmetic types complex , interval, and
cinterval using the predefined operators +, —, and *. Moreover, it is possible
to form accurate expressions for vectors and matrices over the types real, in-
terval, complex, and cinterval. The corresponding exact expressions must be
mathematically equivalent to scalar products (dot products).

Notice: To use these extended #-expressions, it is necessary to include the

PASCAL-XSC —

corresponding arithmetic module (see section 3) via a use-clause.

Within the exact expression, the operators +, —, and * denote the exact
operations in the mathematical sense without any rounding. Therefore,
they can not be overloaded by user-defined operators.

The for-statement with sum can be used within the extended #-
expression. An expression of the form

EEs; + EEgy1 + ... + EE. 1 + EE,

where the EE; are exact expressions, can be abbreviated by
for i:= s to e sum (EE;)

(see also section 2.5.8.3, for statement). An empty loop (for-statement)
corresponds to a summand with the value zero. The same applies to
downto. The integer expressions s and e themselves must not contain
#£-expressions.
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2.4.4.1 +#-Expressions for the Arithmetic Types
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A real accurate expression can use scalar products of two real vectors as sum-
mands. For example, with a and b of type rvector, we can evaluate a * b and
store the exact result in a dotprecision variable. Within the accurate expression,
the operator * which is provided in the arithmetic module MV_ARI denotes the
exact computation of the scalar product.

Furthermore, accurate expressions are useful to program operations on the
types interval, complex, and cinterval (complex interval). The syntax of accu-
rate expressions of type interval, complex, and cinterval has the following form:

The interval accurate expression (with rounding to the smallest enclosing inter-
val):

#+# (real ExactExpression)
#+# (interval ExactExpression)

The complex accurate expression (with componentwise rounding to the nearest,
the next smaller, or the next larger complex number):

#x  (complex ExactExpression)
#< (complex ExactExpression)
#> (complex ExactExpression)

The cinterval accurate expression (with rounding to the smallest enclosing inter-
val):

## (complex ExactExpression)
#+# (cinterval ExactExpression)

The exact expressions within these accurate expressions are of the same syntac-
tical structure as the real exact expression, except that there are no interval-,
complex-, or cinterval-dotprecision types or variables. In general, an exact ex-
pression has the syntactical form

+ Summand
Operator Summand

where only + and — are permitted as operators.
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{real, interval, complex, cinterval}):
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Summands which can be combined by the operators + and — are (with 7,0 €

‘ Summand

Definition |

dotprecision variable

T operand

7 operand % o operand

T vector operand * vector o operand
(7 exact expression)

for i:= s to e sum
(7 exact expression)

for i:= s downto e sum
(7 exact expression)

dotprecision variable

constant, variable, function call
exact product of double length
exact scalar product of two vectors
exact expression enclosed in paren-
theses

for-statement for summation, with
i an integer variable and s,e integer
expressions

for-statement for summation, with
i an integer variable and s,e integer
expressions

Not all the summands must be of the same type. Within a cinterval accurate
expression, mixed summands of type real, complex, or interval can be used as
well. The type of the exact expression is specified by the type combination of
the summands that occur. The allowed 7- or g-operands are listed in section
2.4.4.4.

Example 2.4.11:

Assuming the declarations

var a, b . real;
ca : complex;
cib . cinterval;
v, w  : rvector[1..10];
cv, cw  : cvector|[1..10];
civ : civector[1..10];

the following accurate expressions are syntactically correct:

Acccurate Expression Result Type
#< (b +vx*xw+ for i:=1 to 10 sum (v[i])) real
#x  (ca+axb+4axca+cvkw+ cv[3] x cw[h)) complex
## (b+axb+vkw) interval
## (ca+axb+ caxcib+ cvxciv) cinterval
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2.4.4.2 #-Expressions for Vectors
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For vectors over the arithmetic types real, complex, interval, and cinterval, ac-
curate expressions can be formed analogously:

‘ Accurate Expression Type ‘ Syntax ‘

#x  (rvector ExactExpression)
rvector accurate expression #<  (rvector ExactExpression)
#> (rvector ExactExpression)
##  (rvector ExactExpression)
)
)
)
)

ivector accurate expression . .
#4  (ivector ExactExpression

#x  (cvector ExactExpression
cvector accurate expression #<  (cvector ExactExpression
#> (cvector ExactExpression
##  (cvector ExactExpression)
##  (civector ExactExpression)

civector accurate expression

The exact expression has the form

+ Summand
Operator Summand

where only + and — are permitted as operators.
Summands which can be combined by the operators 4+ and — are (with 7,0 €
{real, interval, complex, cinterval}):

‘ Summand ‘ Definition ‘
T vector operand variable, function call
7 operand x o vector operand exact product of double length
(componentwise)
T vector operand * ¢ operand exact product of double length
(componentwise)

T matrix operand * o vector operand | exact matrix/vector product (with
exact scalar product for each com-

ponent)
(T vector exact expression) exact expression enclosed in paren-
theses
for i:= s to e sum for-statement for summation, with
(7 vector exact expression) i an integer variable and s, e integer
expressions
for i:= s downto e sum for-statement for summation, with
(7 vector exact expression) i an integer variable and s, e integer

expressions
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Not all the summands must be of the same type. Within a civector accurate
expression, mixed summands of type rvector, cvector, or ivector can be used as
well. The type of the exact expression is specified by the type combinations of
the summands that occur. The allowed 7- or g-operands are listed in section
2.4.4.4.

Example 2.4.12:

Assuming the declarations

var a, b : real; M : rmatrix([1..10,1..10];
ca : complex; cM  : cmatrix[1..10,1..10];
v, w : rvector[l..10]; iM  : imatrix[1..10,1..10];
cv  : cvector[1..10]; ciM : cimatrix[1..10,1..10];
civ. : civector[1..10];

the following accurate expressions are syntactically correct:

Accurate Expression Result Type
#x+  (for i:=1 to 10 sum (M % v + a x M[x,i])) rvector
#> (ecv+vxb4+axcv+cMxw+ cMx*cv) cvector
## (v+axv+4iM xv) ivector
##  (cv 4+ M * v + ca * civ + ciM * cv) civector

2.4.4.3 #-Expressions for Matrices
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For the arithmetic matrix types, accurate expressions can be formed analogously:

‘ Accurate Expression Type ‘ Syntax ‘
Hx rmatrix ExactExpression

rmatrix accurate expression #<  (rmatrix ExactExpression
#> (rmatrix ExactExpression

## (rmatrix ExactExpression

)

)

)

. . . )
1matrix accurate expression 44  (imarrix ExactExpression)
)

)

)

#x  (cmatrix ExactExpression
cmatrix accurate expression #< (cmatrix ExactExpression
#> (cmatrix ExactExpression
##  (cmatrix ExactExpression)
## (cimatrix ExactExpression)

cimatrix accurate expression
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The exact expression again has the form

+ Summand
Operator Summand

where only + and — are permitted as operators.
Summands which can be combined by the operators 4+ and — are (with 7,0 €
{real, interval, complex, cinterval}):

‘ Summand ‘ Definition ‘
T matrix operand variable, function call
7 operand x o matrix operand exact product of double length
(componentwise)
T matrix operand * ¢ operand exact product of double length
(componentwise)

T matrix operand % o matrix operand | exact matrix product (with exact
scalar product for each component)

(7 matrix exact expression) exact expression enclosed in paren-
theses
for i:= s to e sum for-statement for summation, with
(7 matrix exact expression) i an integer variable and s, e integer
expressions
for i:= s downto e sum for-statement for summation, with
(7 matrix exact expression) i an integer variable and s, e integer
expressions

Not all the summands have to be of the same type. Within a cimatrix accurate
expression, mixed summands of type rmatrix, cmatrix, or imatrix can be used
as well. The type of the exact expression is specified by the type combination

of the summands that occur. The allowed 7-or o-operands are listed in section
2.4.4.4.

Example 2.4.13:

Assuming the declarations of example 2.4.12, the following #-expressions
are syntactically correct:

Accurate Expression Result Type
#> (for i:=1 to 10 sum (M % M)) rmatrix
#< (cM + b x cM + for i:=1 to 10 sum (cM * M)) cmatrix
## M+ axM+iM x iM) imatrix
## (cM + M % iM + ca * iM + cM * cM) cimatrix
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2.4.4.4 List of the Operands in #-Expressions
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The definition of the functions mentioned in the following list and their declara-
tions are given in chapter 3 and in a short form in the appendix.

real operand:
integer variable
integer constant
real variable
real constant

inf (interval operand) {lower bound of the interval}
sup (interval operand) {upper bound of the interval}
re (complex operand) {real part }
im (complex operand) {imaginary part}

interval operand:
interval variable

intval (real operand) {transfer function}
intval (real operand, real operand) {transfer function}
re (complex operand) {real part}
im (cinterval operand) {imaginary part}
complex operand:
complex variable {z =2+iy}
conj (complex operand) {conjugation Z = z — iy}
compl (real operand) {transfer function}
compl (real operand, real operand) {transfer function}
inf (cinterval operand) {lower bound of the complex interval}
sup (cinterval operand) {upper bound of the complex interval}

cinterval operand:
cinterval variable
conj (cinterval operand)
intval (complex operand)
intval (complex operand, complex operand)
intval (real operand, complex operand)
intval (complex operand, real operand)
compl (interval operand)
compl (interval operand, interval operand)
compl (real operand, interval operand)
compl (interval operand, real operand)

rvector operand:
rvector variable
rvector (array variable) {qualification}
inf (ivector operand)
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rvector operand: (continued)
sup (ivector operand)
re (cvector operand)
im (cvector operand)

ivector operand:
ivector variable
ivector (array variable)
intval (rvector operand)
intval (rvector operand, rvector operand)
re (civector operand)
im (civector operand)

cvector operand:
cvector variable
cvector (array variable)
conj (cvector operand)
compl (rvector operand)
compl (rvector operand, rvector operand)
inf (civector operand)
sup (civector operand)

civector operand:

civector variable

civector (array variable)

conj (civector operand)

intval (cvector operand)

intval (cvector operand, cvector operand)
intval (rvector operand, cvector operand)
intval (cvector operand, rvector operand)
compl (ivector operand)

compl (ivector operand, ivector operand)
compl (rvector operand, ivector operand)
compl (ivector operand, rvector operand)

T~ N N

—~~ N~

rmatrix operand:
rmatrix variable
rmatrix (array variable)
id (rmatrix operand)
id (rmatrix operand, rmatrix operand)
transp (rmatrix operand)
inf (imatrix operand)
sup (imatrix operand)
re (cmatrix operand)
im (cmatrix operand)
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{qualification}

{qualification}

{qualification}

{qualification}
identity matrix

y
identity matrix

y
{transposed matrix}
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imatrix operand:

imatrix variable

imatrix (array variable)

id (imatrix operand)

id (imatrix operand, imatrix operand)
transp (imatrix operand)

intval (rmatrix operand)

intval (rmatrix operand, rmatrix operand)
re (cimatrix operand)

im (cimatrix operand)

cmatrix operand:

cmatrix variable

cmatrix (array variable)

id (ematrix operand)

id (ematrix operand, cmatrix operand)
transp (cmatrix operand)

herm (cmatrix operand)

conj (cmatrix operand)

compl (rmatrix operand)

compl (rmatrix operand, rmatrix operand)
inf (cimatrix operand)

sup (cimatrix operand)

cimatrix operand:

cimatrix variable

cimatrix (array variable)

id (cimatrix operand)

id (cimatrix operand, cimatrix operand)
transp (cimatrix operand)

herm (cimatrix operand)

conj (cimatrix operand)

intval (cmatrix operand)

intval (cmatrix operand, cmatrix operand)
intval (rmatrix operand, cmatrix operand)
intval (cmatrix operand, rmatrix operand)
compl (imatrix operand)

compl (imatrix operand, imatrix operand)
compl (rmatrix operand, imatrix operand)
compl (imatrix operand, rmatrix operand)
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{qualification}

{qualification}

{Hermitian matrix}

{qualification}
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2.4.4.5 Review of General #-Expressions

Real and Complex Accurate Expressions

Syntax:

#-Symbol ( Exact Expression )
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The following tables give a complete review of #- expressions. By “special func-
tions”, we mean those listed in section 2.4.4.4.

| #-Symbol ||

Result Type |

Summands Permitted in the Exact Expression

dotprecision

variables, constants, and special function calls of
type integer, real, or dotprecision

products of type integer or real

scalar products of type real

real

variables, constants, and special function calls of
type integer, real, or dotprecision

products of type integer or real

scalar products of type real

complex

variables, constants, and special function calls of
type integer, real, complex, or dotprecision

products of type integer, real, or complex

scalar products of type real or complex

#<
#>

rvector

variables and special function calls of type rvector

products of type rvector (e.g. rmatrix * rvector, real
* rvector etc.)

cvector

variables and special function calls of type rvector or
cvector

products of type rvector or cvector (e.g. cmatrix *
rvector, real * cvector etc.)

rmatrix

variables and special function calls of type rmatrix

products of type rmatrix

cmatrix

variables and special function calls of type rmatrix
or cmatrix

products of type rmatrix or cmatrix

69




70

CHAPTER 2. LANGUAGE REFERENCE

Real and Complex Interval Accurate Expressions

| #-Symbol || Result Type |

iiia

Syntax: ## ( Exact Expression )
Summands Permitted in the Exact Expression
e variables, constants, and special function calls of
type integer, real, interval, or dotprecision
int 1 . .
mterva e products of type integer, real, or interval
e scalar products of type real or interval
e variables, constants, and special function calls of
type integer, real, complex, interval, cinterval, or
dotprecision
cinterval e products of type integer, real, complex, interval, or
cinterval
e scalar products of type real, complex, interval, or
cinterval
e variables and special function calls of type rvector or
ivector ivector
e products of type rvector or ivector
e variables and special function calls of type rvector,
civector cvector, ivector, or civector
e products of type rvector, cvector, ivector, or civector
e variables and special function calls of type rmatrix
imatrix or imatrix
e products of type rmatrix or imatrix
e variables and special function calls of type rmatrix,
) ) cmatrix, imatrix, or cimatrix
cimatrix
e products of type rmatrix, cmatrix, imatrix, or
cimatrix

PASCAL-XSC —
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2.5 Statements

In PASCAL, we distinguish between simple and structured statements. Simple state-
ments are the assignment statement, the input/output statement, the empty state-
ment, the procedure statement, and the goto-statement. Structured statements are
the compound statements, the conditional statements, the repetitive statements,
and the with-statement.

2.5.1 Assignment Statement

An assignment statement assigns the value of an expression to a variable:
I Variable := Expression

The type of the expression on the right-hand side of the assignment operator must
be assignment compatible with the variable on the left-hand side (see section 2.3.5).
The expression is first evaluated, and this value is assigned to the variable, i.e. the
value is stored into the memory location referenced on the left-hand side. The order
of access to the variable on the left-hand side and the evaluation of the expression
on the right-hand side of the statement depends upon the implementation.

Within a function, the resulting value must be assigned to the function name.
The function name is used like a variable of the result type on the left-hand side of
the assignment statement.

Example 2.5.1:

var
r, X @ real;
i, k : integer;

i:=kdiv 3+ 1;
r:=idiv k;
I =X % X + sin (x);

—e

=r % x; { !! not allowed !! }
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In PASCAL-XSC, a program may overload the assignment operator to assign a
value to a variable of noncompatible type. This assignment overloading is done

by programming the corresponding algorithm within a subroutine (see section
2.7.12).
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2.5.2 Input/Output Statements

The input and output statements read, readln, write, and writeln use data files for
input and output. These statements handle general files of type file of ..., text files
of type text, and the standard files input and output. If no file name is specified in
the corresponding statement, the standard files input (for reading) and output (for
writing) are used. In this case, input and/or output must be defined in the program
header as program parameters (see section 2.6). PASCAL files corresponding to
external files must be listed in the program parameter list.

File Opening
The standard text files input and output are automatically opened when
needed. All other files must be explicitly opened.

reset (t) The file ¢t is opened for reading. After reset(t),
t1 contains the first element of the file. If this
does not exist, then eof(t) is set to true. After
the program starts, a reset(input) is automatically
executed, eoln(input) is set to true, and inputt con-
tains a blank.

rewrite (t) The file ¢ is opened for writing. t1 represents the
first actual position to which data can be written.

Input Statements

read (t, vl, ..., vn) The values for the variables v1, ..., vn are entered
in this order from the file t. This statement corre-
sponds to the statements

read (t, v1); ... read (t, vn);

Every read (t, v) for the general file type (file of
...) is defined as

begin v :=t1; get (t); end,

This applies also to text files (text), when v is a
variable of type char. However, for integer or real
variables, a sequence of characters is entered from
the text file. This sequence must correspond to
the syntax of literal constants described in section
2.3.1, and it is converted into a number. Leading
blanks or end-of-line characters are ignored. The
reading ends when t1 cannot be a part of the num-
ber to be read (see section 2.9).

readln (t) or readln The remaining characters of the current line are
read, and the buffer is set to the beginning of the
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readln (t, vl, ..., vn)

Output Statements

write (t, el, ..., en)

73

next line (for text files only!). The procedure readln
(t) is defined as:

begin
while not eoln (t) do
get (t);
get (t);
end;

corresponds to the compound statement

begin
read (t, vl, ..., vn);
readln (t);
end;
The values of the expressions el, e2, ..., en are

evaluated and written to the file ¢ in this order.
This statement is equivalent to

write (t, el); ... write (t, en);

Every write (t, e) for the general file type (file of
...) is defined as

begin t1:=e; put (t); end;

This applies also to text files (text) when e is an
expression of type char. For an integer, real, or
boolean expression, a sequence of characters that
represents the corresponding value is written to the
text file in a standard format arranged in the nec-
essary number of lines.

An integer value is represented as a decimal num-
ber without leading zeros. A sign is given only for
negative values. A real value is represented as a
decimal floating point number with one significant
digit in front of the decimal point and leading minus
for a negative value or blank for a positive value,
and an exponential part with leading character E.

The logical values are written as true or false.
For char values, the character itself (without sin-
gle quotes) is written. For a character string, the
sequence of characters in the string is written using
the necessary number of positions.
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writeln (t) or writeln The current line is terminated. The next output
starts from beginning of the following line (for text
files only!). The procedure writeln (t) is defined as

begin
t1 := “end-of-line character”;
put (t);

end;

writeln (t, el, ..., en) corresponds to the compound statement

begin
write (t, el, ..., en);
writeln(t);

end;

page (t) All successive output is put on a new page (for text
files only!).

Format Specifications

The form in which an integer expression e is printed to a text file by write or
writeln can be controlled by a control expression w > 0 following the output
parameter e in the form

write (e : w);

The value of the integer expression w is called the minimum field width and
indicates the number of characters to be written. In general, w characters are
used to write e (with preceding blanks if necessary).

For output parameters of type real, the programmer can specify a minimum
field width w > 0 and a fractional length f > 0:

write (e : w: f);

The value of the integer expression f determines the digits in the fractional
part (after the decimal point).
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The procedures reset and rewrite can be called with a second parameter s of
type string

which assigns the external (physical) file name s to the file variable t.

reset (t, s)
rewrite (t, )
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The overloading principle available in PASCAL-XSC (see section 2.7.10) applies
also to the procedures read and write. They may be overloaded to allow calling
with an arbitrary number of parameters and format controls for built-in types
or for user defined types (see section 2.7.11).

For the input and output of real values, PASCAL-XSC provides the procedures
read and write (or readln and writeln) with an additional format control param-
eter r. This integer parameter specifies the rounding of the real value during the
input or output process.

Sometimes, the value of a variable v of type real is entered in a form which is
not exactly representable in the internal representation. The use of the statement

| read (v : 1)

rounds the quantity entered according to the value of the rounding parameter r
into the internal real format. The statement

| write (e : w: f:r)

causes the value of a real expression e to be rounded to f fractional places
during output. For both reading and writing, the parameter r has the following
meanings:

r Rounding Mode

none | to the nearest representable number

0 to the nearest representable number
< 0 | to the next-smaller representable number
> (0 | to the next-larger representable number

A rounding parameter can also be used for the conversion of real values into
strings (see section 2.9).

In order to make it possible to use the floating point output format in con-
nection with a rounding parameter, f = 0 may be used as the second format
control parameter. Furthermore, w = 0 indicates that the default floating point
output format should be used.

The rounding parameter should be used for the output of values that
were computed by directed-rounding operators to reflect the implementation-
dependent conversion into the decimal output format.
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Example 2.5.2:
var x: real;
begin
read (x : +1);
writeln (x : 11:0: =1, ", x:9:3:1);
end.
Input: L4730281356200104E-12
Value of x:  4.7302813562002E3 { mantissa length 14 }
Output: L4 .7302E+03,,4730.282
For the numeric types interval, complex, cinterval, rvector, ivector, cvector, civec-
tor, rmatrix, imatrix, cmatrix, and cimatrix, the overloading of read and write is
predefined in the arithmetic modules (see chapter 3). For new user-defined data
types, read and write can be overloaded by explicit declarations (see section
2.7.11).

2.5.3 Empty Statement

The empty statement can be used at places where syntactically a statement is nec-
essary, but no action is intended by the programmer. There is no special symbol
for the empty statement. It is recognized from context, for example, between two
symbols

. or : end or then else ete.

The empty statement is meaningfully used in connection with the goto-statement
when branching to the end of a block.

Example 2.5.3:
goto 100;

100:  { empty statement }
end;

In this book, we include an empty statement before each end so that statements
can be added to the end of a block without requiring the programmer to add a ; to
the end of the existing code.

2.5.4 Procedure Statement

A procedure statement causes the call of the named procedure with the actual
parameters replacing the formal parameters:
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Procedureldentifier
(ActualParameterList) { may be omitted }

If the procedure is declared without formal parameters, then the procedure must be
called without an actual parameter list. Otherwise, the actual parameters must be
consistent with the formal parameters in the same order. With a call by reference,
the actual parameter must be a variable of compatible type. With a call by value,
the actual parameter must be an expression that is assignment compatible to the
formal parameter. Further details are found in 2.7.1.
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PASCAL—-XSC allows a modified call by reference in connection with structured
data types (see section 2.7.9).

Example 2.5.4:

quicksort (x, 1, j); { call of a sort procedure }
primenumber(m); { call of a prime number generating procedure }

2.5.5 goto-Statement

The goto-statement indicates that further processing should continue at another
part of the program. The sequential execution of the program is broken, and pro-
cessing is continued at a labeled statement.

All statement labels must be declared in the declaration part of the corresponding
block. The declaration is:

label
LabelList; { not empty }

The goto-statement has the form:
I goto Label

The label is an unsigned integer with a maximum of four digits. The labeled state-
ment has the form:

I Label : Statement

A goto-statement may only branch to a label that marks a statement of the same
or a higher level according to the block structure of the program.
The goto-statement should be used with caution!
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2.5.6 Compound Statement
A compound statement combines a sequence of statements into a single statement:

begin
Statement; ...
end

The execution of a compound statement is analogous to the execution of the state-
ment part of a program.
Example 2.5.5:

whilei <= n do

begin
s:=s + ali];
i=1i+1
end;

2.5.7 Conditional Statements
2.5.7.1 if-Statement
The if-statement allows the selective execution of two statements:

if LogicalExpression then Statement
else Statement { may be omitted }

The execution of the if-statement causes the evaluation of the logical expression.
If the value of the expression is true, the statement after then (1st alternative) is
executed. Otherwise the statement after else (2nd alternative) is executed. The
else alternative may be omitted. This situation is handled as if the else alternative
were an empty statement.

Example 2.5.6:

ifx <=y then z:=y —x
else z:=x—1y; { positive difference of x and y }
ifx >=0 then y:=sqrt (x);

In nested if-statements, the rule applies that every else goes with the closest if.

2.5.7.2 case-Statement

While the if-statement handles only two alternatives, the case-statement allows the
execution of a statement which is chosen from arbitrarily many alternatives:

case IndexExpression of
ConstantList: Statement; ... { not empty }
end
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The first operation of the case statement is the evaluation of the index expression. If
the value of this expression is contained in one of the constant lists, the corresponding
statement is executed. If the value of the expression is not in a constant list, an
error message is given.

The index expression may be of type integer, boolean, char, or an enumeration
type. The constants in all of the constant lists must be of the same type. Successive
constants of a constant list may be abbreviated in the form of a subrange according
to the ordering of the basic types.

| Constant .. Constant

All constant lists must be disjoint.
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The case statement may contain an else-alternative immediately before end.
This alternative covers all constants which are not listed in the constant lists of
the case-statement:

I else: Statement

This else alternative is executed when the value of the index expression is not
listed in one of the constant lists.

Example 2.5.7:
case trunc (phi/90) + 1 of

1: f:= phi * r;
2: £:=90 *r;
3: f:= —(phi — 180) * r;
4: f:= — 90 x r;
else f := 0;
end;

2.5.8 Repetitive Statements
2.5.8.1 while-Statement

The while-statement allows the repetitive execution of a statement under the control
of a beginning condition:

I while LogicalExpression do Statement

The statement following do is executed as long as the logical expression has the
value true. Hence, the logical expression is evaluated before each execution of the
statement. If the value of the expression is false, the while-statement is terminated.
This can happen before the execution of Statement for the very first time.
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Example 2.5.8:

i:=n;
whilei >=1 do
begin
s:=s + ali];
i:=1i-—2
end;

2.5.8.2 repeat-Statement

The repeat-statement executes a series of statements until an end condition is
fulfilled.

repeat
Statement; ...
until LogicalExpression

The statements between repeat and until are executed repeatedly until the logical
expression evaluates to true. The logical expression is evaluated after every execu-
tion of the series of statements. This means that the sequence is executed at least
once.

Example 2.5.9:

i:=n;
repeat
s:=s + ali];
i:=1-2;
untili < 1

The two statements between repeat and until are executed at least once, no
matter what the value of n. For n = 0, the statements s:= s + a[0]; and
i:= —2 are executed.

2.5.8.3 for-Statement

The for-statement allows the repetitive execution of a statement for a known number
of repetitions:

I for ControlVariable := InitialValue to FinalValue do

Statement

or

I for ControlVariable := InitialValue downto FinalValue do
Statement
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The first action of the for-statement is to evaluate the expressions for the initial and
final value. If the final value is smaller (or, in the case of downto, larger) than the
initial value, the execution of the for statement is ended. This situation is referred
to as an empty loop. Otherwise, the control variable is set to the starting value and
the statement is executed. If the control variable is not equal to the final value,
it is incremented (or, in the case of downto, decremented), and the statement is
executed repeatedly until the final value is reached. The control variable may be
of types integer, boolean, char, or enumeration type and must be declared in the
same block as the for-statement. The initial and final values must be of compatible

types.
The expressions for the initial and the final values are only evaluated once at

the beginning of the execution of the for-statement. However, it is considered poor
programming practice to change the initial or the final value within the loop.
Within the statement after the do, the control variable may not occur

e on the left-hand side of an assignment statement,

e as an actual parameter for a formal var-parameter of a subroutine call,
e as an input parameter of a read statement, or

e as a control variable in a further for-statement.

On exit from the for-statement, the value of the control variable is considered un-
defined.

Example 2.5.10:

fori:=1tondos:=s+ ali;
for i := n downto 1 do s := s + alil;

A variation of the step length can only be accomplished through additional and
explicit programming.

Example 2.5.11:

fori:=1tondos:=s+ a[2xi];

2.5.9 with-Statement

The with-statement facilitates working with records by allowing an abbreviated
notation for the record components. The with-statement has the form

I with RecordVariableList do Statement

The list can contain more than one variable after the reserved word with, for ex-
ample:

with rl, r2, ..., rn do statement;

This corresponds to the nesting of the with-statements
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with rl do with r2, ..., rn do statement;
So, it suffices to explain the execution of the with-statement
with r do statement;

which is equivalent to the execution of the statement after the do using the record
components of r. The advantage of the with-statement is that the components of r
can appear without the prefix r. in this statement.

Example 2.5.12:

type date = record day: 1..31;
month: (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);
year: integer;
end;
var birthday: date;

begin

with birthday do

begin
day := 4;
month := Dec;
year := 1960;
end;

end.
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2.6 Program Structure

A program consists of a program header, a declaration part, and a statement part
(body) between begin and end. The program header contains the name of the
program that is specified after the reserved word program, and optionally the
program parameters, i.e. the names of the external files used (especially input and
output).

program Name
(ProgramParameterList)  { may be omitted }
Declaration; ...

begin
Statement; ...

end.

The statement part describes the processing steps (algorithm) which are executed
by the computer. All objects appearing in this part that are not predefined standard
objects must be defined in the declaration part. In Standard PASCAL, the order of
the declaration sections is: label declaration part, constant declaration part, type
declaration part, variable declaration part, and finally the procedure and function
declaration part.

When coding the program, note the following rules for the use of separating
symbols:

e No separating symbol may occur within a name, number, reserved word, or a
two-character symbol (e.g. <=, :=).

e Identifiers, numbers, or reserved words immediately following one another
must be separated by at least one separating symbol.

The separating symbols are the blank space (LI), a tab character, a new line, or a
comment, which appears within braces “{”, “}”.

The execution of the program causes the processing of the declarations in the
given order. Then, the execution of the statements begins with the physically first
statement. After each statement, the following statement is executed. Normally,
this is the physically next statement, but this is not necessarily the case in goto
and structured statements.

PASCAL-XSC —

An executable program consists of a main program, as in Standard PASCAL,
and possibly of a number of modules, which are introduced by a use-clause in
the main program itself or in a used module.
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In the main program, objects can appear that are

e predefined,
e defined or declared in the main program, or

e globally defined in used modules.

A main program has the form:

program Name
(ProgramParameterList)  { may be omitted }

UseClause; ...

Declaration; ...
begin

Statement; ...
end.

A program first executes the used modules. Then, the processing continues with
the execution of the declarations in the main program and finally, the execution
of the statements, as in Standard PASCAL.

The declarations preceded by label, const, type, var, function, proce-
dure, priority, or operator may appear more than once and in any order.
An identifier must be declared or defined before it is used (except see pointers,
section 2.3.4).
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2.7 Subroutines

Special parts of algorithms in PASCAL may be declared and called as procedures or
functions. The purpose of a function is to execute an algorithm and return a single
result of type integer, real, boolean, char, an enumerated type, or a pointer type. A
procedure is an algorithm which can return any number of parameters with each of
them possibly having a different type. The declaration of procedures and functions
occurs immediately before the statement part of a program.

PASCAL-XSC —

As a further extension to subroutines, PASCAL-XSC has the option to declare
operators whose result, like that of a function, can be of any type. Procedures,
functions, and operators can be declared anywhere within the declaration part
of a program.

2.7.1 Procedures

The form of a procedure declaration is very similar to that of a program:

procedure Name
(FormalParameterList) { may be omitted }
I
Declaration; ...
begin
Statement; ...
end;

The formal parameter list describes those objects of the procedure which serve as
input and output parameters. Formal parameters can be variables, procedures, or
functions. The specification of parameters has the form:

var { may be omitted }
IdentifierList: TypeSpecification

If the reserved word var precedes an identifier or an identifier list, then the listed
variables are used for a call by reference (variable parameters) when the procedure
is called. Otherwise, the variables are used for a call by value (value parameters).

The specification of procedures and functions is given by a corresponding pro-
cedure or function header along with the formal parameters and the type of the
function. The sections of the formal parameter list are each separated with a semi-
colon (;). There are no limits to the length and the order of the list.

In contrast to declarations, the type specification for formal parameters may
contain a conformant array scheme:
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I array [IndexRangeList] of TypeSpecification
with index ranges of the form
I Identifier..Identifier : Type

and the separating symbol ; in the index range list. A conformant array scheme
leaves the index bounds of the formal argument indeterminate until the procedure
is called. The identifiers that are specified in this scheme can be used to access to
the index bounds inside the procedure.

The statement part of the procedure contains the program statements that im-
plement the algorithm. These statements can be formulated using

e formal parameters,
e local objects of the procedure (i.e. objects declared within the procedure), and

e non-local objects of the procedure (i.e. objects of the encompassing program
or procedure).

Example 2.7.1:

type
fraction = record N, D : integer end;

procedure readfraction (var b: fraction);
begin
write ("Numerator = ’); read (b.N);
write ('Denominator = "); read (b.D);
end;

procedure addfraction (a, b: fraction; var g: fraction);
begin
g.N:=aN % b.D + b.N x a.D;
g.D:=a.D % b.D;
end;

The call of a procedure is given by a procedure statement:

Procedureldentifier
(ActualParameterList) { may be omitted }

A procedure statement handles the parameter list in the manner described below
and then executes the statement part of the called procedure.

e The actual parameters are related to the formal parameters in the given order.
With a call by reference, the rules of type compatibility are applied. With a
call by value, the rules of assignment compatibility are applied (see 2.3.5).
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e The formal parameters representing variables for a call by reference are used
to access the corresponding actual parameters during the execution of the
procedure.

e For the formal parameters representing variables for a call by value, memory
is allocated, and the values of the actual parameters (expressions) are assigned
to them before the statement part of the procedure is executed.

e During the execution of the procedure, formal procedure and function param-
eters serve as names for the corresponding actual procedures and functions.

PASCAL-XSC —

PASCAL—-XSC allows a modified call by reference in connection with structured
data types (see 2.7.9).

Example 2.7.2:

var
a, b, g : fraction;
begin
readfraction (a);
readfraction (b);
addfraction (a, b, g);

end.

In the statement part of a procedure, local and non-local subroutines may be called.
A procedure may call itself (recursion). This recursive call may occur directly
or indirectly. Fundamentally, the called procedure must be declared before it is
called. This declaration can be accomplished incompletely by the use of a forward
declaration (see section 2.7.8).

PASCAL-XSC —

Instead of the conformant array scheme, the more powerful concept of dynamic
arrays is available (see section 2.3.2). Through the use of a dynamic type for
a formal parameter, the index range remains indeterminate until the procedure
is called with actual parameters. The access to the index bounds within the
procedure body is managed through the use of the functions Ibound and ubound.
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Example 2.7.3:

type dynvector = dynamic array [«] of real;

procedure vecadd (var x, y, res: dynvector);
{ equal index bounds for x, y, res are assumed }
var i: integer;

begin
for i:= lbound(x) to ubound(x) do
res[i] := x[i] + yli]
end;

The call of the procedure vecadd can only occur with vectors of type dyn-
vector. Using this implementation, the index ranges of the actual param-
eters x and y must match with the index range of the actual parameter
res.

In this example, x and y are specified as var parameters to save the
storage which would be required for copying a call-by-value parameter (see
section 2.7.9).

If a function which returns a result of a dynamic type appears as a formal pa-
rameter in a procedure, then the function header may only contain the name of
the dynamic type without the index bounds.

2.7.2 List of Predefined Procedures and
Input/Output Statements

The following predefined procedures and input/output statements are available in
Standard PASCAL:

Allocation and Release of Referenced Variables:

new (PointerVariable)

new (PointerVariable, TagFieldValue, ..., TagFieldValue)
dispose (PointerVariable)

dispose (PointerVariable, TagFieldValue, ..., TagFieldValue)

Reading and Writing on File Variables:

reset (FileVariable)

get (FileVariable)

read (FileVariable, Variable, ..., Variable)
readln (TextFileVariable, Variable, ..., Variable)
rewrite (FileVariable)

put (FileVariable)
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write (FileVariable, Variable, ..., Variable)
writeln (TextFileVariable, Variable, ..., Variable)
page (TextFileVariable)

PASCAL-XSC —
The PASCAL-XSC extensions are:

Allocation and Release of Referenced Variables:
mark (PointerVariable)
release (PointerVariable)
Reading and Writing on File Variables:
reset (FileVariable, StringExpression)
rewrite (FileVariable, StringExpression)
Changing the Actual Length of String Variables:
setlength (StringVariable, IntegerExpression)

2.7.3 Functions

A partial algorithm that delivers only one result of a simple type (integer, real,
boolean, char, an enumeration type, or a pointer type) can be formulated as a
function in place of a procedure:

function Identifier
(FormalParameterList) { may be omitted }
: Type;

Declaration; - - -

begin
Statement; - - -

end;

The result of a function is returned by the name of the function, and not by a formal
parameter. The type of the function (or of the function result) is specified following
the formal parameter list after the colon (:). The function value must be assigned to
the name of the function in the statement part of the function. Thus, the function
name may appear on the left-hand side of the assignment statement.

The appearance of the function name on the right hand side of an assignment
statement is a recursive call of the function. All other rules for the declaration of
functions are analogous to those for procedures.

The calling of a function has the form

Functionldentifier
(ActualParameterList) { may be omitted }
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and serves as an operand in an expression. The evaluation of the expression is
interrupted, parameters are handled as described for procedures on page 86, the
statement part of the function is executed, and the value computed within the
function is assigned to the function identifier. Then, the evaluation of the expression
is continued by using the function result in place of the function call.

PASCAL-XSC —

PASCAL-XSC allows a modified call by reference in connection with structured
data types (see section 2.7.9).

In the statement part of a function, local and non-local subroutines may be called.
The use of the function itself is a recursive execution of the function. The recursive
call can occur either as a direct call or as an indirect call from another function.
Fundamentally, the called function must be declared before it is called. This decla-
ration can be accomplished incompletely by the use of a forward declaration (see
section 2.7.8).

2.7.4 Functions with Arbitrary Result Type

PASCAL-XSC —

PASCAL-XSC removes the restriction of function result types to integer, real,
boolean, char, an enumeration type, or a pointer type. A function result may
be of any structured type. The assignment to the function result may be done
componentwise or by assigning the entire structure as a unit. For a record type,
the use of the with-statement for the function result is also possible.

Example 2.7.4:

type mycomplex = record re, im : real end;

function mycompladd (y, w: mycomplex) : mycomplex;
begin
mycompladd.re := y.re + w.re;
mycompladd.im := y.im + w.im;
end;

Furthermore, a dynamic type can be used for the function result. The index
bounds of the dynamic result are specified by expressions that must be able to
be evaluated before the execution of the function body.
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Example 2.7.5:

type dynvector = dynamic array [«] of real;
function vecadd (x, y: dynvector) :
dynvector [Ibound(x)..ubound(x)]; {function type}

{ the same index bounds for x and y are assumed }

var i: integer;

begin

for i:= lbound(x) to ubound(x) do
vecadd[i] := x[i] + yli];
end;

If a function with a dynamic result appears as a formal parameter of a procedure,
then the function header may only contain the name of the dynamic type without
the index bounds.

2.7.5 List of Predefined Functions

Here are the predefined functions of Standard PASCAL, grouped according to the
allowed parameter types. The types of the function results are given in braces.

Parameter type integer, boolean, char, enumeration type

ord (Expression) { integer }
succ (Expression) { Parameter type }
pred (Expression) { Parameter type }
Parameter type integer
odd (Expression) { boolean }
chr (Expression) { char }
Parameter type integer, real
abs (Expression) { Parameter type }
sqr (Expression) { Parameter type }
sqrt (Expression) { real }
exp (Expression) { real }
In (Expression) { real }
arctan (Expression) { real }
sin (Expression) { real }
cos (Expression) { real }
round (Expression) { integer }
trunc (Expression) { integer }

Parameter type File
eof (FileVariable) or eof { boolean }
eoln (TextFileVariable) or eoln { boolean }
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The PASCAL-XSC extensions are:

Arbitrary parameter type
loc (Variable)

Parameter type Pointer
ord (P Expression)

Parameter type integer, real, dotprecision
sign (Expression)

Parameter type real
succ (R Expression)
pred (R Expression)
exp2 (R Expression)
expl0 (R Expression)
log2 (R Expression)
log10 (R Expression)
tan (R Expression)
cot (R Expression)
arcsin (R Expression)
arccos (R Expression)
arccot (R Expression)
arctan2 (R Expression, R Expression)
sinh (R Expression)
cosh (R Expression)
tanh (R Expression)
coth (R Expression)
arsinh (R Expression)
arcosh (R Expression)
artanh (R Expression)
arcoth (R Expression)

Parameter type Array
Ibound (ArrayVariable, I Constant)
Ib (ArrayVariable, I Constant)
Ibound (ArrayVariable)
b (ArrayVariable)
ubound (ArrayVariable, I Constant)
ub (ArrayVariable, I Constant)
ubound (ArrayVariable)
ub (ArrayVariable)

{ integer }

{ integer }

{ integer }
{ Result type real }

{ Result type: Array index type }
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Parameter Type integer, real { Result type string }
image (I Expression)

image (I Expression, I Expression)

image (R Expression)

image (R Expression, I Expression)

image (R Expression, I Expression, I Expression)

image (R Expression, I Expression, I Expression, I Expression)

Parameter Type string

ival (ST Expression) { integer }
ival (ST Expression, ST Variable) { integer }
rval (ST Expression) { real }
rval (ST Expression, ST Variable) { real }
rval (ST Expression, I Expression) { real }
rval (ST Expression, I Expression, ST Variable) { real }
length (ST Expression) { integer }
maxlength (ST Variable) { integer }
pos (ST Expression, ST Expression) { integer }
substring (ST Expression, I Expression, I Expression) { string }

Additional predefined functions for the data types complex, interval, cinterval,
rvector, cvector, ivector, civector, rmatrix, cmatrix, imatrix, and cimatrix are
provided in the modules C_ARI, [_.ARI, CI_.ARI, MV_ARI, MVC_ARI, MVI_ARI,
and MVCI_ARI (see chapter 3).

