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Inner and Outer Bounds for the Solution Set of
Parametric Linear Systems

Evgenija Popova∗, Walter Krämer

Abstract. Consider linear systems involving affine-linear dependencies on interval pa-
rameters. Presented is a free C-XSC software implementing a generalized parametric
fixed-point iteration method for verified enclosure of the parametric solution set. Some
specific features of the corresponding algorithm concerning sharp enclosure of the con-
tracting matrix and inner approximation of the solution enclosure are discussed.

Keywords: parametric linear systems, validated software, C-XSC, inner estimation.

1 Introduction

Consider the linear system A(p) · x = b(p) represented as(
A(0) +

k∑
ν=1

pνA
(ν)

)
· x = b(0) +

k∑
ν=1

pνb
(ν), p ∈ [p] ∈ IRk, (1)

where A(0) :=
(
a

(0)
ij

)
, . . . , A(k) :=

(
a

(k)
ij

)
∈ Rn×n are numerical matrices, b(0) := (b

(0)
i ),

. . ., b(k) := (b
(k)
i ) ∈ Rn are numerical vectors. When the parameters p1, . . . , pk vary within

a range [p] ∈ IRk the parametric solution set is

Σp = Σ (A(p), b(p), [p]) := {x ∈ Rn | A(p) · x = b(p) for some p ∈ [p]} . (2)

For a nonempty bounded Σ ⊆ R
n, define interval hull ♦ : PRn → IR

n by ♦(Σ) :=
[inf Σ, sup Σ]. Here we discuss the computation of [y] ∈ IRn such that [y] ⊇ ♦(Σp) ⊇ Σp.

An iteration method for verified enclosure of Σp, that accounts for arbitrary affine-
linear dependencies in the matrix and the right hand side vector, is proposed by S. Rump
in [13] and generalized for strongly regular parametric matrices in [9].

The goal of this work is to provide a free, open-source software for the verified enclo-
sure of the parametric solution set in the environment of C-XSC [4]. The software tool,
we describe here, implements a generalized fixed-point iteration method for parametric
linear systems and has our expertise and experience in implementing validated interval
computations built in [10].

We use the following notations. Rn,Rn×m denote the set of real vectors with n com-
ponents and the set of real n × m matrices, respectively. By normal (proper) interval

∗The author is supported by the Bulgarian National Science Fund under grant No. MM1301/03.

1



we mean a real compact interval [a] = [a−, a+] := {a ∈ R | a− ≤ a ≤ a+}. By
IR

n, IRn×m we denote interval n-vectors and interval n × m matrices. The end-point

functionals (·)−, (·)+, the mid-point function mid(·), where mid([a−, a+]) :=
a− + a+

2
,

and the diameter function diam(·), where diam([a−, a+]) := a+ − a−, are applied to in-
terval vectors and matrices componentwise. %(A) is the spectral radius of a matrix A.
Denote by A([p]) := ♦{A(p) ∈ Rn×n | p ∈ [p]}, b([p]) := ♦{b(p) ∈ Rn | p ∈ [p]} the non-
parametric interval matrix, resp. vector, that correspond to the parametric ones. Hence,
A([p]) · x = b([p]) is the non-parametric system corresponding to the parametric one.

2 Theoretical Background

A detailed presentation of the theory of the enclosure methods for our problem can be
found in [13] and [8]–[10]. Rump’s parametric fixed-point method for enclosing the so-
lution of (1) requires strong regularity of the non-parametric interval matrix [13]. The
original theorem is generalized for strongly regular parametric matrices [9] by replacing
[C] = I − R · A([p]) with (3). Although similar iteration methods are used also by other
authors [1, 7] without addressing the rounding errors and not referring to [13], the neces-
sity of using an iteration matrix of type (3) is not justified therein. The latter is proven
in [8] where classes of matrices are defined for which the generalization is efficient. The
advantages of the generalized method are demonstrated in Section 4, [9, 10] by examples
comparing both methods.

Theorem 1 Consider (1). Let R ∈ Rn×n, [Y ] ∈ IRn, x̃ ∈ Rn and define

IR
n 3 [Z] := R · (b(0) − A(0)x̃) +

k∑
ν=1

[pν ](R · b(ν) −R · A(ν) · x̃),

IR
n×n 3 [C(p)] := I −R · A(0) −

k∑
ν=1

[pν ](R · A(ν)). (3)

Initialize [U ] := [Y ] and define [V ] ∈ IRn by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : Vi := {[Z] + [C(p)] · [U ]}i, Ui := Vi (update of [U ]).

