
�

� @

@

@

@ �

�

�

�

@

@�

�

@

@

Institut f�ur

Angewandte

Mathematik

Universit�at Karlsruhe (TH)

D-76128 Karlsruhe

An Optimized Interval Slope Arithmetic

and its Application

Dietmar Ratz

F orschungsschwerpunkt

C omputerarithmetik,

I ntervallrechnung und

N umerische Algorithmen mit

E rgebnisveri�kation

x

�

[x]

(k)

[x]

(k+1)

Bericht 4/1996

Impressum

Herausgeber: Institut f�ur Angewandte Mathematik

Lehrstuhl Prof. Dr. Ulrich Kulisch

Universit�at Karlsruhe (TH)

D-76128 Karlsruhe

Redaktion: Dr. Dietmar Ratz

Internet-Zugri�

Die Berichte sind in elektronischer Form erh�altlich �uber

ftp://iamk4515.mathematik.uni-karlsruhe.de

im Verzeichnis: /pub/documents/reports

oder �uber die World Wide Web Seiten des Instituts

http://www.uni-karlsruhe.de/~iam

Autoren-Kontaktadresse

R�uckfragen zum Inhalt dieses Berichts bitte an

Dr. Dietmar Ratz

Institut f�ur Angewandte Mathematik

Universit�at Karlsruhe (TH)

D-76128 Karlsruhe

E-Mail: Dietmar.Ratz@math.uni-karlsruhe.de

An Optimized Interval Slope Arithmetic

and its Application

Dietmar Ratz

Contents

1 Introduction and Notation 4

2 Centered Forms and Interval Slopes 5

3 An Optimized Interval Slope Arithmetic 6

4 Implementation 11

5 Some Examples 18

6 An Application in Global Optimization 19

6.1 A Pruning Technique Using Slopes . 20

6.2 Algorithmic Description of the Pruning Technique 26

6.3 A Global Optimization Algorithm Using Pruning Steps 28

6.4 Some Examples and Tests . 29

References 32

4 Dietmar Ratz

Zusammenfassung

Eine optimierte Intervallsteigungsarithmetik und ihre Anwendung: In dieser Arbeit

beschreiben wir eine Intervallsteigungsarithmetik, die im Hinblick auf die Berechnung von engeren

Einschlie�ungen f�ur die tats�achlichen Steigungswerte optimiert ist. Erm�oglicht wird dies durch die

Verwendung spezieller Formeln f�ur konvexe/konkave bzw. lokal konvexe/konkave Elementarfunktio-

nen, die die �ublicherweise verwendeten Ableitungswerte ersetzen. Wir behandeln die Details einer

praktischen Realisierung einer solchen Intervallsteigungsarithmetik sowie deren Implementierung.

Au�erdem zeigen wir wie diese Intervallsteigungsarithmetik erfolgreich auf dem Gebiet der eindi-

mensionalen globalen Optimierung angewendet werden kann. Wir beschreiben die praktischen As-

pekte einer neuen Pruning-Technik auf der Basis von Steigungen im Kontext von Intervall-Branch-

and-Bound-Methoden und zeigen, da� es m�oglich ist, den h�au�g verwendeten Monotonie-Test durch

einen Pruning-Schritt zu ersetzen. Dies f�uhrt zu einer betr�achtlichen Verbesserung der E�zienz des

globalen Optimierungsverfahrens.

Abstract

An Optimized Interval Slope Arithmetic and its Application: We describe an interval slope

arithmetic which is optimized in view of the possibility to compute sharper enclosures of the actual

slope values. For this purpose, special formulas are used for convex/concave or locally convex/concave

elementary functions to replace the normally used derivative values. We treat the details of a practical

realization and we give an implementation of the slope arithmetic.

Moreover, we show how our interval slope arithmetic can succesfully be applied in the �eld of

one-dimensional global optimization. We describe the practical aspects of a new pruning technique

based on slopes in the context of interval branch-and-bound methods. We show, that it is possible

to replace the frequently used monotonicity test by a new pruning step which provides considerable

improvement in e�ciency of the global optimization method.

1 Introduction and Notation

Many interval methods use interval slopes (together with centered forms) to achieve

better enclosures for the function ranges than those achieved with derivatives, as de-

scribed in [8] and [6], for example. Very often, interval slopes are computed via an

automatic di�erentiation process (eg. by using an interval slope arithmetic in connec-

tion with operator overloading). Within that process, interval extensions for the slopes

of elementary functions are needed, and often interval evaluations of the derivatives

are used for this purpose (cf. [8]).

In this paper, we deal with the practical realization and implementation of an inter-

val slope arithmetic, which is optimized in the sense that we use alternative formulas

for the slopes of elementary functions to achieve better enclosures. Additionally, we

demonstrate the application of our slope arithmetic in a global optimization method

equipped with a new pruning technique described in [12].

In the following, we denote real numbers by x; y; : : : and real bounded and closed

intervals by X = [x; x] = [inf(X); sup(X)]; Y = [y; y] = [inf(Y); sup(Y)]; : : :.

The set of compact intervals is denoted by IIR := f[a; b] j a � b; a; b 2 IRg. The

width or diameter of the interval X is de�ned by d(X) = x � x, and the midpoint of

the interval X is de�ned by m(X) = (x+ x)=2.

An Optimized Interval Slope Arithmetic and its Application 5

We call a function F : I IR ! I IR an inclusion function of f : IR ! IR in X, if

x 2 X implies f(x) 2 F (X). In other words, f

rg

(X) � F (X), where f

rg

(X) is the

range of the function f on X. The inclusion function of the derivative of f is denoted

by F

0

. Inclusion functions can be computed via interval arithmetic [1, 3] for almost all

functions speci�ed by a �nite algorithm (i.e. not only for given expressions). Moreover

applying so-called automatic di�erentiation or di�erentiation arithmetic in connection

with interval arithmetic [3, 4, 6], we are also able to compute the inclusion function for

the derivatives or the slopes.

Automatic di�erentiation combines the advantages of symbolic and numerical dif-

ferentiation and handles numbers instead of symbolic formulas. The computation of

the derivative (or slope) is done automatically together with the computation of the

function value. The main advantage of this process is that only the algorithm or for-

mula for the function is required. No explicit formulas for the derivative (or slope) is

required.

It is assumed in the following that the inclusion functions have the isotonicity

property, i.e. X � Y implies F (X) � F (Y).

2 Centered Forms and Interval Slopes

Centered forms (see [1, 6, 8]) are special interval extensions and serve to reduce the

overestimation in computing interval enclosures of the range of a function f over some

interval X. Usually, a centered form is derived from the mean-value theorem. Suppose

f is di�erentiable on its domain D. Then f(x) = f(c) + f

0

(�)(x � c) with some �xed

c 2 D and � between x and c. Let c; x 2 X, so � 2 X. Therefore

f(x) = f(c) + f

0

(�)(x� c) 2 f(c) + f

0

(X) � (x� c)

� f(c) + F

0

(X) � (X � c):

(1)

The latter is called centered form or generalized mean value form of f over X. Here,

f is extended with respect to every x 2 X, since G = F

0

(X) is an interval evaluation

of the derivative of f over the entire interval X.

Krawczyk and Neumaier [8] showed that if we have an interval S 2 IIR such that,

for all x 2 X we have

f(x) = f(c) + s � (x� c) for some s 2 S; (2)

then the interval F

s

(X) := f(c) + S � (X � c) encloses the range of f over X, that is

f

rg

(X) � F

s

(X). Such an interval S can be calculated by means of an interval slope

and not only with an interval derivative. If we use a slope, then f is extended with

respect to an arbitrary but �xed c 2 X.

De�nition 2.1 The function s

f

: D �D ! IR with

f(x) = f(c) + s

f

(c; x) � (x� c)

6 Dietmar Ratz

is called a slope (between c and x). In the one-dimensional case (D � IR), we have

s

f

(c; x) =

8

>

<

>

:

f(x)� f(c)

x� c

if x 6= c

e

s if x = c,

where

e

s 2 IR may be arbitrarily chosen. Assuming f to be di�erentiable and the slope

to be continuous, we can de�ne

e

s := f

0

(c).

Moreover, we de�ne the interval slope of f over the interval X by

s

f

(c;X) := fs

f

(c; x) j x 2 X; x 6= cg;

where it is not necessary that f is di�erentiable.