2.7.6 Operators

PASCAL-XSC —

PASCAL-XSC lets the programmer define subroutines in the form of operator
declarations. We have two different kinds of operators, i.e. operators with result
and operators without result. The assignment operator := is the only operator
without result. Its definition and overloading is described in detail in section
2.7.12.

A programmer may define unary and binary operators with arbitrary operand
type and arbitrary result type. User-defined operators may be used in expressions
interchangeably with built-in operators. User-defined operators are declared in
a form similar to a function declaration.
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The declaration is

operator MonadicOperator (FormalParameter)
Resultldentifier: TypeSpecification;
Declaration; ...
begin
Statement; ...
end;

or

operator DyadicOperator (FormalParameter, FormalParameter)
ResultIdentifier: TypeSpecification;
Declaration; ...
begin
Statement; ...
end;

Thus, unary operators have exactly one operand, and binary operators have
exactly two operands. The result identifier takes the place of the function identi-
fier. The assignment to the result must occur in the operator body. The formal
parameters are listed in the form

var { may be omitted }
Identifier: TypeSpecification

If both operands have the same type and both are either reference or value
parameters, the specification may be shortened to

var { may be omitted }
Identifier, Identifier: TypeSpecification
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The programmer may overload the names of the monadic operators
+, —, not (priority 3)

and the dyadic operators

= <>, <=, >=, <, >, in, >< (priority 0)
+, +<, +>, —, —>, =<, +x*, or (priority 1)
x, x<, %>, [, /<, />, *x, mod, div, and (priority 2)

Furthermore, an
Identifier

defined by the user may be introduced as a new operator symbol. A new operator
identifier must first occur in a priority definition:

I priority Identifier = PrioritySymbol,; ...

This definition fixes the priority of the new identifier corresponding to the sym-
bols =, +, %, and 1. The priority symbols =, 4, and % correspond to binary
operators with priority 0 (=), 1 (+) and 2(x), whereas the symbol 1 corresponds
to a monadic operator with priority 3.

We speak of overloading of an already existing operator if the declaration
is given with alternate operand types. Hence, various overloaded operators can
be distinguished by their operands. For example in Standard PASCAL, the
operator + is already overloaded (on the one hand for integer addition, on the
other hand for real addition). In Example 2.7.6, we overload the operator + to
provide addition of vectors. If a given operator becomes redefined with the same
operand types (concealment), the existing operator is hidden. In this case, the
operator symbol has a new meaning for the same operand types for which it was
previously defined. The old meaning is hidden according to the underlying block
structure (see section 2.7.10).

Example 2.7.6:

type
mycomplex = record re, im : real end;
dynvector = dynamic array [«] of real;
operator * (z, w: mycomplex) complmult: mycomplex;
begin
complmult.re := z.re x w.re — z.im * w.im;
complmult.im := z.re x w.im + z.im % w.re;
end;
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operator + (x, y: dynvector) vecadd: dynvector [Ib(x)..ub(x)];
{ the same index bounds for x and y are assumed }
var i: integer;
begin
for i:= lbound(x) to ubound(x) do
vecadd[i] := x[i] + yli];
end;
priority xor = +; { exclusive or }
operator xor (a, b: boolean) exor: boolean;
begin
exor := a <> b;
end;

A monadic operator is used or “called” within an expression by
I OperatorSymbol ActualParameter

a dyadic operator by

I ActualParameter OperatorSymbol ActualParameter

Like functions, operators can only occur within expressions. The evaluation of
the expression containing the operator is interrupted, the actual parameters are
handled as described in connetion with procedures on page 86, and the statement
part of the operator is executed. Finally, the evaluation of the expression is
continued using the result of the operator instead of the operator call.

PASCAL-XSC permits a modified call by reference in connection with struc-
tured types (see section 2.7.9).

Example 2.7.7:

var
complex_1, complex_2, complex_3, complex_4 : mycomplex;
vector_x, vector_y, vector_z : dynvector [1..100];
boolean_1, boolean_2, boolean_3 : boolean;

begin
complex_4 := complex_1 * complex_2 * complex_3;
vector_z := vector_x + vector_y;
boolean_3 := boolean_1 xor boolean_2;

end.

The statement part of an operator may contain calls to local or non-local sub-
routines, including the operator itself. This recursive call may be affected either
directly or indirectly. An operator always must be declared before it is used. This
declaration may also be done incompletely in form of a forward-declaration (see
section 2.7.8).
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2.7.7 Table of Predefined Operators

PASCAL-XSC —

The predefined operators of PASCAL and the extensions of PASCAL-XSC are
listed in the following table. The additional operators provided in the arithmetic
modules for the arithmetic types complex, interval, cinterval, rvector, cvector,
ivector, civector, rmatrix, cmatrix, imatrix, and cimatrix are not listed here.
The corresponding tables are given in chapter 3 and in appendix B.4.

right
et NOperand | integer real boolean | char | string set
Operand
monadic +, — +,— not
o,o<,o>, 0. 0<. 0>
integer div, mod, | ”’ \/’ ’ in
V
0,0<,0> 0,0<,0>
real 2 3 3 2 3 2
\% \%
or, and,
boolean =, <>, in
<:’ >=
_|_
+ .
char Vv in
V .
in
_|_
strin + Vv
& v .
in
+7 —y ¥k,
set =, <>,
<:’ >=
enumeration .
in
type

Predefined Operators of PASCAL-XSC

SIS {_I'a ] *7/}
VE = <>, < <=, >, >=}
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2.7.8 forward- and external-Declaration

PASCAL-XSC —

The forward-declaration allows routines to be called mutually or recursively.
This incomplete declaration of procedures, functions, or operators is given by
the head of the procedure, function, or operator followed by the reserved word
forward instead of the body of the procedure, function, or operator. The com-
plete declaration of such a subroutine must occur in the same declaration part.
This complete declaration is also introduced with the reserved word procedure,
function, or operator and the corresponding identifiers. In contrast to Stan-
dard PASCAL, the formal parameter list, the result identifier (for operators),
and the result type specification (for functions and operators) must be listed
once again.

An external-declaration allows separately compiled procedures, functions,
or operators written in a different language or in assembler to be linked. The
reserved word external appears instead of the declaration part and body of the
routine. Optionally, a string constant may follow. The identifier of the external
subroutine is either the identifier of the procedure or function, the result identifier
(for operators), or the value of the string constant following the reserved word
external. This means that external subroutines may be overloaded, because the
same internal name can be used for different external routines. The specification
of the formal parameter list only serves for the syntactical control of the subrou-
tine calls. A detailed description of the use of external subroutines in connection
with external is given in the implementation-dependent user manual.

2.7.9 Modified Call by Reference for Structured Types

PASCAL-XSC —

Usually, operators and functions are used in a nested way. Within an expression,
operators or functions are called repeatedly. Thus, expressions should be permit-
ted as actual operands or as actual parameters. In the strict sense of PASCAL,
this means that the formal operands and formal parameters must be declared
and used as value parameters, because otherwise no expressions can take the
places of the parameters. So, the use of the operator or the call of the function
causes local memory to be allocated for the copies of the actual parameters. This
is very inefficient with large structured types.
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To avoid this, PASCAL-XSC allows a modified call by reference for structured
types. The actual parameters corresponding to formal var-parameters may be
given by expressions. During execution of the routine, the formal var-parameter
is used as an access to the anonymous auxiliary quantity allocated by the compiler
during evaluation of the expression and containing the value of the expression.

Example 2.7.8:
With the declarations

const

n = 100;
type

matrix = array [1..n, 1..n] of real;
var

ml, m2, m3, m4, m5 : matrix;
operator + (var a, b: matrix) resplus : matrix;

var i, j: integer;

begin

for i:= 1 ton do
for j;=1ton do
resplusli,j] := ali,j] + bi,j];

end;
function component sqr (var a: matrix) : matrix;

var i, j: integer;

begin

for i:= 1 ton do
for j;=1ton do
component_sqr[i,j] := sqr (afi,j]);
end;

an assignment statement of the form
ml := ml + m2 + component_sqr (m3 + m4 + mb);

is permitted.
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2.7.10 Overloading of Procedures, Functions, and
Operators

PASCAL-XSC —

PASCAL-XSC procedures, function and operators are identified by their names
(symbols) and by number, type, and order of parameters. Thus, in contrast to
Standard PASCAL, several procedures, functions, and operators with the same
name may be defined within a block, as long as the compiler can distinguish
them by their parameters. This feature is called overloading of the identifiers.
In Standard PASCAL, an exponential function for complex numbers must be
declared by the use of a name different from exp, which is used for the predefined
real function. In PASCAL-XSC, however, the predefined function identifier exp
may be overloaded for use with parameters of user-defined types.

Example 2.7.9:

type complex = record re, im : real end;

function exp (¢ : complex) : complex;
begin
exp.re:= exp (c.re) x cos (c.im);
exp.im:= exp (c.re) x sin (c.im);
end;

The real function exp is called with the real parameter c.re within the
body. Hence, this is not a recursive call of the newly defined function exp.

The following rules apply to the overloading of procedures, functions, and oper-
ators (called routines in the following):

e The formal parameter lists of overloaded routines must be different, i.e. the
parameters must not agree in number, type, and order simultaneously. In
this context, the difference between value- and var-parameter is insignifi-
cant. Compatible types are handled as the same types.

e The result type of functions and operators is not significant for the identi-
fication.

e Functions may be overloaded only by functions, operators only by opera-
tors, and procedures only by procedures.

e Within the same block, a routine identifier may not be used as identifier
for a constant, a variable, or a type simultaneously.
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The rules of concealment are the same as in Standard PASCAL. An identifier
is concealed if the same identifier is declared in an inner block. Routines of
the outer block are not concealed if they are overloaded in the inner block with
different parameter lists. The following rules apply to the call of an overloaded
subroutine:

e A call by reference requires the actual parameters to be compatible with
the formal parameters.

e A call by value requires the actual parameters to be assignment compatible
with the formal parameters. If no routine with parameters of compatible
type is available, then the assignment compatible actual parameters may
be converted automatically. This context assumes the strict interpretation
of the assignment compatibility, i.e. an overloading of the assignment op-
erator does not make the corresponding types assignment compatible for
the automatic conversion (see section 2.3.5 and section 2.7.12).

If a routine call matches several overloaded procedures, functions, and operators,
then the ambiguity is resolved as follows. If there is a routine whose formal
parameters exactly match with the actual parameters of the call (concerning
reference and value parameters), then this one is chosen. If this is not the case,
then a routine is chosen that allows assignment of the actual value parameters
to formal reference parameters (see also section 2.7.9) without conversion of
conforming type. Otherwise, the routine is chosen which has the first parameter
whose type is compatible, and not merely conforming.

Example 2.7.10:

operator +x (a: integer; b: real) ir_res: real;
operator +x (a: real; b: integer) ri_res: real;

var
i: integer;
r, res : real;

res:= 1 +x*r; { Ist operator is used }
res:=r1 +x* i; { 2nd operator is used }
res:= i +x*1i; { 1st operator is used }
res:=r +x* r; { assignment not possible }

In the third assignment statement, neither the first nor the second operator
matches exactly. Either one could be used by converting the integer i to a real
number. According to the rule above, we choose the first operator because its
first operand is an integer.
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2.7.11 Overloading of read and write
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The overloading described in the preceding section also applies to the procedures
read and write. Since these procedures have some special features in Standard
PASCAL, the concept of overloading has been modified for these input/output
routines.

In section 2.5.2, we mentioned that read and write in connection with text
files permit

e an optional first parameter of type text,
e an arbitrary number of different parameters, and

e optional format specifications following an input/output element separated
by a colon.

By overloading of read and write in PASCAL-XSC, these features are also sup-
ported for user-defined input/output procedures. We must consider some rules
for the declaration and call.

Declaration

The first parameter of a newly declared input/output procedure must be a var-
parameter of type text or of any arbitrary file type. The second parameter
represents the quantity to be input or output, and must not be a file type.
All following parameters are interpreted as format specifications for the second
parameter.

Example 2.7.11:

type interval = record inf, sup : real end;
procedure write (var f: text; int: interval; m, n: integer);
Call

The file parameter may be omitted when calling an overloaded input/output
procedure. This corresponds to a call with the standard file input or output.
If a file parameter is given, the second actual parameter (otherwise the first)
is the input/output object. The format parameters for this parameter follow,
separated by a colon.
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Example 2.7.12:

With int of type interval and f of type text, the output procedure declared
above may be called by

write (int : 10 : 5); or write (f, int : 12 : 6);

Several input statements or output statements can be combined to a single state-
ment as in Standard PASCAL.

Example 2.7.13:

With a real variable a, the statement
writeln (f, a: 20 : 9, int : 50 : 10, true : 4);
is equivalent to the statements

write (f, a: 20 : 9);
write (f, int : 50 : 10);
write (f, true : 4);
writeln (f);

For each of these write-calls, the compiler is looking for a user-defined procedure
with corresponding parameters interpreting every colon as a comma. If there is
no such procedure available, the standard input or output procedure is used, if
possible.

To supply the input or output for various number of format parameters, the
user must implement a procedure for every number of format parameters (see
Example 2.7.15).

Example 2.7.14:

If we do not want to specify the rounding of real numbers by the inte-
ger parameter as usual, we could implement the following procedures for
example:

procedure write (var f: text; r: real;
w, n: integer; rd: boolean);

begin
if rd then
write (f, r: w:n: +1)
else
write (f, r: w:n: —1);

end;
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Example 2.7.15:
Further variants of the format specification:
procedure write (var f: text; r: real;
w: integer; rd: boolean);
begin
write (f,r: w: 0: rd)
end;
procedure write (var f: text; r: real; rd: boolean);
begin
write (f, r: 20: 0 : rd)
end;

With these declarations, the output of the real expressions a, b, ¢ can be
done by

writeln (output, a: 10 : 5 : true, b : 10 : false, ¢ : true);

A final example demonstrates the universal applicability of overloading of read
and write.

Example 2.7.16:

const
formatl =[]’
format2 = '<>’;
format3 ="()’;

procedure write (var f: text; int: interval; parenth: string);
var |, r: char;
begin
l:= parenth[1];
r:= parenth[2];
write (f, 1, int.inf : 20 : 13, )", int.sup : 20 : 13, r);
end;

With these declarations, intervals may be written in different forms:

with  write (int : formatl); in the form [..., ...]
with  write (int : format2); in the form <...,...>
with  write (int : format3); in the form (...,...)

Using the possibilities of overloading, even format specifications similar to
those of FORTRAN may be realized.
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2.7.12 Overloading of the Assignment Operator :=
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The programmer can overload the assignment operator := as an operator with
no result. The overloaded assignment operator makes it possible to use a math-
ematical notation for algorithms or programs. Thus, the assignment may be
defined for types that are not assignment compatible.

The declaration has the form

operator := (FormalOperandl, FormalOperand2);
Declaration; ...
begin
Statement; ...
end;

which is very similar to the declaration of a procedure. The main difference be-
tween the above declaration and the declaration of operators described in section
2.7.6 is that there is no result identifier and no type specification. Moreover, the
formal operand 1 must be specified by

I var Identifier : TypeSecification

whereas the formal operand 2 can be specified by

var { may be omitted }
Identifier : TypeSpecification

The algorithm for passing the right side (operand 2) to the left side (operand 1)
is usually expressed in the statement part of the assignment operator. In general,
the var-parameter operand 1 is the parameter returned from this operator.

An overloaded assignment operator is used in the usual assignment statement:

I Variable := Expression

Now, the left and right sides of the assignment statement are to be considered to
be assignment compatible according to the type combinations of the overloading
(see section 2.3.5).

This new assignment compatibility is not extended to the call by value of
subroutines (see section 2.7.10 on page 101).
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In the following example dealing with intervals and vectors, we demonstrate how
the work with numbers of embedded spaces or the initialization of vectors or
matrices is simplified by using overloaded assignment operators.

Example 2.7.17:

var
X : interval;
iv : ivector[l..n];
im : imatrix[l..n,1..nj;

operator := (var x: interval; r: real); { Opl }
begin
x.inf :=r;
X.Sup = T;
end;
operator := (var iv: ivector; r: real); { Op2 }
var i: integer;
begin
for i:=1b (iv) to ub (iv) do
iv[i] := r; { call of Opl }
end;
operator := (var im: imatrix; r: real); { Op3 }
var i : integer;
begin
for i:= Ib (im) to ub (im) do
im[i]:= r; { call of Op2 }
end;

x := 5.3; { call of Opl delivers point interval }
iv 0;  { call of Op2 delivers interval zero vector }
im:= 0; { call of Op3 delivers interval zero matrix }




2.8. MODULES 107

2.8 Modules
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In Standard PASCAL, a program can only be given as one single program text
that must be completely written before it can be compiled and executed. In
contrast to this, PASCAL-XSC allows the splitting of a program in several parts
called modules which can be developed and compiled separately.

Modules are collections of procedures, functions, operators, affiliated constant
and type definitions, and variable declarations. Modules are declared similarly to
programs, but they are compiled separately. A module has the following syntax:

module name;
UseClause; ...
global declaration; ... { global may be omitted }
begin { may be omitted together with the statement part }
statement; ...
end.

The module identifier follows the reserved word module.

Declarations have the same form as defined in the declaration part of a pro-
gram. If a declaration is introduced by the reserved word global, then all objects
declared in this module are global quantities of this module, i.e. they are available
to be exported into other modules or into the main program. All other declared
objects are local quantities of the module.

In the definition of a global type, the reserved word global may occur on the
right-hand side of the equal sign. In this case, the structure of the global type
can also be exported. The type definition

global type complex = record re, im: real end;

exports the type complex, but does not export its structure. Thus, access to the
components of the data structure is only possible within the module containing
the type definition itself. The declaration

global type complex = global record re, im: real end;

exports both the type identifier complex and also the record component identi-
fiers re, im.
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Example 2.8.1:

A program or another module employs a use-clause to make visible objects
exported from the used modules (import of objects). If the reserved word global
occurs in a use-clause, then all objects being imported by this clause are available
for export as well. A use-clause is defined by:

Example 2.8.2:

PASCAL-XSC —

A simple module definition to provide a complex arithmetic may have the
following form:

module ComplexArithmetic;
global type complex = global record re, im: real end,;
global operator + (z, w: complex) res: complex;
begin
res.re := z.re + w.re;
res.im := z.im + w.im;
end;
global operator * (z, w: complex) res: complex;
begin
res.re := z.re ¥ w.re — z.im * w.im;
res.im := z.re x w.im + z.im * w.re;
end;
end.

use global ModuleldentifierList { global may be omitted }

The following module provides an addition for complex vectors on the basis
of the module ComplexArithmetic:

module ComplexVectorArithmetic;
use global ComplexArithmetic;
global type
complexvector = global dynamic array [«| of complex;
global operator + (x, y: complexvector)
res: complexvector [Ibound(x)..ubound(x)];
var i: integer;

begin
for i:= lbound(x) to ubound(x) do
res[i] := x[i] + yli];
end;

end.
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If another program or module includes the use-clause
use ComplexVectorArithmetic;

then the type complexvector and the appropriate operator + are visible. The
type complex and the appropriate operators + and * are also available, since the
defining module is globally linked via

use global ComplexArithmetic;

That is, the program or module does not need to include the module Com-
plexArithmetic in order to have objects from the ComplexArithmetic module
visible. However, if the module ComplexVectorArithmetic included only the
clause

use ComplexArithmetic;

then this clause would also be necessary in the module or in the main program
that imports ComplexVectorArithmetic.

The use-clauses build up a module hierarchy among the individual modules
and the main program. The modules may be represented in an acyclic graph that
is similar to a tree structure whose root is represented by the main program. The
modules imported into the main program are given as the children.

main program

module A module B module C

module Al module A2 module C1

basic module

This is not strictly a tree structure since one module (basic module in this figure)
can be used by more than one other module. The use-clauses impose a strict
partial order. A mutual or cyclic importation is not allowed, not even indirectly.
The module hierarchy determines the order of the compilation of the modules.
A module may not be compiled until all imported modules have been compiled.
In every module which has to be compiled, at least the exported quantities have
to be declared or defined, although their implementation does not need to be
complete. In the case of procedures for example, empty statement parts are
sufficient.
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Thus, after the first planning stage determining the structure of the individ-
ual modules and checking their interfaces, the complete implementation of the
modules may be executed in parallel by possibly different teams.

If no more changes are made in the definition part of the modules, i.e. at
the declarations of objects being available to be exported, the compilation of
the modules is sufficient. Otherwise, all modules which depend on the altered
module must be recompiled along with the main program.

A module may contain a statement part after the declaration part. The
statement part is executed just once at the beginning of program execution. The
statement parts of several modules are executed in an order consistent with the
partial ordering of the module hierarchy. In the statement part of a module, the
local and global variables can be initialized by using an arbitrary set of state-
ments using the quantities of the module. In the module hierarchy shown in the
preceding figure, the statement part of the basic module has to be executed be-
fore the statement part of the module A2 which has to occur before the statement
part of module A.
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2.9 String Handling and Text Processing

Standard PASCAL offers only poor features for processing files of type text, char-
acters (char), and strings (packed array [I..n] of char). Except of the lexical
comparisons of strings or characters, there are no expressions involving these types.
Manipulation of strings or an input statement for a string variable is not supported.

PASCAL-XSC —

The dynamic string type (section 2.3.2), the string expression (section 2.4.3.2),
and the string functions, comparisons, assignment statements, and input/output
of strings support convenient text processing.

The following functions and procedures are provided for the operations which
are normally used for text processing:

function image (i: integer) : string;

Converts the numerical value i into a string. Similar to the
result from write (i) with a current length like the default output
format for integer values.

function image (i, len: integer) : string;
Converts the numerical value i into a string with a current length
len (possibly filled by leading blanks). Similar to the output of
integer values.

function image (r: real) : string;
Converts the numerical value r into a string with a current length
like the default output format for real values.

function image (r: real; width: integer) : string;

Converts the numerical value r into a string with a current length
width (possibly filled by leading blanks). Similar to the output
of real values.

function image (r: real; width, fracs: integer) : string;

Converts the numerical value r into a string with current length
width (possibly filled with leading blanks) and with fracs places
after the decimal point. Similar to the output of real values.
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function image (r: real; width, fracs, round: integer) : string;

Converts the numerical value r into a string with a current length
width and fracs places after the decimal point. The value is
rounded according to round:

< 0 rounded downwardly directed
round ¢ = 0 rounded to the nearest

> 0 rounded upwardly directed

function substring (s: string; p, l: integer) : string;

Returns a substring containing I characters from s starting at
position p.

function length (s: string) : integer;
Returns the current length of s.
function maxlength (var s: string) : integer;
Returns the maximum length of the variable s.
function pos (sub, s: string) : integer;

Scans the string s to find the first occurrence of sub in s. If the
pattern is not found, pos returns the value 0.

function ival (s: string) : integer;

Converts the first part of the string s, which represents a nu-
meric value according to the rules of integer constants, into an
integer value. Leading blanks as well as trailing characters are
neglected.

function ival (s: string; var rest: string) : integer;

Converts the first part of the string s, which represents a numeric
value according to the rules of integer constants, into an integer
value. Leading blanks are neglected, whereas trailing characters
are passed back in the string rest.

function rval (s: string) : real;

Converts the first part of the string s, which represents a numeric
value according to the rules of real constants, into a real value.
Leading blanks as well as trailing characters are neglected.
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function rval (s: string; var rest: string) : real;

Converts the first part of the string s, which represents a numeric
value according to the rules of real constants, into a real value.
Leading blanks are neglected, whereas trailing characters are
passed back in the string rest.

function rval (s: string; round: integer) : real;

Converts the first part of the string s, which represents a numeric
value according to the rules of real constants, into a real value
rounded according to round (see image). Leading blanks as well
as trailing characters are neglected.

function rval (s: string; round: integer; var rest: string) : real;

Converts the first part of the string s, which represents a numeric
value according to the rules of real constants, in a real value
rounded according to round (see image). Leading blanks are
neglected, whereas trailing characters are passed back in the
string rest.

procedure setlength (var s: string; len: integer);

Sets the current length of the string variable s to len. The value
len must lie within the range 0..maxlength(s).

Example 2.9.1:
image (4728,5) delivers ' 4728
image (3.14159,7,4,1) delivers 7 3.1416’
substring "AAABB’,3,3) delivers 'ABB’

length ("abede’) delivers 5

pos CAB’AAABB’) delivers 3

ival (’512) delivers 512

rval ('—1.5E6’) delivers —1.5E+406

The relational operators
= <>, <=, <, >=, >

applied to strings have their usual meaning derived from lexical ordering. For a
string s1 with the length n and a string s2 with a length m > n, both coinciding
on the first m positions, the comparison s1 < s2 is true.
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The additional operator

in

for two string operands tests substrings. The expression sl in s2 delivers true
if s1 is a substring of s2 and false otherwise.

Example 2.9.2:

Let s5:=’AAABB’;
then A’ in sb delivers true
and 'BBA’in sb delivers false.

The use of assignment statement
I StringVariable := StringExpression

is always possible if the string variable is of type string and if the string expression
is of type string or of any array string type.

If the actual length of the string expression exceeds the maximum length
of the variable, the extra characters on the end of the string expression are
truncated.

Example 2.9.3:

The following types and variables are given:

type string-.10 = string[10];
string 20 = string[20];
var  sb . string[5];
s10 . string_10;
520 :  string_20;
S . string; { length implementation-dependent }

Then it is possible to write:

s := ’'ABCDE’

s10 := s9;

s20 := ’'AABBCC’;

sb = s20; { sb contains the value "AABBC’ }
s20 := ’; { empty string }

sb = ’'AAA’ + 'BBB’ { s) contains the value "AAABB’ }
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2.9.1 Input of Characters and Strings

While the output of characters and strings in PASCAL is processed according to
the programmer’s intention, the entering of these types from the console very often
produces unexpected results.

To read in a char variable ¢ using the statement

read (c);
the statements

¢ := inputf;
get (input);

are executed according to the definition of read (see section 2.5.2). With the first
read on input, a blank is assigned to the variable c. This blank corresponds to the
end-of-line character, since immediately after the start of the program, eoln (input)
= true .

Example 2.9.4:
The program

program testreadl (input, output);
var c : char;
begin
read (c);
writeln (c);
end.

would input the end-of-line character and output a blank without accepting
any input via the user’s console.

Hence, we have to take special care of the end-of-line character while reading charac-
ters, in contrast to the input of integer or real numbers which neglects the end-of-line
character as it neglects a blank. Appropriate use of readln or get (see section 2.5.2)
is necessary.

If we use a procedure read_char declared by

procedure read _char (var f: text; var c: char);
begin
if eoln (f) then
readln (f);
read (f, c);
end;

we can read a character (not equal to the end-of-line character) without having to
worry about end-of-line arrangements or unexpected effects.
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Example 2.9.5:

The following program enables the user to enter a character, which is printed
immediately afterwards.

program testread2 (input, output);
var c : char;

procedure read_char ...

{ same procedure declaration as above }

begin
read_char (input, ¢);
writeln (c);

end.
PASCAL-XSC ——
The particularity of PASCAL concerning the input of characters also applies to
the input of strings in PASCAL-XSC. In the following tables, some examples
illustrate this fact. In these tables, <= denotes the Return key for input from
the console or the end-of-line character for input from a file, and LI denotes the
blank character. The variables S5 and S10 are defined as strings with a maximum
length 5 and 10, respectively. The file variable f is of type text.
String Input from Console
‘ Statements ‘ Input ‘ Output

read (S5, S10) not possible

writeln (S5); U

writeln (S10); U

readln (S5, S10) | ABCDEFGHIJKLMNO+

writeln (S5); L

writeln (S10); L

readln; ABCDEFGHIJKLMNO+

read (S5, S10);

writeln (S5); ABCDE

writeln (S10); FGHIJKLMNO

readln; ABCDE+

readln (S5, $10); | FGHIJKLMNO+«

writeln (S5); ABCDE

writeln (S10); L

readln; ABCDE+

read (S5); FGHIJKLMNO<+

readln;

read (S10);

writeln (S5); ABCDE

writeln (S10); FGHIJKLMNO
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String Input from File
‘ Statements ‘ File Contents ‘ Output ‘
read (f, S5, S10); | ABCDEFGHIJKLMNO
writeln (S5); ABCDE
writeln (S10); FGHLJKLMNO
read (f, S5, S10); | ABCDE
FGHIJKLMNO
writeln (S5); ABCDE
writeln (S10); L
readln (f, S5); ABCDE
readln (f, $10); | FGHLJKLMNO
writeln (S5); ABCDE
writeln (S10); FGHLJKLMNO

For the type string, the appropriate use of readln avoids the unexpected input
of the end-of-line character. For instance, we can use an overloaded procedure
read (see section 2.7.11) declared by:

procedure read (var f : text; var s: string);
var c : char;
begin
if eoln (f) then
readln (f);
s := " { empty string }
while not eoln (f) do
begin
read (f, ¢);
S:=s+ ¢
end;
end;

For an arbitrary text file f and a string variable s, this procedure can be applied
in the forms

read (s);  read (input, s);  read (f, s);

to read in dynamic strings line by line (due to overloading of read and write as
described in section 2.7.11).
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Example 2.9.6:

Let us write a PASCAL-XSC program to convert German text written in
lower-case letters containing the strings (umlauts) ae, oe, and ue, into a
form which can serve as input for the text system IXTEX using the document
style option german. It is necessary to replace:

ae by "a
oe by "o

ue by "u

For simplicity, special cases like aee may be neglected. Furthermore, the
word PASCAL should be changed into Pascal and marked for typing in
boldface by enclosing the word in the form:

{\bf Pascal}

The following PASCAL-XSC program enters the text from the text file
texin.txt, processes the changes, writes the changed text to the text file
texout.txt, and terminates.

program umlauts (output, infile, outfile);

operator *x (line, umlaut: string) res : string;
{ Replaces the umlauts contained in the }
{ line by the corresponding TeX sequence. }
var
p : integer;
begin
p := pos (umlaut, line);
while (p > 0) do
begin
line[p] := """,
line[p+1] := umlaut[1];
p := pos (umlaut, line);
end;
res := line;
end;
var
line, helpl, help2 : string;
infile, outfile : text;
len, position : integer;
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begin
reset (infile, "texin.txt’);
rewrite (outfile, 'texout.txt’);
while not eof (infile) do
begin
readln (infile, line);
line := line *x ’ae’;
line := line *x ’o€’;
line := line *x 'ue’;
len := length (line);
position := pos ("PASCAL’, line);
while (position > 0) do
begin
helpl:= substring (line, 1, position-1) + {\bf Pascal}’;
help2:= substring (line, position+6, len—position—5);
line:= helpl + help2;
len:= length (line);
position:= pos ("PASCAL’, line);
end;
writeln (outfile, line);
end;
end.
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2.10 How to Use Dynamic Arrays
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True dynamic allocation of array lengths can only occur when declaring dynamic
array variables within procedures or functions as described in section 2.3.2. In
the declaration part of these routines, global quantities or formal parameters are
used in the expressions for the index bounds of the arrays. In the body of the
main program, only constants, imported variables, or expressions that can be
evaluated at the point of the declaration may be used in the index expressions.
An experienced programmer might be able to realize full dynamic array
lengths in the main program by using a special module initialization part or
function calls for the index bounds. Nevertheless, in this section we discuss the
usual manner of working with dynamic arrays. Usually, the original main pro-
gram, which works with dynamic arrays, is moved into a procedure or function.
The body of the new main program then consists only of the entering of values
which are necessary for the calculation of the index bounds and of the call of the
new “main procedure” or “main function”.
The template of a PASCAL-XSC program which uses dynamic arrays is

program dynprog (input, output);

type
dyntype = dynamic array [*] of comptype;
{ further declarations }

var
low, upp: integer;
{ further declarations }

procedure main (low, upp: integer);
var
a, b, ¢: dyntype [low..uppl;
{ further declarations}

begin
{ main program, moved into the procedure }

end;

begin { new main program}
read (low,upp);
main (low,upp);

end.
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In the new main program, the procedure main could also be called within a loop,
within which new index bounds low and upp are entered. This might be useful
in an algorithm which improves a computed result by enlarging the dimension
of the dynamic arrays employed.

Example 2.10.1:
program longnumber (input, output);
type
long = dynamic array [«] of real;
var
len: integer;

function ok (len: integer) : boolean;
var
171, 122, 123: long [1..len];

erg: real;
begin
{ algorithm }

3

writeln (‘result using length ’, len:1, " ’; erg);

if { precision of res ok } then

ok := true
else
ok := false;
end;
begin
repeat
write ('length of type long: ’);
read (len);
until ok (len);
end.

As a final example for the handling of dynamic arrays, we list a program to
compute the transposed matrix for arbitrary (square or rectangular) matrices of
arbitrary dimension.
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Example 2.10.2:
program transpose (input,output);

type
matrix = dynamic array [*,x| of real;
function transp (var a: matrix) :
matrix [Ibound(a,2)..ubound(a,2), Ibound(a,1)..ubound(a,1)];
var
i, j: integer;
begin
for i:=lbound (a,1) to ubound (a,1) do
for j:=lbound (a,2) to ubound (a,2) do
transplj,i] := ali,j];
end;
procedure main (no-of_rows, no_of_columns: integer);
var
i, j: integer;
A: matrix [1..no_of rows,1..no_of_columns];
T: matrix [1..no_of_columns,1..no_of_rows|;
begin
writeln ("Enter the matrix elements of A (row by row) ’);
for i:=1 to no_of_rows do
for j:=1 to no_of_columns do
read (A[i,j]);
writeln ("Transposed matrix of A:’);
T:= transp(A);
for i:=1 to no_of_columns do
begin
for j:=1 to no_of_rows do
write (T[i,j]);
writeln;
end;
end;
var
no_of_rows, no_of_columns: integer;
begin
writeln (’Size of A:");
write ("Number of rows: ’);
read (no_of_rows);
write ('Number of columns: ’);
read (no_of_columns);
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while (no_of_rows > 0) and (no_of_columns > 0) do
begin
main (no_of_rows,no_of_columns);
writeln (*Size of A:);
write ("Number of rows: ’);
read (no_of_rows);
write ('Number of columns: ’);
read (no_of_columns);
end;
end.







Chapter 3

The Arithmetic Modules

Numerical methods require computations not only in the space of real numbers,
but also with complex numbers, and vectors and matrices over these numbers (see
[1], [2], [19], or [33]). To fulfill all these requirements, PASCAI-XSC provides the
corresponding types with the necessary operators and functions.

All arithmetic operators are of mazimum accuracy as described in section 1.3
or for real operations in section 2.4.1.2. The result is computed to at least 1 ulp
accuracy.

PASCAL-XSC provides a complete expression concept for the additional numer-
ical types

complex for complex numbers
interval  for real intervals

cinterval for complex intervals
rvector ~ for real vectors

cvector  for complex vectors

ivector for interval vectors

civector  for complex interval vectors
rmatrix  for real matrices

cmatrix for complex matrices
imatrix  for interval matrices

cimatrix for complex interval matrices

This expression concept is not restricted to operands of the same type. Moreover,
almost every operation which is usually applied to different operand types in the
mathematics is provided. Therefore, more than 1000 arithmetic operators are pro-
vided. In addition, PASCAL-XSC enables the user to form logical expressions with
these types by providing a comparably large number of relational operators. This
large number of operators and functions makes it possible to transfer mathemati-
cal computations of engineering and science into a clearly structured programming
code.
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In most cases, the original theoretical formulas or algorithms can be used as program
parts with only few changes. This fact is supported by predefined overloadings of
the assignment operator :=.

The following table 1 is a survey of the predefined arithmetic operators for the
arithmetic types.

Table 1: Predefined Arithmetical Operators

right integer . . . . .

) operand real interval rvector 1vector rmatrix 1matrix
oft i . . . .
e cinterval cvector civector cmatrix | cimatrix
operand COmpleX

Y +,— +,— +,— + - + - + =
integer 2)
4+, —. %
real 0,0, 0>, L ’/’ K,k <, x> * *y ok <, k> *
compl ok i
plex
interval +,—%/, |+ =%/, « % % *
cinterval +x -k, kok
3 1
rvector K, % <, k>, * / an<ao>a) +7_a*7)
cvector /] <,/> ’ +* +%
. 1) 1)
1yector y x,/ +, —, %, +, = %,
civector ’ ’ +x ok, ko
3) 4
rmatrix K, ok <,k > )
) ) ) ) *’/ *’*<’*> * 0,0<,O>, +a , Xk,
cmatrix /] <,/> T+ +x
. g ‘)
{Hl& I'l‘X *’/ *’/ * * +7_;*7 +’_7*’
cimatrix +% +k, %

1

3

4

The * denotes the scalar or matrix product.

o € {+, —, %}, where x denotes the scalar or matrix product.

+x : Interval hull (smallest interval enclosing both operands)

xx : Interval Intersection

The operators of this row are monadic (i.e. there is no left operand).

)

2) OE{—I'a_v*a/}
)
)
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Remark: The block of table 1 which is marked by 2) contains the operators for real
and integer operands of Standard PASCAL. The operators * (scalar product),
+# (interval hull), and *x (interval intersection) are provided in the corre-
sponding matrix/vector modules and interval modules, respectively.

Table 2 gives an overview of the relational operators for the arithmetic types available

in PASCAL-XSC.

Table 2: Predefined Relational Operators

right || integer | . . . . :
eft operand real interval | rvector | ivector |rmatrix| imatrix
¢ cinterval | cvector | civector |cmatrix | cimatrix
operand complex
integer =, <>, in
real <=, <,
=,<>
complex >=>
B
] m, ><,
1}r1terval _ <> =, <>,
cinterval <=, <,
>=,>
=, <>, .
rvector 1n
<=<,
cvector =<>
>=,>
B
in, ><,
ivector —
) = <> | = <>
civector <=, <,
>=,>
. =, <>, .
rmatrix in
. <=<,
cmatrix =,<>
>=,>
D)
in, ><,
imatrix —
. . =,<> =, <>,
clmatrix <=, <,
>=,>

) The operators <= and < denote the “subset” relation;
>= and > denote the “superset” relation

>< : Test for disjointedness of intervals

_ Test for membership of a point in an interval or test for
" strict inclusion of an interval in the interior of an interval
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The large number of operators are provided in special arithmetic modules which
contain the operators listed above and a set of predefined functions. For the types
complex, interval, and cinterval, this set contains all mathematical functions which
are provided for type real (see section 2.4.1.2).

Hence, the following modules are available:

C_ARI complex arithmetic
[_ARI interval arithmetic
CI_ARI complex interval arithmetic

MV_ARI real matrix/vector arithmetic
MVC_ARI  complex matrix/vector arithmetic
MVI_ARI  interval matrix/vector arithmetic

MVCI_ARI complex interval matrix/vector arithmetic

Each of these modules is described in the following sections. All types, opera-
tors, transfer functions, overloadings of :=, predefined arithmetic functions, and
input/output procedures are systematically explained. The domains and ranges of
the functions are implementation-dependent. The rules of overloading for read and
write described in section 2.7.11 apply to the input/output procedures of the mod-
ules, i.e. they can be used with an optional file parameter and with an arbitrary
number of input/output parameters. Therefore, the description of these procedures
is restricted to the explanation of the possible input and output formats.