If [V ] $ [Y ], then R and every matrix A(p), p ∈ [p] are regular, and for every p ∈ [p]
the unique solution x̂ = A−1(p)b(p) of (1) satisfies x̂ ∈ x̃+ [V ].

With [D] := [C(p)] · [V ] ∈ IRn the following inner estimation of ♦(Σp) holds true[
x̃+ [Z]− + [D]+, x̃+ [Z]+ + [D]−

]
⊆ [inf(Σp), sup(Σp)] .

In the implementation we choose R ≈ A−1(pm) and x̃ ≈ A−1(pm) · b(pm), where
pm = mid([p]). To force [V ] $ [Y ], the concept of ε-inflation is introduced. For a real
interval [w], ε-inflation is defined by

blow([w], ε) =

{
[w] + diam([w])[−ε, ε], if diam([w]) > 0

[pred(w), succ(w)], if diam([w]) = 0,
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where pred(w), succ(w) are the predecessor and successor of a floating-point number w
in the floating-point screen, see [10].

3 Inner and Outer Estimations in Floating Point

The first part of Theorem 1 defines how to find an interval vector [y] which is verified to
contain ♦(Σp). However, it is important to know how much this inclusion overestimates
the exact hull of the parametric solution set. The quality of the outer enclosure can be
estimated by a componentwise inner estimation of the exact hull [12]. [x] ∈ IRn is called
componentwise inner approximation for some set Σ ∈ Rn if

inf
σ∈Σ

σi ≤ x−i and x+
i ≤ sup

σ∈Σ
σi, for every 1 ≤ i ≤ n.

It should be noted that [x] ⊆ [inf(Σ), sup(Σ)] but [x] 6⊆ Σ.
Let F ⊂ R denote the set of floating-point numbers on a computer. Denote by 5,4 :

R −→ F the directed roundings toward −∞, resp. +∞ [6]. For intervals [a] = [a−, a+] ∈
IR, outward (♦) and inward (©) roundings ♦,© : IR −→ IF are defined as

♦([a]) := [5(a−), 4(a+)] ⊇ [a], ©[a] := [4(a−), 5(a+)] ⊆ [a]. (4)

If ◦ ∈ {+,−,×, /} is an arithmetic operation and [a], [b] ∈ IF, the corresponding computer
operations ♦◦ ,©◦ : IF× IF −→ IF are defined by

[a] ♦◦ [b] := ♦([a] ◦ [b]) = [ 5(([a] ◦ [b])−), 4(([a] ◦ [b])+)] ⊇ [a] ◦ [b], (5)

[a] ©◦ [b] :=©([a] ◦ [b]) = [4 (([a] ◦ [b])−), 5(([a] ◦ [b])+)] ⊆ [a] ◦ [b]. (6)

To compute an inner estimation of the solution enclosure by the second part of The-
orem 1 on a computer one needs an inner estimation ©[Z] of [Z]. Obtaining guaranteed
inner approximations on a computer in conventional interval arithmetic is possible only
if the four interval operations are implemented with inward rounding ©◦ in addition to
the four ♦◦ operations. Since most of the wide-spread interval packages do not support
inwardly rounded interval arithmetic, here we give an alternative computational technique
based on the properties of an algebraic extension of the conventional interval arithmetic.

The set of proper intervals IR is extended in [5] by the set {[a−, a+] | a−, a+ ∈ R, a− ≥
a+} of improper intervals obtaining thus the set IR∗ = {[a−, a+] | a−, a+ ∈ R} of all
ordered couples of real numbers called here generalised intervals. The conventional (arith-
metic and lattice) operations, order relations and other functions are isomorphically ex-
tended onto the whole set of proper and improper intervals [5]. The same is done for the
inward and outward roundings so that formulae (4)–(6) are valid for generalised intervals.
We present only those basic facts from generalised interval arithmetic which are necessary
to use it as an intermediate computational tool for handling proper interval problems.

“Dual” is an important monadic operator that reverses the end-points of the intervals
and expresses an element-to-element symmetry between proper and improper intervals in
IR
∗. For [a] = [a−, a+] ∈ IR∗, its dual is defined by Dual([a]) = [a+, a−]. Dual is applied

componentwise to vectors and matrices. For [a], [b] ∈ IR∗ and ◦ ∈ {+,−,×, /},

Dual(Dual([a])) = [a], Dual([a] ◦ [b]) = Dual([a]) ◦Dual([b]). (7)
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As the following properties show inner numerical approximations can be obtained at no
additional cost only by outward directed rounding and the Dual operator in IF∗ [2].