Remarks: (i) It is easy to see that S = s

f

(c;X) satis�es (2) and

f(x) 2 f(c) + S � (x� c) � f(c) + S � (X � c): (3)

(ii) Often c = m(X) is used to compute the interval slope.

(iii) If we assume f to be continuously di�erentiable, then we have (cf. [8])

s

f

(c;X) � s

f

(X;X) = F

0

(X): (4)

Slopes as well as interval slopes can be calculated by means of an automatic dif-

ferentiation process ([3], [6], [8]). The main advantage of this process is that only

the algorithm or formula for the function is required. No explicit formulas for the

derivatives or slopes are required.

3 An Optimized Interval Slope Arithmetic

Automatic di�erentiation for slopes evaluates functions speci�ed by algorithms or for-

mulas, where all operations are executed according to the rules of a slope arithmetic,

which is an arithmetic for ordered triples of the form

U = (U

x

; U

c

; U

s

); with U

x

; U

c

; U

s

2 IIR:

De�nition 3.1 The triple U = (U

x

; U

c

; U

s

) with U

x

; U

c

; U

s

2 I IR is called a slope

triple for a function u : D ! IR with D � IR, an interval X 2 IIR (X � D) and a

�xed c 2 X, if

u(x) 2 U

x

; (5)

u(c) 2 U

c

and (6)

u(x)� u(c) 2 U

s

� (x� c) (7)

for all x 2 X.

It is easy to see how slope triples for a constant function or the identity function

(representing the independent variable x in our slope arithmetic) must be de�ned:

An Optimized Interval Slope Arithmetic and its Application 7

Lemma 3.2 C = (�; �; 0) is a slope triple for the function u(x) � � 2 IR, and

X = (X; c; 1) with c 2 X is a slope triple for the function u(x) � x.

Proof: Trivial. 2

The rules for the slope arithmetic can be �xed as:

W = U � V)

8

>

<

>

:

W

x

= U

x

� V

x

;

W

c

= U

c

� V

c

;

W

s

= U

s

� V

s

;

(8)

W = U � V)

8

>

<

>

:

W

x

= U

x

� V

x

;

W

c

= U

c

� V

c

;

W

s

= U

x

� V

s

+ U

s

� V

c

;

(9)

W = U = V)

8

>

<

>

:

W

x

= U

x

=V

x

;

W

c

= U

c

=V

c

;

W

s

= (U

s

�W

c

� V

s

)=V

x

;

(10)

where 0 62 V

x

is assumed in case of division.

For an elementary function ' and U = (U

x

; U

c

; U

s

), we can �x:

W = '(U))

8

>

<

>

:

W

x

= '(U

x

);

W

c

= '(U

c

);

W

s

= U

s

� s

'

(U

c

; U

x

):

(11)

For these rules we can state the following theorem, which is very similar to Theorem

2.3.8 and Proposition 2.3.9 in [8]:

Theorem 3.3 Let U and V be slope triples of the functions u : D ! IR and v : D ! IR

with D � IR. ThenW = U�V de�ned by rules (8), (9), and (10) of the slope arithmetic

is a slope triple of the function w = u � f , where � 2 f+;�; �; =g and 0 62 V

x

if � = =.

Also, W = '(V) de�ned by rule (11) of the slope arithmetic is a slope triple of the

function w = '(u), where ' is an elementary function.

Proof: Let x 2 X and c 2 X, then for all � 2 f+;�; �; =g,

w(x) = u(x) � v(x) 2 U

x

� V

x

= W

x

;

w(c) = u(c) � v(c) 2 U

c

� V

c

= W

c

:

For elementary functions ',

w(x) = '(u(x)) 2 '(U

x

) = W

x

;

w(c) = '(u(c)) 2 '(U

c

) = W

c

:

Moreover, for w = u� v,

w(x)� w(c) = u(x)� v(x)� (u(c)� v(c))

= (u(x)� u(c))� (v(x)� v(c))

= s

u

(c; x) � (x� c)� s

v

(c; x) � (x� c)

= (s

u

(c; x)� s

v

(c; x)) � (x� c)

2 (U

s

� V

s

| {z }

= W

s

) � (x� c):

8 Dietmar Ratz

For w = u � v,

w(x)�w(c) = u(x) � v(x)� u(c) � v(c)

= u(x) � v(x)� u(x) � v(c) + u(x) � v(c)� u(c) � v(c)

= u(x) � (v(x)� v(c)) + (u(x)� u(c)) � v(c)

= u(x) � s

v

(c; x) � (x� c) + s

u

(c; x) � (x� c) � v(c)

= (u(x) � s

v

(c; x) + s

u

(c; x) � v(c)) � (x� c)

2 (U

x

� V

s

+ U

s

� V

c

| {z }

= W

s

) � (x� c):

For w = u=v,

w(x)� w(c) = u(x)=v(x)� u(c)=v(c)

= (u(x)� u(c) + u(c)�

u(c)

v(c)

� v(x))=v(x)

= (u(x)� u(c) + u(c)� w(c) � v(x))=v(x)

= (u(x)� u(c)�w(c) � (v(x)� v(c)))=v(x)

= (s

u

(c; x) � (x� c)� w(c) � s

v

(c; x) � (x� c))=v(x)

=

s

u

(c; x)�w(c) � s

v

(c; x)

v(x)

� (x� c)

2

U

s

�W

c

� V

s

V

x

| {z }

= W

s

�(x� c):

For w = '(u),

w(x)� w(c) = '(u(x))� '(u(c))

= s

'

(u(c); u(x)) � (u(x)� u(c))

= s

'

(u(c); u(x)) � s

u

(c; x) � (x� c)

2 s

'

(U

c

; U

x

) � U

s

| {z }

= W

s

�(x� c):

2

In practice, s

'

(U

c

; U

x

) is not computed exactly in most cases. Usually, an enclosure

S

'

� s

'

(U

c

; U

x

) of the range of the slope (i.e. an overestimation) is used instead, and

usually S

'

= '

0

(U

x

) is used for this purpose. But for some of the elementary functions

the slope s

'

(U

c

; U

x

) can be computed explicitely, which yields better (sharper) enclo-

sures. AssumingW

x

and W

c

to be computed as given in rule (11), we use the following

formulas to compute good slope enclosures:

W = '(U) = U

2

:

S

'

= s

'

(U

c

; U

x

) = U

x

+ U

c

(12)

W = '(U) =

p

U :

S

'

= s

'

(U

c

; U

x

) = 1=(W

x

+W

c

) (13)

An Optimized Interval Slope Arithmetic and its Application 9

W = '(U) = exp(U):

S

'

=

8

>

>

<

>

>

:

"

w

x

� w

c

u

x

� u

c

;

w

x

� w

c

u

x

� u

c

#

if u

x

6= u

c

^ u

x

6= u

c

W

x

otherwise

(14)

W = '(U) = ln(U):

S

'

=

8

>

>

<

>

>

:

"

w

x

� w

c

u

x

� u

c

;

w

x

� w

c

u

x

� u

c

#

if u

x

6= u

c

^ u

x

6= u

c

1=U

x

otherwise

(15)

W = '(U) = U

k

, k > 2:

S

'

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

"

u

x

k

� u

c

k

u

x

� u

c

;

u

x

k

� u

c

k

u

x

� u

c

#

if k even ^ u

x

6= u

c

^ u

x

6= u

c

"

w

x

� w

c

u

x

� u

c

;

w

x

� w

c

u

x

� u

c

#

if k odd ^ u

x

� 0 ^ u

x

6= u

c

^ u

x

6= u

c

"

w

x

� w

c

u

x

� u

c

;

w

x

� w

c

u

x

� u

c

#

if k odd ^ u

x

� 0 ^ u

x

6= u

c

^ u

x

6= u

c

k(U

x

)

k�1

otherwise

(16)

To prove that Formulas (12) to (16) give enclosures for the true interval slopes, we

need the following

Lemma 3.4 Let ' : D ! IR continously di�erentiable on D � X 2 IIR, C

�

� X.