These shortened module names are chosen due to the implementation-dependent
maximum number of significant characters in the module name which must be equal
to the corresponding file name. Some systems have special requirements concerning
the length of file names or the length of entry names for linker interfaces. With
these short names, modules are portable across all systems.

Definition of the Arithmetic Operators

The type of the result of scalar arithmetic operations is defined in the mathematical
sense according to the following hierarchy of types:

cinterval

complex ‘ interval ‘

real
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The result is always the lowest type containing both operand types.
For the matrix/vector operations, the structure of the result follows from the
structures of the operands:

v 4+ v = v vV x VvV = 8
m + m = m s x v = v

vV % 8 = v
vV — v = vV

m *x v = Vv
m — m = m

S * m = m
v /s = v m x s = m
m / s = m m x m = m

Structure of the Result Type for Matrix/Vector Operations

s = scalar, v = vector, m = matrix

The type of the result follows from the above hierarchy of types depending on the
two component types.

All matrix/vector operations assume the number of corresponding components
of the operands is equal, i.e. the corresponding index ranges must have the same
length. The index ranges themselves may be different as in

var
p : complex;
a : rvector[1..10];
b : cvector[11..20];

p:=azxb;

In the definitions of the operators in the following sections, the descriptions given as-
sume that the index ranges are identical. For example, the scalar product p = a * b
is described as

#x (for i:= 1b(a) to ub(a) sum
(a[i] * b[i]) )
but it is implemented as

#x (for i:= 1b(a) to ub(a) sum
(a[i] * b[i 4+ Ib(b) — Ib(a)]) )

Definition of the Relational Operators

The relational operators in these modules are based upon the set of relational oper-
ators for the type real. This set of operators is used to define the operators <= and
= for a structured numerical data type SNDT (Structured Numerical Data Type).
The operator = is implemented in such a manner that it delivers true if and only if
all components of the SNDT fulfill the equality. The definition of the operator <=
depending on the type of the operands is explained in the corresponding section of
the defining modules.

All further relational operators for elements a, b € SNDT are defined by:
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a <> b := not(a=Dh)

a < b = (a<=Db)and (a<>b)
(RD) a > b = b<a

a >>= b = b<=a

Overloading of the Assignment Operator

The assignment operator is overloaded to provide several basic type conversions
and some array type initializations. All type conversions are defined according to
the mathematical embedding (for example, the real numbers are embedded in the
complex numbers), i.e. the value is invariant. Initializations by means of assignments
of scalar types to vector or matrix types are defined componentwise, i.e. the same
value is assigned to all components of the array type. For all these overloaded
assignment operators, there are no rounding or conversion errors.

Nevertheless, we have to remember the special problematic nature of conversion
described in section 2.3.1 in connection with literal constants on the right side of the
assignment. For the reasons described in section 2.3.1, a real constant is converted
into the internal real format before the assignment is executed.

Accuracy of the Predefined Functions

All complex functions deliver results of at least 1 ulp accuracy.

The interval functions always compute a floating-point interval that contains the
exact interval result. In most cases, the smallest enclosing interval is computed, but
there are some special cases in which the bounds differ by 2 ulp.

The complex interval functions achieve the same accuracies for their real and
imaginary parts.



3.1. THE MODULE C_ARI 131

3.1 The Module C_ARI
Complex Arithmetic

This module supplies all operators, functions, and procedures necessary for compu-
tations with complex numbers.

Type
The type complex defined by

type complex = record re, im : real end;

is part of the language core of PASCAL-XSC. It is based upon the cartesian repre-
sentation of a complex number z in the form

z =T+ 1y,

where = denotes the real part and y denotes the imaginary part of 2.

Operators

All predefined arithmetic operators of this module deliver the result type complex.
There are the monadic operators +, — and the four basic operations +, —, *, /, each
with three different kinds of rounding. All roundings are interpreted componentwise.

The relational operators =, <>, <, <=, >, >= are defined on the base of = and
<= according to (RD) (see page 130). If a and b are of type complex then

a <= b <= (are <= bre) and (a.im <= b.im).

Comparison with an integer or real operand is allowed as well.

right ||
Iinteger
left operand & complex
real
operand
monadic +, —
integer o
real
1 [e] (e}
complex
P v

The Operators of Module C_ARI
°c€ {+7 +<a +>7 =y =<, T2 ok k] x>, /a /<a />}

VE{= <>, < <=, >, >=}
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Transfer Functions

The following transfer functions are provided for type conversions between the types
real and complex:

‘ Function ‘ Result Type ‘ Meaning ‘
compl (rl,r2) complex Complex number with real part rl and
imaginary part r2
compl (r) complex Complex number with real part r and
imaginary part 0
re (c) real Real part of ¢
im (c) real Imaginary part of ¢

r, rl, r2 = real Expression, ¢ = complex Expression
Example 3.1.1:
The imaginary unit ¢ can be generated using the expression

compl (0,1) .

Overloading of the Assignment Operator

The type conversion real to complex is provided as an overloading of the assignment
operator:

‘ Assignment ‘ Meaning ‘

c = T ¢ := compl (r)

¢ = complex variable
r = real expression
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Predefined Functions

133

All mathematical functions of PASCAL-XSC available for real arguments are also
supplied for complex arguments. Moreover, functions for the computations of the
angle component ¢ of the exponential representation z = r-€*¥ of a complex number
z and for the conjugation (reflection about the real axis) are provided.

‘ Function ‘ Result Type ‘ Meaning ‘

sqr (c) complex =c-c Square

sqrt (c) complex | +/c Square Root (Real part > 0)

exp (c) complex | e Exponential Function

exp2 (c) complex | 2¢ Power Function, Base 2

expl0 (c) complex | 10¢ Power Function, Base 10

In (c) complex | In (¢) Natural Logarithm

log2 (c) complex | log,(c) Logarithm, Base 2

log10 (c) complex | logy(c) Logarithm, Base 10

sin (c) complex | sin (c) Sine

cos (c) complex | cos (c) Cosine

tan (c) complex | tan (c) Tangent

cot (c) complex | cot (c) Cotangent

arcsin (c) complex | arcsin (c) Arc Sine

arccos (c) complex | arccos (c) Arc Cosine

arctan (c) complex | arctan (c) Arc Tangent

arccot (c) complex | arccot (c) Arc Cotangent

sinh (c) complex | sinh (c) Hyperbolic Sine

cosh (c) complex | cosh (c) Hyperbolic Cosine

tanh (c) complex | tanh (c) Hyperbolic Tangent

coth (c) complex | coth (c) Hyperbolic Cotangent

arsinh (c) complex | arsinh (c) Inverse Hyperbolic Sine

arcosh (c) complex | arcosh (c) Inverse Hyperbolic Cosine

artanh (c) complex | artanh (c) Inverse Hyperbolic Tangent

arcoth (c) complex | arcoth (c) Inverse Hyperbolic Cotangent

conj (c) complex | c¢=x—1iy Conjugation of ¢ = = + iy

arg (c) real © Argument of ¢ = r - /¥

abs (c) real r=+r2+y?  Absolute value of c = r - ¥ =
T 41y

¢ = complex expression

The domains and ranges of the predefined functions are implementation-dependent

and are described in the user manual.
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Input/Output Procedures

This module supplies the procedures

procedure read (var f: text; var a: complex);
procedure write (var f: text; a: complex);

with optional file parameters, arbitrarily many input/output parameters, but with-
out format specifications.
A complex number ¢ = x + iy must be entered in the form

(z,9)
or in the form
z.

In the second case, the imaginary part y is set to 0. x and y are real constants
that are rounded to the nearest floating-point numbers. The output of a complex
number rounds both the real and imaginary parts to the nearest decimal numbers.
It is displayed in the form

(z,y)
with an implementation-dependent default format for the real values z and y.

Example 3.1.2:

If ¢ is of type complex, then the statements

read (c);

writeln (c);

accept the input data
—1.23456789,

and write the complex data
(—1.234567890000E+00, 0.000000000000E+-00).

Another real representation may be used depending on the implementation.
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3.2 The Module I_ARI

Interval Arithmetic

This module supplies all operators, functions, and procedures necessary for compu-
tations with intervals.

Type
The type interval defined by
type interval = record inf, sup : real end;

is part of the language core of PASCAL-XSC. It is based upon the representation
of a real interval x in the form

T = [Tipf, Tsup

representing the set {y € R|z;r < y < Tgup}. inf denotes the infimum (lower
bound), and sup denotes the supremum (upper bound) of z.

Operators

All predefined arithmetic and lattice operators deliver the result type interval. There
are the monadic operators +, — and the four basic operations +, —, %, /, each with
the rounding to the smallest enclosing interval. The relational operators =, <>, <
, <=, >,>=are to be interpreted as the corresponding set operators. Their meaning
is

= equal

<> not equal

< proper subset
<= subset

> proper superset
>= superset

These operators are defined on the base of = and <= according to (RD) (see page
130). If x and y are of type interval, then

X <= y <= (x.inf >= yinf) and (x.sup <= y.sup).

Moreover, this module supplies the operator in for the relation “is contained in”
or “is contained in the interior” between a real- and an interval operand or between
two interval operands. The operator in satisfies

x in y <= (x.inf > y.inf) and (x.sup < y.sup).

The operator >< tests for disjointedness of two intervals. Two intervals z and y
are disjoint if z Ny = @ (empty set). The lattice operators +% and % denote the
interval hull and the interval intersection, respectively. The operator +x* delivers the
smallest interval enclosing both operands. The operator *x delivers the intersection.
It is an error if the intersection is empty.
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Example 3.2.1:

CHAPTER 3. THE ARITHMETIC MODULES

right || |
integer | .
left operand & interval
real
operand
monadic +,—
. <o
Integer .
+x m, =,<>
real
+x
<o <o
interval =,<> |in,V,><
—+ % Tk, %ok

The Operators of Module I_ARI

OE{—I" _7*7/}

VE = <>, < <=, >, >=}

If a and b of type interval are defined as

a = [-1,3]

b = [34],

then the operators +, —, %, ><, +x%, and #*x yield the results:

Expression | Result
a + b |[27]

a — b |[=50]
a x b |[-412]
a +x b |[-14]
a *x b |][3,3]

a >< b | false
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Transfer Functions

The following transfer functions are provided for type conversions between the types
real and interval:

‘ Function ‘ Result Type ‘ Meaning ‘
intval (r1,r2) interval Interval with inf = r1 and sup = r2 *)
intval (r) interval Interval with inf = sup =r
inf (i) real Lower bound of i
sup (i) real Upper bound of i

r, rl, 12 = real expression, 1 = interval expression

(*): 11 <= r2 is assumed, otherwise an error occurs.

Overloading of the Assignment Operator

The type conversion real to interval is provided as an overloaded assignment oper-
ator:

‘ Assignment ‘ Meaning ‘

i = r i := intval (1)

i = interval variable
r = real expression

Predefined Functions

All mathematical functions of PASCAL-XSC available for real arguments are sup-
plied for interval arguments 7. These interval functions F' satisfy F(i) D f(i) =
{f(r) : r € i}. Moreover, functions for the computation of the midpoint and diam-
eter of intervals are available. In connection with enclosure methods, the function
blow is provided for the epsilon inflation (see [46]).

‘ Function ‘ Result Type ‘ Meaning ‘
sqr (i) interval 2={r?:rei} Interval Square
sqrt (i) interval Vi Square Root
exp (i) interval el Exponential Function
exp2 (i) interval 21 Power Function, Base 2
expl0 (i) interval 101 Power Function, Base 10
In (i) interval In (i) Natural Logarithm
log2 (i) interval log, (1) Logarithm, Base 2
log10 (i) interval log,, (1) Logarithm, Base 10

i = interval expression
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‘ Function ‘ Result Type ‘ Meaning ‘
sin (i) interval sin (i) Sine
cos (i) interval cos (i) Cosine
tan (i) interval tan (i) Tangent
cot (i) interval cot (i) Cotangent
arcsin (i) interval arcsin (i) Arc Sine
arccos (i) interval arccos (i) Arc Cosine
arctan (i) interval arctan (i) Arc Tangent
arctan? (il,i2) interval arctan (il/i2) Arc Tangent
arccot (i) interval arccot (i) Arc Cotangent
sinh (i) interval sinh (i) Hyperbolic Sine
cosh (i) interval cosh (i) Hyperbolic Cosine
tanh (i) interval tanh (i) Hyperbolic Tangent
coth (i) interval coth (i) Hyperbolic Cotangent
arsinh (i) interval arsinh (i) Inverse Hyperbolic Sine
arcosh (i) interval arcosh (i) Inverse Hyperbolic Cosine
artanh (i) interval artanh (i) Inverse Hyp. Tangent
arcoth (i) interval arcoth (i) Inverse Hyp. Cotangent
abs (i) interval i =A{lr|:r€i} Absolute Value
mid (i) real m = #x(0.5xinf(i) Midpoint of i

+ 0.5xsup(i))

diam (i) real d = sup(i) —> inf(i) Diameter of i
blow (i,r) interval I Epsilon Inflation

i, i1, i2 = interval expression r, m, d = real expression

Iy = (I+r)*xi—r=*i
blow := intval (pred(inf(y)), succ(sup(y)));

The domains and ranges of the predefined functions are implementation-dependent
and are described in the user manual.

Example 3.2.2:

If a and b of type interval are defined as

a := intval (—1,3)
b := intval (2)

then the functions abs, sqr, mid, and diam deliver the results:
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Expression | Result

abs (a) [0,3]
abs (b) [2,2]
sqr (a) [0,9]
sqr (b) [4,4]
mid (a) 1
diam (a) 4

Input/Output Procedures
This module supplies the procedures

procedure read (var f: text; var a: interval);
procedure write (var f: text; a: interval);

with optional file parameters, arbitrarily many input/output parameters, but with-
out format specifications.
An interval i = [z, y] must be entered in the form

[z, ]
or in the form
z.

In the first case, the values of x and y are rounded to the next-smaller and the next-
larger floating-point number, respectively (i.e. rounding to the smallest enclosing
interval). The second case is a simplified notation for ¢ = [z, z]. If x is not exactly
representable, the smallest interval enclosing x is generated.

The output of an interval is done with interval rounding (z rounded downwardly,
y rounded upwardly) in the form

[z, 9]
with an implementation-dependent default format for the real values x and y.
Example 3.2.3:

If int is of type interval, then the statements

read (int);
writeln (int);

accept the input data
0.245,
and write the interval
[ 2.4499...99E—001, 2.4500...01E—001],

if 0.245 is not exactly representable. Another real representation may be used
depending on the the implementation.
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3.3 The Module CI_ARI

Complex Interval Arithmetic

This module supplies all operators, functions, and procedures necessary for compu-
tations with complex intervals.

Type
The type cinterval defined by
type cinterval = record re, im : interval end;

is part of the language core of PASCAL-XSC. It is based upon the usual represen-
tation of a complex interval z in the form

z = [xinfa fEsuP] +- [yinf, ysup]

representing a rectangle in the complex plane (rectangular interval).

Operators

All predefined arithmetic and lattice operators deliver the result type cinterval.
There are the monadic operators +, — and the four basic operations +, —, *, /, each
with the rounding to the smallest enclosing complex interval. The relational opera-
tors =, <>, <, <=, >, >= are to be interpreted as the corresponding set operators.
Their meaning is

= equal

<> not equal

< propper subset
<= subset

>  propper superset
>= superset

These operators are defined on the base of = and <= according to (RD) (see page
130). If v and w are of type cinterval, then

vV <= w <= (vrre <= wre) and (vim <= w.im).

The operators on the right side of the equivalence are the ones for intervals.

Moreover, this module supplies the operator in for the relations “is contained
in” and “is contained in the interior” For two complex intervals v and w, the operator
in satisfies

v inw <= (vre in wre) and (vim in w.im).

The operator >< tests for disjointedness of two complex intervals. Two complex
intervals v, w are disjoint if v N w = . The lattice operators +# and *x denote
the complex interval hull and the complex interval intersection, respectively. The
operator +x delivers the smallest complex interval enclosing both operands. The
operator xx delivers the intersection. It is an error if the intersection is empty.
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right || |
integer . .
left Operand & complex | interval | cinterval
real
Operand
monadic +, —
. o
Integer .
+x n, =, <>
real
+%
o o
complex +* +* in, = <> |in, =, <>
—+x +x*
o o
interval = <> in, VvV, ><
+* +x, kk
o o o o
cinterval = <> = <> Vv, >< in, VvV, ><
—+ % —+x T+, kk +x, kk

The Operators of Module CI_ARI

Example 3.3.1:

If ca of type cinterval is

06{+a _7*7/}

VE = <>, < <=, >, >=}

ca = [—1,3] + i [3,4],

then the operators +, —, and * deliver
Expression ‘ Result
ca + ca|[—-2,6]+i[6,8]
ca — ca|[—44]+i[-1,1]
ca * ca|[—19,0] + i [-8,24]

141
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Transfer Functions

The following transfer functions are provided for type conversions between the types
real, complex, interval, and cinterval:

‘ Function ‘ Result Type ‘ Meaning ‘

compl (il,i2) cinterval | Complex interval with real part il and
imaginary part i2

compl (r,i) cinterval | Complex interval with real part r and
imaginary part i

compl (i,r) cinterval | Complex interval with real part i and
imaginary part r

compl (i) cinterval | Complex interval with real part i and
imaginary part (

intval (c1,c2) | cinterval | Complex interval with

real part [cl.re,c2.re] and
imaginary part [c1.im,c2.im] *)
intval (r,c) cinterval | Complex interval with
real part [r,c.re] and
imaginary part [0,c.im] *')
intval (c,r) cinterval | Complex interval with
real part [c.re,r] and
imaginary part [c.im,0] *")
intval (c) cinterval | Complex interval with
real part [c.re,c.re] and
imaginary part [c.im,c.im]

re (ci) interval Real part of ci

im (ci) interval Imaginary part of ci

inf (ci) complex | Complex lower bound z of ci with
z = (ci.re.inf,ci.im.inf)

sup (ci) complex Complex upper bound z of c¢i with

7 = (ci.re.sup,ci.im.sup)

r = real expression, 1, il, i2 = interval expression,
¢, cl, ¢c2 = complex expression, ci = cinterval expression

(*) : ¢l <= ¢2 is assumed, otherwise an error occurs.
’ . .

=) r<=c is assumed, otherwise an error occurs.
" . .

SOV c<=r is assumed, otherwise an error occurs.
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Overloading of the Assignment Operator

The type conversions real, complex, or interval to cinterval are provided as over-
loaded assignment operators:

‘ Assignment Meaning ‘
ci == r |c := compl (intval (r))
ci := ¢ |c = intval (¢
ca = i ci := compl (i)

ci = cinterval variable, i = interval expression
¢ = complex expression, r = real expression

Predefined Functions

All mathematical functions of PASCAL-XSC available for real arguments are sup-
plied for complex interval arguments ci. These complex interval functions F' satisfy
F(ci) O f(ci) = {f(c) : ¢ € ci}. Moreover, functions for the computation of the
angle component of the exponential representation, for the conjugation, and for the
computation of midpoint, diameter, and epsilon inflation of a complex interval are
available.

‘ Function ‘ Result Type ‘ Meaning ‘
sqr (ci) cinterval | (ci)? Square
sqrt (ci) cinterval | /ci Square Root
exp (ci) cinterval | el Exponential Function
exp2 (ci) cinterval | 2¢ Power Function, Base 2
expl0 (ci) cinterval | 10 Power Function, Base 10
In (ci) cinterval | In (ci) Natural Logarithm
log2 (ci) cinterval | log,(ci) Logarithm, Base 2
log10 (ci) cinterval | log,,(ci) Logarithm, Base 10
sin (ci) cinterval | sin (ci) Sine
cos (ci) cinterval | cos (ci) Cosine
tan (ci) cinterval | tan (ci) Tangent
cot (ci) cinterval | cot (ci) Cotangent
arcsin (ci) cinterval | arcsin (ci) Arc Sine
arccos (ci) cinterval | arccos (ci) Arc Cosine
arctan (ci) | cinterval | arctan (ci) Arc Tangent
arccot (ci) cinterval | arccot (ci) Arc Cotangent

ci = cinterval expression
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‘ Function ‘ Result Type ‘ Meaning ‘
sinh (ci) cinterval | sinh (ci) Hyperbolic Sine
cosh (ci) cinterval | cosh (ci) Hyperbolic Cosine
tanh (ci) cinterval | tanh (ci) Hyperbolic Tangent
coth (ci) cinterval | coth (ci) Hyperbolic Cotangent
arsinh (ci) cinterval | arsinh (ci) Inverse Hyperbolic Sine
arcosh (ci) cinterval | arcosh (ci) Inverse Hyperbolic Cosine
artanh (ci) | cinterval | artanh (ci) Inverse Hyperbolic Tangent
arcoth (ci) cinterval | arcoth (ci) Inverse Hyperb. Cotangent
conj (ci) cinterval | ci= a — ib Conjugation of ¢i = a + ib
abs (ci) interval | j = Vci.re* + ci.im* Absolute Value of ci
arg (ci) interval © Angle component of the expo-

nential representation of ci

mid (ci) complex | m Midpoint of ci
diam (ci) real d Diameter of ci
blow (ci,r) cinterval | 1 Epsilon Inflation

ci = cinterval expression, 1 = real expression

I: blow := compl (blow(ci.re,r),blow(ci.im,r))

The domains and ranges of the predefined functions are implementation-dependent
and are described in the user manual.

Example 3.3.2:

If a of type cinterval is defined as
a := compl ( intval (—1,3), intval (3,4) ),

then the functions abs and sqr deliver the results:

Expression ‘ Result
abs (a) (3,5]
sqr (a) [—16,0] + 7 [—8,24]

Input/Output Procedures

This module supplies the procedures

procedure read (var f: text; var a: cinterval);
procedure write (var f: text; a: cinterval);

with optional file parameters, arbitrarily many input/output parameters, but with-
out format specifications.
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A complex interval ci = [z, y] + i[v, w] must be entered in the form
([z, y], [v, w]) general complex interval
or in the form
(z, [v, w]) with z =y
or in the form
([z, y],v) with v = w
or in the form
[z, y] withv =w =0
or in the form
(x,v) with z =y and v = w
or in the form
x with z =y and v =w = 0.

The rounding of real and imaginary part is done as described in section 3.2.
The output of a complex interval is done with the interval rounding described in
section 3.2 for the real and imaginary parts. The result has the form

([z, ), [o, w]),

with an implementation-dependent default format for the real values z, y, v, and w.

Example 3.3.3:
If cil, ci2, and ci3 are of type cinterval, then the statements
read (cil, ci2, ci3);
writeln (cil);

writeln (ci2);
writeln (ci3);

accept the input data

[4,5]
(8,10)
100

and write the complex intervals

([ 4.0E+00, 5.0E-+00],] 0.0E+00, 0.0E+00])
([ 8.0E400, 8.0E+00],[ 1.0E+01, 1.0E+01])
([ 1.0E402, 1.0E+02],] 0.0E+00, 0.0E+00])

Another real representation may be used depending on the implementation.
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3.4 The Module MV_ARI
Real Matrix/Vector Arithmetic

This module supplies all operators, functions, and procedures necessary for compu-
tations with real vectors and matrices.

Types
The dynamic types for representing real vectors and matrices defined by

type rvector = dynamic array [«] of real;
rmatrix= dynamic array [ of rvector;

are part of the language core of PASCAL-XSC. The actual index bounds are spec-
ified in connection with the declaration of variables of these types.

Operators

Many of the basic matrix/vector operations known from mathematics are predefined
in this module. There are the monadic operators +, — and the four basic operations
+, —, %, /, each with three different kinds of rounding. Special combinations of mixed
types of operands are permitted. The operations + and — for vectors and matrices
are defined componentwise by

¢ = a =+ b with «¢[i] := ali] =+ bl
C = A + B with C[i,j] = A[j =+ B[,j

with a, b, ¢ of type rvector, and A, B, C of type rmatrix. The operators * and /
are defined by

s = a *x b with S := #x (for i:=lbound(a) to ubound(a)
sum (ali]*bli])) *

¢ = r x a with <¢c[i] = rxalj

¢ = a x r with ¢[i] = afi]x*r

c = a / r with ¢[i] = a[]/r

¢ == A x b with c[i] := Afi]xb }

C = r x A with C[j := r=xA[,j]

C = A x r with C[,j] = A[Lj]*r

C = A / r with CLj := ALjl/r

C = A % B with C[i,j] := Al *B[*j *

. Scalar product
with maximum accuracy

with r, s of type real, a, b, ¢ of type rvector and A, B, C of type rmatrix. The
operations with directed rounding are defined in a corresponding way.

The definition of the relational operators =, <>, <, <=, >, >=is based upon = and
<=. It is realized according to (RD) (see page 130). If a and b are of type rvector,
and A and B are of type rmatrix, then
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b <= ai
B «— Al,j]

a <=
A <=

The operators on the right side of the

real.

<= bli]

<= B[]

for all i

for all i, j

right .
Integer .
left Operand 5 rvector rmatrix
real
Operand
monadic +, — +,—
integer
Ky k< kD> |k, k<, x>
real
K, k<, kD> o
rvector
/s ]<, > v
) %, %<, *> o
rmatrix *, k<, *>
/s /<, > Y,

The Operators of Module MV_ARI

o € {+, +<,

VEe{= <> < <=, >, >=}

Example 3.4.1:

+>, —,

_<a _>a *, *<a *>}
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equivalences are the ones for values of type

A Runge-Kutta method can be used for the approximate solution of initial

value problems of the form

V'=F(2,Y); Y(2°)
with
Y1 ()
Y= © |\V=
yn(x)
and
fl(l‘, Yty .-
F(z,Y) = :

fn(xayla s

=YY"

, Un)

»Un)
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To determine an approximation of the solution Y at x + A, the formulas

Ky =hxF(z,Y)

h K
ngh*F(x+§,Y+71)
h K
ngh*F(x+§,Y+72)

Kiy=hxF(z+hY + K3)
and
Y(r+h)=Y(x)+ (K + 2Ky +2K3 + K,)/6

are applied. After the definition of the rvector function F' and the declaration
of the variables k1, k2, k3, k4, Y of type rvector and h, x of type real, these
formulas can directly be transferred into PASCAL-XSC source code:

kil = hxF
k2 = hxF

x, Y);

x + h/2, Y + k1/2);

k3 = h«*F (x+h/2, Y + k2/2);

k4 := h*F (x+h,Y + k3);

Y = Y+ (k1 +2x%k2+2x%k3+ kd) /6;

N N N N

Overloading of the Assignment Operator

The componentwise initialization of rvector and rmatrix variables is provided as
overloaded assignment operators:

‘ Assignment ‘ Meaning ‘
rv = r |rv[j] = T j = Ib(rv),...,ub(rv)
M = r | rtM[jk] = r j=Ib(M,1),...,ub(rM,1)
k = 1b(rM,2),...,ub(rM,2)

r = real expression, rv = rvector variable, rM = rmatrix variable
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Predefined Functions
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The functions id and null are supplied for generating an identity matrix and a null
matrix or a null vector. Furthermore, the function transp computes the transposed
of a matrix.

Function ‘ Result Type ‘ Meaning ‘

null (v) rvector Null vector with the actual index range of
%

vnull (n) rvector Null vector with the index range [1..n]

null (M) rmatrix Null matrix with the actual index ranges
of M

null (M1,M2) rmatrix Null matrix with the actual index ranges
of the product matrix M1 - M2

null (n) rmatrix Null matrix with index range [1..n,1..1]

null (n1,n2) rmatrix Null matrix with index range [1..n1,1..n2]

id (M) rmatrix Identity matrix with the actual index
ranges of M

id (M1,M2) rmatrix Identity matrix with the actual index
ranges of the product matrix M1 - M2

id (n) rmatrix Identity matrix with the index ranges
[1..n,1..n]

id (n1,n2) rmatrix Identity matrix with the index ranges
[1..n1,1..n2]

transp (M) rmatrix Transposed matrix Mt of M with
Mt[i, j] = MIj, i]

n, nl, n2 = integer expression,

Example 3.4.2:

v = rvector expression

M, M1, M2 = rmatrix expression

If E denotes the identity matrix and R ~ A~! an approximate inverse of the
square matrix A, then the defect

D=E -

R-A

is often used in the numerical computations. In PASCAL-XSC, the defect can
be computed by

D:=id (A) — R A,

or with the use of an accurate expression (see section 2.4.4) by

D:=#x(id(A) —R=xA).

In the second form, the defect matrix is computed with only one rounding in
each component.
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Input/Output Procedures

The procedures

procedure read (var f: text; var a: rvector);
procedure read (var f: text; var A: rmatrix);
procedure write (var f: text; a: rvector);
procedure write (var f: text; A: rmatrix);

are provided with optional file parameters, arbitrarily many input/output parame-
ters, but without any format specifications.

The input of a vector or a matrix is done componentwise according to the input
of real values. A matrix is entered row by row. The output of a vector or a matrix
is also done componentwise using an implementation-dependent default format for
the real components.

Example 3.4.3:

The statement
read (b, A, x)

reads the vector b, the matrix A and the vector x.
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3.5 The Module MVC_ARI
Complex Matrix/Vector Arithmetic

This module supplies all operators, functions, and procedures necessary for compu-
tations with complex vectors and matrices.

Types
The dynamic types for representing complex vectors and matrices defined by

type cvector = dynamic array [*] of complex;
cmatrix= dynamic array [*] of cvector;

are part of the language core of PASCAL-XSC. The actual index bounds are spec-
ified in connection with the declaration of variables of these types.

Operators

Many of the basic complex matrix/vector operations known from mathematics are
predefined in this module. There are the monadic operators 4+, — and the four
basic operations +, —, %, /, each with three different kinds of rounding. Special
combinations of mixed types of operands are permitted. The operations + and —
for complex vectors and matrices are defined componentwise by

¢c = a £ b with «¢[i] := afi]+£b[j

C = A £+ B with C[i,j] := A[,j] + Bi,j]
with a, b, and ¢ of type cvector, and A, B, and C of type cmatrix. The operators
x and / are defined by

s = a *x b with S := #x (for i:=lbound(a) to ubound(a)
sum (ali]xbli])) *

¢ = r x a with ¢[i] = rxali

¢ = a x r with ¢[i] = afi]x*r

¢c = a [/ r with <¢[i] := af]/r

¢ = A % b with ¢[i] := Aflj*b 1

C = r x A with C[i,j] = rxA[j]

C = A x r with C[i,j] = A[j]*r

C = A / r with C[L,j] = A[lj]/r

C = A x B with C[i,j] = A[]*B[xj

. Scalar product
with maximum accuracy

with r and s of type complex, a, b. and ¢ of type cvector, and A, B, and C of
type cmatrix. The operations with mixed operand types and the operations with
directed rounding are defined in a corresponding way.

The definition of the relational operators =, <>, <, <=, >, >=is based upon = and
<=. It is realized according to (RD) (see page 130). If a and b are of type cvector
and A and B are of type cmatrix, then
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a

A

The operators on the right side of the

<=
<=

b <+—

alil
B «— Al,j]
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<=
<=

bli]
B[i, ]]

for all i
for all i, j

equivalences are the ones for values of type

complex.
right .
integer . .
left Operand gl complex | rvector | cvector | rmatrix | cmatrix
Operand rea
monadic +,— +, —
integer
K, k<, k> K, k<, k>
real
complex R D LA S D E N T A L N T D
*, k<, *>, o
rvector
/<, /> v
cvector k, k<, k>, |k, k<, *>, o o
[ 1< /> 1/, ]<, /> v %
. *, k<, *>, o
rmatrix *, k<, *>
/<, /> v
. k, k<, k>, |k, k<, *>, ) o
cmatrix K, k<, K>k, k<, k>
[ 1<, /> 1/, /<, /> v %

Example 3.5.1:

If cv is of type cvector and cM is of type cmatrix, then a stretching with the

The Operators of Module MVC_ARI

o€ {+, +<, +>, —,

_<a _>a *, *<a *>}

VE = <>, < <=, >, >=}

factor 1/3 may be produced by

cv:i=cv / 3;

cM =

cM / 3;

The division operation may also be executed with downwardly or upwardly
rounding using /< or />, respectively.
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Transfer Functions for Complex Vectors

The following transfer functions are supplied for type conversion between the types
rvector and cvector:

‘ Function ‘ Result Type ‘ Meaning ‘
compl (rv1,rv2) cvector Complex vector cv with
cv[i] = compl (rv1[i], rv2[i])
compl (rv) cvector Complex vector c¢v with
cv[i] = compl (rvli])
re (cv) rvector Real part vector rv with
rv[i] = re (cvli])
im (cv) rvector Imaginary part vector rv with
rv[i] = im (cv[i])

rv, rvl, rv2 = rvector expression, cv = cvector expression

Transfer Functions for Complex Matrices

The following transfer functions are supplied for type conversion between the types
rmatrix and cmatrix:

‘ Function ‘ Result Type ‘ Meaning ‘

compl (rM1,rM2) cmatrix Complex matrix ¢cM with
cM[i, j| = compl (rM1[i, j], rM2[i, j])

compl (rM) cmatrix Complex matrix cM with
cM[i, j| = compl (rM[i, j])

re (cM) rmatrix Real part matrix rM with
rM[i, j| = re (cM[i, j])

im (cM) rmatrix Imaginary part matrix rM with

rM[i, j] = im (cM[i, j])

rM, rM1, rM2 = rmatrix expression, c¢M = cmatrix expression
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Overloading of the Assignment Operator

The componentwise initialization of cvector and cmatrix variables and type conver-
sions from rvector to cvector and rmatrix to cmatrix are provided as overloaded

assignment operators:

‘ Assignment ‘ Meaning ‘

cv = 1 | cvfj] = compl (r)  j = Ib(cv),...,ub(cv)

cv = ¢ | cv]j] = ¢ j = Ib(ev),...,ub(cv)

cv = 1v |cv = compl (rv)

cM := r |cM[jk] = compl(r) j=Ib(cM,1),...,ub(cM,1)
k = 1b(cM,2),...,ub(cM,2)

cM = ¢ | cM[jk] = ¢ j = Ib(cM,1),...,ub(cM,1)
k = 1b(cM,2),...,ub(cM,2)

cM = M | cM = compl (rM)

¢ = complex expression, cv = cvector variable
cM = cmatrix variable, r = real expression

Predefined Functions

The functions id and null are supplied for generating an identity matrix and a null
matrix or a null vector. The functions transp and herm compute the transposed

v = rvector expression, rM = rmatrix expression

and the Hermitian matrices. The function conj for conjugation is available, too.

‘ Function ‘ Result Type ‘ Meaning
null (cv) rvector Null vector with the actual index range of
cv
null (cM) rmatrix Null matrix with the actual index ranges

id (cM)

null (¢cM1,cM2) rmatrix

rmatrix

id (cM1,cM2) rmatrix

of cM

Null matrix with the actual index ranges
of the product matrix cM1 - cM2
Identity matrix with the actual index
ranges of cM

Identity matrix with the actual index
ranges of the product matrix cM1 - cM2

cv = cvector expression,

cM, cM1, cM2 = cmatrix expression
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‘ Function ‘ Result Type ‘ Meaning ‘

conj (cv) cvector Conjugated complex vector cve with
cveli] = conj (cv[i])

conj (cM) cmatrix Conjugated complex matrix ¢cMc with
cMcli, j] = conj (cM][i, j])

transp (cM) cmatrix | Transposed matrix cMt of ¢M with
cMtfi, j] = cM[j, ]

herm (cM) cmatrix Hermitian matrix ¢cMh of ¢M with
cMhl[i, j] = conj (cM]j, 1))

cv, cve = cvector expression, cM, cMc, cMt, cMh = cmatrix expression

Example 3.5.2:
If cM, cM1, and cM2 are complex matrices of type cmatrix, and the statements

¢M1 := conj ( transp (cM) );
cM2 := herm (cM);

are executed, then the boolean expression
cM1 = cM2

delivers true.

Input/Output Procedures

The procedures

procedure read (var f: text; var a: cvector);
procedure read (var f: text; var A: cmatrix);
procedure write (var f: text; a: cvector);
procedure write (var f: text; A: cmatrix);

are provided with optional file parameters, arbitrary many input/output parameters,
but without any format specifications.

A complex vector or a complex matrix is entered componentwise according to
the input of complex values. A matrix is entered row by row. The output of a
complex vector or a complex matrix is also done componentwise using the default
output format for complex numbers.
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3.6 The Module MVI_ARI
Interval Matrix/Vector Arithmetic

This module supplies all operators, functions, and procedures necessary for compu-
tations with interval vectors and matrices.

Types
The dynamic types for representing interval vectors and matrices defined by

type ivector = dynamic array [x] of interval;
imatrix= dynamic array [«] of ivector;

are part of the language core of PASCAL-XSC. The actual index bounds are spec-
ified in connection with the declaration of variables of these types.

Operators

Many of the basic interval matrix/vector operations known from the mathematics are
predefined in this module. There are the monadic operators +, — and the four basic
operations +, —, %, /, each with componentwise rounding to the smallest enclosing
interval. Even special combinations of mixed types of operands are permitted. The
operations + and — for interval vectors and matrices are defined componentwise by

¢c = a £ b with «¢[i] := afi]+£b[j

C = A £+ B with C[i,j] := A[,j] + Bi,j]
with a, b, and ¢ of type ivector and A, B, and C of type imatrix. The operators
and / are defined by

s = a *x b with S := ## (for i:=lbound(a) to ubound(a)
sum (ali]xbli])) *

¢ = 1 x a with ¢[i] = rxali

¢ = a x r with ¢[i] = afi]x*r

¢c = a [/ r with <¢[i] := af]/r

¢ = A % b with ¢[i] := Aflj*b 1

C = r x A with C[i,j] = rxA[j]

C = A x r with C[i,j] = A[j]*r

C = A / r with C[L,j] = A[lj]/r

C = A x B with C[i,j] = Al[]*B[xj

. Scalar product
with maximum accuracy

with r and s of type interval, a, b, and c of type ivector, and A, B, and C of type
imatrix. The operations with mixed operand types are defined in a corresponding
way.

The definition of the relational operators =, <>, <, <=, >, >=is based upon = and
<=. It is realized according to (RD) (see page 130). If a and b are of type ivector,
and A and B of type imatrix, then



3.6. THE MODULE MVI_ARI 157

a <= b <<= ali <= bli] forall i
A <= B <« A[,j] <= BJi,j] forall i,j

The operators on the right side of the equivalences are the ones for values of type
interval.

Moreover, the operators in for the relations “is contained in” and “is contained
in the interior” and the operator >< to test for disjointedness are provided for
interval vectors and interval matrices. These operators are defined componentwise.

The lattice operators +x* and ** denote the interval hull and the interval inter-
section as described for the type interval in section 3.2 (I_ARI).

right .
integer | . . . . .
left Operand 8T | interval | rvector | ivector |rmatrix| imatrix
real
Operand
monadic +,— +,—
integer
g * k
real
interval * * * *
o
rvector *, / +%x | =,<>,in
—+ %
o o
ivector *, / *, / =, <> |in,V,><
—+ % Tk, Kok
o
rmatrix *, / * +* =,<>, in
4
o o
imatrix %, / %, / * * =,<> |in,V,><
+x% %, kok

The Operators of Module MVI_ARI
o €{+, —, *}
VE = <>, < <=, >, >=}
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If we want to execute the Runge-Kutta method mentioned in section 3.4
(MV_ARI) using interval arithmetic, we only have to change a few things
in the original program. The variables k1, k2, k3, k4, Y must be declared of
type ivector, and the function F must be defined with result type ivector. If
we now use the module MVI_ARI instead of MV_ARI, the program statements

kI := hx*F (x,Y);

k2 = h*F (x+h/2,Y + kl1/2);

k3 = h*F (x+h/2,Y + k2/2);

k4 = h*F (x+h,Y +k3);

Y = Y+ (k1 +2x%k2+2x%k3+ kd) /6;

need not be changed in any way. Now, all operators denote the corresponding
interval operations. Although we have an interval result Y, we do not have
an enclosure for the true solution of the ordinary differential equation. To
compute an enclosure, we would also have to enclose the truncation error of

the method.

