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Dipl.-Math I. Geulig
Bergische Universität GH Wuppertal
Gaußstr. 20
D-42097 Wuppertal

e-mail: kraemer@math.uni-wuppertal.de

The software is freely available from
http://www.math.uni-wuppertal.de/wrswt/software.html



Interval Calculus in Maple 3

Contents

1 About the Program Package intpak 4
1.1 Extent of Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 First Calculation Examples . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Necessary Corrections and Changes . . . . . . . . . . . . . . . . . . . . 8

2 The Extension intpakX 14
2.1 The Installation of intpakX . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Function Range of the Extension intpakX . . . . . . . . . . . . . . . . 16

3 Ranges with Graphical Output 17
3.1 Functions in One Variable . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Functions in Two Variables . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Verified Calculation of Zeros 22
4.1 Extended Interval Division and Extended Interval Subtraction . . . . . 23
4.2 Extended Interval-Newton-Iteration . . . . . . . . . . . . . . . . . . . . 24
4.3 Graphical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Disc Arithmetics 28
5.1 Arithmetic (Disc-)Operations . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Range of Complex Polynomials . . . . . . . . . . . . . . . . . . . . . . 34
5.3 The Exponential Function for Disc Intervals . . . . . . . . . . . . . . . 36

6 Evaluation and Outlook 38

7 Appendix: Questionable Maple Results 39



4 Interval Calculus in Maple

Abstract
The package intpak of the Share-Library of Maple places a first experimental interval–

arithmetic package at the user’s disposal. It contains among others the new data type
interval (long number intervals), the corresponding basic arithmetic operations, lattice–
operations as intersection and union, some basic (long number) interval functions as well as
a command which transforms a given expression automatically into an interval expression.

The extension intpakX supplements the package intpak in essential points. E. g. the
so-called extended interval division is provided, it contains the realization of an interval
Newton–procedure, a complex disc–arithmetic, an extension of the exponential function to
disc intervals as well as the realization of various algorithms for confining the range of a com-
plex polynomial (with centred multiplication, with area–optimal multiplication). Moreover,
by providing suitable procedures the extension aims at graphically vizualizing the verification
algorithms (e. g. search for zeros, linear, quadratic range confinements, disc–interval calcu-
lus). The monitor output of the graphic routines is (in contrast to the figures in this report)
coloured.

The source code (about 2000 lines Maple–code) of the extension intpakX is freely avail-
able.

Key Words: MapleV, Interval Analysis, Validated Computations, Disc Arithmetic,
Visualization of Self Validating Numerical Algorithms

MSC: 65G05, 65G10, 68M15

1 About the Program Package intpak

1.1 Extent of Function

The interval package intpak included in the share-library of Maple contains

– the new data type interval (long number intervals),

– the corresponding basic arithmetic operations,

– basic interval functions and

– some auxiliary functions.

The Data Type interval

A variable x is of type interval if x is either an empty list or if x = [x1, x2] is a
list with two elements. The interval ends xi, i = 1, 2 must fulfill one of the following
requirements:

– xi is a real number of type float or xi is equal to 0.

– xi ∈ {−infinity, infinity}.
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– xi is a constant predefined in Maple (to these belong Pi, gamma, Catalan,

FAIL, false, true and infinity).

Remark: Numbers of type integer or of type fraction are not allowed as interval
ends!

Basic Arithmetic Operations

The basic operations implemented are &+, &−, &∗, &/ and inv. Their input parame-
ters must be either of type interval or of type num or FAIL. The output is an intervall.

A variable is of type num or FAIL if its value is a number (i. e. the variable is of
type numeric ), −infinity or a constant predefined in Maple (s. above).

Remark: The priorities for the so–called ’inert’ operators &+, &−, &∗, &/ are
unfortunately set in Maple such that &+ and &− have a higher priority than &∗ and
&/. Because of this, one has to use lots of brackets in terms!

Basic Interval Functions

The interval functions implemented are &sqr, &sqrt, &ln, &exp, &∗∗, &intpower,
&sin, &cos, &tan, &arcsin, &arccos, &arctan, &sinh, &cosh und &tanh. It is
assumed that the corresponding mathematical functions in Maple deviate maximally
by 0.6 ulp from the exact results. This assumption is, however, confirmed nowhere in
the Maple manual.

Most names are self–explaining. The operation &intpower corresponds to the
function xn, n a natural number. The operator &∗∗ corresponds to the function xα,
where α can mean an interval, an integer or a number of type float.