If ' is convex on X, then

s

'

(c; x) � s

'

(c; x) � s

'

(c; x) 8c 2 C 8x 2 X; x 6= c:

If ' is concave on X, then

s

'

(c; x) � s

'

(c; x) � s

'

(c; x) 8c 2 C 8x 2 X; x 6= c:

Proof: If ' is convex on X, then for all a; b 2 X we have

'(a) � '(b) + (a� b)'

0

(b):

for all a; b 2 X. Therefore, we have

@

@x

(s

'

(c; x)) =

@

@x

'(x)� '(c)

x� c

!

=

'

0

(x)(x� c)� '(x) + '(c)

(x� c)

2

� 0

10 Dietmar Ratz

and

@

@c

(s

'

(c; x)) =

@

@c

'(x)� '(c)

x� c

!

=

�'

0

(c)(x� c) + '(x)� '(c)

(x� c)

2

� 0:

Thus, s

'

is monotonously increasing in x and in c. The proof of the concave case is

analogous. 2

Theorem 3.5 Formulas (12) to (16) satisfy

s

'

(u

c

; u

x

) 2 S

'

8u

c

2 U

c

8u

x

2 U

x

; u

x

6= u

c

: (17)

Proof: For W = '(U) = U

2

,

s

'

(u

c

; u

x

) =

u

2

x

� u

2

c

u

x

� u

c

= u

x

+ u

c

2 U

x

+ U

c

= S

'

;

which proves (17) for formula (12).

For W = '(U) =

p

U ,

s

'

(u

c

; u

x

) =

p

u

x

�

p

u

c

u

x

� u

c

=

1

p

u

x

+

p

u

c

2

1

W

x

+W

c

= S

'

;

which proves (17) for formula (13).

For W = '(U) = exp(U), we know from Lemma 3.4 that

s

'

(u

c

; u

x

) 2 [s

'

(u

c

; u

x

); s

'

(u

c

; u

x

)]

if u

x

6= u

c

^ u

x

6= u

c

, and from (4) we know that s

'

(u

c

; u

x

) 2 '

0

(U

x

) in the remaining

case, which proves (17) for formula (14).

For W = '(U) = ln(U), we know from Lemma 3.4 that

s

'

(u

c

; u

x

) 2 [s

'

(u

c

; u

x

); s

'

(u

c

; u

x

)]

if u

x

6= u

c

^ u

x

6= u

c

, and from (4) we know that s

'

(u

c

; u

x

) 2 '

0

(U

x

) in the remaining

case, which proves (17) for formula (15).

For W = '(U) = U

k

, k > 2, the proofs of the �rst two cases of (16) correspond to the

proof of (14) since ' is convex in U

x

, and the proof of the third case corresponds to

those of (15), since ' is concave in U

x

. The remaining case again follows from (4). 2

Remarks: (i) Formulas (14) and (15) also apply to other convex and concave functions,

respectively.

(ii) For functions which are only locally convex the techniques can also be used by case

distinctions.

An Optimized Interval Slope Arithmetic and its Application 11

(iii) The inverse hyperbolic functions can also be expressed via the functions ln and

p

and the arithmetic operations. For example we could use arsinh(x) = ln(x+

p

x

2

+ 1).

We are now able to evaluate a function f : D ! IR over an interval A 2 IIR with

�xed c 2 A in our interval slope arithmetic delivering

f(X) = f((A; c; 1)) = (Y

x

; Y

c

; Y

s

)

and we have

f

rg

(A) � Y

x

; f(c) 2 Y

c

; and f(x)� f(c) 2 Y

s

� (x� c) 8x 2 A:

Example 3.6 Let f(x) = x

2

� 4x + 2. Using the slope arithmetic, we compute the

enclosure Y

s

of s

f

(c;A) for A = [1; 7] and c = 4 by

f(X) = f((A; c; 1))

= (A; c; 1)

2

� 4 � (A; c; 1) + 2

= ([1; 7]; 4; 1)

2

� (4; 4; 0) � ([1; 7]; 4; 1) + (2; 2; 0)

= ([1; 49]; 16; [5; 11])� ([4; 28]; 16; 4) + (2; 2; 0)

= ([�25; 47]; 2; [1; 7])

= (Y

x

; Y

c

; Y

s

);

and we have Y

s

= s

f

(c;A) = [1; 7]. In contrast, if we compute the interval evaluation of

f

0

(x) = 2x � 4 over A = [1; 7] (which might also be done by automatic di�erentiation

[4]), we get

F

0

(A) = 2 � [1; 7]� 4 = [�2; 10]:

Now, if we compare the naive interval evaluation of f over A with the derivative and

the slope extension we have

F (A) = A

2

� 4A+ 2 = [�25; 47];

f(c) + F

0

(A) � (A� c) = [�28; 32];

f(c) + Y

s

� (A� c) = [�19; 23];

underlining that the slope extension gives the best result.

4 Implementation

Using formulas (14) and (15) in an implementation we must be careful with the nec-

essary roundings, since the computed slope enclosures must be guaranteed enclosures

of the true slope intervals. Thus all lower bounds must be computed with rounding

downwards and all upper bounds with rounding upwards, respectively.

In the following, we present an implementation of our slope arithmetic in the sci-

enti�c programming language PASCAL{XSC [7] using the environment described in

[3]. The module slopes supplies type de�nition, operators and elementary functions

for our interval slope arithmetic. The procedure fsEval simpli�es the mechanism of

function evaluating. For a function of type SlopeType, fsEval computes and delivers

the enclosures Y

x

, Y

c

, and Y

s

.

12 Dietmar Ratz

{--}

{ Purpose: Definition of an interval slope arithmetic which allows function }

{ evaluation with automatic differentiation for interval slopes. }

{ Method: Overloading of operators and elementary functions for operations }

{ of data type 'SlopeType'. }

{ Global types, operators, functions, and procedures: }

{ type SlopeType : data type for interval slope arithmetic }

{ operators +, -, *, / : operators of interval slope arithmetic }

{ functions SlopeConst, }

{ SlopeVar : to define slope constants/variables }

{ functions fxValue, }

{ fcValue, }

{ fsValue : to get function and slope values }

{ functions sqr, sqrt, power, }

{ exp, sin, cos,... : elementary functions of slope arithmetic }

{ procedure fsEval(...) : to compute function and slope values }

{--}

module slopes;

use

i_ari, i_util;

{--}

{ Global type definition }

{--}

global type

SlopeType = record fx, fc, fs : interval; end;

{--}

{ Transfer functions for constants and variables }

{--}

global function SlopeConst (c: real) : SlopeType; { Generate constant }

begin {-------------------}

SlopeConst.fx := c;

SlopeConst.fc := c;

SlopeConst.fs := 0;

end;

global function SlopeConst (c: interval) : SlopeType; { Generate constant }

begin {-------------------}

SlopeConst.fx := c;

SlopeConst.fc := c;

SlopeConst.fs := 0;

end;

global function SlopeVar (v: real) : SlopeType; { Generate variable }

begin {-------------------}

SlopeVar.fx := v;

SlopeVar.fc := v;

SlopeVar.fs := 1;

end;

global function SlopeVar (v: interval; c: real) : SlopeType; { Gen. variable }

begin {---------------}

SlopeVar.fx := v;

SlopeVar.fc := c;

SlopeVar.fs := 1;

end;

{--}

{ Access functions for function and slope values }

{--}

global function fxValue (u: SlopeType) : interval; { Get function value }

An Optimized Interval Slope Arithmetic and its Application 13

begin {--------------------}

fxValue:= u.fx;

end;

global function fcValue (u: SlopeType) : interval;{ Get function value for c }

begin {--------------------------}

fcValue:= u.fc;

end;

global function fsValue (u: SlopeType) : interval; { Get slope value }

begin {-----------------}

fsValue:= u.fs;

end;

{--}

{ Monadic operators + and - for SlopeType operands }

{--}

global operator + (u: SlopeType) res: SlopeType;

begin

res:= u;

end;

global operator - (u: SlopeType) res: SlopeType;

begin

res.fx := -u.fx;

res.fc := -u.fc;

res.fs := -u.fs;

end;