Transfer Functions for Interval Vectors

The following transfer functions are supplied for type conversions between the types

rvector and ivector:

‘ Function

‘ Result Type ‘

Meaning ‘

intval (rvl,rv2)
intval (rv)
inf (iv)

sup (iv)

ivector

ivector

rvector

rvector

Interval vector iv with

iv[i] = intval (rv1[i],rv2[i]) *)
Interval vector iv with

iv[i] = intval (rv[i])

Vector rv of lower bounds with
rv[i] = inf (iv[i])

Vector rv of upper bounds with

rv[i] = sup (iv[i])

rv, rvl, rv2 = rvector expression, iv = ivector expression

(*): rvl <= rv2 is assumed, otherwise an error occurs.
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Transfer Functions for Interval Matrices

The following transfer functions are supplied for type conversions between the types
rmatrix and imatrix:

Function

‘ Result Type ‘ Meaning

inf (M)

sup (iM)

intval (rM1,rM2)

intval (rM)

imatrix Interval vector iM with
iM[i, j] = intval (rM1[i, j,rM2[i, j])
(*)

imatrix Interval vector iM with
iM[i, j] = intval (rM[i, j])
rmatrix Vector rM of lower bounds with
rM([i, j] = inf (iM[i, j])
rmatrix Vector rM of upper bounds with

rMJi,j] = sup (iM[i,j])

rM, rM1, rM2 = rmatrix expression, iM = imatrix expression

(*)

: tM1 <= rM2 is assumed, otherwise an error occurs.

Overloading of the Assignment Operator

The componentwise initialization of ivector and imatrix variables and type conver-
sions from rvector to ivector and rmatrix to imatrix are provided as overloaded
assignment operators:

‘ Assignment ‘ Meaning

iv = r |iv]j] = intval (r)  j = Ib(iv),...,ub(iv)

v = i iv[j] = i j = Ib(iv),...,ub(iv)

iv = rv |iv :=intval (rv)

iM = r |iM[jk] = intval (r) j=1b(iM,1),...,ub(iM,1)
k = Ib(iM,2),...,ub(iM,2)

iM o= i | iM[k = i i = Ib(iM,1),...,ub(iM,1)
k = Ib(iM,2),...,ub(iM,2)

iM = M |iM := intval (rM)

i = interval expression, iv = ivector variable, iM = imatrix variable
r = real expression, rv = rvector expression, rM = rmatrix expression
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Predefined Functions

The functions id and null are supplied for generating an identity matrix and a null
matrix or a null vector. The function transp computes the transposed matrix. The
functions mid, diam, and blow compute midpoint, diameter, and epsilon inflation
componentwise.

‘ Function ‘ Result Type ‘ Meaning ‘

null (iv) rvector Null vector with the actual index range of
iv

null (iM) rmatrix Null matrix with the actual index ranges
of iM

null (iM1,iM2) rmatrix Null matrix with the actual index ranges
of the product matrix iM1 - iM2

id (iM) rmatrix Identity matrix with the actual index
ranges of iM

id (iM1,iM2) rmatrix Identity matrix with the actual index
ranges of the product matrix iM1 - iM2

mid (iv) rvector Midpoint vector rv with
rv[i] = mid (iv[i])

diam (iv) rvector Diameter vector rv with
rv[i] = diam (iv[i])

mid (iM) rmatrix Midpoint matrix rM with
rM[i, j] = mid (iM[i, j])

diam (iM) rmatrix Diameter matrix rM with
rMJi, j] = diam (iM[i, j])

transp (iM) imatrix Transposed matrix iMt of iM with
iMtfi, j] = iM[j, i]

blow (iv,r) ivector Vector epsilon inflation ive with
ive[i] = blow (iv[i],r)

blow (iM,r) imatrix Matrix epsilon inflation iMe with
iMefi, j] = blow (iM[i, j],r)

r = real expression iv, ive = ivector expression
iM, iM1, iM2, iMt, iMe = imatrix expression

Example 3.6.2:

An interval enclosure for the defect
D=E-R-A

mentioned in section 3.4 (MV_ARI) can be computed by using MVI_ARI, the
variables A, D, and R of type imatrix, and the statement

D:=id (A) — R * A.

The tightest possible enclosing interval matrix can be computed using an ac-
curate expression (see section 2.4.4)
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D= #4# (id (A) — R * A ).

Input/Output Procedures

The procedures

procedure read (var f: text; var a: ivector);
procedure read (var f: text; var A: imatrix);
procedure write (var f: text; a: ivector);
procedure write (var f: text; A: imatrix);

are provided with optional file parameters, arbitrarily many input/output parame-
ters, but without any format specifications.

An interval vector or an interval matrix is entered componentwise as individual
interval values. A matrix is entered row by row. The output of an interval vector
or an interval matrix is also done componentwise using the default output format
for intervals.
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3.7 The Module MVCI_ARI
Complex Interval Matrix/Vector Arithmetic

This module supplies all operators, functions, and procedures necessary for compu-
tations with complex interval vectors and matrices.

Types

The dynamic types for representing complex interval vectors and matrices defined
by

type civector = dynamic array [+ of cinterval,
cimatrix= dynamic array [ of civector;

are part of the language core of PASCAL-XSC. The actual index bounds are spec-
ified in connection with the declaration of variables of these types.

Operators

Many of the basic complex interval matrix/vector operations known from the mathe-
matics are predefined in this module. There are the monadic operators +, — and the
four basic operations +, —, x, /, each with componentwise rounding to the smallest
enclosing complex interval. Even special combinations of mixed types of operands
are permitted. The operations + and — for complex interval vectors and matrices
are defined componentwise by

¢c = a £ b with «¢[i] := afi]+£b[j
C = A + B with C[,j = Afij =+ B[j

with a, b, and ¢ of type civector and A, B, and C of type cimatrix. The operators
x and / are defined by

s = a *x b with S := ## (for i:=lbound(a) to ubound(a)
sum (ali]xbli])) *

¢ = 1 x a with ¢[i] = rxali

¢ = a x r with «¢[i] := ali=*r

¢c = a [/ r with ¢[i] := af]/r

¢ = A % b with ¢[i] := Aflj*b 1

C = r x A with C[i,j] = rxA[j

C = A x r with C[i,j] = A[j*r

C = A / r with C[L,j] = A[lj]/r

C = A x B with C[i,j] = A[]*B[xj

. Scalar product
with maximum accuracy

with r and s of type cinterval, a, b, and ¢ of type civector, and A, B, and C of type
cimatrix. The operations with mixed operand types are defined in a corresponding
way.
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The definition of the relational operators =, <>, <, <=, >, >=is based upon =
and <=. Tt is realized according to (RD) (see page 130). If a and b are of type
civector and A and B are of type cimatrix, then

a <= b <<= afj <= b[j] for all i
A <= B <= A[j <= B[ij forall i j

The operators on the right side of the equivalences are the ones for complex intervals.

Moreover, the operators in for the relations “is contained in” and “is contained
in the interior”, and the operator >< for the test on disjointedness are provided for
complex interval vectors and complex interval matrices. These operators are defined
componentwise.

The lattice operators +x* and %% denote the complex interval hull and the complex
interval intersection as described for the type cinterval in section 3.3 (CI_ARI).

The review of the operators defined in Module MVCI_ARI is given in two tables
due to the large number of operators. The first table has no matrix types as right
operands, while the second table has only matrix types as right operands.
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right ||
integer . . . .
oy N\Operand refl complex | interval | cinterval | rvector | cvector | ivector civector
Operand
monadic +, -
integer
*
real
complex * *
interval * *
cinterval * * * *
o
rvector *x, / +% =,<>,in
+*
o o
cvector *, / *, / +x +x | =,<>,in| =,<>,in
+x +*
o, o
ivector *, / *, / =,<>, in,V,><,
+x +%, k%
o, o, ° o
civector *, / *, / *, / *, /[ =<, =<, V> iV, >,
+ % =+ % +%, k% +%, k%
rmatrix *, /[ *
cmatrix %, / *, / * *
imatrix *, / *, /[ * *
cimatrix *, / *, / *, / *, /[ * * * *

The Operators of Module MVCI_ARI (Part 1)
©€ {+7 B *}

VE{= <>, < <=, >, >=}
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right
ot NQperand |y atrix | cmatrix | imatrix | cimatrix
Operand
monadic +, —
integer
b3
real
complex * *
interval * *
cinterval * * * *
rvector
cvector
ivector
civector
o
rmatrix 4% =,<>,in
+*
o o
cmatrix +x +x =,<>,in| =,<>,in
+ % +x
o, o
imatrix = <> in, VvV, ><,
+x +%, Hk
o, o, o o
cimatrix =<>, | =,<>, | V,><, |in,V,><,
+ % =+ % +%, x% +%, x%

The Operators of Module MVCI_ARI (Part 2)

€ {+7 B *}

VE{= <>, < <=, >, >=}
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Transfer Functions for Complex Interval Vectors

The following transfer functions are supplied for type conversions between the types

rvector, cvector, ivector, and civector:

Function

‘ Result Type ‘

Meaning

compl (iv1,iv2)
compl (rv,iv)
compl (iv,rv)
compl (iv)
intval (cvl,cv2)
intval (rv,cv)
intval (cv,rv)
intval (cv)

re (civ)

im (civ)

inf (civ)

sup (civ)

civector

civector

civector

civector

civector

civector

civector

civector

ivector

ivector

cvector

cvector

Complex interval vector civ with
civ[i] = compl (iv1[i],iv2[i])
Complex interval vector civ with
civ[i] = compl (rv[i],iv[i])
Complex interval vector civ with
civ[i] = compl (iv[i],rv[i])
Complex interval vector civ with
civ[i] = compl (iv[i])

Complex interval vector civ with
civ[i] = intval (cv1[i],cv2[i])
Complex interval vector civ with
civ[i] = intval (rv[i],cv[i])
Complex interval vector civ with
civ[i] = intval (cv[i],rv[i])
Interval vector civ with

civ[i] = intval (cv[i])

Real part vector iv with

iv[i] = re (civl[i])

Imaginary part vector iv with
iv[i] = im (civ[i])

Complex vector cv of the lower
bounds with cv[i] = inf (civ[i])
Complex vector cv of the upper
bounds with cv[i] = sup (civ[i])

I'v = rvector expression,
iv, ivl, iv2 = ivector expression,

cv, cvl, cv2 = cvector expression,

civ = civector expression
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Transfer Functions for Complex Interval Matrices

167

The following transfer functions are supplied for type conversions between the types
rmatrix, cmatrix, imatrix, and cimatrix:

Function

‘ Result Type ‘

Meaning

compl (iM1,iM2)
compl (rM,iM)
compl (iM,rM)
compl (iM)
intval (cM1,cM2)
intval (rM,cM)
intval (cM,rM)
intval (cM)

re (ciM)

m (ciM)

inf (ciM)

sup (ciM)

cimatrix

cimatrix

cimatrix

cimatrix

cimatrix

cimatrix

cimatrix

cimatrix

imatrix

imatrix

cmatrix

cmatrix

Complex interval matrix ciM with
ciM[i, j] = compl (iM1[i, j],iM2[i, j])
Complex interval matrix ciM with
ciM[i, j] = compl (rM[i, jl,iM[i, j])
Complex interval matrix ciM with
ciM[i, j] = compl (iM[i, jl,rM[i, j])
Complex interval matrix ciM with
ciM[i, j] = compl (iM[i, j])

Complex interval matrix ciM with
ciM[i, j] = intval (¢M1[i, jl,cM2[i, j])
Complex interval matrix ciM with
ciM[i, j] = intval (rM[i, j],cM[i, j])
Complex interval matrix ciM with
ciM[i, j| = intval (cM[i, j,rM[i, j])
Complex interval matrix ciM with
ciM[i, j] = intval (cM[i, j])

Real part matrix iM with

iM[i, j] = re (ciM[i, j])

Imaginary part matrix iM with
iM[i, j] = im (ciM[i, j])

Complex matrix cM of the lower
bounds with ¢M[i, j] = inf (ciM[i, j])
Complex matrix ¢cM of the upper
bounds with ¢M[i, j] = sup (ciM[i, j])

rM = rmatrix expression,
iM, iM1, iM2 = imatrix expression,

cM, cM1, cM2 = cmatrix expression

ciM = cimatrix expression
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Overloading of the Assignment Operators

The componentwise initialization of civector and cimatrix variables and type conver-
sions from rvector, cvector, or ivector to civector and rmatrix, cmatrix, or imatrix
to cimatrix are provided as overloaded assignment operators:

‘ Assignment ‘ Meaning ‘

civ. = r | civ[j] = compl (intval (r))  j = lb(civ),...,ub(civ)

civ. = ¢ | civ[j] = intval (c) j = Ib(civ),...,ub(civ)

civ. = i civ(j] = compl (i) j = Ib(civ),...,ub(civ)

civ. = ci | civ]j] = ci j = Ib(civ),...,ub(civ)

civ. = v |civ = compl (intval (rv))

civ. = c¢v |civ := intval (cv)

civ = iv |civ := compl (iv)

ciM = r ciM[j,k] := compl (intval (r))  j = 1b(ciM,1),...,ub(ciM,1)
k = 1b(ciM,2),...,ub(ciM,2)

ciM = ¢ |ciM[j,k] := intval (¢) j = Ib(ciM,1),...,ub(ciM,1)
k = Ib(ciM,2),...,ub(ciM,2)

ciM = i ciM[j,k] := compl (i) j = Ib(ciM,1),...,ub(ciM,1)
k = 1b(ciM,2),...,ub(ciM,2)

ciM = ci |ciM[jk] := d j = Ib(ciM,1),...,ub(ciM,1)
k = 1b(ciM,2),...,ub(ciM,2)

ciM = rM | ciM = compl (intval (rM))

ciM = cM | ciM = intval (cM)

ciM = iM | ciM = compl (iM)

ci = cinterval expression, civ = civector variable, ciM = cimatrix variable
i = interval expression, iv = ivector expression, iM = imatrix expression
¢ = complex expression, cv = cvector expression, cM = cmatrix expression
r = real expression, rv = rvector expression, rM = rmatrix expression



3.7. THE MODULE MVCI_ARI 169

Predefined Functions

The functions id and null are supplied for generating an identity matrix and a null
matrix or a null vector. The functions transp and herm compute the transposed
matrix and the Hermitian matrix. The functions mid, diam, and blow compute the
midpoint, diameter, and epsilon inflation componentwise. The function conj for the
conjugation of complex interval vectors and matrices is also supplied.

‘ Function ‘ Result Type ‘ Meaning ‘

null (civ) rvector Null vector with the actual index range of
civ

null (ciM) rmatrix Null matrix with the actual index ranges
of ciM

null (ciM1,ciM2) rmatrix Null matrix with the actual index ranges
of the product matrix ciM1 - ciM2

id (ciM) rmatrix Identity matrix with the actual index
ranges of ciM

id (ciM1,ciM2) rmatrix Identity matrix with the actual index
ranges of the product matrix ciM1 - ciM2

mid (civ) cvector Midpoint vector cv with
cvfi] = mid (civli])

diam (civ) rvector Diameter vector rv with
rv[i] = diam (civ[i])

mid (ciM) cmatrix Midpoint matrix cM with
cM[i, j] = mid (ciM[i, j])

diam (ciM) rmatrix Diameter matrix rM with
rM[i, j] = diam (ciM[i, j])

conj (civ) civector Conjugated complex interval vector
cive with cive[i] = conj (civli])

conj (ciM) cimatrix | Conjugated complex interval matrix
ciMc with ciMcl[i, j] = conj (ciM[i, j])

transp (ciM) cimatrix | Transposed matrix ciMt of ¢iM with
ciMtfi, j] = ciM[j, i]

herm (ciM) cimatrix | Hermitian matrix ciMh of ciM with
ciMh[i, j| = conj (ciM]j, i])

blow (civ,r) civector | Vector epsilon inflation cive with
cive[i] = blow (civ[i],r)

blow (ciM,r) cimatrix | Matrix epsilon inflation ciMe with
ciMeli, j| = blow (ciM[i, j,r)

n, nl, n2 = integer expression, 1 = real expression, rv = rvector expression
cv = cvector expression, civ, cive, cive = civector expression
rM = rmatrix expression, c¢M = cmatrix expression
ciM, ciM1, ciM2, ciMc, ciMt, ciMh, ciMe = cimatrix expression



170 CHAPTER 3. THE ARITHMETIC MODULES

Input/Output Procedures

The Procedures

procedure read (var f: text; var a: civector);
procedure read (var f: text; var A: cimatrix);
procedure write (var f: text; a: civector);
procedure write (var f: text; A: cimatrix);

are provided with optional file parameters, arbitrary many input/output parameters,
but without any format specifications.

A complex interval vector or a complex interval matrix is entered componentwise
as individual cinterval values. A matrix is entered row by row. The output of a
complex interval vector or a complex interval matrix is also done componentwise
using the default output format for complex intervals.
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3.8 The Hierarchy of the Arithmetic Modules

The dependencies between the arithmetic modules generate a hierarchy which is
represented in the following diagram. Nevertheless, each arithmetic module that is
used in a user-defined program or module must appear in a use-clause, since the
“lower” modules are linked into the “higher” modules by using a use-clause without
the reserved word global.

For example, a program which uses MVCI_ARI must also use I_ARI when the
basic interval operations should be used in the program.

MV _ARI MVC_ART MV CI_ART MVI_ARI

C_ART CIARI [_ART

Hierarchy of the PASCAL-XSC Arithmetic Modules

43

o« stands for “e is used by »”
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3.9 A Complete Sample Program

Here is a complete PASCAL-XSC program which demonstrates the use of some of
the arithmetic modules. The module LIN_SOLV is used to enclose the solution of
a system of linear equations in an interval vector by successive interval iterations.
This module is described later in this section.

The procedure main, which is called in the body of lin_sys, is only used for reading
the dimension of the system and for allocating the dynamic variables. The numerical
method itself is started by the call of procedure linear_system_solver defined in
module LIN_SOLV. This procedure may be called with arrays of arbitrary dimension.

For detailed information on iteration methods with automatic result verification
see [46], for example. The use of our program is demonstrated by an example at the
end of this section.

The Main Program

program lin_sys (input, output);

{ Program for verified solution of linear systems of equations. The  }
{ matrix A and the right-hand side b of the system are to be read in. }
{ The program delivers either a verified solution or an appropriate  }

{ failure message. }
use lin_solv, { linear system solver }
mv_ari, { matrix/vector arithmetic }
mvi_ari; { matrix/vector interval arithmetic }
var
n : integer;

procedure main (n : integer);

{ The matrix A and the vectors b and x are allocated dynamically. }

{ The matrix A and the right-hand side b are read in, and }
{ linear_system_solver is called. }
var

ok : boolean;

b : rvector[l..n];

X :ivector[l..n];

A : rmatrix[l..n,1..n];
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begin

writeln ("Please enter the matrix A:’);
read (A);

writeln ("Please enter the right-hand side b:’);
read (b);

linear_system_solver (A, b, x, ok);
if ok then
begin
writeln ("The matrix A is non-singular. The solution ’);
writeln ("of the linear system is contained in:’);
write (x);
end
else

writeln ("No solution found !’);

end; {procedure main}

begin

write ('Please enter the dimension n of the linear system: ’);
read (n);
if n > 0 then
main (n)
else
writeln ("Dimension > 0 expected!’);

end. {program lin_sys}

173
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The Module LIN_SOLV

module lin_solv;

{ Verified solution of the linear system of equations Ax = b. }

use i_ari, { interval arithmetic }
mv_ari, { matrix/vector arithmetic }
mvi_ari; { matrix/vector interval arithmetic }

priority
inflated_by = x;  { priority level 2 }

operator inflated_by (a : ivector; eps : real) infl: ivector[l..ubound(a)];
{ Computes the epsilon inflation of an interval vector. }
var

i : integer;
x : interval;

begin
for i:= 1 to ubound(a) do
begin
x:= afi;

if (diam (x) <> 0) then
afi] := (1+eps)*x — epskx
else
a[i] := intval ( pred (inf (x)), succ (sup (x)) );
end; {for}

infl := a;
end; {operator inflated_by}
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function approximate_inverse (A: rmatrix): rmatrix[1..ubound(A),1..ubound(A)];

{ Computation of an approximate inverse of the (n,n)-matrix A }

{ by Gauss elimination. }
var

i, j, k, n :integer;

factor : real;

R, Inv, E : rmatrix[1..ubound(A),1..ubound(A)];
begin

n := ubound (A); { dimension of A }

E:=1id (E); { identity matrix }
R = A;
{ Gaussian elimination step with unit vectors as }

{ right-hand sides. Division by R[i,i|=0 indicates }
{ that the matrix A is probably singular. }

for i:=1tondo
for j:= (i+1) ton do
begin
factor := R[j,i]/R[i,i];
for k:= 1 to n do R[j.k] := #x(R[j.k] — factor*R[i,k]);
E[j] := E[j] — factorxE[i];
end; {for j:=..}

{ Backward substitution delivers the rows of the inverse of A. }

for i:= n downto 1 do
Inv[i] := #x(E[i] — for k:= (i+1) to n sum(R[i,k]*Inv[k]))/R][i,i];

approximate_inverse := Inv;
end; {function approximate_inverse}
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global procedure linear_system_solver (A : rmatrix; b : rvector;
var x : ivector; var ok : boolean);

{ Computation of a verified inclusion vector for the solution of the }

{ linear system of equations. If an inclusion is not achieved after }
{ a certain number of iteration steps, then the algorithm is stopped, }
{ and the parameter ok is set to false. }
const
epsilon = 0.25; { Constant for the epsilon inflation  }
max_steps = 10; { Maximum number of iteration steps }
var
i :integer;

y, z : ivector[l..ubound(A)];
R : rmatrix[l..ubound(A),1..ubound(A)];
C :imatrix[l..ubound(A),1..ubound(A)];

begin

R := approximate_inverse (A);

{ Rxb is an approximate solution of the linear system and z is an inclusion }
{ of this vector. However, z does not usually include the true solution. }

z := R * intval (b);

{ An inclusion of I — R+A is computed with maximum accuracy. }
{ The (n,n) identity matrix is generated by the function call id(A). }
C:= ##(id(A) — RxA);

x:=1z 1i:=0;

repeat
=14 1;

y := x inflated_by epsilon; { To obtain a true inclusion, the interval }

{ vector x is slightly enlarged. }
x 1=z + Cxy; { The new iterate is computed. }
ok :=x in y; { Is x contained in the interior of y? }

until ok or (i = max_steps);
end; {procedure linear_system solver}

end. {module lin_solv}



3.9. A COMPLETE SAMPLE PROGRAM 177

Example

If we use a 10 x 10 Boothroyd/Dekker matrix (see chapter 5, Exercise 5) to test this
program, then the output is:

Please enter the dimension n of the linear system: 10
Please enter the matrix A:
10 45 120 210 252 210 120 45 10 1
55 330 990 1848 2310 1980 1155 440 99 10
220 1485 4752 9240 11880 10395 6160 2376 540 55
715 5148 17160 34320 45045 40040 24024 9360 2145 220
2002 15015 51480 105105 140140 126126 76440 30030 6930 715
5005 38610 135135 280280 378378 343980 210210 83160 19305 2002
11440 90090 320320 672672 917280 840840 517440 205920 48048 5005
24310 194480 700128 1485120 2042040 1884960 1166880 466752 109395 11440
48620 393822 1432080 3063060 4241160 3938220 2450448 984555 231660 24310
92378 755820 2771340 5969040 8314020 7759752 4849845 1956240 461890 48620

Please enter the right-hand side b:
1111111111

The matrix A is non-singular. The solution
of the linear system is contained in:

9.999999999999998E-001,
-1.000000000000001E+000,
9.999999999999998E-001, 000000000000001E+000]
-1.000000000000001E+000, 999999999999998E-001]

1.000000000000001E+000]

-9.

1.

-9.

.999999999999998E-001, 1.000000000000001E+000]
-9.

1.

-9.

1.

999999999999998E-001]

-1.000000000000001E+000, 999999999999998E-001]
9.999999999999998E-001, 000000000000001E+000]
-1.000000000000001E+000, 999999999999998E-001]
9.999999999999998E-001, 000000000000001E+000]
-1.000000000000001E+000, -9.999999999999998E-001]

[ T e T s T e T s T e T s T e T e B |
©






Chapter 4

Problem-Solving Routines

Routines for solving common numerical problems have been developed in PASCAL-
XSC. They are supplied by means of an additional module library. The methods used
compute a highly accurate inclusion of the true solution of the problem and verify
the existence and uniqueness of the solution in the given interval. The advantages
of these new routines are:

e The solution is computed with high accuracy, even for many ill-conditioned
cases.
e The accuracy of the computed solution is always controlled.

e The correctness of the result is automatically verified, i.e. an inclusion set is
computed which guarantees the existence and uniqueness of the exact solution
within the bounds computed.

e If no solution exists, or if the problem is extremely ill-conditioned, an error
message is returned.

PASCAL-XSC routines have been developed for:
e linear systems of equations

— full systems (real, complex, interval, cinterval)

— matrix inversion (real, complex, interval, cinterval)

— least squares problems (real, complex, interval, cinterval)

— computation of pseudo inverses (real, complex, interval, cinterval)
— band matrices (real)

— sparse matrices (real)
e polynomial evaluation

— in one variable (real, complex, interval, cinterval)

— in several variables (real)

e zeros of polynomials (real, complex, interval, cinterval)

179
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eigenvalues and eigenvectors

— symmetric matrices (real)

— arbitrary matrices (real, complex, interval, cinterval)
initial and boundary value problems of ordinary differential equations

— linear

— nonlinear

evaluation of arithmetic expressions
nonlinear systems of equations
numerical quadrature

integral equations

automatic differentiation

optimization problems

For further information about the individual routines and modules, see the docu-
mentation enclosed with the PASCAL-XSC numeric library.

In addition to solving the basic problems, these routines can be used for other
explorations. They provide answers to rather interesting and important questions,
such as

Determination of the condition of problems by the use of interval input.

Determination of local exclusion domains (regions in which a solution can be
guaranteed not to exist).

Verification of processes such as determination of the minimum rank of a
matrix or determination of a sphere or a half plane including all zeros of a
complex polynomial. Thus, it is possible, to guarantee stability of technical
devices as far as the mathematical model corresponds to reality.

Parameter control of models. It is easy to determine how sensitively any model
data affects a model formula and vice versa. We can compute how accurately
the data must be measured in order to guarantee a predefined accuracy for
quantities depending on these data.

In critical cases where there may not be sufficient processing power available
to use inclusion methods in real time control problems, it may still be possible
to use inclusion methods running in the background to monitor the accuracy
and reliability of the foreground processing. A special field of application is the
scope of security problems (navigation and control of satellites and aircraft,
spacecraft, as well as highly-sensitive, large technical equipment).

Verifying methods are unilateral decision processes which, on the basis of given
computing resources (run-time, memory requirements, mantissa length, etc.), detect
solvable problems and enclose their solution to a desired accuracy. For example,
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an enclosure algorithm for solving a system of linear equations may validate the
existence of a unique solution and compute an enclosure of the solution. If the
algorithm does not succeed, that does not imply that the system is singular. It
might be that the same algorithm could solve the problem with more time, memory,
or precision. Other algorithms might be used to verify that a matrix is singular.
There is an extensive literature in the area of interval analysis, enclosure meth-
ods, and self-validating computation. Neumaier [38] contains an extensive bibliogra-
phy. The bibliography of our book includes some of the more significant references.
Especially noteworthy are the introductory texts [1], [2], [34], [35], and collections
of conference papers in [16], [27], [30], [31], [32], [36], [39], [40], [41], [50], and [51].






Chapter 5

Exercises with Solutions

Here are some exercises with which the reader can practice the language PASCAL-
XSC by solving various exercises and applying the new language elements to the
development of complete programs.

A series of simple exercises is given which use the most important language
elements of PASCAL-XSC. This series covers

e introductory exercises

e exercises to go more deeply into the new concepts of PASCAL-XSC (operator
concept, functions with arbitrary result type, dynamic arrays, module concept,
etc.)

e easy exercises to treat problems of accuracy in arithmetic operations and nu-
merical computations (use of the type dotprecision)

e exercises dealing with various arithmetics (interval arithmetic, complex arith-
metic, matrix/vector arithmetic, etc.)

e exercises concerning physical and engineering applications of programming
languages and numerical methods.

Most, of the exercises are taken from a collection that has been developed in connec-
tion with lectures on programming languages held at the University of Karlsruhe.

Our proposed solutions, the complete program listings, and some results follow
each exercise. The results were produced on an HP 9000 Workstation using an
implementation of PASCAL-XSC with 53 bit binary arithmetic.

The results computed with binary arithmetic may differ from the results com-
puted with decimal arithmetic according to the problems of conversion described in
chapter 2. In this case, some deviations in the run-time outputs may be possible.

183



184 CHAPTER 5. EXERCISES WITH SOLUTIONS

Exercise 1: Test of Representability

Write a PASCAL-XSC program to determine whether a pair of integer numbers
z,n (n # 0) have a quotient z/n which is exactly representable as a real number (in
the computer’s set of floating-point numbers).

Hint: z/n is exactly representable on the computer if and only if
z/<n=z/>n.

Your program should loop to read and check an arbitrary number of such pairs. If
the condition is fulfilled, then z, n, and z/n are to be printed. If the condition is not
fulfilled, write a message to that effect. Use n = 0 to terminate the loop. After the
termination of the loop, the percentage of the pairs with an exactly representable
quotient is to be computed and reported (rounded to one place past the decimal
point).

Solution:

program represent (input, output);

{ Exercise 1: Test of Representability }

var n, z : integer;
no_of_exacts,
no_of_pairs : integer;
quotient : real;
begin
writeln (’Exercise 1: Test of Representability’);
writeln;
no_of_exacts:= 0;
no_of_pairs := 0;

write (’Enter z and n for quotient test: ’);
read (z, n);
while n <> 0 do

begin
quotient = z/<n;
no_of_pairs:= no_of_pairs+i;
if quotient = z/>n then
begin
no_of_exacts := no_of_exacts+i;
writeln (’Quotient is exactly representable!’);
writeln (z:1,’/’,n:1,’ = ’,quotient);
end
else

writeln (’Quotient is not exactly representable!’);
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writeln;
write (’Enter z and n for quotient test: ’);
read (z, n);

end;
if no_of_pairs <> 0 then
begin
writeln;
writeln (no_of_pairs, ’ data pairs were entered’);
writeln (no_of_exacts, ’ quotients are exactly representable’);
writeln (’These are ’, no_of_exacts/no_of_pairs*100:5:1:-1,%%°);
end;

end.
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Exercise 2: Summation of Exponential Series

The function e” is approximated by a partial sum of its Taylor series:

n X 1 fori=0
Sh ;:0 a; with q; A and 7! { L6925 xi foris0

The partial sum may be computed according to the following algorithm:

start: S1=1; a1 ==
. €T .
recursion: S; =S;_1 +a,_1; a;=a;_1—; i=2,...,n
i

Write a PASCAL-XSC program with n = 100 which reads x and computes S,, using
three different rounding controls:

e downwardly directed,
e rounded to the next floating-point number,
e upwardly directed.

The computation of the sum should be terminated before handling the n-th sum-
mand if the upwardly directed sum S; satisfies

la;| < eps* |S;| with eps = 10712
You should report the correct value of exp(z) and the final values of 7 and S;.

Hint: Use negative values (< —50) for z when testing your program since they
demonstrate very clearly rounding errors occurring during summation.

Solution:

program expo (input, output);

{ Exercise 2: Summation of the exponential series }

const eps le-12;
n = 100;

var Sdown, Snext, Sup : real;
adown, anext, aup : real;
i : integer;
x, help : real;

begin
writeln (’Exercise 2: Summation of the exponential series’);
writeln;
write (’Enter an argument x for computing exp(x): ’);
read (x);
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writeln (’Summation of the exponential series :’);

writeln (’Step Summand Sum’) ;
adown:= x; anext:= x; aup:= X;
Sdown:= 1; Snext:= 1; Sup:= 1;
i:=1;
repeat
i = i+1;
Sdown:= Sdown +< adown;
Snext:= Snext + anext;
Sup := Sup +> aup;
anext:= anext * x / 1ij;

if x >= 0 then

begin
adown:= adown *< x /< ij;
aup := aup *> x /> i;
end
else
begin

help := adown;
adown:= aup *< x /< i;

aup := help *> x /> 1i;
end;
writeln (i 7, ’, adown, ’ ’, Sdown);
writeln (? ’:7,’ ’, anext, ’ ’, Snext);
writeln (’ °:7,’ ’, aup, > 7, Sup);
until (i >= n) or (abs(adown) < eps*abs(Sdown));
writeln(’Exact value of the function exp(x) : ’,exp(x));

end.
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Exercise 3: Influence of Rounding Errors

Write a PASCAL-XSC program to demonstrate the influence of rounding errors
during computation of the expression

z =t — Ayt — 4y?

for different values of = and y. The program should accept the real-values x and y
and compute z according to the following methods

1) z=x-2-2-0—4-y-y-y-y—4-y-y using

a) the floating point operators * and -

b) the directed-rounding operators *<, *>, and -< to deliver a lower bound
for the expression

¢) the directed-rounding operators *<, *>, and -> to deliver an upper bound
for the expression

2) z=x2%-2>—4-y?>-y> —4-y> using the predefined function sqr and the
operators * and -

3) z=(2")>—(2-9°)>—(2-y)* using sqr, *, and -
4) z=(2*)? - (2-y)?- (y>+1) using sqr, *, and -
5) z=#x%(a-a—b-b—c-c)witha=2%b=2-y*>and c=2-y.

The seven computed values should be reported with an accompanying comment for
each operation. Test your program by using the values

x = 665857.0 and y = 470832.0.

In this special case, the true value for z is the number 1. For a detailed description
of rounding error effects see [52], for example.

Solution:

program rounding (input, output);
{ Exercise 3: Influence of Rounding Errors }

var x,y,z: real;
a,b,c: real;

begin
writeln(’Exercise 3: Influence of Rounding Errors’);
writeln;
write(’x = ’); read(x);
write(’y = ’); read(y);
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writeln;
writeln(’Computation of the expression z = x"4 - 4y~4 - 4y~2’);
writeln;
Z:i= X*x*x*x—4*y*y*y*y—4*y*y;
writeln(’Comp.: X*X*X*xX-4*xy*y*y*y-4*xy*y = 7,2);
Z:= (x*<)*<(X*<K) =< 4> (yxOy)*> (y*>y) —< 4*>(y*>y);
writeln(’Comp.: (x*<x)*<(x*<x)=<4*>(y*>y)*>(y*>y) -<4*>(y*>y)= ’,2z);
z:= (x*>X)*>(x*>x) —> 4A*<(y*<y) *<(y*<y) —> 4*<(y*<y);
writeln(’Comp.: (x*>x)*>(x*>x)->4*<(y*<y)*<(y*<y) =>4+ (y*<y)= ’,2z);
z:= sqr(x)*sqr(x) - 4*sqr(y)*sqr(y) - 4*sqr(y);
writeln(’Comp.: x"2%x"2-4xy~ 2%y~ 2-4*y~2 = 2.z);
z:= sqr(sqr(x))-sqr(2*sqr(y)) - sqr(2+*y);
writeln(’Comp.: (x72)72-(2xy~2)"2-(2%y) "2 = 7,2);
z:= sqr(sqr(x))-sqr(2xy) * (sqr(y)+1);
writeln(’Comp.: (x72)72-(2xy) 2% (y~2+1) = 7,2);
a:=sqr(x);
b:=2*sqr(y) ;
C:=2%y;
z:=#x*x (a*xa-bxb-cx*c) ;
writeln(’Comp.: #*(x"2%x~2-(2%y~2)*(2%y~2) - (2%y)* (2%y)) = 7,2);
end.
Runtime Output:
Influence of rounding errors
x = 665857.0
y = 470832.0
Computation of the expression z = x"4-4y~4-4y~2
Comp.: x*x*x*kx—4*y*y*ky*xy-4*y*y = 1.1885568000000E+007
Comp.: (x*<x)*<(x*<x)-<4*>(y*>y)*>(y*>y)-<4*>(y*>y)= -5.5223296000000E+007
Comp.: (x*>x)*>(x*>x)->4*<(y*<y)*<(y*<y)->4*<(y*<y)= 1.1885568000000E+007
Comp.: x"2%x"2-4%y~ 2%y~ 2-4%y~2 = 1.1885568000000E+007
Comp.: (x°2)"2-(2%y~2)"2-(2*y)"2 = 1.1885568000000E+007
Comp.: (x72)72-(2*xy) "2x(y~2+1) = 0.0000000000000E+000
Comp.: #%(x"2%x"2-(2%y~2)*(2xy~2)-(2%y)*(2*y)) = 1.0000000000000E+000

Remark: The #-expression delivers the exact result. This is because all operands
(here a, b, c) are exact since x = 665875 and y = 470832 are exactly repre-

sentable.
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Exercise 4: Scalar Product

Write a PASCAL-XSC program to compute the value of a scalar product

n
Toy=> iy
=1

of two real vectors x,y € IR". Compare the value computed with maximum accuracy
with the value computed in the usual manner.

Write a function Scalp producing the scalar product in the usual manner and a
function Max_Acc_Scalp computing the scalar product by summing up the products
x; + y; in a variable of the type dotprecision and by a single final rounding to a real
value.

The vectors x and y should be entered in the main program. The values computed
via Scalp and Max_Acc_Scalp should be reported together with comments. Choose
n = 5 for the declaration of the vector types. Test your program with the vectors

2.718281828 K10 1.4862497E12
—3.141592654 £'10 8.783669879 14
T = 1.414213562E10 , Y= —2.237492E10
5.772156649E9 4.773714647E15
3.010299957E9 1.85049E5

The function Max_Acc_Scalp of this program simulates the functionality of the op-
erator *x for type rvector supplied by module MV_ARI.

Solution:

program Scalar_Product (input, output);
{ Exercise 4: Scalar Product }

const n = 5;
type vector = array [1..n] of real;
var X, y : vector;

i : integer;

function Scalp (x, y : vector) : real;
var s : real;
i : integer;
begin
s:= 0;
for i:=1 ton do s:= s + x[il*y[il;
Scalp:= s;
end;



Exercise 4 191

function Max_Acc_Scalp (x, y : vector) : real;
var d : dotprecision;
i : integer;
begin
d:= #(0);
for i:=1 to n do d:= #(d + x[i]l*y[i]);
Max_Acc_Scalp:= #x(d);
end;

begin
writeln(’Exercise 4: Scalar Product’);
writeln;
writeln(’Enter 1. vector (with ’,n:1,’ components):’);
for i:=1 to n do read(x[i]);
writeln(’Enter 2. vector (with ’,n:1,’ Components):’);
for i:=1 to n do read(y[il);

writeln;

writeln(’Scalar product in the usual manner : ’,Scalp(x,y));

writeln(’Scalar product with dotprecision : ’,Max_Acc_Scalp(x,y));
end.

Runtime Output:

Exercise 4: Scalar Product

Enter 1. vector (with 5 components):
2.718281828e10

-3.141592654e10

1.414213562e10

5.772156649e9

3.010299957e9

Enter 2. vector (with 5 components):
1.4862497e12

8.783669879¢14

-2.237492e10

4.773714647e15

1.85049e5

Scalar product in the usual manner : 4.328386285000000E+009
Scalar product with dotprecision : -1.006571070000000E+008
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Exercise 5: Boothroyd/Dekker Matrices

The (integer) elements of a n-dimensional Boothroyd/Dekker matrix (see [53]) D =
(d;;) are given by

d — n+i—1 n—1 n
Y\ i—1 n—j) i+j—1

Write a PASCAL-XSC program to compute an n-dimensional Boothroyd/Dekker
matrix. Use an operator Choose for the (integer) computation of the binominal
coefficient (71?) Write the values of the matrix row by row. The value n (< 10)
should be entered.