For [a] ∈ IR∗, ©([a]) = Dual(♦(Dual([a]))). (8)

For [a], [b] ∈ IF∗, ◦ ∈ {+,−,×, /}, [a] ©◦ [b] = Dual(Dual([a]) ♦◦ Dual([b])). (9)

We apply the above properties to obtain inner estimations of proper interval problems in
a computing environment not supporting generalised interval arithmetic.

Now, we consider the computation of ©([Z]). With the notations of Theorem 1, let

z(ν) := R(b(ν) − A(ν)x̃), ν = 0, 1, . . . , k.

Then [Z] = z(0) +
∑k

ν=1[pν ]z
(ν). Using the well-known inclusion properties of interval

arithmetic we obtain

[Z] = z(0) +
∑k

ν=1[pν ]z
(ν) ⊆ ♦

(
♦(z(0)) +

∑k
ν=1[pν ] · ♦(z(ν))

)
and

©
(
©(z(0)) +

∑k
ν=1[pν ]×©(z(ν))

)
⊆ [Z].

The operator × indicates multiplication of proper and improper intervals. We will see
that we must implement this operation only for the case improper interval multiplied by
a proper interval. The definition of this operation is given in Table 1.

Applying properties (8) to the last inclusion in IR∗n, we get

Dual(♦

(
Dual(©(z(0))) +

k∑
ν=1

Dual([pν ])×Dual(©(z(ν)))

)
) ⊆ [Z]. (10)

For fixed ν = 0, . . . , k, let d(ν) ∈ Fn be a floating-point approximation of b(ν) − A(ν)x̃,
d(ν) ≈ b(ν) − A(ν)x̃. The error e(ν) of this approximation is e(ν) = b(ν) − A(ν)x̃− d(ν).
Hence, ©(e(ν)) := ©

(
b(ν) − A(ν)x̃− d(ν)

)
is an inner approximation of the error, while

♦(e(ν)) := ♦
(
b(ν) − A(ν)x̃− d(ν)

)
is an outer one

©(e(ν)) ⊆ b(ν) − A(ν)x̃− d(ν) ⊆ ♦(e(ν)).

Multiplying both sides above by R and applying the inclusion properties of interval op-
erations, we get

©(z(ν)) :=©
(
R · ©(e(ν)) +R · d(ν)

)
⊆ z(ν) ⊆ ♦

(
R · ♦(e(ν)) +R · d(ν)

)
=: ♦(z(ν)). (11)

If computed by a real dotproduct accumulator, ©(e(ν)) = Dual
(
♦(e(ν))

)
and thus left-

hand side inclusion in (11) is equivalent to

©
(
R ·Dual(♦(e(ν))) +R · d(ν)

)
⊆ z(ν).

Applying (8) we get

Dual
(
♦
(
R · ♦(e(ν)) +R · d(ν)

))
⊆ z(ν),

that is ©(z(ν)) = Dual
(
♦
(
R · ♦(e(ν)) +R · d(ν)

))
= Dual(♦(z(ν))).
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Substituting the last expression into (10) and applying (7), we obtain ©([Z]) only by
outwardly rounded interval operations between proper and improper intervals.

©([Z]) = Dual(♦

(
♦(z(0)) +

k∑
ν=1

Dual([pν ])× ♦(z(ν))

)
).

The product Dual([pν ]) × ♦(z(ν)) for ν = 0, 1, . . . , k, where ♦(z(ν)) is a proper interval
vector and Dual([pν ]) is an improper interval should be implemented according to Table
1 defining the product of a proper and an improper interval as a special case of the
multiplication of generalised intervals considered in [5].

Dual([a])× [b] b− ≥ 0 b+ ≤ 0 b− < 0 < b+

a− ≥ 0 [a+b−, a−b+] [a−b−, a+b+] [a−b−, a−b+]

a+ ≤ 0 [a+b+, a−b−] [a−b+, a+b−] [a+b+, a+b−]

a− < 0 < a+ [a+b−, a−b−] [a−b+, a+b+] [0, 0]

Table 1: Multiplication Dual([a−, a+])× [b−, b+] for [a], [b] ∈ IR.