Auxiliary Functions

The function construct generates from a number or a pair of numbers an element
of type interval. As optional parameter may be entered the string ’rounded’. In
this case the interval ends are rounded by one ulp from above or from below. This is
realized with the functions ru (Interval Round Up) and rd (Interval Round Down).
Notice that the input parameters of ru and rd must by of type float.

Also contained are the functions midpoint, width, &intersect, &union and
is in. The function width calculates the diameter and midpoint a confinement of
the centre of an interval.

For converting a term into an interval term resp. into an interval function, there
are the commands ‘convert/interval‘ and inapply.
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1.2 First Calculation Examples

The interval package intpak can be called up the following way:

> with(share):

See ?share and ?share,contents for information about the share library

> with(intpak);

[init ]

Notice that in Maple the distinction between upper and lower case is significant.
Example 1: The data type interval

Interval ends of type integer are not admitted:

> x:=[1,2];

x := [1, 2]

> type(x,interval);

false

> x:=construct(1,2); type(x,interval);

x := [1., 2.]

true

Generate confining interval:

> construct(1,rounded);

[.999999999, 1.000000001]

> y:=construct(1,infinity,rounded);

y := [.999999999, ∞]

> type(y,interval);

true

Diameter and confinement of interval centre:

> width(x); width(y);

1.
∞

> midpoint(x);

[1.499999999, 1.500000001]

Example 2: Set–theoretic operations

> x:=[1.,3.]; y:=[2.,infinity]; z:=[4.,5.];

x := [1., 3.]

y := [2., ∞]

z := [4., 5.]

> x &union y;

[1., ∞]
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> x &union z;

[1., 3.], [4., 5.]

The resulting set consists of two intervals. Thus, &union does not calculate the
interval hull. For this the procedure &Convex Hull is available in intpakX.

> x &intersect y;

[2., 3.]

> x[1];

1.

> is_in(x[1],y);

false

> is_in(z,y);

true

Example 3: Arithmetic Operations and Interval Functions

> [1.,2.] &+ 3 &* 0; # Wrong priorities of operators

[0, 0]

> [1.,2.] &+ (3 &* 0);

[.999999999, 2.000000001]

> [-1.,2.] &intpower 3;

[−1.000000001, 8.000000001]

> &sqr(&cosh(1)) &- &sqr(&sinh(1));

[.9999999919, 1.000000008]

Example 4: Value domain confinements
Confinement of the value domain of f(x) := x3 − x2 − x + 1 on the interval [0, 0.5]
by evaluation with intervals, using the mean value form and taking into consideration
the monotony properties of f .

> x:=’x’; # release variable

x := x

> f:=x^3-x^2-x+1;

f := x3 − x2 − x+ 1

> F:=inapply(f,x); # Transformation of f into an interval function

F := x→ (x ‘&intpower‘ 3) ‘& + ‘

(((−1) ‘& ∗ ‘ (x ‘&intpower‘ 2)) ‘& + ‘ (((−1) ‘& ∗ ‘ x) ‘& + ‘ 1))

Transformation of the derivative f ′ of f into an interval function

> dF:=inapply(diff(f,x),x);

dF := x→ (3 ‘& ∗ ‘ (x ‘&intpower‘ 2)) ‘& + ‘ (((−2) ‘& ∗ ‘x) ‘& + ‘ (−1))
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Confinement of the value domain of f on the interval [0,0.5]

> X:=[0,0.5];

X := [0, .5]

> mid_X:=midpoint(X);

mid X := [.2499999999, .2500000002]

> r_i:=F(X); # evaluation with intervals

r i := [.2499999994, 1.125000003]

> r_m:=F(mid_X) &- ( dF(X) &* (X &- mid_X) ); # mean value form

r m := [.2031249977, 1.203125003]

The evaluation with intervals of f ′ on the interval X = [0, 0.5] shows that f is
monotonically decreasing in X.

> dF([0,0.5]);

[−2.000000003, −.2499999985]
The exact value domain of f on X is the interval [0.375, 1]. A very sharp

confinement of the value domain can be calculated in the following way:

> r_e:=construct(F(X[2])[1],F(X[1])[2]);

r e := [.3749999993, 1.000000003]

F(X[2]) calculates the evaluation with intervals of f at the point X[2]= 0.5.
F(X[2])[1] gives the lower interval end of F(X[2]), thus a safe lower bound for the
minimum of f on the interval [0, 0.5].