Hint: Compute (’;:) this way:

m—1+1
1

coi=1,...k

co:=1;, ¢:=c¢i 1% ;

(5)=

Use the integer division div.

Solution:

program BDM (input, output);

{ Exercise 5: Boothroyd/Dekker Matrices }
var i, j, n, d : integer;

priority Choose = *;

operator Choose (m, k: integer) ChooseResult : integer;

var i, c: integer;
begin

c:=1;

for i:=1 to k do

c:= (cx(m-i+1)) div i;

ChooseResult:= c;

end;

begin
writeln(’Exercise 5: Boothroyd/Dekker Matrices’);
writeln;
write(’Enter the desired dimension of the matrix (<=10): ’);
read (n);
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writeln;
for i:=1 to n do
begin
for j:=1 to n do
begin
d:=(((n+i-1) Choose (i-1))*((n-1) Choose (n-j))*n) div (i+j-1);
write (d:8);
end;
writeln;
end;
end.

Runtime Output:

Exercise 5: Boothroyd/Dekker Matrices

Enter the desired dimension of the matrix (<=10): 8

8 28 56 70 56 28 8 1

36 168 378 504 420 216 63
120 630 1612 2100 1800 945 280 36
330 1848 4620 6600 5775 3080 924 120
792 4620 11880 17325 15400 8316 2520 330
1716 10296 27027 40040 36036 19656 6006 792

3432 21021 56056 84084 76440 42042 12936 1716
6435 40040 108108 163800 150150 83160 25740 3432
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Exercise 6: Complex Functions

Write a PASCAL-XSC program which simulates some features supplied in module
C_ARI to compute the values e*, cosz, sinz, cosh z, and sinh z for 20 complex
numbers z = x + iy and produces a table of these values.

Use the predefined type complex and define

e a monadic operator I_times to multiply a complex number by the imaginary
unit 7,

e a monadic operator - for complex numbers,

e two operators + and - for the addition and subtraction of two complex num-
bers,

e an operator * for the multiplication of a real number by a complex number,

e functions exp, cos, sin, cosh, and sinh using the predefined functions sin, cos,
and exp for real quantities, and

e procedures for the input and output.
Hints: (u,z€ C; z,y,v,w € IR)
If 2 =2+ iy, then u =iz with w = v + 7w is given by v = —y and w = x.
Division by i is replaced by a multiplication by —i.
real divisions are replaced by multiplications.

If 2 =z + iy, then e* = e” cosy + ie” siny (Euler’s formula)

6iz + efiz e? +672
cosy = —— coshz = ———
2 2
eiz _ 672'2 e — e %
sing = ——— sinhz = ———
2 2
Solution:

program complex_functions (input, output);
{ Exercise 6: Complex Functions }

var
z : complex;
c : array [1..20] of complex;
i : integer;
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-~

priority I_times = ~;
operator I_times (z : complex) multiplied_by_i : complex;
{ Monadic operator for the multiplication of the argument }

{ with the imaginary unit i (with sqr(i) = -1). }
begin

multiplied_by_i.re:= -z.im;

multiplied_by_i.im:= =z.re;
end;

operator + (a, b: complex) plus : complex;
begin
plus.re:= a.re + b.re;
plus.im:= a.im + b.im;
end;

operator - (a, b: complex) minus : complex;
begin
minus.re:

a.re - b.re;
minus.im:= a.im - b.im;
end;

operator - (a: complex) negate : complex;

begin
negate.re:= -a.re;
negate.im:= -a.im;
end;

operator * (r: real; z: complex) mulrc : complex;

begin
mulrc.re:=1r *x z.re;
mulrc.im:= r * z.im
end;

function exp (z: complex) : complex;

begin
exp.re:= exp (z.re) * cos(z.im);
exp.im:= exp (z.re) * sin(z.im);
end;

function cos (z: complex) : complex;
begin
cos:= 0.5 * (exp (I_times z) + exp (- I_times z))
end;

function sin (z: complex) : complex;
begin
sin:= 0.5 * - I_times (exp (I_times z) - exp (-I_times z))
end;
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function cosh (z: complex) : complex;
begin
cosh:= 0.5 * (exp (z) + exp (-z))
end;

function sinh (z: complex) : complex;
begin
sinh:= 0.5 * (exp (2) - exp (-2));
end;

procedure write (var f: text; c: complex; s: integer);
begin
write (f,’(’,c.re:s,’,’,c.im:s,’) ’);
end;

procedure read (var f: text; var c: complex);
begin
read (f, c.re, c.im);
end;

begin
writeln(’Exercise 6: Complex Functions’);
writeln;
for i:=1 to 20 do
begin
write (’Enter ’, i:2, ’. complex number: ’);
read (c[i]);
end;
writeln;
writeln(’ z ’:11,° exp(z)’:25,’ cos(z) ’:25,’ sin(z) ’:25);
for i:=1 to 20 do
begin
z:= c[i];
write (z:8);
write  (exp(z):8);
write (cos(z):8);
writeln (sin(z):8);
end;
writeln;
writeln(’ z ’:11,’ cosh(z)’:25,’ sinh(z) ’:25);
for i:=1 to 20 do
begin
z:= c[i];
write (z:8);
write (cosh(z):8);
writeln (sinh(z):8);
end;
end.
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Exercise 7: Surface Area of a Parallelepiped

Compute the surface area of a 3-dimensional parallelepiped. We use the following
notation

ai by &1
ea= | ay |,b=]| by |,and c=| co | are vectors in IR
as bs C3

e The scalar product a - b (dot product) of two vectors a and b is defined as
3
a-b:Zai-bi:al-b1+a2-b2+a3-b3.
i=1
e The length L of a vector a is computed as L(a) := +/a - a.

e The vector product a X b (cross product) of two vectors yields a vector

as - by —az - by
axb:= ag'bl—al'bg
al-bg—aQ-bl

e The area of a parallelogram defined by the vectors a and b is Area (a,b) :=
L(a x b).

e The surface area of a parallelepiped defined by the vectors a, b, and c¢ is
determined by

Surf (a, b, c) := 2 - (Area(a,b) + Area (b, c) + Area(c,a)).

Write a PASCAL-XSC program with these parts:

a) a type Vector declared as an array of length 3 whose component type is real,

b) an operator x for the scalar product of two vectors,

d) an operator Cross for the vector product of two vectors,

e

)
)

c¢) a function Length for the length L of a vector
)
) a function Area for the area of a parallelogram,
)

f) a function Surface for the surface area of a parallelepiped,
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g) a main program which repetitively reads in three vectors from a file with
component type Vector and computes the surface of the corresponding paral-
lelepiped. Write the result. The loop should terminate when the end of the
input file is reached.

Hint: The number of vectors in the input file is a multiple of 3.

The vector products b) and d) should be computed with maximum accuracy
via dotprecision expressions or accurate expressions.

Solution:

program parallelepiped (datafile, input, output);
{ Exercise 7: Surface Area of a Parallelepiped }
type Vector = array [1..3] of real;

operator * (a, b: Vector) scalp : real;
var i : integer;
begin
scalp:= #* (for i:=1 to 3 sum (alil*b[i]));
end;

function Length (a: Vector) : real;
begin
Length:= sqrt (axa);
end;

priority cross = *;

operator cross (a, b: Vector) cprod : Vector;

begin
cprod[1]:= #x(a[2]*b[3]-a[3]*b[2]);
cprod[2] := #x(a[3]*b[1]-a[1]*b[3]);
cprod[3]:= #*(a[1]*b[2]-a[2]*b[1]);
end;

function Area (a, b : VECTOR) : real;
begin
Area:= Length (a cross b);
end;

function Surface (a, b, ¢ : VECTOR) : real;
begin
Surface:= 2 * (Area(a,b) + Area(b,c) + Area(c,a));
end;
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var datafile : file of VECTOR;
a, b, ¢ : VECTOR;

begin { main program }
writeln (’Exercise 7: Surface Area of a Parallelepiped’);
writeln;
reset (datafile);
repeat
read (datafile, a);
read (datafile, b);
read (datafile, c);

writeln (’a : ’,al1],’ ’,a[2],’ ’,al[3]);
writeln (b : ’,b[1],> ’,b[2],’ ’,b[3]);
writeln (’c : ?,c[1]1,’ ’,c[2],’ ’,cl3]);
write  (’Surface area of the parallelepiped : ’);

writeln (Surface (a,b,c));
until eof (datafile)
end.
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Exercise 8: Parallelism and Intersection of Lines

Investigate two lines of the form aix + biy = ¢; and asx + boy = ¢o in the Euclidean
plane for parallelism. In case the two lines are not parallel, find their intersection
point S. Write a PASCAL-XSC program including

a)

b)

a type declaration Line defining a line as an array consisting of 3 components
with component type real,

a type declaration Point defining a point as a record with the components x
and y of type real,

a real function Determinant with the parameters a, b, ¢, d of type real for com-
puting the determinant

a b

det (a, b, ¢, d) = J

‘:a*d—b*c,

using a dotprecision expression with rounding away from zero,

a logical operator Parallel_To delivering the value TRUE for two lines g; and
go if and only if det (ay, by, as,by) = 0,

an operator xx for the intersection of two variables ¢, given by aq, by, ¢; and
g2 given by as, by, ¢ of type Line. The result is of type Point and contains the
coordinates of the intersection point s = (z4,y;) of the lines g; and gy. Use
part ¢) and the definitions

¢ by a; €

¢y bo Gy Co
Ty = ) Ys =

a; by a; by

as by as by

a main program which uses a loop to read in the parameters of two lines and
uses the operator Parallel_To to check whether the two lines are parallel. If
the lines are parallel, the program should announce, “the lines are parallel”.
If not, then compute intersection point using part e) and report it. The loop
is to be repeated until one of the conditions a; = by = 0 or as = by = 0 hold.
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Solution:

program parallel (input, output);

{ Exercise 8: Parallelism and Intersection of Lines }

type
Comp = (a,b,c);
Line = array [Comp] of real;
Point = record
X, y : real;
end;
var

gl, g2 : Line;
s : Point;

function Determinant (a, b, ¢, d: real): real;
var
dp : dotprecision;
begin
dp:= #(a*d - b*c);
if sign(dp) = O then
Determinant:= 0
else if sign(dp) < O then
Determinant:= #< (dp)
else
Determinant:
end;

#> (dp);

priority Parallel_To = =;

operator Parallel_To (gl, g2: line) par: boolean;
begin
par:= (Determinant(gl[al,gll[bl,g2[al,g2[bl) = 0);
end;

operator ** (gl, g2: line) intersection: point;
var
det : real;
begin
det:= Determinant (gil[al,gilbl,g2[al,g2[bl);
intersection.x:= Determinant (gl[c],gl[bl,g2[c],g2[b]) / det;
intersection.y:= Determinant (gilal,gllc]l,g2[al,g2[c]l) / det;
end;

begin {main program}
writeln (’Exercise 8: Parallelism and Intersection of Lines’);
writeln;
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repeat
writeln (’Enter the values al, bl, and cl for line gl: ’);
read (gilal, gilbl, gilcl);
writeln;
writeln (’Enter the values a2, b2, and c2 for line g2: ’);
read (g2[al, g2[bl, g2[cl);
writeln;
if gl Parallel_To g2 then
writeln (’The two lines are parallel!’)
else
begin
s:= gl *x g2;
writeln (’The two lines intersect in point ’);
writeln (’(xs,ys) = (°,s.x,’,’,s8.y,°)7);
end;
writeln; writeln;
until ((gi[a]l=0) and (g1[bl=0)) or ((g2[al=0) and (g2[bl=0));
end.



Exercise 9 203

Exercise 9: Transposed Matrix, Symmetry

An n x n matrix A = (a;;) is called symmetric if a;; = aj; for all 4,5 € {1,...,n}.
The transposed matrix T = (t;;) = AT of a matrix A is defined by t;; = a;; for all
i,j€{l,....,n}.

Write a program which

e defines a dynamic type Matrix for integer matrices,

e defines an operator = for two matrices of type Matrix,

e declares a monadic operator Transposed delivering the transpose of a matrix,

e declares a boolean function Is_Symmetric computing the value TRUE if and
only if its parameter (of the type Matrix) is symmetric,

e contains a procedure Main declaring two square matrices A and B depending
on a parameter n, reading in A and B, ascertaining whether A and B are
symmetric or whether A” = B, and reporting the appropriate information,

e reads the value n in the main program and calls the procedure Main.

Hint: The function Is_.Symmetric may be very easily formulated by means of the
operators = and Transposed.

Solution:

program Transposed_and_Symmetry (input, output);
{ Exercise 9: Transposed Matrix and Symmetry }
type Matrix = dynamic array [*,*] of real;

operator = (a, b: Matrix) equal: boolean;
var help : boolean;
i, j : integer;
begin
help:= true;
for i:= lbound(a,1) to ubound (a,1) do
for j:= lbound(a,2) to ubound(a,2) do
if ali,j] <> bl[i,j] then
help:= false;
equal:= help;
end;

PN

priority Transposed = ~;
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operator Transposed (a: matrix) TransposedResult:

matrix[1lbound(a,2)..ubound(a,2),lbound(a,l)..ubound(a,1)];

var i, j :integer;

begin

for i:=lbound(a,2) to ubound(a,2) do
for j:=1bound(a,1) to ubound(a,1) do

TransposedResult[i,j]:= al[j,i];

end;

function Is_Symmetric (a: matrix): boolean;
begin
Is_Symmetric:= a = Transposed a;
end;

procedure read (var f: text; var A: matrix);
var
n, i, j: integer;
begin
n:= ubound (A);
for i:=1 to n do
begin
write (i:3,’. row: ’);
for j:=1 to n do
read (A[i,j1);
end;
end;

procedure write (var f: text; var A: matrix);
var
n, i, j: integer;
begin
n:= ubound (A);
for i:=1 to n do
begin
for j:=1 to n do
write (A[i,j]:5:1);
writeln;
end;
end;

procedure Main (n: integer);

var i, j : integer;
A, B, At : matrix[1..n,1..n];
begin
writeln(’Enter the elements of matrix A:’);
read (A);

writeln(’Enter the elements of matrix B:’);
read (B);
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writeln (’Transposed of the matrix A:’);
At:= Transposed A;
writeln (At);
if Is_Symmetric (A) then
writeln(’A is symmetric ’);
if Is_Symmetric (B) then
writeln(’B is symmetric ’);
if At = B then
writeln(’Transposed (A) is equal to B ’);
end;

var n : integer;

begin
writeln(’Exercise 9: Transposed Matrix and Symmetry’);
writeln;
write(’Enter the dimension of the matrices: ’);
read (n);
Main (n);
end.
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Exercise 10: Rail Route Map

For a German railroad line, a rail route map is to be prepared. Beginning at the
starting point Place_0, a destination station Place_9 has to be reached by visiting 8
intermediate stations Place_1,...,Place_8 with a two-minute stop at every station.

Write a program which reads in the time of departure from Place_0 and the
distances between the stations Place_i and Place_i+1 for i = 0,...,8. Based upon
an average speed of 115 km/h, compute the times of arrival and departure at the
stations. Print a rail route map which uses a 24-hour clock!

For this purpose, define

a) a type Time as a record with the components Hour and Minute,

b) a function RouteTime computing the railroad time required by the rail route
section,

c¢) an operator for the addition of the railroad time and duration of stay to the
current time,

d) a main program reading in the necessary data, computing railroad time and
duration of stay, and producing a table consisting of columns for place, times
of arrival and departure, and distance to the next station.

Hint: In order to compute railroad times within the function RouteTime and to
implement the operator, it is rather useful to compute in seconds and to convert
them to whole minutes.

Solution:

program map (input, output);
{ Exercise 10: Rail Route Map }

type
Time = record
Hour : 0..23;
Minute: 0..59;
end;

var
i : integer;
route : array [1..9] of real;
curr_time,
departure,
arrival,
stop_time : Time;
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function RouteTime (place_i: integer)
var

hours : real;
help : Time;

begin
hours := route[place_i]/115;
help.Hour := trunc(hours);
hours := hours - help.Hour;
help.Minute:= trunc(hours*60);
RouteTime := help;

end;

operator + (a, b: Time) sm: Time;

: Time;

var
help : 0..119;

begin
help = a.Minute + b.Minute;
sm.Minute:= help mod 60;
help = a.Hour + b.Hour + help div 60;
sm.Hour := help mod 24

end;

begin

writeln (’Exercise 10: Rail Route Map’);

writeln;

stop_time.Hour := O;

stop_time.Minute:= 2;

write (’Enter the

departure time (hh mm): ’);

read (departure.Hour, departure.Minute);

for i:=1 to 9 do

207

begin

write (’Enter the distance between station °’,

i-1:1, ? and ’, i:1, ’ (in km) )

read (route[il);
end;
writeln;
writeln(’Station Arrival Departure Distance to next station’);
writeln(’ )
curr_time := departure;
writeln(’PLACE_’, ’0 —-——- ’

curr_time.Hour:2, 1, curr_time.Minute:2,

) >, route[1]:10:2,

) km’);
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for i:=1 to 8 do

begin
arrival := curr_time + RouteTime(i);
curr_time := arrival + stop_time;
writeln(’PLACE_’, i:1, ? ’,
arrival.Hour:2, ’:?, arrival.Minute:2, ’ ’,
curr_time.Hour:2, ’:’, curr_time.Minute:2,
’ >, routel[i+1]:10:2,’ km’);
end;
arrival := curr_time + RouteTime(9);
writeln(’PLACE_’,’9 7,
arrival .Hour:2, ’:?, arrival.Minute:2, °’ 7,
)__.__),
’ --.-- km’);
end.

Runtime Output:

Station Arrival Departure Distance to next Station
PLACE_O -—i-- 10:00 12.00 km
PLACE_1 10:06 10:08 23.00 km
PLACE_2 10:20 10:22 34.00 km
PLACE_3 10:40 10:42 45.00 km
PLACE_4 11:05 11:07 56.00 km
PLACE_5 11:37 11:39 67.00 km
PLACE_6 12:14 12:16 78.00 km
PLACE_7 12:56 12:58 89.00 km
PLACE_8 13:45 13:47 91.00 km

PLACE_9 14:34 -—i-- -— - -
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Exercise 11: Inventory Lists

Write a PASCAL-XSC program summing up several individual inventory lists of
branches of a chain of department stores in one total list. Use

e a linear linked list (pointer) with elements consisting of the components Ident
(string with a maximum of 20 characters) and Number (0..maxint),

e a procedure for entering of an inventory list,

e an operator + for summing up two lists into one single list by addition of the
two Number components with the same label or by inserting new list elements,

e a procedure to print the complete inventory list in tabular form.

In the main program, first the number n of the individual lists and then the n lists
themselves should be entered. Finally, use of the operator + to sum the individual
lists into one single list. Report the inventory in a tabular form.

Solution:

program lists (input, output);

{ Exercise 11: Investory Lists }

type
goods_pointer = “goods;
goods = record

ident : string[20];

number : 0..maxint;

next : goods_pointer;
end;

procedure list_input (var list: goods_pointer);
var
h : goods_pointer;
begin
list:= nil;
repeat
new (h);
write (’ident: ’);
readln;
read (h".ident);
write (’number: ’);
read (h”.number);
h”.next:= list;
list:= h;
until list”.number < 0;
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list:= list”.next;
end;

operator + (listl, 1list2: goods_pointer) total_list: goods_pointer;
var
total, hl, h2 : goods_pointer;

flag : boolean;
begin
if (listl = nil) then
total := list2
else
begin
total := listi;
h2 := list2;
while h2 <> nil do
begin
hl := total;
repeat

flag:= hl <> nil;
if flag then
flag:= hl”.ident <> h2~.ident;
if flag then
hi:= hl1~.next;

until not flag;

if hl <> nil then

begin
hi” .number := hl1”.number + h2” .number;
list2 list2” .next;

end

else

begin
list2 := 1list2” .next;
h2” .next total;
total h2;

end;

h2 := 1list2;

end;
end;
total_list := total;
end;

procedure list_output (list: goods_pointer);
var
h : goods_pointer;
begin
h := list;
writeln(’ident number ’);
repeat
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writeln (h~.ident:24, h”~.number);
h := h™.next;
until h = nil;
end;

var
n, i : integer;
list, total : goods_pointer;

begin {main program}
writeln(’Exercise 11: Investory Lists’);
writeln;
total := nil;
write(’How many individual lists do you want to enter? ’);
read (n);
writeln;
for i:=1 to n do
begin
writeln (i:3,’. inventory list:’);
list_input (1list);
writeln;
list_output (list);
writeln;
total:= total + list;
end;
writeln;
writeln(’ #**x Here is the total list **x ’);
list_output (total);
end.
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Exercise 12: Complex Numbers and Polar Representation

A complex number z = a + ib = (a,b) with a,b € IR can be represented in polar
coordinates as z = re’¥ = (r,¢) with r,p € IR, 0 < ¢ < 2.

Write a PASCAL-XSC program working with this representation. Proceed as
follows:

a) Define an appropriate record-type polar_complex with the components r and
phi for the representation of complex numbers in polar coordinates.

b) Write a function pi yielding the value 7 (hint: 7 = 4 arctan(1)).

¢) Overload the assignment operator := to enable the assignment of a complex
number z = a + ib of type complex to a variable of type polar_complex with
components r and phi. The type conversion has to be done according to the
formulas

r=+va?+ b?

/2 fora=0and b>0
3/2*m fora=0and b <0

@ = ¢ arctan(b/a) fora>0and b>0
2 x m + arctan(b/a) for a > 0and b <0
7 + arctan(b/a) for a < 0.

To compute r, use a #-expression in order to increase accuracy (as far as
possible).

d) Define an operator * to compute the product w = (r,¢) = u * v of two
complex numbers u = (11, 1) and v = (13, ¢2) of type polar_complex in polar
representation by

r=ryxry, and

_ ) et for o1 + @9 < 27
| 1+ o —2xm otherwise.

e) Define an operator / to compute the quotient w = (r,¢) = u/v of two com-
plex numbers u = (r1,¢1) and v = (r9, p2) of type polar_complex in polar
representation by

r=ry/ry, and

_ ) 1= for o1 — o >0
p = B .
Y1 — o + 2 %7 otherwise.
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f) Write a main program which

1. reads in two complex numbers u and v of type complex,

2. produces the corresponding values pu and pv using the overloaded as-
signment operator,

3. computes the values w =u x v /u /v and pw = pu x pv / pu / pv,
4. reports the radius r and the angle ¢ of pw, and

5. reports pw2 = pcompl(w) as a comparison.

Hint: Use the predefined type complex and link the module C_ARI providing the
operators and input/output procedures which are necessary for this type.

Solution:

program polar (input, output);
{ Exercise 12: Complex Numbers and Polar Representation }

use c_ari;

type
polar_complex = record
r, phi : real;
end;
var
u, v, w : complex;
pu, pv, pw, pw2 : polar_complex;

function pi : real;

begin
pi:= 4 * arctan (1);
end;
operator := (var pz: polar_complex; z: complex);
var
a, b, ph : real;
begin
a 1= z.re;
b 1= z.im;

pz.r := sqrt ( #x(a *x a + b *x b) );

if (a = 0) and (b >= 0) then
ph := pi/2

else if (a = 0) and (b < 0) then
ph :=3/ 2 % pi

else if (a > 0) and (b >= 0) then
ph := arctan (b/a)
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else if (a > 0) and (b < 0) then

ph := 2 * pi + arctan (b/a)
else

ph := pi + arctan (b/a);
pz.phi := ph;

end;

operator * (u, v : polar_complex) resmul : polar_complex;
var

ph : real;
begin
resmul.r := u.r * v.r;
ph := u.phi + v.phi;

if ph < 2 * pi then
resmul.phi := ph
else
resmul.phi := ph - 2 * pi;
end;

operator / (u, v : polar_complex) resdiv : polar_complex;
var

ph : real;
begin
resdiv.r := u.r / v.r;
ph = u.phi - v.phi;

if ph >= 0 then
resdiv.phi := ph
else
resdiv.phi := ph + 2 * pi;
end;

begin {main program}
writeln (’Exercise 12: Complex Numbers and Polar Representation’);
writeln;
write (’Enter complex number u: ’);

read (u);

write (’Enter complex number v: ’);
read (v);

pu := u;

pv = v;

W :i=u *xv /u / v;

pw2 := w;

pw :=pu * pv / pu / pv;

writeln (’Radius of pw : ’,pw.r);
writeln (’Angle of pw : ’,pw.phi);

writeln (’Radius of pw2: ’,pw2.r);
writeln (’Angle of pw2: ’,pw2.phi);
end.
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Exercise 13: Complex Division

The quotient of two complex numbers z; = x; 4+ iy; and zo = x9 + 1yo may be
computed as

2 2% (i) (@ —iy)  mi@m iy | 1T — Ty

5= 2 2 - 2 2 2 2
2o 227 To® + Yo To® + Yo To® + Yo

Write a PASCAL-XSC program which includes the declaration of an operator
Cdiv realizing this complex division for two complex numbers of the type
complex by application of the operators +, —, %, / for real numbers. In the
main program, two numbers of type complex should be read in, divided, and
the result should be printed.

Extend your program in such a manner that you link the module C_ARI. Call
your operator Cdiv and then the operator / predefined in C_ARI. Compare
the output of the two values.

Test your program by using the values z; = xy + 1y, and 2y = x5 + 1y with

x1 = 1254027132096, y; = 886731088897
9 = 886731088897, y, = 627013566048

You will notice a clear difference in the imaginary parts of the results.

Design another operator NewCdiv yielding better results than Cdiv by the
use of accurate expressions. Compare the three operators in a test run once
more.

Solution:

program ComplDiv (input, output);

{ Exercise 13: Complex Division }

use c_ari;

var z1, z2 : complex;

priority Cdiv = *;

operator Cdiv (zl, z2 : complex) result : complex;
var denom : real;
begin

denom sqr(z2.re) + sqr(z2.im);
result.re:= (zl.re*z2.re + zl1.im*z2.im)/denom;
(z2.re*xzl.im - zl.re*xz2.im)/denom;

result.im:

end;
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priority NewCdiv = *;

operator NewCdiv (zl, z2 :
var denom : real;
begin
denom
NewResult.re:

#x(z2.
#x(z1.

NewResult.im:= #x*(z2.
end;
begin
writeln (’Exercise 13: Complex Division’
writeln;
write (°’Numerator =zl = ’); read (zl);
write (’Denominator z2 = ’); read (z2);

writeln;

write (’z1 Cdiv z2

write (’z1 NewCdiv z2

write (°z1 / z2
end.

’); writeln (z1
’); writeln (z1
’); writeln (z1

Runtime Output:

Exercise 13: Complex Division

zl

Numerator

complex) NewResult :

EXERCISES WITH SOLUTIONS

complex;

rexz2.re + z2.im*z2.im);
re*xz2.re + zl1.im*z2.im)/denom;
rexzl.im - zl.re*z2.im)/denom;

)

cdiv z2);
NewCdiv z2);
/ z2);

( 1254027132096, 886731088897 )

0.000000000000000E+000 )
8.478614131951457E-025 )

Denominator z2 = ( 886731088897, 627013566048 )
z1 Cdiv z2 = ( 1.414213562373095E+000,
zl NewCdiv z2 = ( 1.414213562373095E+000,
z1 / z2 = ( 1.414213562373095E+000,

8.478614131951457E-025 )
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Exercise 14: Electric Circuit

=

¥ ® &

=

=

=)
™
w

One to three light bulbs with a resistance of R = 2402 are connected to a voltage
U = 220V via a wire of the length [ = 100m with the diameter d = 1.5mm and a
specific resistance of p = 0.02857Q2mm?/m. All data are given with an error of 0.5%.

Write a PASCAL-XSC program using the module I_ARI and the type interval.
For three cases (1, 2, 3 bulbs connected), compute intervals for the range of the
values Ry, (total resistance of the circuit), I, (total current), U, (portion of the
voltage at the wire) and Uy, (bulb voltage). Use the formulas

Rtot = Rl + R/’I’L
I tot — U/ Rtot
Uw = Rw : [tot
Ubu = U~ Uw

Proceed as follows:

1) Read the values 7, R, [, d, p, and U. Use the error of 0.5% to compute the
intervals R, L, D, Rho, and U which enclose the given values. Compute PI
enclosing 7. Print the values of the intervals.

2) Compute and print the inclusion Rw of the wire resistance
Ry=8-p-1)/(r-d°).

3) Compute and report the intervals Rtot, Itot, Uw, and Ubu for n = 1,2, 3.

4) Finally, print the interval Us representing the total range of Ubu for the dif-
ferent number of bulbs.

Hint: An interval inclusion PI for m is computed by
PI = 4 - arctan ([1,1]).

Use the predefined type interval and the module I_ARI containing the neces-
sary interval operators.
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Solution:

program circuit (input, output);
{ Exercise 14: Electric Circuit }
use i_ari;

var
error,
U, L, D, Rho, R, Us, pi,
Rw, Rtot, Itot, Uw, Ubu : interval;
n : integer;

procedure write (var f: text; int: interval; long: boolean) ;
{ Overloading of write to allow output of intervals with }

{ a long mantissa. The default output of intervals is }
{ made according to the width of the interval. }
begin

if long then
write (£,’[’,int.inf:20:0:-1 ,’,’,int.sup:20:0:+1 ,’]?)
{ Output with more digits }
else
write (f,int);
{ Default output predefined in I_ARI }

end;

begin
writeln (’Exercise 14: Electric Circuit’);
writeln;
write (°U = ?); read (u);
write (°L = ?); read (1);
write (°D = ’); read (4d);
write (°Rho = ’); read (rho);
write (PR = ?’); read (r);
pi := 4 * arctan (intval(1l));
error := intval ( (<0.995) , (>1.005) );
r :=Tr % error;
1 = 1 x error;
d = d * error;
Rho:= Rho * error;
u :=u * error;
writeln;
writeln (’Intervals:’);
writeln (°PI = ’,pi : true);
writeln (°R = >R : true);
writeln (°L =2 L : true);
writeln (’D =D : true);
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writeln (’Rho
writeln (°U

> Rho: true);
YU @ true);

writeln;
Rw:= (8*Rho*L)/(pi*sqr(D));
writeln (’Inclusion of the wire resistance:’);
writeln (’Rw = ’,Rw : true);
for n:= 1 to 3 do
begin
writeln;
Rtot:= Rw + r/n;
Itot:= U / Rtot;
Uw = Rw *x Itot;
Ubu := U - Uw;
if n = 1 then
Us:= Ubu
else
Us:= Us +* Ubu;

writeln (’The bulb voltage Ubu has the total range interval’);

write(’With ’,n:1,’ bulb’);
if n <> 1 then write (’s’);
writeln(’, the following inclusions are computed:’);

writeln(’- total resistance: Rtot

writeln(’- total current:
writeln(’- wire voltage:
writeln(’- bulb voltage:
write(’press return’); readln; writeln;
end;

writeln (Us : true);

end.

Runtime Output:

Exercise 14: Electric Circuit

U = 220

1 = 100

d =1.5

rho = 0.02857

R = 240

Intervals:

PI = [ 3.141592653589E+000,
R = [ 2.387999999999E+002,
L = [ 9.949999999999E+001,
D = [ 1.492499999999E+000,
Rho = [ 2.842714999999E-002,

= ’ Rtot
Itot = ’,Itot
Uw =, Uw
Ubu = ’,Ubu

3.141592653590E+000]
2.412000000001E+002]
1.005000000001E+002]
1.507500000001E+000]
2.871285000001E-002]

. true);
: true);
. true);
: true);

219
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U = [ 2.188999999999E+002, 2.211000000001E+002]

Inclusion of the wire resistance:
Rw = [ 3.169435182649E+000, 3.298783385817E+000]

With 1 bulb, the following inclusions are computed:

- total resistance: Rtot = [ 2.419694351826E+002, 2.444987833859E+002]
- total current: Itot = [ 8.953009784698E-001, 9.137517713058E-001]
- wire voltage: Uw = [ 2.837598420222E+000, 3.014269161944E+000]
- bulb voltage: Ubu = [ 2.158857308380E+002, 2.182624015798E+002]

press return

With 2 bulbs, the following inclusions are computed:
- total resistance: Rtot [ 1.225694351826E+002, 1.238987833859E+002]

- total current: Itot = [ 1.766764725351E+000, 1.803875490416E+000]
- wire voltage: Uv = [ 5.599646279992E+000, 5.950594497863E+000]
- bulb voltage: Ubu = [ 2.129494055021E+002, 2.155003537201E+002]

press return

With 3 bulbs, the following inclusions are computed:
- total resistance: Rtot [ 8.276943518264E+001, 8.369878338582E+001]

- total current: Itot = [ 2.615330726982E+000, 2.671275930688E+000]
- wire voltage: Uv = [ 8.289121220362E+000, 8.811960659084E+000]
- bulb voltage: Ubu = [ 2.100880393409E+002, 2.128108787797E+002]

press return

The bulb voltage Ubu has the total range interval
[ 2.100880393409E+002, 2.182624015798E+002]
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Exercise 15: Alternating Current Measuring Bridge

ol e e

Rs Ry

The capacity of the unknown capacitance C; and the resistance of the unknown
resistor R; may be determined by the circuit diagrammed above. This is done by
varying the capacity Cy and the resistance Ry until the sound in the loudspeaker K
reaches a minimum or vanishes. Then, the capacitances and the resistances satisfy

Cl - R4'02/R3
R1 — R3'R2/R4

According to the data supplied by the manufacturer, the values of R3 and R, satisfy

990 < Ry < 10.1Q
6.8 < Ry < 690

Due to uncertainties of perception, we obtain the estimates for C5 and Rs

40.2mF < Cy < 41.5mF
18300 < R, < 19.8Q2

Write a PASCAL-XSC program that
e reads in the boundary values of R3, Ry, C5, and R,
e computes and prints the interval enclosures of C; and Ry, and

e repeats the computation of enclosures of C'; and R; assuming that the amount
of the error for Cy, and R, is 10% higher.

Hint: The 10% increase of the errors for Cy and Ry should be handled by enlarging
the radius of the corresponding intervals by 10%.
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Solution:

program measure_bridge (input, output);
{ Exercise 15: Alternating Current Measuring Bridge }

use i_ari;

var
cl, ¢c2, r1, r2, r3, r4 : interval;
d : real;

procedure write (var f: text; int: interval; long: boolean) ;
{ Overloading of write to allow output of intervals with }

{ a long mantissa. The default output of intervals is }
{ made according to the width of the interval. }
begin

if long then
write (£,’[’,int.inf:20:0:-1 ,’,’,int.sup:20:0:+1 ,’]?)
{ Output with more digits }
else
write (f,int);
{ Default output predefined in I_ARI }
end;

begin
writeln (’Exercise 15: Alternating Current Measuring Bridge’);
writeln;
write(’lower bound of R3: ’); read(r3.inf:-1);
write(’upper bound of R3: ’); read(r3.sup:+1);
write(’lower bound of R4: ’); read(r4.inf:-1);
write(’upper bound of R4: ’); read(r4d.sup:+1);
write(’lower bound of C2: ’); read(c2.inf:-1);
write(’upper bound of C2: ’); read(c2.sup:+1);
write(’lower bound of R2: ’); read(r2.inf:-1);
write(’upper bound of R2: ’); read(r2.sup:+1);
{ Computing C1 and R1 }
cl:=rd4 x c2 / r3;
rl:= r3 *x r2 / r4;

writeln;
writeln(’C1 = ’, cl : true);
writeln(’R1 = ’, rl : true);

{ Compute: "10% of the radius", that is "diameter / 20" }
d := diam(c2) /> 20;

{ Enlarge the interval radius to that amount }

c2:= intval ( c2.inf -< 4 , c2.sup +> 4 );

{ Compute: "10% of the radius", that is "diameter / 20" }
d := diam(r2) /> 20;
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{ Enlarge the interval radius to that amount }
r2:= intval ( r2.inf -< d , r2.sup +> d );

{ Computing C1 and R1 }

cl:=1r4 x c2 / r3;

rl:= r3 *x r2 / r4;

writeln;

writeln(’Results, with the error for C2 and R2 10% higher:’);

writeln;

writeln(’C1
writeln(’R1

end.

)

)

cl : true);
rl : true);

Runtime Output:

Exercise 15:

lower bound
upper bound
lower bound
upper bound
lower bound
upper bound
lower bound
upper bound

C1
R1

Alternating Current Measuring Bridge

of
of
of
of
of
of
of
of

R3:
R3:
R4:
R4:
C2:
C2:
R2:
R2:

9.9
10.1
6.8
6.9
40.2

[ 2.706534653465E+001, 2.892424242425E+001]
[ 2.625652173913E+001, 2.940882352942E+001]

Results, with the error for C2 and R2 107 higher:

C1
R1

[ 2.702158415841E+001, 2.896954545455E+001]
[ 2.614891304347E+001, 2.952022058824E+001]

223

Remark: This exercise illustrates how interval arithmetic may be easily applied to
error computations in engineering.
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Exercise 16: Optical Lens

G F\\
~

i N
| ~ \
: \\\ B
: ~
<L>

g b

With a lens having a focal length f = (20 + 1) cm, an image distance b = (25 4 1)
cm was measured for the image B of the object GG. The lens equation to determine
the object distance g of a thin lens is given by

11 1
by
Hence, ¢ satisfies the equation
1
y=1_1T
F b

Usually, the value ¢ = gy + Ag is computed with the approximation gy and the error
term Ag. This is done by

1
gozi_i
fo bo

and by the linearization

Af N
-y G-

Ag =
Let fo = 20cm, by = 25cm, and Af = Ab = 1lem. Write a PASCAL-XSC program
that
e reads the values for fy, by, Af, and Ab,
e calculates the interval ¢ = g9 = Ag by the method described above,

e calculates the interval g from the intervals f and b applying interval arithmetic
according to

1

s

Il
=
o=

and

e prints f, b, and the two different values of g along with appropriate comments.
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Does the usual method deliver a correct result? Compare it with the enclosure for
g computed with interval arithmetic.

Solution:

program opt_lens (input, output);
{ Exercise 16: Optical Lens }

use i_ari;

var
g0, dg, £f0, df, b0, db : real;
g, £, b : interval;

procedure write (var f: text; int: interval; long: boolean) ;
{ Overloading of write to allow output of intervals with }

{ a long mantissa. The default output of intervals is }
{ made according to the width of the interval. }
begin

if long then
write (£,’[’,int.inf:20:0:-1 ,’,’,int.sup:20:0:+1 ,’]?)
{ Output with more digits }
else
write (f,int);
{ Default output predefined in I_ARI }

end;
begin
writeln (’Exercise 16: Optical Lens’);
writeln;
write(’f0 = ’); read(f0);
write(’df = ’); read(df);
write(’b0 = ’); read(b0);
write(’db = ’); read(db);
writeln;
f:= intval (f0 - df , f0 + df);
b:= intval (b0 - db , b0 + db);
writeln (°f = ’, f : true);
writeln (°b = ’, b : true);
writeln;
g0 := 1 / (1/£0 - 1/b0);
dg := df / sqr(1 - £0/b0) + db / sqr(b0/f0 - 1);
g := intval (g0 - dg , g0 + dg);
writeln (’g = g0 +/- dg =, g true);
g:=1/(1/f - 1/b);
writeln (g =1/ (1/f - 1/b) = ’, g : true);

end.
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Runtime Output:

Exercise 16: Optical Lens

f0 = 20

df =1

b0 = 25

db =1

f = [ 1.900000000000E+001, 2.100000000000E+001]

b = [ 2.400000000000E+001, 2.600000000000E+001]

g =g0 +/- dg = [ 5.899999999999E+001, 1.410000000000E+002]
g=1/ (1/f - 1/b) = [ 7.057142857142E+001, 1.680000000001E+002]

Remark: The method normally used for error evalution calculates an interval which
is incorrect.