{--}

{ Operators +, -, *, and / for two SlopeType operands }

{--}

global operator + (u,v: SlopeType) res: SlopeType;

begin

res.fx := u.fx + v.fx;

res.fc := u.fc + v.fc;

res.fs := u.fs + v.fs;

end;

global operator - (u,v: SlopeType) res: SlopeType;

begin

res.fx := u.fx - v.fx;

res.fc := u.fc - v.fc;

res.fs := u.fs - v.fs;

end;

global operator * (u,v: SlopeType) res: SlopeType;

begin

res.fx := u.fx*v.fx;

res.fc := u.fc*v.fc;

res.fs := u.fs*v.fc + u.fx*v.fs;

end;

global operator / (u,v: SlopeType) res: SlopeType;

var hx: interval;

begin

res.fx := u.fx/v.fx;

hx := u.fc/v.fc;

res.fc := hx;

res.fs := (u.fs - hx*v.fs)/v.fx;

end;

{--}

14 Dietmar Ratz

{ Operators +, -, *, and / for one interval and one SlopeType operand }

{--}

global operator + (u: interval; v: SlopeType) res: SlopeType;

begin

res.fx := u + v.fx;

res.fc := u + v.fc;

res.fs := v.fs;

end;

global operator - (u: interval; v: SlopeType) res: SlopeType;

begin

res.fx := u - v.fx;

res.fc := u - v.fc;

res.fs := - v.fs;

end;

global operator * (u: interval; v: SlopeType) res: SlopeType;

begin

res.fx := u*v.fx;

res.fc := u*v.fc;

res.fs := u*v.fs;

end;

global operator / (u: interval; v: SlopeType) res: SlopeType;

var hx: interval;

begin

res.fx := u/v.fx;

hx := u/v.fc;

res.fc := hx;

res.fs := -hx*v.fs/v.fx;

end;

global operator + (u: SlopeType; v: interval) res: SlopeType;

begin

res.fx := u.fx + v;

res.fc := u.fc + v;

res.fs := u.fs;

end;

global operator - (u: SlopeType; v: interval) res: SlopeType;

begin

res.fx := u.fx - v;

res.fc := u.fc - v;

res.fs := u.fs;

end;

global operator * (u: SlopeType; v: interval) res: SlopeType;

begin

res.fx := u.fx * v;

res.fc := u.fc * v;

res.fs := u.fs * v;

end;

global operator / (u: SlopeType; v: interval) res: SlopeType;

begin

res.fx := u.fx / v;

res.fc := u.fc / v;

res.fs := u.fs / v;

end;

{--}

{ Operators +, -, *, and / for one real and one SlopeType operand }

{--}

An Optimized Interval Slope Arithmetic and its Application 15

global operator + (u: real; v: SlopeType) res: SlopeType;

begin

res := intval(u) + v;

end;

global operator - (u: real; v: SlopeType) res: SlopeType;

begin

res := intval(u) - v;

end;

global operator * (u: real; v: SlopeType) res: SlopeType;

begin

res := intval(u) * v;

end;

global operator / (u: real; v: SlopeType) res: SlopeType;

begin

res := intval(u) / v;

end;

global operator + (u: SlopeType; v: real) res: SlopeType;

begin

res := u + intval(v);

end;

global operator - (u: SlopeType; v: real) res: SlopeType;

begin

res := u - intval(v);

end;

global operator * (u: SlopeType; v: real) res: SlopeType;

begin

res := u * intval(v);

end;

global operator / (u: SlopeType; v: real) res: SlopeType;

begin

res := u / intval(v);

end;

{--}

{ Elementary functions for SlopeType arguments }

{--}

global function sqr (u: SlopeType) : SlopeType;

begin

sqr.fx := sqr(u.fx);

sqr.fc := sqr(u.fc);

sqr.fs := (u.fx + u.fc) * u.fs;

end;

global function power (u: SlopeType; k: integer) : SlopeType;

var

hx, hxi, hxs, hc, h1 : interval;

i, s : real;

begin

if (k = 0) then

power:= SlopeConst(1)

else if (k = 1) then

power:= u

else if (k = 2) then

power:= sqr(u)

else

begin

16 Dietmar Ratz

hxi := power(u.fx.inf,k); hxs := power(u.fx.sup,k);

hx := hxi +* hxs;

if (not odd(k)) and (0 in u.fx) then

hx.inf := 0;

hc := power(u.fc,k);

i:= u.fx.inf - u.fc.inf;

s:= u.fx.sup - u.fc.sup;

if (i = 0) or (s = 0) or (odd(k) and (0 in u.fx)) then

h1 := k * power(u.fx, k-1)

else

begin

if not odd(k) then

begin

h1.inf := (hxi.sup -> hc.inf) /< pred(i);

h1.sup := (hxs.sup -> hc.inf) /> pred(s);

end

else if u.fx.inf >= 0 then

begin

h1.inf := (hxi.sup -> hc.inf) /< pred(i);

h1.sup := (hxs.sup -> hc.inf) /> pred(s);

end

else

begin

h1.inf := (hxs.inf -< hc.sup) /< succ(s);

h1.sup := (hxi.inf -< hc.sup) /> succ(i);

end

end;

power.fx := hx;

power.fc := hc;

power.fs := h1*u.fs;

end;

end;

global function sqrt (u: SlopeType) : SlopeType;

var hx, hc: interval;

begin

hx := sqrt(u.fx);

hc := sqrt(u.fc);

sqrt.fx := hx;

sqrt.fc := hc;

sqrt.fs := u.fs / (hx + hc);

end;

global function exp (u: SlopeType) : SlopeType;

var

hxi, hxs, hci, hcs, i, s : real;

h1 : interval;

begin

hxi := exp(u.fx.inf); hxs := exp(u.fx.sup);

hci := exp(u.fc.inf); hcs := exp(u.fc.sup);

exp.fx := intval(pred(hxi),succ(hxs));

exp.fc := intval(pred(hci),succ(hcs));

i:= u.fx.inf -< u.fc.inf;

s:= u.fx.sup -< u.fc.sup;

if (i = 0) or (s = 0) then

h1 := intval(pred(hxi),succ(hxs))

else

begin

h1.inf := (succ(hxi) -> pred(hci)) /< i;

h1.sup := (succ(hxs) -> pred(hcs)) /> s;

end;

exp.fs := h1*u.fs;

An Optimized Interval Slope Arithmetic and its Application 17

end;

global function ln (u: SlopeType) : SlopeType;

var

hxi, hxs, hci, hcs, i, s : real;

h1 : interval;

begin

hxi := ln(u.fx.inf); hxs := ln(u.fx.sup);

hci := ln(u.fc.inf); hcs := ln(u.fc.sup);

ln.fx := intval(pred(hxi),succ(hxs));

ln.fc := intval(pred(hci),succ(hcs));

i:= u.fx.inf -> u.fc.inf;

s:= u.fx.sup -> u.fc.sup;

if (i = 0) or (s = 0) then

h1 := 1/u.fx

else

begin

h1.inf := (pred(hxs) -< succ(hcs)) /< s;

h1.sup := (pred(hxi) -< succ(hci)) /> i;

end;

ln.fs := h1*u.fs;

end;

{--}

{ Further elementary functions follow: }

{ sin, cos, tan, cot, arcsin, arccos, arctan, arccot }

{ sinh, cosh, tanh, coth, arsinh, arcosh, artanh, arcoth }

{--}

...

{--}

{ Purpose: Evaluation of function 'f' for argument 'x' in interval slope }

{ arithmetic computing enclosures of the function value, the midpoint }

{ value, and the value of the slope. }

{ Parameters: }

{ In : 'f' : function of 'SlopeType'. }

{ 'x', 'c' : arguments for evaluation of 'f', }

{ Out : 'fx' : returns the function value 'f(x)'. }

{ : 'fc' : returns the function value 'f(c)'. }

{ 'fsx' : returns the slope value 's(x;c)'. }

{--}

global procedure fsEval (function f(x:SlopeType) : SlopeType;

x : interval;

c : real;

var fx, fc, fsx : interval);

var

fxD : SlopeType;

begin

fxD:= f(SlopeVar(x,c));

fx:= fxD.fx;

fc:= fxD.fc;

fsx:= fxD.fs;

end;

{--}

{ Module initialization part }

{--}

begin

end.