In order to verify if the ’exact’ confinement of the value domain r e is contained in
the intersection of the confinements r i and r m calculated above, e. g. the procedure
is in may be used.

> is_in(r_e, r_i &intersect r_m);

true

1.3 Necessary Corrections and Changes

In this section some errors in the implementation of the intpak–procedure
‘convert/interval‘, removed by the extension intpakX, are discussed. Moreover,
we will indicate some changes in the definition of the type interval comp and the
implementation of the procedures is in, Interval power and construct made with
respect to intpakX.

The procedures ‘convert/interval‘ and inapply

The command inapply should(!) transform a term into an interval function, and is
therefore very useful for generating procedures built up out of the package intpak

(see also example 4, section 1.2). the transformation takes place in two steps. First
the entered term is transformed, using the command ‘convert/interval‘, into an
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interval term. Then, from the interval term is generated with the Maple command
inapply an interval function.

Unfortunately, there have crept into the implementation of the command
‘convert/interval‘ some errors which become noticeable when calling up inapply:

1. The call–up

> inapply(0.5*t,t);

Error, (in type/interval\_comp) too many levels of recursion

leads to an error message. For the procedure ‘convert/interval‘ enters an
endless loop if a product with a factor of type float occurs in a term.

2. Transforming f(t) :=
√
t into an interval function:

> f:=inapply(sqrt(t),t);

f := t→ t ‘&ˆ‘
1

2
Actually, one would have expected the output f :=&sqrt. But Maple transforms

the term
√
t into t1/2 before the procedure inapply is started. If one e. g. wants to

calculate f([4., 9.]), then the term is given back unevaluated, as the operator &ˆ is not
defined in intpak:

> f([4.,9.]);

[4., 9.] &ˆ
1

2
The correct operator notation for the procedure Interval power defined in intpak

would be &∗∗. However, the call–up

> [4.,9.] &** (1/2);

[4., 9.] & ∗ ∗ 1

2
also does not deliver the desired result, as the procedure Interval power does not

permit rational numbers in the second argument.

> [4.,9.] &** 0.5;
[1.999999999, 3.000000001]

finally gives the desired result.

3. In the transfer of the interval package from release 4 to release 5 has crept in an
additional error. The global variable Interval fnlist responsible for transforming
the standard functions into the corresponding interval functions has gone lost.

> inapply(sin(x),x);

Error, (in convert/interval) wrong number (or type) of parameters in
function subs
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In order to be also able to handle terms containing standard functions one there-
fore has to use the extension intpakX. The variable Interval fnlist is initialized
automatically by loading intpakX.

With the improved version of the procedure ‘convert/interval‘ contained in
the package intpakX one obtains e. g.:

> f:=inapply(0.5*t,t);

f := t→ .5 ‘& ∗ ‘ t

> f(2);

[.999999999, 1.000000001]

> f:=inapply(sqrt(t),t);

f := &sqrt

> f([4.,9.]);

[1.999999999, 3.000000001]

> f:=inapply(sin(x)+x,x);

f := x→ ‘&sin‘(x) ‘& + ‘ x

> f(0);

[0, 0]

The Procedure Interval power

In order to enable the evaluation of e. g. the second derivative of f(x) :=
√
x

f ′′(x) = −1

4
x−

3
2

with intervals, the procedure Interval power (alias &∗∗) was completed such that
also rational numbers are permitted as second parameter.

Calculating f ′′(4) with a floating point arithmetic

> evalf(-1/4*4^(-3/2));

−.03125000000
Evaluation of f ′′(4) with intervals

> df2:=inapply(diff(sqrt(x),x$2),x);

df2 := x→ (
−1

4
) ‘& ∗ ‘ (x ‘& ∗ ∗‘ (−3

2
))

> df2(4);

[−.03125000004, −.03124999997]
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The data types interval comp and interval

According to the definition of the type interval comp the in Maple predefined
constants Pi, gamma, Catalan, false and true are permitted as interval ends
in intpak. However, this is not considered in the implementation of the type
interval as well as in the implementation of the basic operations and the basic in-
terval functions, and therefore leads to unexpected results or error messages. Examples:

> type([1.,Pi],interval);

Error, (in intpak/max) cannot evaluate boolean

> &sinh([-infinity,Pi]);

Error, (in Interval\_ulp) improper op or subscript selector

> 1. &+ [Pi,infinity];

[1.+ π − Float(1, −8 + π), ∞]

In the last case there is no error message, but the result is not of type interval.
A similar behaviour occurs with the other constants mentioned above. Therefore, the
interval package intpakX contains a changed version of the data type interval comp

which does no longer permit the Maple constants Pi, gamma, Catalan, false and
true as interval components (i. e. as interval ends).