Hint: Exercises 14, 15, and 16 were inspired by the contribution Technical Calcu-
lations by Means of Interval Mathematics, by P. Thieler [48].
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Exercise 17: Interval Evaluation of a Polynomial

Write a PASCAL-XSC program which uses the module I_ARI to evaluate the poly-
nomial

p(X)=1+3X - 10X>

using interval arithmetic. Compare the results for the following representations
(with X of type interval):

1) (1-2%«X)*(1+5x%xX)

2) 14+ 3% X — 10 xsqr(X)

)
)
3) 1+ X % (3—10% X) (Horner sheme)

4) 14+ 3+m(X)—10%sqr(m(X)) + (3 —20 * X)(X —m(X))
(mean value form (see [43]), with m(X) as the midpoint of X)

As examples for X, choose both narrow intervals (about one unit in the 14t decimal
place) and intervals with other diameters. Intervals around the zeros (x = 0.5 and
x = —0.2) and around the extreme value (x = 0.15) should also be considered.

Hint: For the evaluation of the midpoint of an interval, implement a function using
an #F-expression to obtain maximum accuracy.

Solution:

program int_poly (input, output);

{ Exercise 17: Interval Evaluation of a Polynomial }
use i_ari;

var x : interval;

function midpoint (x : interval) : real;

begin
midpoint:= #* (0.5 * x.inf + 0.5 * x.sup);
end;

begin
writeln (’Exercise 17: Interval Evaluation of a Polynomial’);
writeln;
repeat
write (’Enter X : ’); read(x);
writeln;
writeln (’Method 1: p(X) = 7, (1-2*x)*(1+5*x));
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|
-

writeln (’Method 2: p(X) = ’, 1+3*x-10*sqr(x));

writeln (’Method 3: p(X) , 1+x*(3-10%x));

writeln (’Method 4: p(X) >, 1+3*midpoint (x)
-10*sqr (midpoint (x))
+(3-20*x) * (x-midpoint (x))) ;

]
-

writeln; writeln;
until x = 0;
end.

Runtime Output:

Exercise 17: Interval Evaluation of a Polynomial
Enter X : [0.5,0.5]

Method 1: p(X)
Method 2: p(X)
Method 3: p(X)
Method 4: p(X)

0.000000000000000E+000, 0.000000000000000E+000]
0.000000000000000E+000, 0.000000000000000E+000]
0.000000000000000E+000, 0.000000000000000E+000]
0.000000000000000E+000, 0.000000000000000E+000]

]
L B Bl e B e |

Enter X : [0.4999999999,0.5]

Method 1: p(X) = [ 0.0E+000, 7.1E-010]
Method 2: p(X) = [ -3.1E-010, 1.1E-009]
Method 3: p(X) = [ 0.0E+000, 7.1E-010]
Method 4: p(X) = [ 0.0E+000, 7.1E-010]
Enter X : [-0.2000000000001,-0.1999999999999]

Method 1: p(X) = [ -7.1E-013, 7.1E-013]
Method 2: p(X) = [ -7.1E-013, 7.1E-013]
Method 3: p(X) = [ -7.1E-013, 7.1E-013]
Method 4: p(X) = [ -7.1E-013, 7.1E-013]
Enter X : [0.1499999999999,0.1500000000001]

Method 1: p(X) = [ 1.224999999999E+000, 1.225000000001E+000]
Method 2: p(X) = [ 1.224999999999E+000, 1.225000000001E+000]
Method 3: p(X) = [ 1.224999999999E+000, 1.225000000001E+000]
Method 4: p(X) = [ 1.224999999999999E+000, 1.225000000000001E+000]

Enter X : [0.1,0.2]
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Method 1: p(X)
Method 2: p(X)
Method 3: p(X)
Method 4: p(X)

Enter X : O

Method 1: p(X)
Method 2: p(X)
Method 3: p(X)
Method 4: p(X)

L I e B e I |

L B e N e I e |

8.9E-001,
8.9E-001,
1.0E+000,
1.1E+000,

1.000000000000000E+000,
1.000000000000000E+000,
1.000000000000000E+000,
1.000000000000000E+000,

1.7E+000]
1.6E+000]
1.5E+000]
1.3E+000]

1.000000000000000E+000]
1.000000000000000E+000]
1.000000000000000E+000]
1.000000000000000E+000]

229
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Exercise 18: Calculations for Interval Matrices

Let the interval matrices A and B be given:

a= (o &) e (G B
A PASCAL-XSC program should
a) calculate A+ B, A— B, A- B,
b) demonstrate (by calculation) that A-(A-A) # (A-A)- A,

c¢) demonstrate (by calculation) that A - (B + A) ; A-B+ A- A

Hint: Use the operators supplied in module MVI_ARI.

Solution:

program int_matr (input, output);
{ Exercise 18: Calculations for Interval Matrices }
use i_ari, mvi_ari;

var
A, B, C : imatrix[1..2,1..2];

begin
writeln (’Exercise 18: Calculations for Interval Matrices’);
writeln;
Al1,1]:= 1;
Al1,2]:= intval(0,1);
Al2,1]:= 1;

A[2,2]:= intval(-1,1);

B[1,1]:= intval(-1,2);
B[1,2]:= intval(3,4);
B[2,1]:= 2;

B[2,2]:= intval(-6,-4);

writeln (’A
writeln (A);
writeln (’B
writeln (B);
writeln (A + B = ’); writeln;
writeln (A+B);

’); writeln;

’); writeln;
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writeln (A - B
writeln (A-B);
writeln (A * B
writeln (A*B);
writeln (CA * (A * A)
writeln (A*(Ax*A));
writeln (°(A * A) * A
writeln ((AxA)*A);
writeln (A * (B + A)
writeln (A*(B+A));
writeln (A * B + A *x A = ’); writeln;
writeln (A*B+AxA);

end.

’); writeln;

’); writeln;

’); writeln;

’); writeln;

’); writeln;

Runtime Output:

Exercise 18: Calculations for Interval Matrices

A=

[ 1.0E+00, 1.0E+00] [ 0.0E+00, 1.0E+00]
[ 1.0E+00, 1.0E+00] [-1.0E+00, 1.0E+00]
B =

[-1.0E+00, 2.0E+00] [ 3.0E+00, 4.0E+00]
[ 2.0E+00, 2.0E+00] [-6.0E+00,-4.0E+00]
A+B-=

[ 0.0E+00, 3.0E+00] [ 3.0E+00, 5.0E+00]
[ 3.0E+00, 3.0E+00] [-7.0E+00,-3.0E+00]

A-B-=

[-1.0E+00, 2.0E+00] [-4.0E+00,-2.0E+00]
[-1.0E+00,-1.0E+00] [ 3.0E+00, 7.0E+00]

AxB=
[-1.0E+00, 4.0E+00] [-3.0E+00, 4.0E+00]
[-3.0E+00, 4.0E+00] [-3.0E+00, 1.0E+01]

A x (A x A) =

[ 1.0E+00, 4.0E+00] [-2.0E+00, 4.0E+00]
[-1.0E+00, 4.0E+00] [-3.0E+00, 4.0E+00]
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(A x A) x A =

[ 0.0E+00, 4.0E+00] [-2.0E+00, 4.0E+00]
[-1.0E+00, 4.0E+00] [-2.0E+00, 4.0E+00]

A x (B+ A) =

.0E+00, 6.0E+00] [-4.0E+00, 5.0E+00]
.0E+00, 6.0E+00] [-4.0E+00, 1.2E+01]

A*B+AxA-=

.0E+00, 6.0E+00] [-4.0E+00, 6.0E+00]
.0E+00, 6.0E+00] [-4.0E+00, 1.2E+01]
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Exercise 19: Differentiation Arithmetic
With the help of differentiation arithmetic (see [42]), compute the values of the
function

44+
3—x

flz) =

and the values of its derivative f’(z) in the domain —4 < x < 2 for the points
op = —4+kh k=0,...,48 with h = 0.125 .

Differentiation arithmetic is an arithmetic for ordered pairs of the form
U= (u,u') with u,u' € R.

The first component of U contains the value of the function. The second contains
the value of the derivative. The rules for the arithmetic are

U+V = (uu)+ (v,v") = (u+v,u +0)

U-V = (u,u)—(v,0") = (u—v,u =)

UxV = (uu)*(v,0") = (usxv,uxv' +u *xv)

uyv = (uu) (u/v, (v —ufv 0"/ v), v#0,

where the corresponding differentiation rules have to be used in the second compo-
nent. The independent variable x and the arbitrary constant ¢ correspond to

X =(z,1) and C = (c,0),

because % =1, and j—; = (. To use the differentiation arithmetic in a PASCAL-XSC
program, declare a type Derivative_Type as record of two real values. Now, define
a function f with parameters and result of type Derivative_Type. The operators
+, —, %, / perform differentiation arithmetic. If

F(X) =X *((4,0) + X)/((3,0) — X),
then an automatic differentiation is done because of
f(X) = f((2,1)) = (f(2), f'(x)).

That is, the value of the function and the value of the derivative are automatically
and simultaneously calculated. Write a PASCAL-XSC module which contains

a) the type declaration Derivative_Type and

b) the declarations for the operators +, —, *, / according to the rules for the dif-
ferential arithmetic given above.

Write a PASCAL-XSC program which contains

a) a function F, using the operators of the module and thus delivering the value
of the function f and the automatically calculated value of its derivative and
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b) a main program that calculates and tabulates the values of f(z) and f'(z) at
the specified points.

Hint: The constants 4 and 3 of type Derivative_Type in the function f are repre-
sented by (4,0) and (3,0), respectively. The independent variable z is repre-
sented as (z,1).

Solution:

module diff_ari;
{ Exercise 19: Module Providing Differentiation Arithmetic }

global type Derivative_Type = global record
f, df : real;

end;
global operator := (var a: Derivative_Type; r: real);
begin
a.f =r;
a.df := 0;
end;

global operator + (a,b: Derivative_Type) Result_add: Derivative_Type;

begin
Result_add.f = a.f + b.f;
Result_add.df := a.df + b.df;

end;

global operator - (a,b: Derivative_Type) Result_sub: Derivative_Type;

begin
Result_sub.f = a.f - b.f;
Result_sub.df := a.df - b.df;

end;

global operator * (a,b: Derivative_Type) Result_mul: Derivative_Type;

begin
Result_mul.f = a.f *x b.f;
Result_mul.df := a.f * b.df + a.df * b.f;

end;
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global operator / (a,b: Derivative_Type) Result_div: Derivative_Type;

begin
Result_div.f
Result_div.df
end;

end.

program Automatic_Differentiation (input, output);

{ Exercise 19: Differentiation Arithmetic }

use diff_ari;

function f (x: Derivative_Type): Derivative_Type;

var

a.f / b.f;
(a.df - a.f * b.df / b.f) / b.f ;

three, four : Derivative_Type;

writeln (’Exercise 19: Differentiation Arithmetic’);

begin

three := 3;

four := 4;

f:= xx((four+x)/(three-x));
end;
var

X, y : Derivative_Type;

h : real;

i : integer;

begin
writeln;
x.df := 1;
h := 0.125;
writeln(’ X
’ f(x)
? £ (x)

for i:= 0 to 48 do
begin

x.f := -4+ 1i % h;

y = £(x);

writeln (x.f,’ O
end;

end.

?,y.df);

235
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Runtime Output:

Exercise 19: Differentiation

N H R R RRRRROONODCIWNDRO R

X

.000000000000000E+000
.875000000000000E+000
.750000000000000E+000
.625000000000000E+000
.500000000000000E+000
.375000000000000E+000
.250000000000000E+000
.125000000000000E+000
.000000000000000E+000
.875000000000000E+000
.750000000000000E+000
.625000000000000E+000
.500000000000000E+000
.375000000000000E+000
.250000000000000E+000
.125000000000000E+000
.000000000000000E+000
.875000000000000E+000
.750000000000000E+000
.625000000000000E+000
.500000000000000E+000
.375000000000000E+000
.250000000000000E+000
.125000000000000E+000
.000000000000000E+000
.750000000000000E-001
.500000000000000E-001
.250000000000000E-001
.000000000000000E-001
.750000000000000E-001
.500000000000000E-001
.250000000000000E-001
.000000000000000E+000
.250000000000000E-001
.500000000000000E-001
.750000000000000E-001
.000000000000000E-001
.250000000000000E-001
.500000000000000E-001
.750000000000000E-001
.000000000000000E+000
.125000000000000E+000
.250000000000000E+000
.375000000000000E+000
.500000000000000E+000
.625000000000000E+000
.750000000000000E+000
.875000000000000E+000
.000000000000000E+000

= O 000U WWNNEFERFOOWRO -
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Arithmetic

f(x)

.000000000000000E+000
.045454545454545E-002
.388888888888889E-001
.051886792452830E-001
.692307692307693E-001
.308823529411765E-001
.900000000000000E-001
.464285714285714E-001
.000000000000000E-001
.5056319148936170E-001
.978260869565217E-001
.416666666666666E-001
.818181818181818E-001
.180232558139534E-001
.500000000000000E-001
.774390243902439E-001
.000000000000000E-001
.173076923076923E-001
.289473684210525E-001
.344594594594594E-001
.333333333333334E-001
.250000000000000E-001
.088235294117647E-001
.840909090909092E-001
.500000000000000E-001
.056451612903225E-001
.500000000000000E-001
.818965517241379E-001
.000000000000000E-001
LO27TTTTTTTTTTTT8E-001
.884615384615384E-001
.550000000000000E-001
.000000000000000E+000
.793478260869565E-001
.863636363636364E-001
.250000000000000E-001
.000000000000000E-001
.217105263157895E+000
.583333333333333E+000
.007352941176471E+000
.500000000000000E+000
.075000000000000E+000
.750000000000000E+000
.548076923076922E+000
.500000000000000E+000
.647727272727272E+000
.049999999999999E+000
.791666666666666E+000
.200000000000000E+001

N R PO P WWNMNNDMNNERRERREREOONOO WWNROWR

£ (x)

.714285714285714E-001
.557024793388429E-001
.390946502057612E-001
.215379138483447E-001
.029585798816567E-001
.832756632064591E-001
.624000000000000E-001
.402332361516035E-001
.166666666666667E-001
.915799004074241E-001
.648393194706995E-001
.362962962962963E-001
.057851239669422E-001
.731206057328286E-001
.380952380952381E-001
.004759071980964E-001
.599999999999999E-001
.163708086785009E-001
.925207756232682E-002
.826150474799126E-002
.703703703703709E-002
.714285714285709E-002
.626297577854672E-001
.341597796143251E-001
.125000000000000E-001
.985431841831426E-001
.933333333333334E-001
.980975029726516E-001
.142857142857143E-001
.436213991769548E-001
.881656804733727E-001
.150400000000000E+000
.333333333333333E+000
.540642722117202E+000
.776859504132231E+000
.047619047619048E+000
.360000000000000E+000
.722991689750693E+000
.148148148148148E+000
.650519031141868E+000
.250000000000000E+000
.973333333333333E+000
.8567142857142857E+000
.952662721893491E+000
.333333333333332E+000
.010743801652893E+001
.244000000000000E+001
.5569259259259259E+001
.000000000000000E+001
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Exercise 20: Newton’s Method with Automatic Differentiation

The zero of a function f(x) may be computed by Newton’s method and a feasible
ZIo.

f(zn)

n = dn — 3 :0:172;"'
=T i,y "

Using the module defined in the last exercise, the values of the function f and the
values of its derivative can be computed simultaneously by using the corresponding
operators within the function f.

Write a PASCAL-XSC program to implement Newton’s method with the help
of differential arithmetic. Use the function

fz)=e"—z -5

to test your program. Your program should read the starting value z,, compute five
Newton iterations, and print the values z; and f(z;) at each iteration.

Test your program with the starting values zy = 2.0, and zy = —5.0. The zeros
lie at z = 1.9368470722 and = = —4.99321618865.

Hint: The function eV can be implemented for the variable U = (u,u’) of type
Derivative_Type by

u,u’)

eV = e¥) = (e ' x ev).

Solution:

program newt_diff (input, output);
{ Exercise 20: Newton’s Method with Automatic Differentiation }
use diff_ari;

function exp (x: Derivative_Type) : Derivative_Type;

begin
exp.f := exp(x.f);
exp.df:= x.df * exp(x.f);
end;

function f (x: Derivative_Type) : Derivative_Type;
var
five : Derivative_Type;

begin
five := 5;
f = exp(x) - x - five;

end;
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var
X, y : Derivative_Type;

i : integer;
begin
writeln (’Exercise 20: Newton’’s Method with’);
writeln (° Automatic Differentiation’);
writeln;
write (’Enter starting value x0 : ’); read (x.f);
x.df := 1;
for i:= 1 to 5 do
begin
y = £f(x);
x.f :=x.f - y.f/y.df;
writeln (’x’,i:1,’ : ’,x.f);
end;
end.

Runtime Output:

Exercise 20: Newton’s Method with
Automatic Differentiation

Enter starting value x0 : 2.0
x1 : 1.939105856497994E+000

x2 : 1.936850383714592E+000
x3 @ 1.936847407225395E+000
x4 @ 1.936847407220219E+000
xb : 1.936847407220219E+000

Exercise 20: Newton’s Method with
Automatic Differentiation

Enter starting value x0 : -5.0
x1 : -4.993216345093695E+000
x2 : -4.993216188647903E+000
x3 : -4.993216188647903E+000
x4 : -4.993216188647903E+000
x5 : -4.993216188647903E+000
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Exercise 21: Measurement of Time

The time of a clock with the portions hours (h), minutes (m), and seconds (s) be-
tween 00.00.00 o’clock and 23.59.59 o’clock is to be represented by a record type
Clock. Write a PASCAL-XSC declaration for an operator 4+ that adds two such
times and, depending on the input, subtracts 24 h, so that the result is again rep-
resentable in type Clock. Use this declaration in a program that reads as many as
maxint times, adds them to a total time, and prints each time subtotal. The input
loop is terminated by the input of 0.00.00.

The input of the times should be given as a string in the form hh.mm.ss. This
input string should be converted to the type Clock using the string functions of
PASCAL-XSC. The opposite is done with the total time for the output, i.e. after
conversion from type Clock to string, the time is printed in the form hh.mm.ss.

Solution:

program times (input, output);

{ Exercise 21: Measurement of Time }

type
Clock = record
hours ¢ 0..23;
minutes : 0..59;
seconds : 0..59;
end;
var
a, b : string[8];
time, total : Clock;
i, p : integer;

operator + (a, b: Clock) sum : Clock;

var
help : 0..119;

begin
help a.seconds + b.seconds;
sum.seconds:= help mod 60;

help = a.minutes + b.minutes + help div 60;
sum.minutes:= help mod 60;

help = a.hours + b.hours + help div 60;
sum.hours := help mod 24;

end;
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begin
writeln (’Exercise 21: Measurement of Time’);
writeln;
total.hours = 0;
total.minutes := 0;
total.seconds := 0;
i:= 0;
repeat

i:= succ (1i);
write (’Please enter difference of time: ’);

readln;

read (a);

P :=pos (’.7, a);

time.hours := ival(substring(a,1l,p-1));

a := substring(a,p+1,8);

P := pos (°.7, a);

time.minutes := ival(substring(a,1,p-1));

a := substring(a,p+1,8);

time.seconds := ival(substring(a,1,8));

total 1= total + time;

b := image (total.hours,2) + .’
image (total.minutes,2) + .’ +
image (total.seconds,2);

writeln (’New time : 7, b);

until (i=maxint) or (time.hours+time.minutes+time.seconds=0);
end.
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Exercise 22: Iterative Method
Consider the vector iteration method
(x) 2% =c4+ 4z® Kk =0,1,2,...

with ¢, 2 € R", k =0,1,2,... and A € IR"*". Assume that the spectral radius of
A is less than 1 so that the iteration is convergent.

Write a PASCAL-XSC program that implements this method. Design a module
MatVec that makes available the necessary types, operators, and procedures. This
module should contain the following parts:

a) a dynamic type declaration vector defined as a one-dimensional array with
component type real,

b) a dynamic type declaration matrix defined as a two-dimensional array with
component type real,

c¢) an equality operator = for the comparison of two vectors a = (a;) and b = (b;)
according to

a=b <= a;="0b;, foralli,

d) an operator + for the addition of two vectors a = (a;) and b = (b;) according
to

c=a+b with ¢ =a; +0b;, foralli,

e) an operator * for the multiplication of a matrix A = (a;;) with a vector x = (z;)
according to

y=Axx where y; = Z a;jr;, forall i,
J

by use of the datatype dotprecision to ensure that the computation of y; is
done with only one rounding,

f) an overloading of the procedure read for the input of a vector,
g) an overloading of the procedure read for the input of a matrix,

h) an overloading of the procedure write for the output of a vector.

Implement a program Iteration which uses the module MatVec and contains the
following parts:

1) A procedure Main with formal parameter n that works with the types, pro-
cedures, and operators of module MatVec. Main should declare the variables
¢, A, and (9 necessary for the iteration as vectors (or matrices) with index
range 1,...,n, and read these variables. Furthermore, Main should process
the iteration (x) until z*+1) = 2(*)) or until k¥ = 20. Finally, the result vector
z**D from the final iteration should be printed.

2) A main program should read the dimension n and call the procedure main.
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Solution:
module MatVec;
{ Exercise 22: Module with Matrix/Vector Operations }
global type

vector = dynamic array [*] of real;
matrix = dynamic array [*,*] of real;

global operator = (a, b: vector) equ: boolean;
{ Corresponding index ranges of a and b are assumed }
var
i : integer;
begin
i:= lbound(a) - 1;
repeat
i:r= 1+ 1;
until (a[i] <> b[i]) or (i = ubound(a));
equ:= (a[i]l = b[il);
end;

global operator + (a,b: vector) vadd: vector[lbound(a)..ubound(a)];

{ Corresponding index ranges of a and b are assumed }
var

i : integer;
begin

for i:= lbound(a) to ubound(a) do

vadd[i] := a[i] + b[il;

end;

global operator * (A: matrix; x: vector)
mvmul: vector [lbound(x)..ubound(x)];
{ Corresponding index ranges of A and x are assumed }

var
i, j : integer;
d : dotprecision;
begin
for i:= lbound(A) to ubound(A) do
begin
d:= #(0);

for j:= lbound(A,2) to ubound(A,2) do
d:= #(d + ali,jl * x[j1);
mvmul [i] := #x(d) ;
end;
end;
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global procedure read (var f: text; var c: vector);
var
i : integer;
begin
for i:= lbound(c) to ubound(c) do
read (f, cl[il);
end;

global procedure read (var f: text; var A: matrix);

var

i, j : integer;
begin

for i:= lbound(A) to ubound(A) do

for j := 1lbound(A,2) to ubound(A,2) do
read(f, A[i,jl);

end;

global procedure write (var f: text; c: vector);
var
i : integer;
begin
for i:= lbound(c) to ubound(c) do
writeln (f, c[i]);
end;

end. {module MatVec}

program iterate (input, output);
{ Exercise 22: Iterative Method }
use matvec;

var
n : integer;

procedure main (n: integer);

var
i, j, k : integer;
c, x_k, x_k_plus_1, y : vector[l..n];
A : matrix[1..n,1..n];
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begin
writeln (’Enter vector c’);
read (c);
writeln (’Enter matrix A’);
read (A);
writeln (’Enter vector x07);
read (x_k_plus_1);

{Iteration}

k:= -1;

repeat
x_k = x_k_plus_1;
k =k + 1;
x_k_plus_1:=c + A * x_k;

until (x_k_plus_1 = x_k) or (k = 20);
writeln (’Last iterate: ’);
write (x_k_plus_1);

end;

begin {Main program}
writeln (’Exercise 22: Iterative Method x_k+1 := c + A x_k’);
writeln;
write (’Dimension of vectors and matrices? ’);
read (n);
main (n);
end.

Remark: Module MatVec is a prototype of the predefined module MV_ARI of
PASCAL-XSC, which uses the predefined types rvector and rmatrix. Note
that our prototype module does not check the matching of the index ranges.
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Exercise 23: Trace of a Product Matrix

The trace of a n x n matrix A = (a;;) is defined by
Trace(A) :== Y a; = ai1 + - + Gpn,
i=1

i.e. the sum of the diagonal elements. Write a PASCAL-XSC program that accepts
the dimension n and the two corresponding n x n matrices A and B, computes the
trace of the product matrix C' = A - B, and prints the value.

Use the module MV_ARI which declares the procedures and operators for the
dynamic types rvector and rmatrix. Implement a function Tracel that determines
the trace of the product of two matrices with usual arithmetic operations, and a
function Trace2 that uses an #-expression with the same operations to computate
the trace with maximum accuracy. Furthermore, implement a function Trace3 that
does the summation in the usual way, but uses a scalar product for the calculation of
the diagonal elements of the product matrix. Finally, implement a function Trace4
that uses an #-expression for the summation used in Trace3. Compare the four
versions by means of some examples. Test your program also using the matrices

100 8 126 —237 108 85 8 6
g | 100 2 —12 1 s_| 12 3 10° 156
o 105 10 —107 81 ’ o 3 14 1010 13
13 -3 30 1077 2 —8332 —10* —10°%
Solution:

program trace (input, output);

{ Exercise 23: Trace of a Product Matrix }
use mv_ari;

var n: integer;

function tracel (a, b: rmatrix): real;

var
i, j : integer;
s . real;
begin
s:= 0;
for i:= lbound(a,1) to ubound(a,1) do

for j:= lbound(a,2) to ubound(a,2) do
s:= s + ali,jl * bl[j,i]l;
tracel:= s;
end;

N .
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function trace2 (a, b: rmatrix): real;
var
i, j : integer;
begin
trace2:= #x ( for i:= lbound(a,1) to ubound(a,1) sum
( for j:= lbound(a,2) to ubound(a,2) sum
( ali,jI*blj,1i1 ) ) );

end;

function trace3 (a, b: rmatrix): real;
var
i : integer;

s : real;
begin
s:= 0;

for i:= lbound(a,1) to ubound(a,l) do
s:= s + al[il] * rvector(b[*,i]);
trace3:= s;
end;

function trace4 (a, b: rmatrix): real;
var
i : integer;
begin
traced:= #x ( for i:= 1b(a,1) to ub(a,l) sum
( a[i]l * rvector (b[*,il) ) );
end;

procedure main (n: integer);
var

a, b : rmatrix[1..n,1..n];
trl, tr2, tr3, trd4 : real;

begin
writeln(’Enter matrix A:’);
read (A);
writeln(’Enter matrix B:’);
read (B);
trl:= tracel (A,B);
tr2:= trace2 (A,B);
tr3:= trace3 (A,B);
trd:= traced4 (A,B);
writeln(’Trace of A*B computed conventionally 1 ,trl);
writeln(’and with corresponding #-expression 1 7,tr2);
writeln(’Trace of A*B computed with scalar product : ’,tr3);
writeln(’and with corresponding #-expression 27 ,trd);

end;
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begin {program trace}
writeln (’Exercise 23: Trace of a Product Matrix’);
writeln;
write(’Enter dimension of the matrices: ’);
read (n);
main(n) ;
end. {program trace}

Runtime Output:

Exercise 23: Trace of a Product Matrix
Enter dimension of the matrices: 4

Enter matrix A:

1e9 8 126 -237
100 2 -12 1
1leb 10 -1e7 81
13 -3 30 le-7

Enter matrix B:

1e8 85 8 6
12 3 1e3 156
3 14 1e10 13

2 -8332 -1le4 -1e-8

Trace of A*B computed conventionally : —-1.600000000000000E+001
and with corresponding #-expression : 5.999999999999999E+000
Trace of A*B computed with scalar product : -9.999999999999999E-016

and with corresponding #-expression : 5.999999999999999E+000
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Exercise 24: Calculator for Polynomials

Write a PASCAL-XSC program that provides a calculator for the addition and
multiplication of polynomials with real coefficients. The degree n of the polynomials
should be no more than 5. For two polynomials p and ¢ of degree n with

n n

p(r) = Zaﬂi and q(z) = Zbﬂi,

i=0 i=0
the sum s is defined by
+(a) = ple) + ale) = 3o+ )
and the product r by
r(@) = pla) - q(x) = zzb
i=0 j=

A module should be written containing

a) a dynamic type definition Polynomial where a polynomial is defined as a dy-
namic real array,

b) a procedure to read the coefficients of a polynomial,

c) an operator + with two operands of type Polynomial and with a resulting
polynomial of the same degree as the operands,

d) an operator x with two operands of type Polynomial and with a resulting
polynomial of appropriate degree, implemented with maximum accuracy,

e) a procedure for the output of polynomials.

A program testing this module should contain a procedure Main with parameter n
(< 5), that declares the three polynomials (p, ¢, s) of degree n and a polynomial (r)
of degree 2n, and reads p and ¢. Depending upon the user’s input, the procedure
should compute and print the sum s or the product r. In the main program of
this test program, only the degree of the polynomials should be entered and the
procedure Main be called.

Solution:

module poly;
{ Exercise 24: Calculator for Polynomials }

global type Polynomial = dynamic array [*#] of real;
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global procedure read (var f: text; var a: Polynomial);

var i: integer;
begin
for i:= 0 to ub(a) do
read (£, al[il);
end;

global operator + (a, b: Polynomial) Result_Add:

var i: integer;
begin
for i:= 0 to ub(a) do
Result_Add[i]:= al[i] + bl[il;
end;

global operator * (a, b: Polynomial) Result_Mul:

var i, j, n: integer;
begin
n:= ub(a);
for i:= 0 to n do
Result_Mul[i]l:= #x (for j:
for i:= n+1 to 2*n do
Result_Mul[i]:= #* (for j:
end;

]
o

to i sum

i-n ton sum

Polynomiall[0..ub(a)];

Polynomial[0..2*ub(a)];

(aljl * vli-j1));

(aljl * bli-j1));

global procedure write (var f: text; a: Polynomial) ;

var i: integer;
begin
write (f, a[0], ? OF
for i:= 1 to ub(a) do
begin
writeln(f, ’ + ?);
write(’ > aflil, ? x™? ,i:l1);
end;
writeln(f);
end;

end. {module poly}
program test_poly (input, output);
use poly;

var n, option : integer;

procedure Main (n : integer; var option : integer);

var
P> 4, S : Polynomial[0..n];
r : Polynomial[0..2#n];
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begin
writeln(’Enter the coefficients of p (0 to n):’);
read (p);
writeln;
writeln(’Enter the coefficients of q (0 to n):’);
read (q);
writeln;
repeat
writeln(’Please select:’);
writeln(’ p + q ==> 07);
writeln(’ p * q ==> 17);
writeln(’ New polynomials p,q ==> 27);
writeln(’ Terminate program ==> 9’);
writeln;
write (’Selection ==> ’); read(option);
writeln;
if option = O then
begin
S:= p*q;
write(’p = ’); writeln(p);
write(’q = ’); writeln(q);
write(’p+q = ’); writeln(s);
end
else if option = 1 then
begin
r:= p*q;
write(’p = ’); writeln(p);
write(’q = ’); writeln(q);
write(’p*q = ’); writeln(r);
end;
until (option <> 0) and (option <> 1);
writeln;
end;

begin { test_poly }
writeln(’Exercise 24: Calculator for Polynomials’);
writeln;
repeat
repeat
write(’Degree n of the polynomials (>= 0 and <= 5) : ’);
read (n);
until (0<=n) and (n<=5);
writeln;
Main (n, option);
until (option = 9);
end.
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Runtime Output:

Exercise 24: Calculator for Polynomials
Degree n of the polynomials (>= 0 and <= 5)

Enter the coefficients of p (0 to n):

99 11 22 33 44

Enter the coefficients of q:
01234

Please select:

Pp+tq
p *q

New polynomials p,q
Terminate program

nnmnn
nnon
V V VvV V
©O© NN = O

Selection ==> 0

ptq =

B W N —, O B W NN - O

VI NG (e ]

.900000000000000E+001
.100000000000000E+001
.200000000000000E+001
.300000000000000E+001
.400000000000000E+001

.000000000000000E+000
.000000000000000E+000
.000000000000000E+000
.000000000000000E+000
.000000000000000E+000

.900000000000000E+001
.200000000000000E+001
.400000000000000E+001
.600000000000000E+001
.800000000000000E+001

Please select:

Pp+taq
p *q

New polynomials p,q
Terminate program

nmnmonn
o non
V V VvV V
©O© NN = O

Selection ==> 1

+ + 4+ + + + + +

+ + + +

4

251
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.900000000000000E+001
.100000000000000E+001 x~
.200000000000000E+001
.300000000000000E+001
.400000000000000E+001

B WK e ©
+ + + +

.000000000000000E+000
.000000000000000E+000 x~
.000000000000000E+000
.000000000000000E+000
.000000000000000E+000

I XIS
+ + + +

.000000000000000E+000
.900000000000000E+001 x~1
.090000000000000E+002 x~2
.410000000000000E+002 x~3
.060000000000000E+002 x~4
.200000000000000E+002 x~5
x"6
x~7
x"8

p*q =

.750000000000000E+002
.640000000000000E+002
.760000000000000E+002

= NN DN O W NN OO
+ + 4+ + + + + 4+

Please select:

p+taq

P *q

New polynomials p,q
Terminate program

nmonon
o unnon
VvV V V V
O N = O

Selection ==> 9
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Exercise 25: Interval Newton Method

The interval inclusion X, of a zero of a function f(z) whose derivative is continuous
and not equal to zero on the interval [a,b] can be improved under the assumption
f(a)- f(b) < 0 with help of the interval Newton method ([1],[2],[34])

f(m(X,))
o)) nx,

m(X) is the midpoint of the interval X.
Write a PASCAL-XSC program that uses the module I_ARI and computes the
interval inclusion of the zero of

flz) =Vr+ (x+1)cosz

with the method described above. Your program should include

Xpt1 1= (m(Xn) -

e a function F that computes f(X) with interval arithmetic
e a function DF that computes the derivative f'(x) with interval arithmetic

e a function midpoint that computes the midpoint m of the interval X = [z, z5]
with maximum accuracy by means of an #-expression

e a main program that accepts the starting interval X = [a,b], checks the two
criteria f(a)- f(b) <0 and 0 ¢ DF(X), and computes the iterates using the
Newton method. Print the newly calculated interval at each iteration. The
iteration should terminate when X, ;; = X, (for the finite convergence see
[34]).

Hint: Use [2.0,3.0] as the starting interval for the iteration. Note, that for the
computation of f(m(X)) with the interval function F, the midpoint delivered
by midpoint must be converted in an interval.

Solution:

program i_newton (input, output);

{ Exercise 25: Interval Newton Method }

use i_ari;

var x, y @ interval;

function F (x : interval) : interval;
begin

F:= sqrt(x) + (x+1) * cos(x);
end;
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function DF (x : interval) : interval;
begin
DF:= 0.5/sqrt(x) + cos(x) - (x + 1) * sin(x);
end;

function midpoint (x : interval) : real;
begin
midpoint:= #* (0.5 * x.inf + 0.5 * x.sup);
end;

function criterion_satisfied (x : interval) : boolean;
var
a, b: interval;
begin
a:= intval(inf(x));
b:= intval(sup(x));
criterion_satisfied:= (sup(F(a)*F(b)) < 0) and (not (0 in DF(x)));
end;

begin
writeln(’Exercise 25: Interval Newton Method’); writeln;
write (’Starting interval: ’); read (y); writeln;
writeln (’Iteration’); writeln;
if criterion_satisfied (y) then
repeat
writeln (y);
X:=y;
y:= ( midpoint(x) - F ( intval(midpoint(x)) ) / DF(x) ) ** x;
until y = x
else
writeln (’Criterion not satisfied!’);
end.

Runtime Output:

Exercise 25: Interval Newton Method

Starting interval: [2,3]

Iteration

[ 2.0E+000, 3.0E+000]
[ 2.0E+000, 2.3E+000]
[ 2.05E+000, 2.07E+000]
[ 2.05903E+000, 2.05906E+000]
[ 2.059045253413E+000, 2.059045253417E+000]
[ 2.059045253415143E+000, 2.059045253415145E+000]
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Exercise 26: Runge-Kutta Method

The Runga-Kutta method [47] is used for approximating a solution for initial value
problems of the form

Y'=F(z,Y); Y(2° =YY

where
Y1 () yi ()
Y = : Y = :
Yn(T) Y (2)
and
fl(x:yla e 7yn)
F(z,Y) = :
fn(l‘ayla s 7yn)

Define the coefficients K;
Ki=hx*F(z,Y)
Ky=hxF(z+2%Y+£)
K3 _h*F(a:+g,Y+%)
=hxFx+hY + Kj).
An approximation for the solution Y at the point x + h is given by the formula

Write a PASCAL-XSC program that uses the module MV_ARI. Starting from

1

Y(0) = ( 0 ), the values of Y at the points ; = ¢ * h, i = 1,...,10 should
1

be computed with A = 0.125. As an example, use the function

Yi-Y,
F(x,Y)—( e’ Y3 )
(Y1 = Ya)/e”

The output should be presented as a table. Define the vector function F(x,Y).
Compute the expressions K;, Ky, K3, K4, and the value of Y (z;) in a loop using
the predefined operators in MV_ARI.
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Solution:

program Runge_Kutta (input, output);
{ Exercise 26: Runge-Kutta Method }

use mv_ari;

const
n = 3;
var
h, x : real;
Y : rvector[l..n];
i : integer;

function F (x : real; Y : rvector) : rvector[l..n];
var
i: integer;

begin

F[1]:= Y[1] - Y[2];

F[2]:= exp(x) * Y[3];

F[3]:= (Y[1] - Y[2]) / exp(x);
end;

function One_Step (x, h : real; var Y : rvector) : rvector[l..n];
{ This function executes one step of the Runge-Kutta method }
var
k1, k2, k3, k4 : rvector[l..n];

begin

ki :=h * F (x s )5

k2 :=h * F (x + h/2, Y + k1/2);

k3 :=h x F (x + h/2, Y + k2/2);

k4 :=h *xF (x +h , Y + k3);

One_Step := Y + (k1 + 2 * k2 + 2 x k3 + k4) / 6;
end;

begin

writeln(’Exercise 26: Runge-Kutta Method’);
writeln;
x:=0; Y[1]l:=1; Y[2]:=0; VY[3]:=1; h:= 0.125;
writeln (’ X Y);
write (P-———m—-mmmmmm o )
writeln (’----——=—=—=—=——————— oo )

writeln (xi:7:4,° °,Y[1]1,’ °,Y[2],’ ’,Y[3]);
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for i:=1 to 10 do
begin
X := 1ix*h;
Y := One_Step (x, h, Y);
writeln (x:7:4,’ °,Y[11,’ ’,Y[2],’ ’,Y[3]);
end;
end.
Runtime Output:
Exercise 26: Runge-Kutta Method
X Y
0.0000 1.000000000000000E+000 0.000000000000000E+000 1.000000000000000E+000
0.1250 1.123177059359435E+000 1.589550140041404E-001 1.102222238011605E+000
0.2500 1.239209386091870E+000 3.550710525572459E-001 1.187244664965584E+000
0.3750  1.341958893792722E+000 5.919581434349622E-001 1.253740540716452E+000
0.5000 1.424014481447932E+000 8.728079152996371E-001 1.300672225680391E+000
0.6250 1.476592898728182E+000 1.200161743578859E+000 1.327307372755333E+000
0.7500 1.489460043511421E+000 1.575636069976619E+000 1.333230355256656E+000
0.8750 1.450881281820536E+000 1.999602458523678E+000 1.318348752540877E+000
1.0000 1.347610792483193E+000 2.470820861695647E+000 1.282894792112784E+000
1.1250 1.164931397828429E+000 2.986025793442226E+000 1.227421725713755E+000
1.2500 8.867578092820163E-001 3.539466687473293E+000 1.152795195942419E+000

Remark: The solutions of both of the last exercises demonstrate that the general
operator concept in PASCAL-XSC substantially simplifies the transfer of nu-
merical algorithms into program code. In principle, the mathematical formulas
can be used directly as program statements.
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Exercise 27: Rational Arithmetic

Implement a PASCAL-XSC module for a rational arithmetic [23]. A rational num-
ber p = n/d should be represented as a record type with integer components nu-
merator and denominator (> 0). The module should make the following globally
available

1) the type Rational,

2) the operators +,-,*,/, which deliver a reduced fraction of type Rational as
result,

3) a procedure for the input and for the output of rational numbers, respectively,
using the form:

integer /integer

You will need to write functions to compute the greatest common denominator (ged)
and to reduce fractions. These should be declared locally for use only within the
module.