18 Dietmar Ratz

5 Some Examples

In this section we give some examples comparing the slope enclosures and the corre-

sponding extensions of our new optimized slope arithmetic with a usual slope arithmetic

and a derivative arithmetic. We use the following functions:

1. f(x) = (x+ sin x) � e

�x

2

(taken from [13])

2. f(x) = x

4

� 10x

3

+ 35x

2

� 50x + 24

3. f(x) = (ln(x+ 1:25) � 0:84x)

2

4. f(x) =

2

100

x

2

�

3

100

e

�(20(x�0:875))

2

5. f(x) = e

x

2

6. f(x) = x

4

� 12x

3

+ 47x

2

� 60x � 20e

�x

7. f(x) = x

6

� 15x

4

+ 27x

2

+ 250 (taken from [5])

In Table 1 we list the enclosures for the slopes or derivatives (D, S

old

, S

new

) and in

Table 1 we give the corresponding extension intervals (E

D

, E

S

old

, E

S

new

) computed for

the argument X = [0:75; 1:75] and c = m(X). We use the notations

D � F

0

(X) and E

D

= f(c) +D(X � c);

S � s

f

(c;X) and E

S

= f(c) + S(X � c);

and the additional subscripts old and new, indicating whether a usual slope arithmetic

(using only formulas (12) and (13)) or our new one (using also formulas (14) to (16))

is applied. In the tables we use four signi�cant digits and rounding outwards. The

results underline the advantages of our new arithmetic.

Table 1: Computed derivatives and slopes for the sample functions

no. D S

old

S

new

1 [�5.446, 0.8863] [�4.529, 0.2291] [�2.800, 0.05215]

2 [�87.69, 77.07] [�70.19, 59.57] [�43.88, 38.26]

3 [�0.4749, 0.7873] [�0.1697, 0.4614] [�0.1592, 0.4329]

4 [�2.971, 21.08] [0.03999, 15.07] [0.03999, 0.3267]

5 [2.632, 74.84] [3.5100, 64.15] [6.031, 33.23]

6 [�94.59, 115.2] [�71.09, 91.64] [�39.00, 65.56]

7 [�279.7, 167.7] [�266.2, 154.2] [�146.9, 67.07]

An Optimized Interval Slope Arithmetic and its Application 19

Table 2: Computed extensions for the sample functions

no. E

D

E

S

old

E

S

new

1 [�2.262, 3.184] [�1.804, 2.726] [�0.9387, 1.861]

2 [�44.75, 42.95] [�36.00, 34.20] [�22.84, 21.04]

3 [�0.3758, 0.4115] [�0.2128, 0.2486] [�0.1986, 0.2343]

4 [�10.51, 10.57] [�7.499,7.562] [�0.1321, 0.1946]

5 [�32.65, 42.19] [�27.31, 36.85] [�11.84, 21.39]

6 [�85.86, 29.28] [�74.11, 17.53] [�61.07, 4.492]

7 [119.5, 399.3] [126.3, 392.5] [185.9, 332.9]

6 An Application in Global Optimization

Interval branch-and-bound methods for global optimization address the problem of

�nding guaranteed and reliable solutions of global optimization problems

min

x2X

f(x); (18)

where f : D ! IR is the objective function and X � D is the search box representing

bound constraints for x. These methods usually apply several interval techniques to

reject regions which cannot contain the optimum. For this reason, the original box

X gets subdivided, and subregions which cannot contain a global minimizer of f are

discarded, while the other subregions get subdivided again until the desired accuracy

(width) of the boxes is achieved.

Very often, if f is continuously di�erentiable, these interval methods incorporate the

so called monotonicity test (see [2, 3, 5, 6, 9, 10], for example) to discard boxes. This

test uses �rst-order information of the objective function by means of an interval eval-

uation of the derivative over the current box. Depending on this enclosure containing

zero or not, the current box must be treated further or can be deleted, respectively.

As we have seen in the previous sections, interval slopes o�er the possibility to

achieve better enclosures for the function range. Thus, they might improve the perfor-

mance of interval branch-and-bound methods. Although, since slopes cannot be used

within the monotonicity test (see Section 6.1 for details), the need of a global optimiza-

tion method with an alternative box-discarding technique arises. In this section, we

describe the practical realization of such a method which incorporates a special pruning

step generated by interval slopes. The theory of this pruning step is developed in [12].

It o�ers the possibility to cut away a large part of the current box, independently of

the slope interval containing zero or not.

In the following, X � D � IR and f : D ! IR. The global minimum value of f on

X is denoted by f

�

, and the set of global minimizer points of f on X by X

�

. That is,

f

�

= min

x2X

f(x) and X

�

= fx

�

2 X j f(x

�

) = f

�

g:

20 Dietmar Ratz

6.1 A Pruning Technique Using Slopes

In �rst-order interval methods for global optimization, the monotonicity test determines

whether the function f is strictly monotone within an entire subinterval Y � X. In

this case Y cannot contain a global minimizer in its interior. Furthermore, a global

minimizer can only lie on a boundary point of Y if this point is a boundary point of

X as well. Therefore, if f satis�es

0 62 F

0

(Y); (19)

then the subinterval Y can be deleted (with the exception of boundary points of X).

If we want to apply slopes instead of derivatives, we cannot use this mono-

tonicity test, since we have s

f

(c;X) � F

0

(X), but in general it is not true that

f

0

(x) 2 s

f

(c;X) 8c; x 2 X . Therefore, although x

�

2 Y is a local (or even global)

minimizer with f

0

(x

�

) = 0, it might happen that 0 62 s

f

(c; Y), and the latter cannot

be used as a criterion to discard the box Y .

Example 6.1 We consider once more the function f from Example 3.6. Since f(x) =

x

2

� 4x+ 2 = (x� 2)

2

� 2, we easily see that x

�

= 2 is a local and global minimizer of

f . With Y = A = [1; 7] we have s

f

(c; Y) = [1; 7] showing that 0 62 s

f

(c; Y) cannot be

used as a criterion to discard Y , since x

�

2 Y .

On the other hand, it is underlined in [2], that the monotonicity test is an essential

accelerating tool for an e�cient interval global optimization method. Thus, the need

of a corresponding tool in connection with slopes arises. It is called a pruning step

using slopes, and its theory is developed in [12].

In this section we summarize the ideas and the theory presented in [12], and we give

\implementation versions" of the theorems from [12], in which we take into account

that, in general, s

f

(c; Y) and f(c) cannot be computed exactly.

���� �
�
�
�

��
��
��
��

�
�
�
�

������

y

����
����
����
����

x

cp

f

g

hf(x)

y

Figure 1: Generation of the pruning point p for positive interval slope

An Optimized Interval Slope Arithmetic and its Application 21

Figure 1 illustrates the idea for �nding an upper bound p for all global minimizers

within the interval Y if a slope interval S = [s; s] = s

f

(c; Y) with s > 0 is known. First

of all, we de�ne the two lines

g : IR! IR g(x) := f(c) + s � (x� c) (20)

and

h : IR ! IR h(x) := f(c) + s � (x� c): (21)

Then we know that g(y) is an upper bound for f(y) and thus for min

x2Y

f(x) in Y .

Now we can locate p as the leftmost point in Y , for which f can not fall below g(y).

Since h is a lower bound for f in [y; c], we can do this very simply by computing the

intersection point of h and the horizontal line r with r(x) = g(y).

Usually, only enclosures for s

f

(c; Y) and f(c) can be used in practical computations.

Thus we state

Theorem 6.2 Let f : D ! IR, Y = [y; y] 2 IIR, c 2 Y � D � IR, f(c) 2 Z = [z; z] 2

IIR. Moreover, let S = [s; s] � s

f

(c; Y) with s > 0. Then

p := c+ ((y � c) � s+ d(Z))=s

satis�es

y � p (22)

and

min

x2Y

f(x) = min

x2[y;p]

f(x) < min

p<x�y

f(x): (23)

Proof: Since y � c and 0 < s=s � 1, we have

y = (1 � s=s) � y + s=s � y � (1 � s=s) � c+ s=s � y

= c+ (y � c) � s=s

� c+ (y � c) � s=s+ d(Z)=s = p;

which proves (22).