This does not mean an essential restriction, as in the execution of interval
operations the constants Pi, gamma and Catalan are transformed into numbers of
type float, anyway. Example:

> &sin(Pi);

[−.979323846265 10−11, .102067615375 10−10]

The Procedure is in

The intpak–procedure is in has two input parameters, and verifies if the first
parameter is contained in the second (in a set–theoretical sense). As input parameters
are allowed variables of type interval, numbers of type numeric and the values FAIL,
infinity and -infinity. In particular, numbers of type rational which until now
have lead to wrong results are also allowed. Example

> Digits; # accuracy

10

> is_in(1/3,[0.3333333332,0.3333333333]);

true
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The result is obviously wrong, as

1/3 /∈ [0.3333333332, 0.3333333333].

Of course, erroneous results occur also, if numbers of type float are used whose
length exceeds the current value of the variable Digits.

> is_in(1.9999999999,[2.,2.]);

true

Also the Maple command evalb gives out wrong results, as floating point numbers
occur in the logical term.

> evalb((0.3333333332 <= 1/3) and (1/3 <= 0.3333333333));

true

> evalb(2. <= 1.9999999999);

true

If all input parameters are, however, rational numbers, then the result under evalb
is correct, whereas is in leads in this case to a wrong result.

> is_in(1/3,3333333333/10^10);

true

> evalb(1/3 = 3333333333/10^10);

false

Thus, in order to improve the procedure is in in such a way that, when using
rational or ’too long’ floating point numbers, a correct result is given out, the exact
rational long number arithmetic of Maple has to be used.

In order to achieve this, a number of type float must be able to be converted
into a number of type rational without ’conversion errors’. The Maple command
convert/rational can unfortunately not be used for this.

> convert(0.3333333333,rational);
1

3

Using the Maple command op it seems, however, to be possible to perform
error–free conversions.

> x:=0.3333333333;

x := .3333333333

Converting x into a rational number:

> x_rational:=op(1,x) * 10^op(2,x);

x rational :=
3333333333

10000000000
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Is x = x rational ?

> evalb((x <= x_rational) and (x_rational <= x));
true

Is x = 1/3 ?

> evalb((x <= (1/3)) and ((1/3) <= x));
true

Is x rational = 1/3 ?

> evalb((x_rational <= (1/3)) and ((1/3) <= x_rational));
false

The extension intpakX contains the command ‘intpakX/greater‘ which checks
if the first input parameter is greater than the second using the transformation shown
above and the long number arithmetic of Maple. With this command the procedure
is in was changed in such a way that it gives out a correct result even if one of the
numbers is rational or if the length of the entered numbers exceeds the value of the
variable Digits. Example:

> Digits;

10

> is_in(1.9999999999999999,[2.,2.]);
false

> is_in(1/3,[0.3333333332,0.33333333333333333]);
false

The Procedure construct

As parameters of an intpak interval operation are also permitted numbers of type
numeric, as well as Maple–constants. Before performing the operation these are
converted into intervals using the procedure construct. However, these intervals are
not always a confinement of the actual value of the entered number which leads to
erroneous results. Examples:

> (1/3) &- 0.3333333333;
[0, 0]

> 1.0000000001 &- 1.;
[0, 0]

In both cases [0, 0] is obviously not a confinement of the exact result. The cause
of this error is in the procedure construct. On entering a rational or ’too long’ num-
ber without the optional parameter rounded, it does not generate a confining interval.

> construct(1/3);
[.3333333333, .3333333333]
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> construct(1.0000000001);

[1.000000000, 1.000000000]

Similarly to dealing with the procedure is in, the procedure can be corrected
in this case using the exact rational arithmetic of Maple. With the improved
intpakX-version of construct one then obtains

> construct(1/3);

[.3333333333, .3333333334]

> (1/3) &- 0.3333333333;

[0, .1000000001 10−9]

> construct(1.0000000001);

[1.000000000, 1.000000001]

> 1.0000000001 &- 1;

[0, .1000000001 10−8]

2 The Extension intpakX

2.1 The Installation of intpakX

The commands of the extension intpakX are stored in the file intpakX.m. It can be
called off via ftp from the server iamk4515.mathematik.uni-karlsruhe.de in the di-
rectory /pub/iwrmm/maple/software. The file was generated with Maple V Release 5.