Above we have proven the following

Theorem 2 Consider (1) with p ∈ [p] ∈ IFk. Let R ∈ Fn×n, [Y ] ∈ IFn and x̃ ∈ Fn.
For ν = 0, 1, . . . , k, define d(ν) :≈ b(ν) − A(ν)x̃, ♦(e(ν)) := ♦

(
b(ν) − A(ν)x̃− d(ν)

)
and

♦(z(ν)) := ♦
(
R · ♦(e(ν)) +R · d(ν)

)
. Define ♦([Z]) ∈ IFn, [C(p)] ∈ IFn×n by

♦([Z]) := ♦

(
♦(z(0)) +

k∑
ν=1

[pν ] · ♦(z(ν))

)
,

[C(p)] := ♦

(
I −R · A(0) −

k∑
ν=1

[pν ]× (R · A(ν))

)
.

Define [V ] ∈ IFn by 1 ≤ i ≤ n : Vi := {♦([Z])♦+[C(p)]♦· [U ]}i, [U ] := (V1, ..., Vi−1, Yi, ..., Yn)>.
If [V ] $ [Y ], then R and every matrix A(p), p ∈ [p] are regular, and the solution set (2)
satisfies [inf(Σp), sup(Σp)] ⊆ x̃♦+ [V ].

With [D] := [C(p)]♦· [V ] the following inner estimation holds true

Dual(x̃♦+ ♦

(
♦(z(0)) +

k∑
ν=1

Dual([pν ])× ♦(z(ν))

)
♦+ [D]) ⊆ [inf(Σp), sup(Σp)] , (12)

where the operator × is defined in Table 1.

The inner estimation (12) should be interpreted in terms of proper intervals. Compo-
nents of the inner estimations (12) may be improper intervals which are interpreted in IR
as empty sets. In this case no inner estimation for these components can be given.
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4 New Open Source Software ParLinSys

ParLinSys is a new open source module for verified solving of parametric linear systems
which is implemented in C++ using C-XSC [4, 6] and some routines from the C++
Toolbox for Verified Computing [3]. The algorithm, based on the above theoretical con-
siderations, and the implementation details are given in [10]. ParLinSys uses entirely
numerical representation for the parametric matrix and r.h. side vector. Since our imple-
mentation is intended also for education and experimentation purposes, the implemented
function for computing enclosures for the parametric solution set involves arguments for:
switching on/off the sharp enclosure of the iteration matrix, specifying a value for the con-
stant of epsilon inflation, and switching on/off the computation of an inner approximation
for the outer enclosure. For a more detailed documentation and examples about how to
use the new module refer to [10]. The software and the paper [10] are freely available at
http://www.math.uni-wuppertal.de/wrswt/xsc/cxsc−software.html.

Below we give two numerical examples demonstrating the advantage of the generalized
iteration method. The matrices specified by the following parameter dependent system
are all symmetric and regular:(

1 p
p 31

10
p+ 9

100

)
· x =

(
1
1

)
, [p] = [

29

10
,
31

10
] ∈ IR1.

The corresponding non-parametric interval matrix A([p]) =

(
1 [29

10
, 31

10
]

[29
10
, 31

10
] [908

100
, 970

100
]

)
is not

strongly regular. The spectral radius %(|I − mid−1(A[p]) · A([p])|) = 7
6

+
√

8437
78

is greater
than 1 (as it is readily seen the matrix A([p]) even contains singular point matrices). This
means that all methods based on strong regularity of the matrix A([p]) will fail. However,

the improved iteration matrix [C(p)] leads to a spectral radius %(|[C(p)]|) = 31
78

+
√

877
78

=
0.777 . . . < 1. Running our solver ParLinSys we find e. g. the following outer estimation:

( [-4.188067739E+01,7.464990816E+01], [-2.464361101E+01,1.438720075E+01] ).

Consider A(p) · x = b(p, q) with

A(p) =


1 p
p 1 p

p 1 p
. . .

p 1

 , b(p, q) = (−p, 0, . . . , 0,−q)>,

where p ∈ [100 ± δ], q ∈ [1 ± δ/100]. ParLinSys module was used to solve the above para-
metric problem for dimensions up to 2000, three different tolerances δ ∈ {0.1, 1, 10} for
the parameters and applying either non-parametric iteration matrix [C] or the improved
matrix [C(p)]. A function Sharpness([x], [y]) was involved to compute a measure for
the quality of a solution enclosure [x] ⊇ ♦(Σ) based on an inner estimation [y] ⊆ ♦(Σ).

Sharpness([x], [y]) := {1 if diam([x]) = 0, 0 if [y] = ∅, diam([y])/diam([x]) otherwise}.
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Table 2 presents the obtained results, where ”it” denotes the number of iterations, ”min/max”
are the corresponding min/max of sharpness estimations for the solution components.
Sharpness values are multiplied by 10 and dash (-) indicates that the corresponding
method has failed to find a solution enclosure.