From (2) and (3) we know that for all x 2 (c; y] there exists an s

x

> 0 with s

x

2 S

and

f(x) = f(c) + s

x

� (x� c):

Therefore, f(x) > f(c) 8x 2 (c; y], and thus we know that

min

x2Y

f(x) = min

x2[y;c]

f(x):

Now let y

�

2 Y with

f(y

�

) = min

x2Y

f(x): (24)

22 Dietmar Ratz

If we assume that p < y

�

� c, then we know that there exist s

l

2 S and s

�

2 S

satisfying f(y) = f(c) + s

l

� (y � c) and f(y

�

) = f(c) + s

�

� (y

�

� c). Thus we have

f(y) = f(c) + s

l

� (y � c) � z + s � (y � c)

= z + s � (((p� c) � s� d(Z))=s)

= z + s � (p� c)� d(Z) = z + s � (p � c)

< z + s � (y

�

� c) � z + s

�

� (y

�

� c)

� f(c) + s

�

� (y

�

� c) = f(y

�

);

i.e. f(y) < f(y

�

) which contradicts (24), and therefore y

�

� p which proves (23). 2

��

��
��
��
��

y

x

c

f

f(x)

y p

z

g

h

z

Figure 2: Generation of the pruning point p for f(c) 2 Z

Figure 2 illustrates the situation treated in Theorem 6.2. Here, in contrast to Figure

1, the two lines

g : IR! IR g(x) := z + s � (x� c) (25)

and

h : IR! IR h(x) := z + s � (x� c): (26)

are used to generate the point p.

Using the value p of Theorem 6.2 within a global optimization method, we can

prune a subinterval Y � X, if 0 < s � s for S � s

f

(c; Y) to

Y

P

:= [y; c+ ((y � c) � s+ d(Z))=s]:

Example 6.3 We consider f(x) =

1

2

x

2

, and we assume the current interval to be

Y = [�1; 4]. First of all, we try to apply the monotonicity test. We evaluate the

derivative f

0

(x) = x over Y , and we get F

0

(Y) = Y = [�1; 4]. Since 0 2 F

0

(Y), we

cannot discard Y from further consideration, and we must subdivide it and treat parts

of Y in the same manner.

An Optimized Interval Slope Arithmetic and its Application 23

Now, we apply our new pruning step. We �rst evaluate the interval slope S =

s

f

(c; Y) =

1

2

(c + Y), and with c = 1:5 we get S = [0:25; 2:75]. Since 0 62 S we can

prune Y to

Y

P

= [y; c+ (y � c) � s=s] = [�1; 1:5 + (�1� 1:5) � 0:25=2:75] = [�1; 1:273]

using four signi�cant digits and rounding outwards.

If we recall the situation in Figures 1 and 2, we see that we are able to improve the

pruning of an interval Y . We can improve the point p (by moving it to the left), if we

know a better (smaller) upper bound

e

f for f(x) on Y than g(y) was. Moreover, if

e

f is

an upper bound for the global minimum value f

�

on the whole search box X, then we

can locate p as the leftmost point in Y , for which f can not fall below

e

f . Since h is a

lower bound for f near y, we can do this by computing the intersection point of h and

the horizontal line r with r(x) =

e

f . In the context of a global optimization method

using branch-and-bound techniques such as the cut-o� test, an improved upper bound

e

f for the global minimum value f

�

is usually known.

���� ����

��
��
��
�����

���
���
���

����
����
����
����

�
�
�
�

y

x

c

f

g

hf(x)

f
~

py

Figure 3: Generation of the pruning point p with known

e

f

Figure 3 illustrates the idea for improving p when using the known upper bound

e

f

for the global minimum value. Again we use the two lines

g : IR! IR g(x) := f(c) + s � (x� c)

and

h : IR ! IR h(x) := f(c) + s � (x� c):

Then we know that

e

f is an upper bound for min

x2Y

f(x). Now we can locate p as the

leftmost point in Y , for which f cannot fall below

e

f . Since h is a lower bound for f

in [y; c], we can do this very simply by computing the intersection point of h and the

horizontal line r with r(x) =

e

f .

24 Dietmar Ratz

Theorem 6.4 Let f : D ! IR, Y = [y; y] 2 IIR, c 2 Y � X � D � IR, f(c) 2 Z =

[z; z] 2 IIR. Moreover, let S = [s; s] � s

f

(c; Y) with s > 0 and

e

f � f

�

= min

x2X

f(x): (27)

Then p := c+ (m+ d(Z))=s with m = minf

e

f � z; (y � c) � sg satis�es

min

p<x�y

f(x) > f

�

for y � p (28)

or

min

x2Y

f(x) > f

�

for p < y; (29)

respectively.

Proof: From (3) we know that for all x 2 (c; y] there exists an s

x

> 0 with s

x

2 S and

f(x) = f(c) + s

x

� (x� c):

Therefore, f(x) > f(c) 8x 2 (c; y], which directly proves (28) and (29) for p � c.

Now, let p < c. For the case m = (y � c) � s, Theorem 6.2 implies y � p and

min

p<x�y

f(x) > min

x2Y

f(x) � f

�

:

For the casem =

e

f�z, we assume that there exists an x

�

2 Z := Y \(p; c] with f(x

�

) =

f

�

. Then we know that there exists an s

�

2 S satisfying f(x

�

) = f(c) + s

�

� (x

�

� c).

Thus we have

f(x

�

) = f(c) + s

�

� (x

�

� c) � z + s

�

� (x

�

� c) � z + s � (x

�

� c)

> z + s � (p � c)

= z + s � ((m+ d(Z))=s)

= z +m+ z � z =

e

f � z + z =

e

f;

which contradicts (27), and therefore x

�

62 Z, which proves (28) and (29). 2

So, we can use Theorem 6.4 within a global optimization method to prune or delete

a subinterval Y � X, if 0 < s � s for S = [s; s] � s

f

(c; Y). That is, we �rst compute

Z = F (c) and

m = minf

e

f � z; (y � c) � sg

and then

p = c+ (m+ d(Z))=s:

Then, if p � y, we replace Y by

Y := [y; p];

otherwise we delete the whole subbox Y .

It is easy to see, that we can apply a similar procedure for pruning in the case s < 0

(cf. [12]). Moreover, the new pruning technique can succesfully be applied also in the

An Optimized Interval Slope Arithmetic and its Application 25

�� ��
��
��
��

�
�
�
�

��

�
�
�
�

��

��
��������

y

���
���
���
���

���
���
���
���

x

c

f(x)

f
~

p q

f

h

g

y

Figure 4: Generation of pruning points p and q with known

e

f < f(c)

case 0 2 s

f

(c; Y), which corresponds in a sense to the (unsuccessful) case 0 2 F

0

(Y)

for the usual monotonicity test.

We illustrate this case in Figure 4. Again we use the two lines

g : IR! IR g(x) := f(c) + s � (x� c)

and

h : IR ! IR h(x) := f(c) + s � (x� c);

assuming s < 0 < s. Now we can locate p as the leftmost point and q as the rightmost

point in Y , for which f can not fall below

e

f according to the bounding by g and h.

Since h is a lower bound for f in [y; c] and since g is a lower bound for f in [c; y],

we can do this very simply by computing the intersection points of h and g with the

horizontal line r with r(x) =

e

f .

Theorem 6.5 Let f : D ! IR, Y = [y; y] 2 IIR, c 2 Y � X � D � IR, f(c) 2 Z =

[z; z] 2 IIR. Moreover, let S = [s; s] � s

f

(c; Y) with 0 2 S and

z >

e

f � f

�

= min

x2X

f(x): (30)

Then

p :=

(

c+ (

e

f � z)=s if s 6= 0;

�1 otherwise;

q :=

(

c+ (

e

f � z)=s if s 6= 0;

+1 otherwise;

and

Z :=

(

(p; q) \ Y if p < q;

� otherwise;

satisfy

min

x2Z

f(x) > f

�

: (31)

26 Dietmar Ratz

Proof: We assume that there exists an x

�

2 Z 6= � with f(x

�

) = f

�

. Then we know

that there exists an s

�

2 S satisfying f(x

�

) = f(c)+ s

�

� (x

�

� c). In addition, we know

that x

�

6= c, since equality would contradict (30).

If x

�

< c, then

f(x

�

) = f(c) + s

�

� (x

�

� c) � f(c) + s � (x

�

� c)

� z + s � (x

�

� c)

> z + s � (p � c)

= z + s � (

e

f � z)=s =

e

f;

which contradicts (30).