The file can be read with with if the path to the directory in which it is filed is
stored in the system variable libname. The variable libname generally contains only
the path to the Maple-library. It is initialized automatically when starting Maple.

> restart;

> libname;

“C:\\PROGRAMME\ \MAPLE V RELEASE 5/lib”

If the share-library of Maple is loaded with with, then the path to the directory
containing the share-packages is stored in libname.

> with(share);

See ?share and ?share,contents for information about the share library

> libname;

“C:\\PROGRAMME\ \MAPLE V RELEASE 5/lib”,

“C:\\PROGRAMME\ \MAPLE V RELEASE 5/share”
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If the file intpakX.m is filed in this share-directory, then it can be read with with

like all other share-packages. As intpakX is based on the interval package intpak

and contains some changed commands, the package intpak has to be loaded before.
(If the reading of intpakX does not work the first time, then the system should be
restarted with restart.)

> with(intpak):

Share Library: intpak

Authors: Connell, Amanda E. and Corless, Robert.

Description: Interval Arithmetic Package

> with(intpakX);

Authors: Geulig, Ilse and Kraemer, Walter (supervisor),
University of Karlsruhe, IWRMM

Description: Extension of the Interval Arithmetic Package intpak

[&cadd , &cdiv , &cdiv opt , &cmult , &cmult opt , &csub, centred form eval , cexp,
complex disc plot , compute all zeros, compute all zeros with plot ,
compute combined range, compute mean value range,
compute monotonic range, compute naive interval range, compute range,
compute range3d , compute taylor form range, ext int div , horner eval cent ,
horner eval opt , init , interval list plot , interval list plot3d , is in, mid ,
rel diam, subdivide adaptive, subdivide equidistant ]

Unfortunately this way of proceeding generally works only under Windows, as
under Linux the different users may not put their own files into the share-directory.
Let now be /users/maple/software the directory containing the file intpakX.m. If
one extends (during a Maple session) the system variable libname by the path to this
directory, then the package intpakX can be read again with with.

Example for loading the interval package intpak and the extension intpakX:

> restart;

> with(share):

See ?share and ?share,contents for information about the share library

> with(intpak);

[init ]

Extension of the system variable libname by the path to the directory in wich
intpakX.m is stored.

> libname:=libname, "/users/maple/software"; # under Linux

libname := “/usr/local/maple/lib”, “/usr/local/maple/share”, “/users/maple/software”
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> libname:=libname,"C:\\users\\maple\\software": # under Windows

> with(intpakX);

With the procedures with graphical output (see e. g. sections 3 and 4.3) are used
routines frome the plots-package as well as the geometry-package. Therefore these
packages are usually included (without the user’s further doing) when intpakX is in-
cluded.

2.2 Function Range of the Extension intpakX

The package intpakX places at the user’s disposal the following extensions to the
interval package intpak:

1. Verified calculation of zeros

– the extended interval division ext int div,

– the realization of an extended interval Newton-procedure,
(compute all zeros, compute all zeros with plot)

2. Complex disc arithmetics

– the new data type complex disc (complex disc interval),

– the procedure mid for determining the centre of an interval (resp. an ap-
proximation of the centre lying certainly in the entered interval),

– basic arithmetic operations for disc intervals (usual ‘centred‘ defintions)
(&cadd, &csub, &cmult, &cdiv),

– area-optimal multiplication and division of two disc intervals (&cmult opt,
&cdiv opt),

– the exponential function for disc intervals, (cexp),

– various algorithms for safe confinement of the range of a complex polynomial,
(horner eval cent, horner eval opt, centred form eval)

3. Range confinements with graphical output

– confinement of the range of a real-valued function in one real variable by
successive partition of the start interval into subintervals (compute range)

– confinement of the range of a real-valued function in two real vari-
ables by successive partition of the start interval into subintervals
(compute range3d).