A test program should test each operator and compute the value of the expression

(@+0b) % (b—c)/(c+d)
fora=3/4,6=2/7,¢c=4/5, and d =7/9.

Hint: The function to reduce a rational number to lowest terms should use integer
division (div) of the denominator and the numerator by the greatest common
divisor . The function for the greatest common divisor should use the following
algorithm:

a,b>0; zg:=a; ng:=b; 1:=0;

= ny mod dl
until dz‘_|_1 = 0.

set{niJrl = d; }fori=0,1,2,...
diy1

then n;,1 (or d;) is the greatest common divisor of a and b.

Notice: ged(0,x) = x for every = # 0.
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Solution:

module rational;
{ Exercise 27: Rational Arithmetic }

global type

positive = 1..maxint;
rational = record
numerator : integer;
denominator : positive;
end;

function gcd (a, b : integer) : positive;
var
n, d, r : integer;
begin
if a = 0 then
gecd:= Db
else if b = 0 then
ged:= a
else
begin
d:= a;
r:= b;
repeat
n:= d;
d:= r;
r:=n mod d;
until r = 0;
gcd:= abs(d);
end;
end;

function reduce (a: rational) : rational;
var
g : positive;
begin
g:= gcd (abs(a.numerator),a.denominator) ;
if (g = 0) or (g = 1) then

reduce := a
else
begin
reduce.numerator := a.numerator div g;
reduce.denominator:= a.denominator div g;
end;

end;

259



260 CHAPTER 5. EXERCISES WITH SOLUTIONS

global operator + (a,b : rational) respl : rational;
var
s: rational;
begin

s.numerator := a.numerator*b.denominator + b.numerator*a.denominator;
s.denominator:= a.denominator*b.denominator;
respl:= reduce (s);

end;

global operator - (a,b : rational) resmi : rational;
var
s: rational;
begin

s.numerator := a.numerator*b.denominator - b.numerator*a.denominator;
s.denominator:= a.denominator*b.denominator;
resmi:= reduce (s);

end;

global operator * (a,b : rational) resmu : rational;
var
S: rational;
begin

S .numerator a.numerator*b.numerator;

a.denominator*b.denominator;
resmu:= reduce (s);
end;

s.denominator:

global operator / (a,b : rational) resdi : ratiomal;

var
help : integer;
s : rational;
begin

s.numerator:= a.numerator*b.denominator;
help a.denominator*b.numerator;
if help > O then

s.denominator:= help
else if help < O then

begin
s.numerator := -s.numerator;
s.denominator:= -help;
end
else { force division by zero to generate an error }

help:= help div help;
resdi:= reduce (s);
end;
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global procedure read (var f: text; var r: rational);
var
s, sn, sd: string;
i, 1 : integer;
begin
if eoln (f) then
readln (f);
read (f,s);
i:= pos (°/7,8);
1:= length (s);
sn:= substring (s,1,i-1);
sd:= substring (s,i+1,1-i);
r.numerator:= ival (sn);
1:= ival (sd);
if 1 > 0 then
r.denominator:= 1
else if 1 < 0 then
begin
r.numerator := - r.numerator;
r.denominator:= - 1;
end

else { force devision by zero to generate an error }
1:= 1 div 1;
r:= reduce (r);
end;

global procedure write (var f: text; a: rational);
begin
write (f, a.numerator:1, ’/’, a.denominator:1);

end;

end. {module rational}

program test_ratio (input, output);
{ Exercise 27: Rational Arithmetic - Test Program }
use rational;

var
a,b,c,d : rational;
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begin
writeln(’Exercise 27: Rational Arithmetic - Test Program’);
writeln;
write (Pa = ’); read (a);
writeln (a);
write (°b = ?); read (b);
writeln (b);
write (°c = ?); read (c);
writeln (c);
write (°d = ’); read (d);
writeln (d);
writeln;

writeln (Pa+b = ’, a+b);
writeln (’b-c = ’, b-c);
writeln (’c+d = ’, c+d);
writeln (’ (a+b)*(b-c)/(c+d) = >, (a+b)*(b-c)/(c+d));

end.

Runtime Output:

Exercise 27: Rational Arithmetic

a = 3/4
b = 2/7
c = 4/5
d = 7/9
a+b = 29/28
b-c = -18/35
c+td = 71/45

(a+b) *(b-c)/(c+d) = -2349/6958
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Exercise 28: Evaluation of Polynomials
Write a PASCAL-XSC program to evaluate a polynomial
p(t) = apt" + -+ art + ap

with maximum accuracy. Use the module LSS from the PASCAL-XSC numeric
library for the verified solution of a system of linear equations. Horner’s scheme

p(t) = (.. (ay - t+ap_1) -t+ap_a) ) -t+ay) t+ag

for the evaluation of a polynomial can be done via the solution of the system of
linear equations

To = Qapn
Try = tZE[] + an_1
Tpo1 = tTp_o+aq
Tp = tTp_1+ag
by introducing the n + 1 variables zg, 21, ..., 2, 1, 2,. The value of the polynomial

p at point t is then given by x,, i.e. x, = p(t).

Hence, we wish to solve the system of linear equations

1 0 To Qn
—t 1 T Ap—1
—t 1 Tn-1 ay
0 —t 1 Ty Qg
or
Ax =10
where
1 fori=j
A:(ai]’), Q;; = —t fOTZ:]+1 s i,j:(],...,n
0 else
and

b:(bz), bi:an,i, z:O,,n

Write a PASCAL-XSC program that contains the following parts:

(a) a dynamic type declaration polynomial (component type real),
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(b) a procedure read for the coefficients of a polynomial,
(c) a function Horner to compute the value of a polynomial by the Horner scheme,

(d) a procedure set_A_b, that generates the matrix A and the vector b from a
polynomial p and a real number ¢,

(e) a procedure main with formal parameter n that

— declares a variable p of type polynomial, a vector b of type rvector, an
interval vector X of type ivector, and a square matrix A of type rmatrix

with index range 0,...,n,
— reads the polynomial coefficients ay, ..., a, using the procedure read of
part (b),

— generates the matrix A and the vector b using the procedure from part
(d),

— computes an inclusion of X of the solution of the system Az = b with
maximum accuracy using the procedure Iss,

— and finally, if Iss is executed without errors, prints the lower and upper
bounds of the interval inclusion X, of the polynomial value x, = p(t)
and the value calculated by the Horner method (part (c)) for the sake of
comparison.

(f) a main program that accepts the degree of the polynomial n and calls the
procedure main.

Hint: Use the module LSS from the PASCAL-XSC numeric library. This module
supplies the procedure Iss which delivers a verified inclusion vector X for the
solution = of Az = b using the matrix A and the right-hand side b as input.
The interface of this procedure is

procedure Iss ( var A: rmatrix; var b: rvector;
var X: ivector; var errcode: integer )

where:

errcode = 0 : errorfree execution,
errcode = 1: system is too poorly conditioned,
errcode = 2 : matrix is possibly singular.

Test your program with the following examples:

Example 1:
degree of polynomial 3
coefficients ag = 1536796802

a; = —1086679440

ay; = —768398401

a3 = 543339720
point of evaluation t =1.4142135
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Example 2:
degree of polynomial
coefficients

point of evaluation

Solution:

3

ap = 191971912515
ay = —135744641136
as = —95985956257
as = 67872320568

t =1.41421353154

program Polynomial_Evaluation (input, output);

{ Exercise 28: Evaluation of Polynomials }

use i_ari, mv_ari, 1ss;

type polynomial = dynamic array [*] of real;

procedure read (var f: text; var p: polynomial);

var
i: integer;
begin
for i:= 0 to ub(p) do
begin
write (’Coeff. ’,i:2,’: ?);
read (f, plil);
end;
end;

function Horner (p : polynomial; t: real)

var
h: real;
i: integer;
begin
h:= 0;

for i:= ub(p) downto 0 do

h:= p[i] + t * h;
horner:= h;
end;

procedure set_A_b (p
var A:
var
i, j, ub_p: integer;
begin
A:= null (A);
A[0,0]:= 1;

: polynomial; t

rmatrix;

. real;

: real;
var b: rvector);
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for i:= 1 to ub(A) do

begin
Ali,i-1]:= -t; { sub diagonal := -t }
Ali,i] = 1; { diagonal := 1}
end;
ub_p:= ub(p);

for i:= 0 to ub(b) do
bl[i] := plub_p-il;
end;

procedure main (n: integer);

var
p: polynomiall[0..n];
b: rvector[0..n];
X: ivector[0..n];
A: rmatrix[0..n,0..n];
t: real;
error: integer;
begin
writeln (’Enter a polynomial’);
read (p);
write (’Enter the point of evaluation t = ’); read(t);
writeln;

set_A_b (p,t,A,b);
1ss (A,b,X,error);
if error=0 then

begin
writeln (’Horner scheme : >, horner (p,t));
writeln (’Inclusion 7, X[nl);
end
else

writeln (’Error ’,error:1,’ ocurred’);
end;

var n: integer;

begin
writeln(’Exercise 28: Evaluation of Polynomials’);
writeln;
write (’Degree of polynomial: ’); read (n);
main (n);

end.
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Runtime Output:
Example 1

Degree of polynomial: 3
Enter polynomial

Coeff. 0 = 1536796802
Coeff. 1 = -1086679440
Coeff. 2 = -768398401
Coeff. 3 = 543339720

Enter the point of evaluation t = 1.4142135

Horner scheme : 5.960464477539062E-006
Inclusion : [ 5.978758733249328E-006, 5.978758733249330E-006]
Example 2

Degree of polynomial: 3
Enter polynomial

Coeff. O = 191971912515
Coeff. 1 = -135744641136
Coeff. 2 = -95985956257
Coeff. 3 = 67872320568

Enter the point of evaluation t = 1.41421353154

Horner scheme : 1.000183105468750E+000
Inclusion : [ 1.000182503810985E+000, 1.000182503810986E+000]

Remark: This last exercise shows how to use the routine for the verified solution of
linear equations to evaluate poynomials with maximum accuracy. The verified
results show that the frequently used Horner method may deliver incorrect
results.

The procedure Iss is used for simplicity. The reader might wish to design
and implement a more efficient algorithm which takes advantage of the special
structure of the matrix A as an advanced exercise (see [8]).






Appendix A

Syntax Diagrams

As a supplement to the syntax description of the language reference (chapter 2)
using the simplified Backus-Naur-Form, we now give a complete description of the
PASCAL-XSC syntax. For this purpose, we use syntax diagrammes in a special form
being already mentioned in [6], [7] or [14]. The following rules apply to the usage of
the diagrams.

e Each diagram is marked by a number followed by a special identifier (sequence
of upper case letters). This identifier is called a syntaz variable. It is chosen
to refer to the represented language element.

e A diagram consists of syntax variables, terminal symbols (reserved words con-
sisting of boldfaced sequences of lower case letters, symbols enclosed in circles,
or sequences of symbols enclosed in ovals), and solid or dotted lines.

e Within a diagram, a syntax variable may occur in connection with a semantic
prefix. For instance, the variable IDENTIFIER, (ID) is used with the prefix
COMP indicating a special kind of identifier, i.e. a component identifier. Nev-
ertheless, the definition of the variable COMP IDENTIFIER is given by the
syntax diagram IDENTIFIER.

Furthermore, these semantic attributes appear as italicized remarks which are
stated immediately beneath or beside a variable. If a list of semantic attributes
is given, then the comma is read as “or”. The following abbreviations are used:

A Array

B boolean

CH char

CIR cinterval (complex intervals)

COMP  Component (of a record)
CONST Constant

CR complex (complex numbers)
DOT dotprecision

dyadop  dyadic operator

dyna dynamic array

269
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ET Enumeration Type

F File

FCT Function

FL Field List

FS File Structure Type

I integer

id identifier

IR interval (real intervals)
MCIR  cimatrix (complex interval matrices)
MCR cmatrix (complex matrices)
MIR imatrix (interval matrices)
MR rmatrix (real matrices)
monop  monadic operator

P pointer

R real

REC Record
RES Result

ST string

TF Text File

VCIR civector (complex interval vectors)
VCR cvector (complex vectors)

VIR ivector (interval vectors)

VR rvector (real vectors)

VAR Variable

An index of all syntax variables (identifiers) is listed in alphabetical order after the
diagrams in Appendix B.1 to simplify working with the diagrams.

While editing a program, the syntax diagrams are used according to the following
rules:

e The traversing of a diagram starts at the upper left.

e Solid lines must be followed from left to right or from top to bottom. Dotted
lines must be followed from right to left or from bottom to top.

e The traversing of a diagram ends at the lower right.

e Wherever a syntax variable appears while traversing over a diagram, we have
to traverse through the diagram of this syntax variable. Then we continue
with the original diagram.
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P1  COMPILATION UNIT
N i
—— program 1D ( D YH o e, )
program id ~ program @
parameter
@— use 1D
module id
< > — PDB -
use—clause
— module 1D i 1 use global — e[ e
module id G —‘7 T ‘ @
1D . ;
module id
S = ; MDB +—
use—clause
P2 PROGRAM DECLARATION AND BODY (PDB)
DECLARATION PART begin STMT — end O
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P3 MODULE DECLARATION AND BODY (MDB)

—— MODULE DECLARATION —

R
end ),
P4 MODULE DECLARATION
label DIGIT SEQUENCE O
label, maz. 4 digits
— global ——— const ——— CONSTANT DEFINITION O
- type —L— MODULE TYPE DEFINITION —®7
L var L VARIABLE DECLARATION O
) procedure/
+ function
- PROCEDURE FUNCTION HEAD —(; }—— BODY —(; H ©declara-
. tion
L OPERATOR HEAD O BODY G . operator
. declara-
tion
PRIORITY DEFINITION ()

-
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P5 DECLARATION PART
label DIGIT SEQUENCE O
label, maz. 4 digits
I L ML
const CONSTANT DEFINITION )
L o
type TYPE DEFINITION )
o
var VARIABLE DECLARATION )
L PROCEDURE FUNCTION HEAD —@— BODY 4®—
()
PRIORITY DEFINITION )
a O
OPERATOR HEAD G) BODY
P6 CONSTANT DEFINITION

273

procedure/
function
declaration

operator
declaration

1D

constant id

()
\Z/

®
-
\J
CONST
IR
CONST

B, CH, ET, ST
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P7 CONSTANT (CONST)

1D
constant id

DS

oS
DS
DS

T
T

I  (integer)

0.3‘ ()
o
o

DS

D
D

()

DS _@ R (real)

@ B (boolean)
(N N CH char or
) CHARACTER ) (char)

ST  (string)

nil

P (pointer)
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P8 TYPE DEFINITION

D @ TYPE
) \Z)
type id
1D dynamic array of — TYPE
dyna type id
1D
dyna type id
D

dyna type id
List of predefined PASCAL-XSC type identifiers:

integer I dotprecision DOT
real R rvector VR
boolean B rmatrix MR
char CH cvector VCR
text TF cmatrix MCR
string ST ivector VIR
complex CR imatrix MIR
interval IR civector VCIR
cinterval CIR cimatrix MCIR

P9 MODULE TYPE DEFINITION

D @— global —

TYPE

D —@— global —

dyna type id

—— TYPE ——

dynamic array

D
dyna type id

D
dyna type id
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P10 TYPE
1D
type id
O D —0) BT
~ ET constant =
type id
®)
' R
-, const &,
®
) consT — 1
1 subrange
CONST O CONST B, CH, ET
B, CH, ET
— G D o
string [ CONST
L J
mazimum length
| M ST (static)
packed array \D TY]PE @* of char also A
lower bound 1
| packed — o
array ——( [ )}-— TYPE ——(] }— of TYPE —] A also FS, if comp-
I, B, CH, ET component type is an FS type
type )
— record FIELD LIST end REC also FS, if FL
contains an FS type
set of TYPE SET
I, B, CH, ET
file of TYPE F also IS

no FS
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P11 FIELD LIST (FLIST)

e
D () TYPE

component id

e (T O
TYPEID — ofJ— CHOICE w FLIST —@—

component id ~
1, B, CH, ET

P12 VARIABLE DECLARATION

1D
variable id

5

— pyNA TYPE D —( | H EXPR - EXPR — | }—]
I I

L dynamic array —@ EXPR @ EXPR @— of—TYPE L —

1 1
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CONST

6

Oi CONST_‘ Z B, CH, ET

278
P13 CHOICE
®)
)
\J
J‘ CONST —
P14

PROCEDURE FUNCTION HEAD (PFHEAD)

1D

FORMAL PARAMETER LIST

procedure

procedure id

1D

function

function id

FORMAT, PARAMETER LIST —@— RESTYPE L
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P15 PRIORITY DEFINITION

279

priority 1D Q Q relation  (level 0)
dyadop =/ =
id
@ addition  (level 1)
@ multiplication  (level 2)
monadic operator  (level 3)
S Gy
monop
id
P16 OPERATOR HEAD
— operator — MONOP MON FOR PAR L ——
monadic
operator
— DYADOP DYA FOR PAR L D (i }—RESTYPE
dyadic result id
operator
(2
=) ASG FOR PAR L

P17 MONADIC FORMAL PARAMETER LIST (MON FOR PAR L)

@ var

) )
ID () TYPESPEC )

variable id
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P18 DYADIC FORMAL PARAMETER LIST (DYA FOR PAR L)

1D

variable id

"
>/
D —@— TYPESPEC var
variable id §‘
D O— TYPESPEC

variable id

D O— TYPESPEC

variable id

P19 ASSIGNMENT FORMAL PARAMETER LIST (ASG FOR PAR L)

D —@— TYPESPEC var
variable id §‘
D @ TYPESPEC 4@

variable id

P20 RESULT TYPE (RESTYPE)

TYPE 1D
If used in P1j within P22
also DYNA TYPE ID

pormitted e @ I

() (N ' (1)
DYNA TYPEID () EXPR () EXPR B,
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P21 BODY

————— DECLARATION PART ———— begin J— STMT end —

forward

external

ST CONSTANT

P22 FORMAL PARAMETER LIST

VAP ——— e @ .......... . call by reference

©

call by value

‘ID ‘ D, TYPESPEC
variable id

PROCEDURE FUNCTION HEAD @—‘

P23 TYPE SPECIFICATION (TYPESPEC)

TYPE ID

DYNATYPE ID




assignment
stmt

compound
stmt

with-stmt

repeti-
tive
stmts
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P24 STATEMENT (STMT)
DS— : h
label
— VARIABLE —‘
- ()
RESULT =) EXPR
- begin — STMT end
— with —— VARIABLE —‘
—— RESULT do STMT
REC
- while EXPR do STMT
B
repeat L STMT until EXPR
B
- (=)
for 1D =)

variable id

N

then — STMT t
else

| case - EXPR — ofl CHOICE @— STMT

v

I, B, CH, ET

EXPR L to
downto J— EXPR — do — STMT —

STMT

\-@ else - - STMT E}L
end

goto

PROCEDURE 1D

DIGIT SEQUENCE
Label

ACTUAL PARAMETER LIST

INPUT OUTPUT STATEMENT

STANDARD PROCEDURE CALL

conditional
stmt

case-stmt

goto-stmt

procedure
call
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P25 RESULT

FCTID

RES 1D

COMP ID

only within a

with-statement

subarray

283

Predefined PASCAL-XSC component identifiers

re, im, inf, sup
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P26

STANDARD PROCEDURE CALL

APPENDIX A. SYNTAX DIAGRAMS

dispose VARIABLE O CONST
P I, B, CH, ET
)
L
VARIABLE )
F, TF =
VARIABLE @ EXPR
F, TF ST
Oz
VARIABLE @
F, TF
VARIABLE O EXPR
F, TF ST
O
'
——( release ) ( VARIABLE )
Y i O

ST
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P27 INPUT OUTPUT STATEMENT (IO STMT)

readln

VARIABLE
TF

write

VARIABLE .
EXPR
Lo

VARIABLE

TF
VARIABLE

TF

EXPR

VARIABLE

(O VARIABLE ) VARIABLE )
7 o U

component type

of the F variable

(O VARIABLE D) EXPR )
7 o U
component type
of the F variable
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P28 EXPRESSION (EXPR)

MONOP —

CONSTANT

VARIABLE

1D ACTUAL PARAMETER LIST
function id

STANDARD FUNCTION CALL

—@ EXPR @
—

only for SET —L EXPR ~‘—®®— EXPR ~‘

I, B, CH, ET

©

qualification | TYPEID @ EXPR @
A, DYNA A

ACCURATE EXPRESSION

P29 ACCURATE EXPRESSION

©O 99O

©

EXACT EXPRESSION

©
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P30 EXACT EXPRESSION (EXA EXPR)

FACTOR @ FACTOR ———
@ EXA EXPR @

L for

D —@ EXPR to
I variable I
[ downto } FEXPR - sum o (- EXA BXPR ) [
Ji

All Summands must have the same structure (scalar, vector, or matriz) and the same dimension.

No explicit accurate expressions are permitted in the I EXPR of the for-statement.

P31 FACTOR

OPERAND —MM—
L OPERAND @
P32 OPERAND
CONSTANT
I, R
VARIABLE
arithm. standard type
L FUNCTIONID @ OPERAND —@— OPERAND
Only the functions compl, re, im, conj,
intval, inf, sup, id, transp, and herm

©

of the arithmetic modules and the type
converting functions rvector, cvector,
ivector, civector, rmatrix, cmatrix,
imatrix, cimatrix are permitted (see
section 2.4.4).
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P33 DYADIC OPERATOR (DYADOP)

———— DYADOPID

priority 0

priority 1

: OOWOOOOO s VOOOO®O

8
o
&

=
<

priority 2

HOOOOO

[V
=}
=R




A. Syntax Diagrams 289

P34 MONADIC OPERATOR (MONOP) priority 3
MONOP 1D
(+)
R in Standard PASCAL
priority 1
()
\J
not
P35 ACTUAL PARAMETER LIST
@ VARIABLE —M call by reference
EXPRESSION —— : call by value

FUNCTION ID

' ()
PROCEDURE 1D )
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P36 VARIABLE (VAR)

VAR ID

subarray

COMP ID

Predefined PASCAL-XSC component identifiers

only within a
with-statement

re, im, inf, sup
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P37 STANDARD FUNCTION CALL

] [0}

succ

pred

chr

abs
sqr
sqrt

ex

e}

exp2

expl0

log2

log10

o) —
) =]

5

cos
tan
co
sinh
cosh
tanh
coth
arcsin
arccos
arctan
arccot
arsinh
arcosh

artanh

trunc

round

|

arcoth 4@7 EXPR

EXPR @
I, B, CH, ET
EXPR @
IR, B, CH, ET
EXIPR @
O)
I R, CR, IR, CIR
EXPR @
IR
EXPR O EXPR @

I, R, CR, IR, CIR

I, R, CR, IR, CIR
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P37

APPENDIX A. SYNTAX DIAGRAMS

STANDARD FUNCTION CALL (continued)
; %
Lo J—HO—— mxrn—0)
%
expo EXPR )
(eoee o0 T @,
M ED
(o (O ppn —— (e ——()

ot DO e

F, TF

o DO e

TF

ub

VARIABLE T@— CONSTANT
A I
O
EXPR (N VARIABLE
ST ‘ J ST —
W
ST rounding
@—VARIABLE
e
O
O —
ST
O v -y
ST
pos (O EXPR O EXPR @
CH, ST ST
(O pxim—— (O 1o —(— rexe—(7y
ST position number of

characters
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p37  STANDARD FUNCTION CALL

(continued; use of arithmetic modules assumed)

293

< o ()
I, R, IR, VR, VIR, I, R, IR, VR, VIR,
MR, MIR MR, MIR
OH
EXPR @
CR, CIR, VCR, VCIR,
MCR, MCIR
< exen ——— (O exen
I, R, CR, VR, VCR, I, R, CR, VR, VCR,
MR, MCR MR, MCR
O
EXPR @
IR, CIR, VIR, VCIR,
MIR, MCIR
< e (o
I, VR, VCR, VIR, VCIR, I, MR, MCR, MIR, MCIR
MR, MCR, MIR, MCIR
O
vnull ( EXPR )
(ymn_) : Q)
I, MR, MCR, MIR, MCIR I, MR, MCR, MIR, MCIR
O
EXPR @
MR, MCR, MIR, MCIR
( EXPR O EXPR @
IR, CIR, VIR, VCIR, R

MIR, MCIR
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P38 IDENTIFIER (ID)

LETTER

P39 DIGIT SEQUENCE (DS)

DIGIT

P40 HEX DIGIT SEQUENCE (HDS)

HEX DIGIT

P41 CHARACTER

LETTER

DIGIT

additional characters
implementation-dependent

©
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P42 LETTER

O

® ©

O ®

P43 DIGIT

& ©

©

P44 HEX DIGIT

O,

® ©

©)

DIGIT
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Indices and Lists

B.1

P29
P35

P19

P21
P41
P13
P1
pP7
P6
P5
P43
P39

P18

P33

P30

Syntax Diagrams

Diagram Identifier (Syntax Variable) Page
ACCURATE EXPRESSION ... 286
ACTUAL PARAMETER LIST ... e 289
ASSIGNMENT FORMAL PARAMETER LIST

(ASG FOR PAR L) ..eenieeeee e e 280
BODY 281
CHARACTER .o e e 294
CHOICE .o 278
COMPILATION UNIT .o e e 271
CONSTANT (CONST) ...ttt 274
CONSTANT DEFINITION ... e 273
DECLARATION PART .. e 273
DG T .o e 295
DIGIT SEQUENCE (DS) «..evneeeee e 294
DYADIC FORMAL PARAMETER LIST

(DYA FOR PAR L) ...\ttt 280
DYADIC OPERATOR (DYADOP) .....ooiiiiiiee i 288
EXACT EXPRESSION (EXA EXPR) . .oiviiiii i 287
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P28 EXPRESSION (EXPR) .ottt 286

P31 FACT OR . e 287
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P44
P40
P38
P27
P42
P9
P4
P3

P17

P34
P32
P16
P15
P14
P2

P25
P20
P37
P26
P24
P10
P8

P23
P36

P12
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Diagram Identifier (Syntax Variable) Page
FIELD LIST (FLIST) ..ttt e 277
FORMAL PARAMETER LIST ... o i 281
HE X DIGIT . e e e 295
HEX DIGIT SEQUENCE (HDS) ...t 294
IDENTIFIER (ID) ©...eeoeee e 204
INPUT OUTPUT STATEMENT (IO STMT) .....vviiiiiiiiiiaiaeaene. 285
LE T TR . e e e 295
MODULE TYPE DEFINITION . ... .. i 275
MODULE DECLARATION ... e 272
MODULE DECLARATION AND BODY (MDB) .........cvviiininin... 272
MONADIC FORMAL PARAMETER LIST

(MON FOR PAR L) .. votei e 279
MONADIC OPERATOR (MONOP) .. ..o\ttt 289
OPE R AND o e 287
OPERATOR HEAD ..o e 279
PRIORITY DEFINITION ... e 279
PROCEDURE FUNCTION HEAD (PF HEAD) ..., 278
PROGRAM DECLARATION AND BODY (PDB) ......ccooviiiiiinan.. 271
RE S UL e e e e 283
RESULT TYPE (RES TYPE) .. .ottt 280
STANDARD FUNCTION CALL ...t 291
STANDARD PROCEDURE CALL ..o 284
STATEMENT (STMT) ..ottt 282
Y PE 276
TYPE DEFINITION ... e 275
TYPE SPECIFICATION (TYPESPEC) ...t 281
VARIABLE (VAR) .. .eovntnie e e 290

VARIABLE DECLARATION ... e 277



300 APPENDIX B. INDICES AND LISTS

B.2 Reserved Words

and array

begin

case const

div do downto dynamic
else end external

file for forward function
global goto

if in

label

mod module

nil not

of operator or

packed priority procedure program
record repeat

set sum

then to type

until use

var

while with
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B.3 Predefined Identifiers

Subsequently, the predefined identifiers of the language core as well as those of the
arithmetic modules are listed. The latter are marked by the use of italicized letters.

Constants

Types

Variables

Component Identifiers

Functions

Procedures

false
maxint
true

boolean

char cimatrix cinterval civector cmatrix
complex  cvector

dotprecision

imatrix integer interval ivector

real rmatrix rvector

string

text

input
output

im inf
re
sup

abs  arccos arccot arcosh  arcoth  arcsin
arctan arctan2 arg arsinh artanh

blow

chr comp compl cony cos cosh cot
coth

diam

eof eoln exp exp2 expl0 expo

herm

id im  image inf intval ival

Ib  Ibound length In loc log2 loglO
mant maxlength  mid

null
odd ord
pos  pred

re round rval

sign  sin  sinh  sqr  sqrt
sup

tan tanh transp trunc
ub  ubound

vnull

substring  succ

dispose
get
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mark

new

page put

read readln release reset rewrite
write  writeln
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B.4 Operators

303

The tables in this section list all of the predefined operators in the language core
and in the arithmetic modules.

B.4.1

Basic Operators

right
left operand || pteger | boolean | char | string set
operand
monadic +,— not
+, K, /a
integer div, mod, in
V
or, and,
boolean =, <>, in
<:’ >=
+
+ .
char \Y, in
\% .
in
+
strin + vV
8 v .
in
+7 — X,
set =, <>,
<=, >=
enumeration .
in
type

VE = <>, < <=, >, >=}
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right integer . . . . .

. operand real interval rvector 1vector rmatrix matrix
left . . . . .
¢ cinterval cvector civector cmatrix cimatrix
operand complex

1
monadic ) +, — +, — +, — +, — +, — +, —
integer 2)
—, %
real 0,0<, 0>, | T: 7 / *, % <, k> * *, % <, k> *
-+ T*
complex
interval +, =k, [,/ i} § § i}
cinterval +% + %, kK
%) !
rvector K,k <, k>, . / 0,0<, 0>, | 4, —, %,
cvector []<,/]> ' 4+ +x
i *) )
1.vector *’/ *’/ +a_7*a +a_7*a
tri 3) 4)
rmar%x *, %k <, k>, y < > " 0,0, 0>, | +, —, %,
cmatrix [i]<,/> 4+ +x
. . 4) 4)
1.matr1.x *’/ *’/ * * +, = %, +, =%,
cimatrix + % 4%, kok

1
2
3

4

)
)
)
)

x denotes the scalar or matrix product.

+x : Interval hull (smallest interval enclosing both operands)

* %

: Interval intersection

The operators of this row are monadic (i.e. there is no left operand).

O€{+v_a*v/}

o € {+, —, *}, where x denotes the scalar or matrix product.
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B.4.3 Relational Operators for the Arithmetic Types

right || integer | . . . . :
. operand refl interval |rvector | ivector |rmatrix| imatrix
left cinterval | cvector | civector |cmatrix | cimatrix
operand complex
integer =, <>, in
real <=, <,
=, <>
complex >= >
D)
_ in, ><,
1.nterval — <> =, <>,
cinterval <=,<,
>= >
=, <>, .
rvector in
<=7<,
cvector =, <>
>= >
D)
in, ><,
ivector _
. ¢ =, <> ) <>7
clvector <=,<,
>= >
. =, <>, .
rmatrix in
. <=,<,
cmatrix =,<>
>= >
D)
in, ><,
imatrix _
. ) = <> | =<
cimatrix <=, <,
>= >

) The operators <= and < denote the “subset” relations;
>= and > denote the “superset” relations.

>< : Test for disjointedness of intervals

in Test for membership of a point in an interval or

Test for strict inclusion of an interval in the interior of an interval
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B.4.4 Assignment Operators

The subsequent tables give a survey of all possible assignment statements which have
been made possible by overloading of the operator := in the arithmetic modules.

Type of Left Side | Type of Right Side | Overloading Defined in

complex integler module C_ARI
rea

interval integler module I_ARI
rea

integer

cinterval rea} module CI_ARI
complex

interval

rvector integer module MV_ARI
real

integer

cvector reai module MVC_ARI
complex

rvector

integer

ivector ) real module MVI_ARI
interval

rvector

integer
real

complex
civector 1pterva1 module MVCI_ARI
cinterval
rvector
cvector
ivector

rmatrix integler module MV_ARI
rea

integer
cmatrix real module MVC_ARI
complex
rmatrix

integer

imatrix  real module MVIARI
interval

rmatrix
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Type of Left Side | Type of Right Side | Overloading Defined in

integer
real
complex
1pterval module MVCI_ARI
cinterval
rmatrix
cmatrix
imatrix

cimatrix
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(o8}

B.5 Predefined Functions

In this section, we supply an alphabetical review of all predefined functions with
their declaration (interface) and a short explanation of their purpose. For functions
which are overloaded or newly defined in the arithmetical modules, the name of the
defining module is listed. For the generic mathematical functions, consult the extra
table at the end of this section. For details about the domain of definition or the
range of the result, see the user manual of the compiler version you are using.

see extra table on page 319

arccos

see extra table on page 319

arccot

see extra table on page 319

arcosh

see extra table on page 319

arcoth

see extra table on page 319

arcsin

see extra table on page 319

arctan

see extra table on page 319

arctan?2

see extra table on page 319

arg

function arg (c: complex) : real;

Purpose: Delivers the argument (angle component) of the expo-
nential representation of c.

def./overl. in:  C_ARI
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function arg (c: cinterval) : interval;

Purpose:

def. /overl. in:

arsinh

Delivers the argument interval (angle component) of the
exponential representation of c.

CI_LARI

see extra table on page 319

artanh

see extra table on page 319

blow

function blow (x: Typel; eps: real) : Typel;

Typel:
Purpose:

def. /overl. in:

chr

interval, cinterval, ivector, civector, imatrix, cimatrix
Delivers the epsilon inflation of the interval argument x
(componentwise for array types). For x of type interval,
blow is computed by

y = (1 + eps) * x — eps * X;

blow := intval ( pred(inf(y)) , succ(sup(y)) );
[_ARI, CI_ARI, MVI_ARI, MVCI_ARI

function chr (i: integer) : char;

Purpose:

comp

Delivers the character with the ordinal number i. It is
an error if no such value exists.

function comp (m: real; e: integer) : real;

Purpose:

conj

Composition of a mantissa m and an exponent e into a
floating point value m- b®. Tt is an error if the values of
b, e, and m do not lie in the implementation-dependent
range.

function conj (c: Typel) : Typel;

Typel:
Purpose:

def. /overl. in:

complex, cinterval, cvector, civector, cmatrix, cimatrix

Conjugation (for vector and matrix types in every com-
ponent)

C_ARI, CI_LARI, MVC_ARI, MVCI_ARI
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COS

see extra table on page 319

cosh

see extra table on page 319

cot

see extra table on page 319

coth

see extra table on page 319

function diam (x: Typel) : ResType;

Typel: interval, cinterval, ivector, civector, imatrix, cimatrix

ResType: real, rvector, rmatrix according to the structure of
Typel.

Purpose: Delivers the diameter of x (for array types in every com-
ponent).

def./overl. in:  T_ARI, CI_ARI, MVI_ARI, MVCI_ARI

eof

function eof (var f: Typel) : boolean;

Typel: text, file of ...

Purpose: Delivers false if the actual component of the file variable

f is a defined component, otherwise true. It is an error
if f is undefined.

function eof : boolean;

Purpose: Corresponds to eof (input).

function eoln (var f: text) : boolean;

Purpose: Delivers true if the actual component of the file variable
f contains the end-of-line character, otherwise false. It
is an error if f is undefined.

function eoln : boolean;

Purpose: Corresponds to eoln (input).
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exp
see extra table on page 319

exp2

see extra table on page 319

expl0
see extra table on page 319

expo

function expo (x: real) : integer;

Purpose: Delivers the exponent of x corresponding to the normal-
ized mantissa and the base.

herm

function herm (x: Typel) : Typel;
Typel: cmatrix, cimatrix

Purpose: Delivers the Hermitean matrix.
def./overl. in:  MVC_ARI, MVCI_ARI

function id (x: Typel) : rmatrix[lb(x)..ub(x),Ib(x,2)..ub(x,2)];
Typel: rmatrix, cmatrix, imatrix, cimatrix
Purpose: Delivers an identity matrix with the index range of x.
def./overl. in: ~ MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
function id (x, y: Typel) : rmatrix[lb(x)..ub(x),Ib(y,2)..ub(y,2)];
Typel: rmatrix, cmatrix, imatrix, cimatrix

Purpose: Delivers an identity matrix with the index ranges of the
product matrix x - y.

def./overl. in: ~ MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI

function id (n: integer) : rmatrix[1..n,1..n];
Purpose: Delivers a n X n square identity matrix (n > 1 assumed).
def. /overl. in: ~ MV_ARI

function id (nl, n2: integer) : rmatrix[1..n1,1..n2]J;

Purpose: Delivers a rectangular nl x n2 identity matrix (nl, n2
> 1 assumed).

def./overl. in: ~ MV_ARI
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image

function image (i: integer) : string;

Purpose: Converts the integer value i into a string with a current
length according to the default output of integer values
(possibly filled by leading blanks).

function image (i: integer; width: integer) : string;

Purpose: Converts the integer value i into a string with the length
width (possibly filled with leading blanks).

function image (r: real) : string;

Purpose: Converts the real value r into a string with a current
length according to the default output for real values
(possibly filled by leading blanks).

function image (r: real; width: integer) : string;

Purpose: Converts the real value r into a string with the length
width (possibly filled by leading blanks).

function image (r: real; width, fracs: integer) : string;

Purpose: Converts the real value r into a string with the length
width (possibly filled by leading blanks) and fracs places
after the decimal point.

function image (r: real; width, fracs, round: integer) : string;

Purpose: Converts the real value r into a string with the length
width (possibly filled by leading blanks), fracs places
after the decimal point, and rounded according to round
(< 0 downwardly, = 0 to the nearest, > 0 upwardly).

function ival (s: string) : integer;

Purpose: Converts the first part of the string s, which represents
a numeric value according to the rules for integer con-
stants, into an integer value. Leading blanks as well as
trailing characters are neglected. It is an error if s does
not satisfy the syntax of an integer constant.

function ival (s: string; var rest: string) : integer;

Purpose: Converts the first part of the string s, which represents
a numeric value according to the rules for integer con-
stants, into an integer value. Leading blanks are ne-
glected, whereas trailing characters are passed back in
the string rest. It is an error if s does not satisfy the
syntax of an integer constant.
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function Ib (var a: Typel; i: integer) : ResType;

Typel: Arbitrary array type
ResType: Index type of Typel
Purpose: Short form of Ibound. Delivers the lower bound of the

i-th index range of a. It is an error if i exceeds the
number of dimensions.

function 1b (var a: Typel) : ResType;

Typel: Arbitrary array type
ResType: Index type of Typel
Purpose: Short form of Ibound. Delivers the lower bound of the

first index range of a.

function lbound (var a: Typel; i: integer) : ResType;

Typel: Arbitrary array type
ResType: Index type of Typel
Purpose: Delivers the lower bound of the i-th index range of a. It

is an error if i exceeds the number of dimensions.

function lbound (var a: Typel) : ResType;

Typel: Arbitrary array type
ResType: Index type of Typel
Purpose: Delivers the lower bound of the first index range of a.

function length (s: string) : integer;

Purpose: Delivers the current length of the string expression s.

(. m )

see extra table on page 319

loc

function loc (var x: Typel) : integer;

Typel: Arbitrary type

Purpose: Delivers the implementation-dependent memory address
of the variable x.
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see extra table on page 319

log10

see extra table on page 319

mant

function mant (x: real) : real;

Purpose: Delivers the normalized mantissa m (value range
implementation-dependent) of x. It is an error if the
values of x and m do not lie in the implementation-
dependent range.

maxlength

function maxlength (var s: string) : integer;

Purpose: Delivers the maximum length of the string variable s.

function mid (x: Typel) : ResType;

Typel: interval, cinterval, ivector, civector, imatrix, cimatrix

ResType: Type of the lower bound (inf) or of the upper bound
(sup) of Typel.