If x

�

> c, then, in a similar way,

f(x

�

) = f(c) + s

�

� (x

�

� c) � f(c) + s � (x

�

� c)

� z + s � (x

�

� c)

> z + s � (q � c)

= z + s � (

e

f � z)=s =

e

f;

which also contradicts (30).

Therefore x

�

62 Z and we proved (31). 2

So, we can use Theorem 6.5 within a global optimization method to prune or delete

a subinterval Y � X, if s � 0 � s for S � s

f

(c; Y) and f(c) 2 Z and if

e

f < z. That

is, we �rst compute

p = c+ (

e

f � z)=s and q = c+ (

e

f � z)=s:

Then, we replace Y by

[y; p] [[q; y] if y � p ^ q � y;

[y; p] if y � p ^ q > y;

[q; y] if y > p ^ q � y;

and otherwise we delete the whole subbox Y .

Remark: When implementing the pruning step on a machine, we must guarantee that

all rounding errors are taken into account. Thus, in all three pruning cases the values p

and q must be computed with upwardly-directed and downwardly-directed roundings,

respectively.

6.2 Algorithmic Description of the Pruning Technique

We are now able to give an algorithmic formulation of a pruning step, which can be

applied to a subinterval Y � X when globally minimizing f : D ! IR on X � D. The

An Optimized Interval Slope Arithmetic and its Application 27

algorithm uses

Y = [y; y];

c 2 Y;

Z = [z; z] 3 f(c);

S = [s; s] � s

f

(c; Y); and

e

f � min

x2X

f(x)

as input, and it delivers the pruned (and possibly empty) subset U

1

[U

2

of Y with

U

1

; U

2

2 IIR[f�g and a possibly improved

e

f as output. We use 4(expr) and 5(expr)

to indicate that an upper or lower bound for the expression expr is computed.

Algorithm 6.1: SlopePruning (Y; c; Z; S;

e

f; U

1

; U

2

)

1. U

1

:= �; U

2

:= �;

2. if 0 2 S then f pruning from the center g

3. if

e

f < z then f a pruning is possible g

4. if s > 0 then f pruning from the center to the left g

5. p :=4(c+ (

e

f � z)=s);

6. if p � y then U

1

:= [y; p]; f compute remaining left part g

7. if s < 0 then f pruning from the center to the right g

8. q := 5(c+ (

e

f � z)=s);

9. if q � y then U

2

:= [q; y]; f compute remaining right part g

10. else f a pruning is not possible g

11. U

1

:= [y; c]; U

2

:= [c; y]; f bisection g

12. else if s > 0 then f pruning from right g

13.

e

f := minf

e

f; 4((y � c) � s+ z)g; f update

e

fg

14. p := 4(c+ (

e

f � z)=s);

15. if p � y then U

1

:= [y; p]; f compute remaining left part g

16. else f s < 0 g f pruning from left g

17.

e

f := minf

e

f; 4((y � c) � s+ z)g; f update

e

fg

18. q := 5(c+ (

e

f � z)=s);

19. if q � y then U

2

:= [q; y]; f compute remaining right part g

20. return U

1

; U

2

;

e

f ;

The following theorem summarizes the properties of this pruning step.

Theorem 6.6 Let f : D ! IR, Y 2 I IR, c 2 Y � X � D � IR. Moreover,

let f(c) 2 Z, s

f

(c; Y) � S, and

e

f � min

x2X

f(x), then Algorithm 6.1 applied as

SlopePruning (Y; c; f

c

; S;

e

f; U

1

; U

2

) has the following properties:

1. U

1

[U

2

� Y .

2. Every global optimizer x

�

of f in X with x

�

2 Y satis�es x

�

2 U

1

[U

2

.

3. If U

1

[U

2

= �, then there exists no global (w.r.t. X) optimizer of f in Y .

28 Dietmar Ratz

Proof: Property 1 follows from the de�nition of U

1

and U

2

. Theorems 6.4 and 6.5

directly imply Property 2. Property 3 is a consequence of Property 2. 2

It is obvious that the success of Algorithm 6.1 in pruning Y depends on the quality

of

e

f . Therefore, the pruning step within a global optimization method can very much

bene�t from a fast local search method delivering a good (small) value

e

f on a very

early stage of the method.

6.3 A Global Optimization Algorithm Using Pruning Steps

Subsequently, we give a simple �rst-order model algorithm where the pruning step is

integrated. Our model algorithm uses the cut-o� test, but it includes no local search

procedure, no concavity test, and no Newton-like steps.

Algorithm 6.2: GlobalOptimize (f;X; "; F

�

; L

res

)

1. c := m(X);

e

f := F (c); f initialize upper bound g

2. F

X

:= (F (c) + S

f

(c;X) � (X � c)) \ F (X); f centered form g

3. L := f(X; f

X

)g; L

res

:= f g; f initialize working list and result list g

4. while L 6= f g do

5. (Y; f

Y

) := PopHead (L); c := m(Y); f get �rst element of working list g

6. SlopePruning (Y; c; F (c); S

f

(c; Y);

e

f ; U

1

; U

2

);

7. for i := 1 to 2 do

8. if U

i

= � then next

i

;

9. c := m(U

i

); if F (c) <

e

f then

e

f := F (c);

10. F

U

:= (F (c) + S

f

(c; U

i

) � (U

i

� c)) \ F (U

i

); f centered form g

11. if f

U

�

e

f then

12. if d

rel

(F

U

) � " or d

rel

(U

i

) � " then

13. L

res

:= L

res

] (U

i

; f

U

) f accept U

i

for the result list g

14. else

15. L := L] (U

i

; f

U

); f store U

i

in the working list g

16. endfor

17. CutO�Test (L;

e

f);

18. endwhile

19. (Y; f

Y

) := Head (L

res

); F

�

:= [f

Y

;

e

f]; CutO�Test (L

res

;

e

f);

20. return F

�

; L

res

.

Algorithm 6.2 �rst computes an upper bound

e

f for the global minimum value and

initializes the working list L and the result list L

res

. The main iteration (from Step 4

to Step 18) starts with the pruning step applied to the leading interval of the working

list. Then we apply a range check using a centered form to the resulting boxes U

1

and

U

2

if they are non-empty. If the current box is still a candidate for containing a global

minimizer, we store it in L

res

(if it can be accepted with respect to the tolerance ") or

in L if it must be treated further.

Note that by the operation] the boxes are stored as pairs (Y; f

Y

) in list L sorted

in nondecreasing order with respect to the lower bounds f

Y

� f

rg

(Y) and in decreasing

An Optimized Interval Slope Arithmetic and its Application 29

order with respect to the ages of the boxes in L (cf. [11]). Thus, the leading box of

L is the oldest element with the smallest f

Y

value. When the iteration stops because

the working list L is empty, we compute a �nal enclosure F

�

for the global minimum

value and return L

res

and F

�

.

The cut-o� test is given by

Algorithm 6.3: CutO�Test (L;

e

f)

1. for all (Y; f

Y

) 2 L do

2. if

e

f < f

Y

then L := L [

-

(Y; f

Y

);

3. endfor

4. return L;

where L [

-

(Y; f

Y

) removes the element (Y; f

Y

) from L.

For our global optimization algorithm (Algorithm 6.2) we can state

Theorem 6.7 Let f : D ! IR, X � D � IR, and " > 0. Then Algorithm 6.2 has the

following properties:

1. f

�

2 F

�

.

2. X

�

�

[

(Y;f

Y

)2L

res

Y .

Proof: Since the lists are sorted in non-decreasing order with respect to the f

Y

values

and since

e

f is an upper bound of f

�

, Assertion 1 is proved. Assertion 2 follows from

the fact that neither the cut-o� test nor the slope pruning step (due to Theorem 6.6)

deletes boxes which contain a global minimizer of f . 2

6.4 Some Examples and Tests

We implemented the global optimization algorithm (Algorithm 6.2) in PASCAL{XSC

[7] Version 2.03. The test results presented in the following are generated on an HP

9000/730.

Example 6.8 To demonstrate the performance of our global optimization algorithm

using pruning steps, we give an extract (about the �rst 9 steps) of the protocol of the

pruning steps when applying Algorithm 6.2 on function

f(x) =

(x� a)

2

20

� cos(x� a) + 2

with a = 1:125 and starting interval X = [�5; 5].