4. A series of procedures for graphical illustration of the procedures mentioned
above.
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3 Ranges with Graphical Output

3.1 Functions in One Variable

Two simple possibilities to confine the range of a function f : D ⊆ IR → IR over
an interval [x] ⊆ D were presented already in example 4, section 1.2. Namely the
interval-evaluation of f (if it exists) and the mean value form (if the interval-evaluation
of f ′ over [x] exists.

An improved confinement is obtained if the interval [x] is partitioned and over
each subinterval is calculated a range confinement. The interval hull of these subrange
confinements is then a confinement of the range of f over [x]. If the partition is
continued successively, then the initial range confinement can be improved successively.

This is realized by the procedure compute range. The procedure demands three
input parameters

– a function f,

– the start interval xstart (may be entered either as interval or as range)

– the number of iterationsteps to be performed. It is used as an interrupt
criterion.

The order of the three parameters mentioned above is compulsory. In addition, the
entering of four optional parameters (in any order) is possible

– Remitting a parameter Nx = n, n an integer greater than or equal to 1, effects
the partitioning of the start interval into n intervals before all.

– the optional parameter linear (quadratic) effects the linear (quadratic) con-
vergence of the procedure. On entering linear, the ’naive’ interval evaluation
is used for determining the subrange confinements. If quadratic is remitted
as parameter, the procedure compute combined range is used for determining
the subrange confinements, combining interval-evaluation, mean-value form and
monotony-test. If none of these two parameters is entered, then in the first three
iteration steps interval-evaluation is used for determining the range confinements,
and from step 4 on is used the procedure compute combined range.

– the optional parameter adaptive effects the adaptive partitoning of the current
interval list, and therefore generally leads to a calculation-time reduction.

– the optional parameter colorlist = [color1,color2,...] determines the
colours used the graphical illustration of each iteration step. color1, color2,
etc. must be colours predefined in Maple, e. g. blue, red, green, magenta,

coral, brown etc. This does, however, not influence the illustration of the last
iteration step which is always illustrated in yellow.
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For reasons of clearness, only the graphical illustration of the last three iteration
steps and the function f are given out. The graphical illustration of all iteration steps
is, however, stored in the global variable q. The variable q is a table. If 3 iteration
steps were performed, then the entries q[1], q[2] and q[3] contain the illustrations
of each iteration step, however, not the graph of the function. This is stored in the
table entry q[4].

Also the calculated range confinements are stored — in the global variable r. It is
also a table and r[i] contains the range confinement calculated in the i-th step.

The current partition of the start interval is stored in the global variable
list of intervals. The corresponding subrange confinements are stored in the
variable list of ranges.

Examples:

Confinement of the range of the function

> f:=x->exp(-x^2)*sin(Pi*x^3);

f := x→ e(−x2) sin(π x3)

over the interval X := [0.5, 2.] using the procedure compute range

> X:=[0.5,2.];

X := [.5, 2.]

> compute_range(f,X,4);

initial range confinement = [-.7788007834, .7788007834]

range confinement after iteration step 4 =
[-.3233867682,.6103317518]

The initial range confinement is ≈ [−0.78, 0.78]. The range confinement after 4
iteration steps, that is after partitioning into 24 = 16 subintervals, is ≈ [−0.32, 0.61].
The graphical output can be found in Figure 1.

The same range confinement is obtained already after 1 iteration step if the
start interval is partitioned before all into 23 intervals and the optional parameter
quadratic is given:

> compute_range(f,X,1,Nx = 2^3,quadratic);

initial range confinement = [-.7788007834, .7788007834]

range confinement after partitioning into 8 subintervals =

[-.3233867682,.6639743998]

range confinement after iteration step 1 =
[-.3233867682,.6103317518]
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Figure 1: refining a range confinement by partitioning
the argument domain into subintervals

Using the parameter adaptive can generally reduce the number of subintervals
considerably:

> compute_range(f,[0.5,2.],6,adaptive);

initial range confinement = [-.7788007834, .7788007834]

range confinement after iteration step 6 =
[-.2834388814,.5563221618]

The current partitioning of the start interval is stored in the variable
list of intervals. Therefore, the total number of subintervals can be deter-
mined simply at any time. In the example above it is determined in the following way
(after 6 iteration steps):

> nops(list_of_intervals);

24

Without the parameter adaptive the number of subintervals after 6 iteration steps
would be 26 = 64.