Purpose: Delivers the midpoint of x (in each component for array
types).

def./overl. in:  T_ARI, CI_ARI, MVI_ARI, MVCI_ARI

( nun

function null (x: Typel) : rvector[lb(x)..ub(x)];

Typel: rvector, cvector, ivector, civector
Purpose: Delivers a zero vector with the index range of x.
def./overl. in: ~ MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI

function null (x: Type2) : rmatrix[lb(x)..ub(x),Ib(x,2)..ub(x,2)];
Type2: rmatrix, cmatrix, imatrix, cimatrix

Purpose: Delivers a zero matrix with the index ranges of x.
def./overl. in: ~ MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
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function null (x, y: Type2) : rmatrix[lb(x)..ub(x),lb(y,2)..ub(y,2)];

Type2: rmatrix, cmatrix, imatrix, cimatrix

Purpose: Delivers a zero matrix with the index ranges of the prod-
uct matrix x - y.

def./overl. in: ~ MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI
function null (n: integer) : rmatrix[1..n,1..n];

Purpose: Delivers a n X n square zero matrix (n > 1 assumed).

def. /overl. in: ~ MV_ARI
function null (n1, n2: integer) : rmatrix[1..n1,1..n2];

Purpose: Delivers an nl x n2 zero matrix (nl, n2 > 1 assumed).
def./overl. in: ~ MV_ARI

function odd (i: integer) : boolean;

Purpose: Delivers true if i is an odd number, otherwise false.

function ord (x: Typel) : integer;

Typel: integer, boolean, char, enumeration type, pointer type

Purpose: Delivers the ordinal number of x or the value of the
pointer, if x is of pointer type.

function pos (s1, s2: string) : integer;

Purpose: Delivers the position of the first occurrence of sI in s2.

function pred (x: Typel) : Typel;

Typel: integer, real, boolean, char, enumeration type

Purpose: Delivers the predecessor of x. It is an error if no prede-
cessor exists.
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function round (x: Typel) : integer;

Typel:

Purpose:

integer, real

Rounding to the nearest integer number. The result
satisfies

round (x) = sign (x) * trunc (abs (x) + 0.5).

It is an error if no such integer value exists.

function rval (s: string) : real;

Purpose:

Converts the first part of the string s, which represents
a numeric value according to the rules of real constants,
into a real value. Leading blanks as well as trailing
characters are neglected. It is an error if s does not
satisfy the syntax of an real constant.

function rval (s: string; var rest: string) : real;

Purpose:

Converts the first part of the string s, which represents
a numeric value according to the rules of real constants,
into a real value. Leading blanks are neglected, whereas
trailing characters are passed back in the string rest. It
is an error if s does not satisfy the syntax of an real
constant.

function rval (s: string; round: integer) : real;

Purpose:

Converts the first part of the string s, which represents
a numeric value according to the rules of real constants,
into a real value rounded according to round (< 0 down-
wardly, = 0 to the nearest, > 0 upwardly). Leading
blanks as well as trailing characters are neglected. It
is an error if s does not satisfy the syntax of an real
constant.

function rval (s: string; round: integer; var rest: string) : real;

Purpose:

Converts the first part of the string s, which represents
a numeric value according to the rules of real constants,
into a real value rounded according to round (< 0 down-
wardly, = 0 to the nearest, > 0 upwardly). Leading
blanks are neglected, whereas trailing characters are
passed back in the string rest. It is an error if s does
not satisfy the syntax of an real constant.
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function sign (x: Typel) : integer;

Typel: integer, real, dotprecision
Purpose: Delivers the sign of x (=1 for x < 0, 1 for x > 0, 0 for
x = 0).

:

see extra table on page 319

sinh
see extra table on page 319
sqr
see extra table on page 319

sqrt

see extra table on page 319

substring

function substring (s: string; pos, number: integer) : string;

Purpose: Returns a substring of s containing number characters
starting from position pos. If pos is larger than the
current length of s, an empty string is returned. If s is
shorter than pos + number characters, a shorter string
is returned. For pos < 1, pos is set to 1.

succ

function succ (x: Typel) : Typel;

Typel: integer, real, boolean, char, enumeration type
Purpose: Delivers the successor of x. It is an error if no successor
exists.

tan

see extra table on page 319

tanh

see extra table on page 319
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function transp (x: Typel) : Typel;

Typel: rmatrix, cmatrix, imatrix, cimatrix
Purpose: Delivers the transposed matrix of x.
def./overl. in: ~ MV_ARI, MVC_ARI, MVI_ARI, MVCI_ARI

function trunc (x: Typel) : integer;
Typel: integer, real
Purpose: Rounding to an integer number by truncation of the

fractional portion of x. It is an error if no such integer
value exists.

function ub (var a: Typel; i: integer) : ResType;

Typel: Arbitrary array type
ResType: Index type of Typel
Purpose: Short form of ubound. Delivers the upper bound of the

i-th index range of a. It is an error if i exceeds the
number of dimensions.

function ub (var a: Typel) : ResType;

Typel: Arbitrary array type
ResType: Index type of Typel
Purpose: Short form of ubound. Delivers the upper bound of the

first index range of a.

function ubound (var a: Typel; i: integer) : ResType;

Typel: Arbitrary array Type
ResType: Index type of Typel
Purpose: Delivers the upper bound of the i-th index range of a.

It is an error if i exceeds the number of dimensions.
function ubound (var a: Typel) : ResType;

Typel: Arbitrary array type
ResType: Index type of Typel

Purpose: Delivers the upper bound of the first index range of a.
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function vnull (n: integer) : rvector[l..n];

Purpose:

319

Delivers a zero vector with n components (n > 1 as-

sumed).

def. /overl. in: ~ MV_ARI

The Predefined Mathematical Functions

Function Generic Name
1 || Absolute Value abs
2 || Arc Cosine arccos
3 || Arc Cotangent arccot
4 || Inverse Hyperbolic Cosine arcosh
5 || Inverse Hyperbolic Cotangent arcoth
6 | Arc Sine arcsin
7 || Arc Tangent arctan
8 || Inverse Hyperbolic Sine arsinh
9 || Inverse Hyperbolic Tangent artanh
10 || Cosine cos
11 || Cotangent cot
12 || Hyperbolic Cosine cosh
13 || Hyperbolic Cotangent coth
14 || Exponential Function exp
15 || Power Function (Base 2) exp2
16 || Power Function (Base 10) expl0
17 || Natural Logarithm (Base e) In
18 || Logarithm (Base 2) log2
19 || Logarithm (Base 10) log10
20 || Sine sin
21 || Hyperbolic Sine sinh
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Function Generic Name
22 || Square sqr
23 || Square Root sqrt
24 || Tangent tan
25 || Hyperbolic Tangent tanh

The argument type for each of these functions may be any of the types integer,
real, complex, interval, and cinterval, i. e. the functions are defined not only for the
types integer and real. They are also provided for the types complex, interval, and
cinterval in the arithmetic modules C_ARI, I_ARI, and CI_ARI.

We do not explain the interfaces and the formal declarations, because all of these
functions are defined with only one formal parameter. Normally, the result type is
the same as the type of the argument. For integer arguments, this only holds for the
functions abs and sqr. All other functions return real values for integer arguments.

In addition to the standard functions listed in the table above, the function

arctan2 (x1,x2)

is available for two arguments x1, x2 of type real or interval. The result of arctan2
(x1, x2) is

arctan (x1/x2) .
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B.6 Transfer Functions

In this section, we give an alphabetical review of the transfer functions for type
conversion between the arithmetic types. Beneath their declaration (interface) and
a short explanation of their purpose, we list the name of the module, in which the
functions are defined or overloaded.

function compl (x1: Typel; x2: Type2) : Type3;

Typel:
Type2:

Type3:

Purpose:

def. /overl. in:

real, interval, rvector, ivector, rmatrix, imatrix

real, interval, rvector, ivector, rmatrix, imatrix with
the corresponding structure (scalar, vector, matrix) of
Typel

Corresponding complex type of Typel or Type2 (com-

plex, cinterval, cvector, civector, cmatrix, cimatrix)

Composition of the arguments x1 and x2 (real and imag-
inary parts) into the corresponding complex type (com-
ponentwise for vector and matrix types).

C_ARI, CI_ARI, MVC_ARI, MVCI_ARI

function compl (x: Typel) : Type2;

Typel:
Type2:

Purpose:

def. /overl. in:

(_im

real, interval, rvector, ivector, rmatrix, imatrix

Corresponding complex type of Typel (complex, cinter-
val, cvector, civector, cmatrix, cimatrix)

Composition of the argument x (real part) and imagi-
nary part 0 to the corresponding complex type (compo-
nentwise for vector and matrix types).

C_ARI, CI_ARI, MVC_ARI, MVCI_ARI

function im (c: Typel) : Type2;

Typel:
Type2:

Purpose:

def. /overl. in:

complex, cinterval, cvector, civector, cmatrix, cimatrix

Corresponding real or interval type of Typel (real, in-
terval, rvector, ivector, rmatrix, imatrix)

Delivers the imaginary part of the argument (compo-
nentwise for vector and matrix types).

C_ARI, CI_ARI, MVC_ARI, MVCI_ARI
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function inf (i: Typel) : Type2;

Typel:
Type2:

Purpose:

def. /overl. in:

function intval (x1:
Typel:
Type2:

Type3:

Purpose:

def. /overl. in:

interval, cinterval, ivector, civector, imatrix, cimatrix

Corresponding real or complex type of Typel (real, com-
plex, rvector, cvector, rmatrix, cmatrix)
Delivers the lower bound of the interval argument (com-
ponentwise for vector and matrix types).

[_ARI, CI_ARI, MVI_ARI, MVCI_ARI

Typel; x2: Type2) : Type3;

real, complex, rvector, cvector, rmatrix, cmatrix

real, complex, rvector, cvector, rmatrix, cmatrix with
the structure (scalar, vector, matrix) of Typel.
Corresponding interval type of Typel or Type2 (inter-
val, cinterval, ivector, civector, imatrix, cimatrix)

Composition of the arguments xI and x2 (lower and
upper bound) to the corresponding interval type (com-
ponentwise for vector and matrix types). It is an error
if x1 > x2.

_ARI, CI_ARI, MVI_ARI, MVCI_ARI

function intval (x: Typel) : Type2;

Typel:
Type2:

Purpose:

def. /overl. in:

real, complex, rvector, cvector, rmatrix, cmatrix
Corresponding interval type of Typel (interval, cinter-
val, ivector, civector, imatrix, cimatrix)

Converting of the argument x into an interval with lower

and upper bound equal to x (componentwise for vector
and matrix types).

_ARI, CI_ARI, MVI_ARI, MVCI_ARI

function re (c: Typel) : Type2;

Typel:
Type2:

Purpose:

def. /overl. in:

complex, cinterval, cvector, civector, cmatrix, cimatrix

Corresponding real or interval type of Typel (real, in-
terval, rvector, ivector, rmatrix, imatrix)

Delivers the real part of the argument (componentwise
for vector and matrix types).

C_ARI, CI_ARI, MVC_ARI, MVCI_ARI
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function sup (i: Typel) : Type2;

Typel:
Type2:

Purpose:

def. /overl. in:

interval, cinterval, ivector, civector, imatrix, cimatrix
Corresponding real or complex type of Typel (real, com-
plex, rvector, cvector, rmatrix, cmatrix)

Delivers the upper bound of the interval argument (com-
ponentwise for vector and matrix types).

[_ARI, CI_ARI, MVI_ARI, MVCI_ARI
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B.7 Predefined Procedures

In this section, we give an alphabetical review of the predefined procedures (including
the input/output procedures) with their declaration part (interface) and a short
explanation of their purpose. For the functions which are overloaded or newly
defined in the arithmetic modules, we list the name of the defining module.

procedure dispose (var p: Typel);
Typel: Arbitrary pointer type

Purpose: Release of the storage space of an element referenced by
the pointer p. It is an error if p = nil. The procedure
dispose may not be used in conjunction with release.

procedure dispose (var p: Typel; cl,c2,...,cn: Type2);

Typel: Arbitary pointer type

Type2: integer, boolean, char, enumeration type

Purpose: Release of the storage space of an element referenced by
the pointer p. The constants c1, ..., cn enable the access

of special variants (for variant records). It is an error
if p = nil. The procedure dispose may not be used in
conjunction with release.

get

procedure get (var f: Typel);

Typel: text, file of ...

Purpose: The next component of the actual component of the
file variable f becomes the new actual component. The
value of the actual component is assigned to the buffer
variable f1. It is an error if f is undefined or if f is not
in reading mode.

mark

procedure mark (var p: Typel);

Typel: Arbitrary pointer type
Purpose: Marks the heap to enable a release later.

new

procedure new (var p: Typel);

Typel: Arbitrary pointer type
Purpose: Creation of a new element referenced by the pointer p.
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procedure new (var p: Typel; c1,c2,....cn: Type2);

Typel:
Type2:
Purpose:

Arbitrary pointer type
integer, boolean, char, enumeration type

Creation of a new element, referenced by the pointer
p. The constants c1, ..., cn enable the access to special
varaints (for variant records).

procedure page (var f: text);

Purpose:

procedure page;

Purpose:

put

Beginning of a new page on the output file f. It is an
error if f is undefined or if f is not in writing mode.

Corresponds to page (output).

procedure put (var f: Typel);

Typel:
Purpose:

read

text, file of ...
The value of the buffer variable f1 is assigned to the ac-
tual component of f. The next component of the actual
component of the file variable f becomes actual compo-
nent. It is an error if f is undefined or if f is not in
writing mode.

procedure read (var f: Typel; var x: Type2);

Typel:
Type2:

Purpose:

def. /overl. in:

text, file of ...

integer, char, string, real, complex, interval, cinter-
val, rvector, cvector, ivector, civector, rmatrix, cmatrix,
imatrix, cimatrix

Input of one or several variables of type Type2 from
file f (depending on Type2, format specifications are
permitted seperated by colons). It is an error if f is
undefined or if f is not in reading mode.

C_ARI, I_ARI, CI_ARI, MV_ARI, MVC_ARI, MVI_ARI
and MVCI_ARI

procedure read (var x: Type2);

Type2:

Purpose:

integer, char, string, real, complex, interval, cinter-
val, rvector, cvector, ivector, civector, rmatrix, cmatrix,
imatrix, cimatrix

Corresponds to read(input, x).
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procedure readln (var f: text);

Purpose: Terminate an input line by reading the end-of-line char-
acter. It is an error if f is undefined or if f is not in
reading mode.

procedure readln;
Purpose: Corresponds to readIn(input).
procedure readln (var f: text; var x: Type2);

Type2: integer, char, string, real, complex, interval, cinter-
val, rvector, cvector, ivector, civector, rmatrix, cmatrix,
imatrix, cimatrix

Purpose: Corresponds to read(f, x) followed by readln(f).
procedure readln (var x: Type2);

Type2: integer, char, string, real, complex, interval, cinter-
val, rvector, cvector, ivector, civector, rmatrix, cmatrix,
imatrix, cimatrix

Purpose: Corresponds to read(x) followed by readln.

release

procedure release (var p: Typel);

Typel: Arbitrary pointer type

Purpose: Refreshes the old state of heap marked by mark. All
variables created since the call of mark are released. The
pointer p must have the same value as the pointer used
for the most recent call of the procedure mark. The
procedure mark may not be used in conjunction with
dispose.

reset

procedure reset (var f: Typel);

Typel: text, file of ...
Purpose: The file f is initialized for reading (input).



B.7. PREDEFINED PROCEDURES 327

procedure reset (var f: Typel; s: string);

Typel:

Purpose:

rewrite

text, file of ...

The file f is initialized for reading (input). The physical
file with external name s is associated with the internal
file f.

procedure rewrite (var f: Typel);

Typel:

Purpose:

text, file of ...
The file f is initialized for writing (output).

procedure rewrite (var f: Typel; s: string);

Typel:

Purpose:

setlength

text, file of ...

The file f is initialized for writing (output). The physical
file with external name s is associated with the internal
file f.

procedure setlength (var s: Typel; i: Type2);

Typel:
Type2:

Purpose:

write

string[m] or string

0.m or 0..M

The actual length of the string variable s is set to i with
0 <i<mor0 < i< M, respectively, where M is the

implementation-defined maximum length of strings. It
is an error if i exceeds the maximum string length.

procedure write (var f: Typel; x: Type2);

Typel:
Type2:

Purpose:

def. /overl. in:

text, file of ...

integer, boolean, char, string, real, complex, interval,
cinterval, rvector, cvector, ivector, civector, rmatrix,
cmatrix, imatrix, cimatrix

Output of one or several expressions of type Type2 into
the file f (depending on Type2, format specification are
permitted seperated by colons). It is an error if f is
undefined or if f is not in writing mode.

C_ARI, T.ARI, CLARI, MV_ARI, MVC_ARI,
MVI_ARI, MVCI_ARI
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procedure write (x: Type2);

Type2: integer, boolean, char, string, real, complex, interval,
cinterval, rvector, cvector, ivector, civector, rmatrix,
cmatrix, imatrix, cimatrix

Purpose: Corresponds to write(output, x).

procedure writeln (var f: text);

Purpose: Termination of an output line by writing the end-of-line
character. It is an error if f is undefined or if f is not in
writing mode.

procedure writeln;
Purpose: Corresponds to writeln (output).
procedure writeln (var f: text; x: Type2);

Type2: integer, boolean, char, string, real, complex, interval,
cinterval, rvector, cvector, ivector, civector, rmatrix,
cmatrix, imatrix, cimatrix

Purpose: Corresponds to write(f, x) followed by writeln(f).
procedure writeln (x: Type2);
Type2: integer, boolean, char, string, real, complex, interval,

cinterval, rvector, cvector, ivector, civector, rmatrix,
cmatrix, imatrix, cimatrix

Purpose: Corresponds to write(x) followed by writeln.



B.8. #-EXPRESSIONS

B.8 #-Expressions

B.8.1 Real and Complex #-Expressions

Syntax:

#-Symbol ( Exact Expression )

| #-Symbol ||

Result Type |

Summands Permitted in the Exact Expression

dotprecision

variables, constants, and special function calls of
type integer, real, or dotprecision

products of type integer or real

scalar products of type real

real

variables, constants, and special function calls of
type integer, real, or dotprecision

products of type integer or real

scalar products of type real

complex

variables, constants, and special function calls of
type integer, real, complex, or dotprecision

products of type integer, real, or complex

scalar products of type real or complex

#x
#<
#>

rvector

variables and special function calls of type rvector

products of type rvector (e.g. rmatrix * rvector, real
* rvector etc.)

cvector

variables and special function calls of type rvector or
cvector

products of type rvector or cvector (e.g. cmatrix *
rvector, real * cvector etc.)

rmatrix

variables and special function calls of type rmatrix

products of type rmatrix

cmatrix

variables and special function calls of type rmatrix
or cmatrix

products of type rmatrix or cmatrix

329

“Special function calls” are the calls of the functions compl, re, im, conj, intval, inf,
sup, id, transp, herm, and the type converting functions rvector, cvector, ivector,

and civector.
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B.8.2 Real and Complex Interval #-Expressions

Syntax: ## ( Exact Expression )

| #-Symbol || Result Type | Summands Permitted in the Exact Expression |

variables, constants, and special function calls of
type integer, real, interval, or dotprecision

int 1 . .
mterva e products of type integer, real, or interval

e scalar products of type real or interval

e variables, constants, and special function calls of
type integer, real, complex, interval, cinterval, or
dotprecision

cinterval e products of type integer, real, complex, interval, or
cinterval

e scalar products of type real, complex, interval, or
cinterval

e variables and special function calls of type rvector or
## ivector ivector

e products of type rvector or ivector

e variables and special function calls of type rvector,
civector cvector, ivector, or civector

e products of type rvector, cvector, ivector, or civector

e variables and special function calls of type rmatrix

imatrix or imatrix
e products of type rmatrix or imatrix
e variables and special function calls of type rmatrix,
) ) cmatrix, imatrix, or cimatrix
cimatrix

e products of type rmatrix, cmatrix, imatrix, or
cimatrix

“Special function calls” are the calls of the functions compl, re, im, conj, intval, inf,
sup, id, transp, herm, and the type converting functions rvector, cvector, ivector,
and civector.
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downto (reserved word)

Dyadic operators 45, 46

dynamic (reserved word)

Dynamic array express

— declaration 29

—,howtouse 1

— type definition
Dynamic strings 30

Electric circuit (exercise)

else (reserved word)
Empty loop 81
Empty statement 76
Enclosure 179
end (reserved word)
End condition 80
End-of-line character
Enumeration
— expression 953
—type 23
eof (function) 34, 51
eoln (function) 35,5

55, 81

29

ion 58
Dynamic arrays 12, 28, 87, 120

20
29

78

31, 78

217

35, 72, 115, 117

, 309
1, 309

Epsilon inflation 137

Equivalence, logical
Evaluation of an expre
Exact
— expression 54,
— matrix product

51
ssion

61
65

— matrix/vector product

— representable

184

44

63
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— scalar product 61
Execution of programs 83
Exercises with solutions 183

— Alternating current measuring bridge

221

— Boothroyd/Dekker matrices 192
— Calculator for polynomials 248

— Circuit 217

— Complex division 215

— Complex functions 194

— Differentiation arithmetic 233
— Electric circuit 217

— Evaluation of Polynomials 263

— Exponential series 186
— Intersection of lines 200

— Interval evaluation of a polynomial

227

— Interval matrix calculations 230

— Interval Newton method 253

— Inventory lists 209

— Iterative method 241

—Lens 224

— Measurement of time 239

— Measuring bridge 221

— Newton’s method 237

— Optical lens 224

— Polar representation 212

— Rail route map 206

— Rational arithmetic 258

— Rounding errors 188

— Runge-Kutta method 255

— Scalar product 190

— Surface area of a parallelepiped

— Symmetry 203

— Test of representability 184

— Trace 245

— Transposed matrix 203
exp (function) 48, 133, 137, 143, 319
expo (function) 47, 50, 310
Exponent 48
Exponential

197

— representation of a complex number

133
— series (exercise) 186

Export of objects 107, 108
Expression 44
—, accurate 14, 54, 60, 328
—,array 57

—, boolean 51

—, character 52

— concept 44, 125

— , dynamic array 58
— , enumeration 53
— evaluation 44

-, exact 54,61
— for arithmetic types 57
— for structured types 57

—, integer 46

—, logical 51

—, pointer 57, 60
—,real 47
—,record 59
—,set 59

—, standard 44
—, string 58, 111

expl10 (function)
exp2 (function)
Extended accurate expressions 60
external-declaration 98

false (logical constant) 22
Field

—list 31

- width 74
file (reserved word) 34
File operations 34

—get 34

—put 34

—reset 34

— rewrite 34
Files 34, 72

— , opening of 72
Final value 81
Floating-point

— number, normalized 48

— operations 47, 48

— system 48
for-statement 80
Formal

— parameter 76, 86, 87

— parameter list 85
Format

— parameter 75, 102

— specification 75, 102

— specifications 74
forward-declaration 98
function (reserved word) 89
Function call 89
Function result 90

— , dynamic type as 90

Functions 85, 89, 307
—abs 46, 48, 133, 138, 144, 319
—arccos 50, 133, 138, 143, 319
—arccot 50, 133, 138, 143, 319
Functions  (continued)
—arcosh 50, 133, 138, 144, 319
—arcoth 50, 133, 138, 144, 319
—arcsin 50, 133, 138, 143, 319
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50, 133, 137, 143, 319
50, 133, 137, 143, 319
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— arctan 48, 133, 138, 143, 319

—arctan2 50, 133, 138, 143, 319

—arg 133, 144, 307

arsinh 50, 133, 138, 144, 319

artanh 50, 133, 138, 144, 319

— as formal parameter 91

— blow 138, 144, 160, 169, 308

—,call of 89

—cat 133

—chr 52, 308

—comp 50, 308

— compl 132, 142, 153, 166, 167, 320

—conj 133, 144, 155, 169, 308

—cos 48,133, 138, 143, 319

—cosh 50, 133, 138, 144, 319

—cot 50,138, 143, 319

—coth 50, 133, 138, 144, 319

— diam 138, 144, 160, 169, 309

—eof 34,51, 309

—eoln 35, 51, 309

—exp 48,133, 137, 143, 319

expo 47, 50, 310

expl0 50, 133, 137, 143, 319

—exp2 50, 133, 137, 143, 319

— herm 155, 169, 310

—id 149, 154, 160, 169, 310

—im 132, 142, 153, 166, 167, 320

— image 111, 311

—,index of 307

—inf 137, 142, 158, 159, 166, 167, 321

intval 137, 142, 158, 159, 166, 167,
321

—ival 47,112, 311

—1b 47,52, 53, 312

— lbound 28, 47, 52, 53, 312

— length 112, 312

—In 48,133, 137, 143, 319

—loc 47, 312

—logl0 50, 133, 137, 143, 319

—log2 50,133, 137, 143, 319

—mant 50, 313

— maxlength 112, 313

—mid 138, 144, 160, 169, 313

—null 149, 154, 160, 169, 313

—odd 51,314

—ord 46, 314

— , overloading of 100

pos 112,314

—pred 46, 49, 51, 52, 53, 314

—, predefined 91, 93

—-re 132,142, 153, 166, 167, 321

—, recursive 90

—round 46, 315

—rval 50,112, 315
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—sign 47, 52, 316

—sin 48, 133, 138, 143, 319

—sinh 50, 133, 138, 144, 319

—sqr 46, 48, 133, 137, 143, 319

—sqrt 48, 133, 137, 143, 319

— substring 112, 316

—succ 46, 49, 51, 52, 53, 316

—sup 137, 142, 158, 159, 166, 167, 322

—tan 50, 133, 138, 143, 319

—tanh 50, 133, 138, 144, 319

—, transfer 132, 137, 142, 153, 158,
159, 166, 167, 320

— transp 149, 155, 160, 169, 317

— trunc 46, 317

— , type converting 58

—, type of 89

—ub 47, 52, 53, 317

— ubound 28, 47, 52, 53, 317

— vnull 149, 318

— with arbitrary result type 90

get (procedure) 34, 323
Global

— objects 86

— quantities 107
global-declaration 107
goto-statement 77

herm (function) 155, 169, 310
Hermitian matrix 155, 169
Hexadecimal constant 23
Hierarchy
—, module 109
— of the arithmetic modules 171
—of types 128
Hull, interval 136

id (function) 149, 154, 160, 169, 310
Identifiers 18

— as operators 95

—, concealment of 101

—, predefined 18, 19, 300

—, result 94, 105
Identity matrix 149, 154, 160, 169
if-statement 78
im (function) 132, 142, 153, 166, 167, 320
image (function) 111, 311
Imaginary part 36
imatrix (type) 38, 156
Implication, logical 51
Import of objects 108
in (operator) 33, 45, 46, 135, 140
Inclusion 14, 179
Index 297

— of accurate expressions 328
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— of operators 302
— of predefined functions 307
— of predefined identifiers 300
— of predefined procedures 323
— of reserved words 299
- of syntax diagrams 297
— of transfer functions 320
Index bounds 28
—, access to 28
Index type 25
inf (function) 137, 142, 158, 159, 166, 167,
321
Initial value 81
Input
— of a complex interval 144
— of a complex interval matrix 170
— of a complex interval vector 170
— of a complex matrix 155
— of a complex number 134
— of a complex vector 155
— of a real matrix 150
— of a real vector 150
— of an interval 139
— of an interval matrix 161
— of an interval vector 161
— of characters 115
- of strings 116
input (file variable) 72
Input statements 72, 88
—read 72,134, 139, 144, 150, 155,
161, 170
—readln 73
— reset 72
integer (type) 21
Integer expression 46
Intersection 136
Intersection of lines (exercise) 200
Interval 37
—, complex 37
— diameter 137
—hull 136
— matrix calculations (exercise) 230
— midpoint 137, 227
interval (type) 37, 135
Interval evaluation of a polynomial
(exercise) 227
Interval Newton method 253
intval (function) 137, 142, 158, 159, 166,
167, 321
Inventory lists (exercise) 209
is-contained-in relation 135, 140
is-contained-in-the-interior relation 135,
140
Iterative method
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—exercise 241
— with automatic result verification
172
ival (function) 47, 112, 311
ivector (type) 38, 156

Label 77
label (reserved word) 77
Language elements 15
Ib (function) 47, 52, 53, 312
Ibound (function) 28, 47, 52, 53, 312
length (function) 112, 312
Length of string 114
Lens (exercise) 224
Lists 15
Literal constants 20
In (function) 48, 133, 137, 143, 319
loc (function) 47, 312
Local objects 86
Logical
— equivalence 51
—expression 51
— implication 51
log10 (function) 50, 133, 137, 143, 319
log2 (function) 50, 133, 137, 143, 319
Loop, empty 81

Main program 83
mant (function) 50, 313
Mantissa 48
mark (procedure) 40, 323
Mathematical exact operation 55, 60
Matrix product, exact 65
Matrix/vector product, exact 63
Maximum accuracy 4, 6, 50, 125
maxint (constant) 21
maxlength (function) 112, 313
Measurement of time (exercise) 239
Measuring bridge (exercise) 221
mid (function) 138, 144, 160, 169, 313
Midpoint of an interval 137, 227
mod (operator) 46
Modified call by reference 77, 87, 90, 96,
98

Module 83, 107

—, arithmetic 125

- C_ARI 131

- CILARI 140

—concept 11

— declaration 107

— declaration part 110

— definition part 110

— hierarchy 109

-I.ARI 135
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— implementation 109

— library for numerical problems 179

- MV_ARI 146

- MVC_ARI 151

- MVCI_LARI 162

- MVI_ARI 156

— processing 84

— statement part 110
module (reserved word) 107
Monadic operators 45
Monotonicity 4, 6

Named constant 20
new (procedure) 38, 323
Newton’s method 237
—, interval 253
— with automatic differentiation
(exercise) 237
nil (reserved word) 38
Normalized floating-point number 48
not (operator) 45
null (function) 149, 154, 160, 169, 313
Null matrix 149, 154, 160, 169
Null vector 149, 154, 160, 169
Number, complex 36
Numeric library 180

Objects
—, export of 107, 108
—, global 86
— , import of 108
—,local 86
odd (function) 51, 314
of (reserved word) 25
Opening of files 72
Operations, mathematical exact 55, 60

Operator
—body 94
—call 96

—concept 9
operator (reserved word) 94, 105
Operators 93, 302
—and 45
, arithmetic 45, 46, 126, 128, 131,
135, 140, 146, 151, 156, 162, 303
-, assignment 105, 130, 132, 137,
143, 148, 154, 157, 159, 168, 305
—, basic 302
—, concealment of 95
—, declaration of 94
— , definition of the arithmetic 128
—, definition of the relational 129
—div 46
—, dyadic 45, 46, 94
—in 33, 135, 140
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—in accurate expression 66
—, index of 302
-, lattice 136, 141, 157, 163

—, logical 45

- mod 46

—, monadic 45, 94
—not 45

—of C_ARI 131
—of CI_LART 140
—of I_ART 135

—of MV_ARI 146
—of MVC_ARI 151
—of MVCI_ARI 162
—of MVI_LARI 156
—or 45
—, overloading of 95, 100, 105
— , overloading of the assignment 130
—, predefined 97
—, recursive 96
—, relational 45, 46, 127, 129, 131,
135, 140, 147, 152, 163, 304
—,set 45
— with no result 105
Optical lens (exercise) 224
or (operator) 45
ord (function) 46, 314
Output
— of a complex interval 144
— of a complex interval matrix 170
— of a complex interval vector 170
— of a complex matrix 155
— of a complex number 134
— of a complex vector 155
— of a real matrix 150
— of a real vector 150
—of an interval 139
— of an interval matrix 161
— of an interval vector 161
output (file variable) 72
Output statements 72, 88
—page T4
— rewrite 72
— write 73, 134, 139, 144, 150, 155,
161, 170
— writeln 74
Overloading 11, 100
—,call of 101
—of := 105, 305
— of read, write 75, 102
— of functions 100
— of input/output 102
— of operators 95, 100, 105
— of procedures 100
— of the assignment operator 105, 305
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— relation to several routines 101
— , rules for 100

Packed (reserved word) 30
page (procedure) 324
Parallelepiped surface area 197
Parameter

—,actual 76, 86

—, formal 76, 85, 87

—list 85
Parentheses 44
Pointer
— expression 57, 60
—type 38
Polar representation (exercise) 212
Polynomial

— addition 248

— calculator (exercise) 248

— evaluation with maximum accuracy

(exercise) 263

— interval evaluation (exercise) 227

— multiplication 248
pos (function) 112, 314
pred (function) 46, 49, 51, 52, 53, 314
Predefined functions 91, 93, 307

—, accuracy of the 130

—, boolean 51, 52

—, char 52,53

—, cimatrix- 169

—, cinterval 143

—, civector- 169

—, cmatrix- 154

—, complex- 133

—, cvector- 154

—, enumeration 53

—, Imatrix- 160

— ,index of 307

— , integer 46, 47

-, interval- 137

—, Ivector- 160

—,real 47,49, 50

-, rmatrix- 149

—, rvector- 149

—, string- 111
Predefined identifiers 18, 19, 300
Predefined operators 97, 302
Predefined procedures 88, 323
Priority

— declaration 95

—levels 45, 46

—symbol 95
priority (reserved word) 95
Problem-solving routines 179
procedure (reserved word) 85
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Procedure statement 76, 86
Procedures 85, 323

—, call of 86

—, declaration of 85

— dispose 39, 323

—get 34,323

—, index of 323

— mark 40, 323

—new 38, 323

—, overloading of 100

— page 74,324

—, predefined 88

—put 34, 324

—read 72,102, 134, 139, 144, 150,

155, 161, 170, 324

readln 73, 325
—, recursive 87
— release 40, 325
—reset 34, 72,74, 325
rewrite 34, 72, 74, 326
— setlength 113, 326
— write 73, 102, 134, 139, 144, 150,

155, 161, 170, 326
— writeln 74, 327

Product

—,exact 55

— of double length 55
Program

— declaration part 83, 84

— execution 83, 84

—head 83

—, main 83

— parameter 83

— statement part 83

— structure 83
program (reserved word) 83
Projection 4,6
put (procedure) 34, 324

Qualiﬁcation 58
Quantities, global 107

Rail route map (exercise) 206

Rational arithmetic (exercise) 258

re (function) 132, 142, 153, 166, 167, 321

read (procedure) 72, 102, 134, 139, 144,
150, 155, 161, 170, 324

Reading from a file 34

readln (procedure) 73, 325

real (type) 22,24

Real expression 47

Real part of a complex number 36

Record

— component 31
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— expression 59 — procedure 85
—type 31 — program 83
— with variants 32 —record 31
record (reserved word) 31 —repeat 80
Rectangular representation of a complex -set 33
interval 140 —sum 55
Recursive —then 78
— function 90 -to 55,81
— operator 96 —type 20
— procedure 87 —until 80
Reference 38 —use 107
referenced —var 21,85
—type 38 —while 79
— variable 38 - with 81
Relational operators 127, 304 reset (procedure) 34, 72, 325
—, definition of 129 Result identifier 94, 105
release (procedure) 40, 325 Result type, arbitrary 9, 90
Remarks, historical 2 rewrite (procedure) 34, 72, 326
repeat-statement 80 rmatrix (type) 38, 146
Repetitive statements 79 round (function) 46, 315
—for 80 Rounded constant 24
—repeat 80 Rounding 14
— while 79 —, directed 61
Reserved words 17, 299 — downwardly 48
—and 45 —,mode 75
—array 25 — to interval 61
— begin 78 — upwardly 48
—case 32,78 Rounding errors (exercise) 188
—const 20 Runge-Kutta method 147, 158, 255
—div 46 — exercise 255
-do 79,81 rval (function) 50, 112, 315
—downto 55, 81 rvector (type) 38, 146
— dynamic 29
—else 78 Scalar product
—end 31,78 —,exact 61
— external 98 —exercise 190
—file 34 —, optimal 7
—for 55, 80 Scheme for handling dynamic arrays 120
— forward 98 Semantic attributes in syntax diagrams
— function 89 269
—global 107 Semimorphism 4, 5
—goto 77 Separating symbol 83
—if 78 Set
—in 33, 45, 46, 135, 140 — constructors 59
—label 77 — difference 45, 59
—mod 46 — expression 59
— module 107 — intersection 45, 59
—nil 38 — union 45, 59
-not 45 Set (type) 33
-of 25 setlength (procedure) 113, 326
— operator 94, 105 sign (function) 47, 52, 316
—or 45 Simple
— packed 30 — statements 71

— priority 95 —types 21



INDEX

sin (function) 48, 133, 138, 143, 319

sinh (function) 50, 133, 138, 144, 319

Solution of a system of linear equations
172

Special characters 17

sqr (function) 46, 48, 133, 137, 143, 319

sqrt (function) 48, 133, 137, 143, 319
Standard expression 44
Standard files

— input 72

— output 72
Standard types 20, 21
Statement part

—of a module 110

— of a program 83
Statements 71

— assignment 71, 105

—,case- 78

—, compound 78

—, conditional 78

—, empty 76

—, for- 80

-, goto- 77

—,if 78

—, input 72

—, marked 77

—,output 72,73

—, procedure 76

—, repeat- 80

— , repetitive 79

—, simple 71

—, structured 71

—, while- 79

-, with- 81
String 30

— concept 14

—, dynamic 30

— expression 58
string (type) 30, 111
Structurally equivalent 42

Structured
— statements 71
—types 25

Subarrays 27

Subrange type 23

Subroutine 85

Subset 135

substring (function) 112, 316

Subtraction, errorless 55

succ (function) 46, 49, 51, 52, 53, 316

sum-notation 55

sup (function) 137, 142, 158, 159, 166,
167, 322

Superset 135
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Surface area of a parallelepiped (exercise)
197
Symbols, basic 17
Symmetry 203
—exercise 203
Syntax 15
—, complete 269
— representation in the language
reference 15
— variable 15, 269
Syntax diagrams 269
—, application of 270
—, index of 297
System of linear equations 172

Tag field 32
tan (function) 50, 133, 138, 143, 319
tanh (function) 50, 133, 138, 144, 319
Taylor series 186
Terminal symbol 269
Test of representability (exercise) 184
text (type) 35
Text files 35
Text processing 111
then (reserved word) 78
to (reserved word) 55, 81
Trace 245
— exercise 245
Transfer functions 320
-, cimatrix- 167
—, cinterval- 142
—, civector- 166
—, cmatrix- 153
—, complex- 132
—, cvector- 153
—, imatrix- 159
Transfer functions  (continued)
—, index of 320
—, interval- 137
—, ivector- 158
transp (function) 149, 155, 160, 169, 317
Transposed matrix 149, 155, 160, 169
—exercise 203
true (logical constant) 22
trunc (function) 46, 317
type (reserved word) 20
Type compatibility 40, 86
Type converting function 58
Type definition 20
Types
—, anonymous 21, 27, 42
—, arithmetic 36
— boolean 22
— char 22
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— cimatrix 38, 162 — rvector 38, 146

— cinterval 37, 140 —set 33

— civector 38, 162 —, simple 21

— cmatrix 38, 151 —, standard 20, 21

— complex 36, 131 — string 111

—, component 25 — string (dynamic) 30

- cvector 38, 151 — string (static) 30

— dotprecision 14, 24, 60 —, structured 25

— enumeration type 23 — subrange type 23

—file 34 —text 35

—, hierarchy of 128 Typography 1

— imatrix 38, 156

—,index 25 Ub (function) 47, 52, 53, 317
— integer 21 ubound (function) 28, 47, 52, 53, 317
— interval 37, 135 Up 48

— ivector 38, 156 Underscore 18

— pointer 38 until (reserved word) 80
—real 22,24 use-clause 19, 108

—record 31
~ rmatrix 38, 146 Var (reserved word) 21, 85

Variable 21

—, component 26

— declaration 21

— input 72

— output 72
Variants of a record 32
Verification 172
voull (function) 149, 318

While-statement 79

with-statement 81

write (procedure) 73, 102, 134, 139, 144,
150, 155, 161, 170, 326

writeln (procedure) 74, 327

Writing to a file 34