For each current box Y in the while loop, we list its value, the value of the slope

S � s

f

(c; Y), the chosen pruning step, and the resulting boxes U

1

and U

2

. The empty

set is represented by [/].

30 Dietmar Ratz

Y = [-5.000E+000, 5.000E+000] S = [-1.363E+000, 1.138E+000]

==> bisection necessary

==> U1 = [-5.000E+000, 0.000E+000] U2 = [0.000E+000, 5.000E+000]

Y = [0.000E+000, 5.000E+000] S = [-8.898E-001, 1.263E+000]

==> pruning by punching

==> U1 = [0.000E+000, 2.288E+000] U2 = [2.801E+000, 5.000E+000]

Y = [0.000E+000, 2.288E+000] S = [-9.576E-001, 9.771E-001]

==> bisection necessary

==> U1 = [0.000E+000, 1.144E+000] U2 = [1.143E+000, 2.288E+000]

Y = [0.000E+000, 1.144E+000] S = [-9.862E-001, -7.798E-003]

==> pruning from left

==> U1 = [/] U2 = [7.384E-001, 1.144E+000]

Y = [7.384E-001, 1.144E+000] S = [-4.056E-001, 1.067E-002]

==> pruning by punching

==> U1 = [/] U2 = [9.863E-001, 1.144E+000]

Y = [9.863E-001, 1.144E+000] S = [-1.481E-001, 1.687E-002]

==> pruning by punching

==> U1 = [/] U2 = [1.077E+000, 1.144E+000]

Y = [1.077E+000, 1.144E+000] S = [-5.098E-002, 1.913E-002]

==> bisection necessary

==> U1 = [1.077E+000, 1.111E+000] U2 = [1.110E+000, 1.144E+000]

Y = [1.110E+000, 1.144E+000] S = [-1.510E-002, 1.997E-002]

==> bisection necessary

==> U1 = [1.110E+000, 1.128E+000] U2 = [1.127E+000, 1.144E+000]

Y = [1.110E+000, 1.128E+000] S = [-1.552E-002, 2.018E-003]

==> pruning by punching

==> U1 = [/] U2 = [1.120E+000, 1.128E+000]

Extensive tests of our new slope pruning technique are documented in [12]. There

the new method is compared with a corresponding method using the monotonicty test.

According to these tests, our new method is always better than or at least as good

as the traditional method with monotonicity test (with the exception of few cases

where the list length was worse). On avarage, with the new pruning technique we have

more than 30% improvement in the computation time and the number of function

or derivative/slope evaluations. Moreover, there are many examples for which the

required CPU time is reduced to around 1/3 of the time required by the variant with

monotonicity test.

Now, we compare the two methods for two examples, for which we list the numerical

results (the computed enclosures) and the evaluation e�orts, the number of bisections,

the necessary storage space, and the run-time.

An Optimized Interval Slope Arithmetic and its Application 31

Example 6.9 We minimize f(x) = x

2

=20 � cos(x) + 2.

Applying our model algorithm using derivatives and monotonicity tests, we get

Search interval : [-20,20]

Tolerance (relative) : 1E-8

No. of function calls : 150

No. of derivative calls : 75

No. of bisections : 37

Necessary list length : 2

Run-time (in sec.) : 0.700

Global minimizer in : [-7.6293945312500E-005, 7.6293945312500E-005]

Global minimum value in : [1.0000000000000E+000, 1.0000000000001E+000]

Applying Algorithm 6.2 using slopes and the new pruning steps, we get

Search interval : [-20,20]

Tolerance (relative) : 1E-8

No. of function calls : 58

No. of slope calls : 29

No. of bisections : 1

Necessary list length : 2

Run-time (in sec.) : 0.270

Global minimizer in : [-7.4615903941273E-005, 7.4615903941273E-005]

Global minimum value in : [1.0000000000000E+000, 1.0000000000001E+000]

Example 6.10 WeminimizeHansen's function f(x) = 24x

4

�142x

3

+303x

2

�276x+93

(cf. [5]).

Applying our model algorithm using derivatives and monotonicity tests, we get

Search interval : [0,3]

Tolerance (relative) : 1E-8

No. of function calls : 956

No. of derivative calls : 478

No. of bisections : 238

Necessary list length : 25

Run-time (in sec.) : 0.450

Global minimizer in : [1.999990940E+000, 2.000009536E+000]

Global minimum value in : [9.999999982E-001, 1.000000001E+000]

Applying Algorithm 6.2 using slopes and the new pruning steps, we get

Search interval : [0,3]

Tolerance (relative) : 1E-8

No. of function calls : 488

No. of slope calls : 244

No. of bisections : 12

Necessary list length : 15

Run-time (in sec.) : 0.180

Global minimizer in : [1.999997019E+000, 2.000009781E+000]

Global minimum value in : [9.999999996E-001, 1.000000001E+000]

32 Dietmar Ratz

References

[1] Alefeld, G. and Herzberger, J. (1983): Introduction to Interval Computations, Academic

Press, New York.

[2] Csendes, T. and Pint�er, J. (1993): The Impact of Accelerating Tools on the Interval

Subdivision Algorithm for Global Optimization, European J. of Operational Research,

65, 314{320.

[3] Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1993): Numerical Toolbox for Veri�ed

Computing I, Springer-Verlag, Berlin.

[4] Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1995): C++ Toolbox for Veri�ed

Computing I, Springer-Verlag, Berlin.

[5] Hansen, E. (1992): Global Optimization Using Interval Analysis, Marcel Dekker, New

York.

[6] Kearfott, R. B. (1996): Rigorous Global Search: Continuous Problems. Kluwer Academic

Publishers, Boston, 1996.

[7] Klatte, R., Kulisch, U., Neaga, M., Ullrich, Ch. and Ratz, D. (1992): PASCAL{XSC {

Language Description with Examples, Springer-Verlag, Berlin.

[8] Neumaier, A. (1990): Interval Methods for Systems of Equations, Cambridge University

Press, Cambridge.

[9] Ratschek, H. and Rokne, J. (1988): New Computer Methods for Global Optimization,

Ellis Horwood, Chichester.

[10] Ratz, D. (1992): Automatische Ergebnisveri�kation bei globalen Optimierungsproblemen,

Dissertation, Universit�at Karlsruhe.

[11] Ratz, D. and Csendes, T. (1995): On the Selection of Subdivision Directions in Interval

Branch-and-Bound Methods for Global Optimization. Journal of Global Optimization,

7, 183{207.

[12] Ratz, D. (1997): A New Global Optimization Technique Using Slopes { The One-

Dimensional Case. Submitted for publication in Journal of Global Optimization.

[13] T�orn, A. and

�

Zilinskas, A. (1989): Global Optimization, Lecture Notes in Computer

Science, No. 350, Springer-Verlag, Berlin.

In dieser Reihe sind bisher die folgenden Arbeiten erschienen:

1/1996 Ulrich Kulisch: Memorandum �uber Computer, Arithmetik und Numerik.

2/1996 Andreas Wietho�: C{XSC | A C++ Class Library for Extended Scienti�c

Computing.

3/1996 Walter Kr�amer: Sichere und genaue Absch�atzung des Approximationsfehlers

bei rationalen Approximationen.

4/1996 Dietmar Ratz: An Optimized Interval Slope Arithmetic and its Application.

5/1996 Dietmar Ratz: Inclusion Isotone Extended Interval Arithmetic.

1/1997 Astrid Goos, Dietmar Ratz: Praktische Realisierung und Test eines Veri-

�kationsverfahrens zur L�osung globaler Optimierungsprobleme mit Unglei-

chungsnebenbedingungen.

2/1997 Stefan Herbort, Dietmar Ratz: Improving the E�ciency of a Nonlinear-

System-Solver Using a Componentwise Newton Method.

3/1997 Ulrich Kulisch: Die f�unfte Gleitkommaoperation f�ur top-performance Com-

puter | oder | Akkumulation von Gleitkommazahlen und -produkten in

Festkommaarithmetik.

4/1997 Ulrich Kulisch: The Fifth Floating-Point Operation for Top-Performance

Computers | or | Accumulation of Floating-Point Numbers and Products

in Fixed-Point Arithmetic.

5/1997 Walter Kr�amer: Eine Fehlerfaktorarithmetik f�ur zuverl�assige a priori Fehler-

absch�atzungen.