0.1% 1% 10%
[C] [C(p)] [C] [C(p)] [C] [C(p)]

n
it min - max it min - max it min - max it min - max it min - max it min - max

5 1 7.99 - 9.97 1 8.64 - 9.97 2 0 - 9.70 2 1.61 - 9.72 3 0 - 6.19 2 0 - 7.20
20 1 9.67 - 9.98 1 9.97 - 9.98 1 6.86 - 9.76 1 9.67 - 9.78 4 0 - 7.12 1 6.95 - 7.91
30 1 9.49 - 9.97 1 9.97 - 9.98 2 5.31 - 9.65 1 9.67 - 9.78 5 0 - 0 1 6.93 - 7.88
35 2 3.57 - 9.80 1 9.03 - 9.96 2 0 - 7.71 2 3.19 - 9.60 – 3 0 - 6.00
40 1 9.33 - 9.97 1 9.97 - 9.98 2 3.99 - 9.64 1 9.67 - 9.78 – 1 6.93 - 7.88
50 1 9.15 - 9.92 1 9.97 - 9.98 2 2.61 - 9.11 1 9.67 - 9.77 – 1 6.89 - 7.80
100 1 8.21 - 9.79 1 9.96 - 9.97 3 0 - 6.41 1 9.63 - 9.75 – 2 6.39 - 7.45
150 1 6.92 - 8.58 1 9.96 - 9.96 – 1 9.56 - 9.63 – 2 5.63 - 6.27
250 3 0 - 0.43 1 9.89 - 9.90 – 1 8.96 - 8.97 – 3 0 - 0
450 3 0 - 1.10 1 9.82 - 9.92 – 1 8.32 - 9.19 – 3 0 - 1.57
650 2 0 - 4.38 2 2.84 - 9.96 – 2 0 - 9.62 – 3 0 - 5.01
800 5 0 - 0 2 0 - 9.87 – 2 0 - 8.74 – 4 0 - 0
830 – 2 0 - 9.84 – 2 0 - 8.37 – 6 0 - 0
850 – 1 4.04 - 9.80 – 2 0 - 7.98 – –
900 – 2 0.81 - 9.54 – 2 0 - 5.33 – –
1500 – 2 0 - 9.55 – 2 0 - 5.43 – –
2000 – 2 0 - 9.83 – 2 0 - 8.23 – –

Table 2: ParLinSys results for the three-diagonal parametric problem.

Consider the parametric systems Q(2, p)x = b(p), where for i, j = 1, . . . , n

qij(2, p) :=


pj if i 5 j,

0 if i = j + 2,

1 otherwise,

b(p) = (p1, . . . , pn)>,
pk ∈ [k ± k ∗ δ/100], k = 1, . . . , n,

δ ∈ {2.5, 5, 10}.

The results for these dense systems with many parameter are presented in Table 3.

2.5% 5% 10%
[C] [C(p)] [C] [C(p)] [C] [C(p)]

n
it min - max it min - max it min - max it min - max it min - max it min - max

4 1 8.22 - 8.93 3 0 - 2.14 2 6.48 - 7.82 6 0 - 0 2 3.33 - 5.71 –
10 1 6.86 - 9.15 5 0 - 2.36 2 4.17 - 8.26 – 2 0.06 - 6.51 –
50 2 3.98 - 9.42 – 2 0.39 - 8.84 – 2 0 - 7.68 –
100 2 2.08 - 9.43 – 2 0 - 8.87 – 2 0 - 7.75 –
200 2 0 - 9.44 – 2 0 - 8.89 – 2 0 - 7.78 –
300 2 0 - 9.45 – 2 0 - 8.89 – 2 0 - 7.79 –
400 2 0 - 9.45 – 2 0 - 8.89 – 2 0 - 7.80 –
500 2 0 - 9.45 – 2 0 - 8.90 – 2 0 - 7.80 –

Table 3: ParLinSys results for the systems Q(2, p)x = b(p).

5 Conclusion

ParLinSys seems to be the first open source software able to compute inner and outer
estimations for the solution set hull of parametric linear systems with affine-linear depen-
dencies. Our generalized method requires strong regularity of the parametric matrix. In
contrast to former methods the improved iteration matrix extends the scope of applica-
bility to systems were the corresponding non-parametric interval matrix is not necessarily
strongly regular. The examples show that the improved approach often allows bigger
dimensions and larger intervals for the parameters (Tables 2, 3). In many cases less it-
erations are necessary and in general the sharpness of the inner and outer estimations is
better.
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