In order to illustrate only the last iteration step and the function f , the plots-
command display can be used. The result of the following call-up is found in Figure 2.
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> display([q[7],q[6]],title=‘Adaptive partitioning after 6
iterationsteps‘,titlefont=[TIMES,BOLD,12]);

–0.2

0

0.2

0.4

0.6 0.8 1 1.2 1.4 1.6 1.8 2x

Figure 2: adaptive partitioning

3.2 Functions in Two Variables

The Procedure compute range3d calculates range confinements for real-valued func-
tions in two real variables over a two–dimensional interval X × Y .

Its input parameters are (analogous to compute range, however, without the op-
tional parameters linear/quadratic and adaptive)

– the function f,

– a real interval, or a domain X,

– a real interval, or a domain Y,

– the number of iteration steps to be performed.

The order of these parameters is compulsory. With this procedure, too, can be set
a series of optional parameters
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– the parameters Nx = n and Ny = m effect a corresponding partitioning of the
start interval (axe-parallel right-angle) in the x-y-direction,

– the parameter colorlist has the same meaning as in compute range,

– the parameter cutout = r determines the strength of the lines in the illustration
of the calculated confinements. Here, r should be 0, 1 or a fraction with 0 < r < 1.

In addition, any options of the plot3d–command can be used.

For determining the subrange confinements in compute range3d the ’naive’
interval-evaluation is used. In each iteration step the subintervals are partitioned just
in one direction. If e. g. two iteration steps are performed, then in the first step is
partitioned in x-direction and in the second in y-direction.

Example: Determining a range confinement for the function
> f:=(x,y)->exp(-x*y)*sin(Pi*x^2*y^2);

f := (x, y) → e(−x y) sin(π x2 y2)

over th interval X × Y = [π/8, π/2]× [π/8, π/2].

> X:=[evalf(Pi)/8,evalf(Pi)/2]; Y:=X;

X := [.3926990818, 1.570796327]

Y := [.3926990818, 1.570796327]

> compute_range3d(f,X,Y,4);

initial range confinement = [-.8570898115, .8570898115]

range confinement after iteration step 1 =
[-.8570898115, .8570898115]

range confinement after iteration step 2 =
[-.6800891261, .8570898115]

range confinement after iteration step 3 =
[-.6800891261, .8486122905]

range confinement after iteration step 4 =
[-.5093193828, .7559256232]

After each iteration step the calculated range confinement is given out. Only the
illustration of the last iteration step and the graphical illustration of the function f
are given out. Also in this case, the graphical illustrations of the other iteration steps
are stored in the global variable q.

The graphical output of the procedure can, as in any other 3d-graphics in Maple,
be edited thereafter with the commands from the graphics-menue. The desired
graphic-options can, however, also be called up directly as parameters. E. g. the
command
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> compute_range3d(f,X,Y,3,cutout=9/10,color=yellow,
> lightmodel=light2,axes=framed,titlefont=[TIMES,BOLD,12],

title=‘range confinement by partitioning into
subintervals‘,);

generates the graphics in Figure 3.
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Figure 3: range confinement of a function in two variables

4 Verified Calculation of Zeros

The extension intpakX contains a realization of the extended interval-Newton-iteration

{
[x]0 , real start interval
[x]k+1 := N([x]k) ∩ [x]k, k = 0, 1, 2, . . . ,
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where

N([x]) := m([x]) − f(m([x]))

f ′([x])

denotes the interval-Newton-operator and m([x]) usually the centre of the interval [x].

If f : D ⊂ IR → IR is a continuously differentiable function on D and [x]0 ⊂ D a
real interval for which the interval-evaluation f ′([x]0) exists, then the interval-Newton-
iteration calculates confinements of all zeros of f contained in [x]0. In addition, using
this procedure the existence and uniqueness of simple zeros of f in the given start
interval can be proved. A more detailed description of this procedure can be found in
[8].

The case 0 ∈ f ′([x]0) is permitted! Therefore, for performing this procedure one
needs the extended interval division and the subtraction of an extended interval of a
real number (extended interval subtraction, see page 24).

4.1 Extended Interval Division and Extended Interval Sub-
traction

Let IIR be the set of real intervals and

IIR∗ := IIR ∪ {[−∞, r] | r ∈ IR} ∪ {[l,+∞] | l ∈ IR} ∪ {[−∞,+∞]}
the set of extended intervals.

The definitions of extended interval division and extended interval subtraction used
in intpak resp. intpakX correspond to the definitions used in [15]. The interval oper-
ations defined in this way are inclusion-isotonic.

For two real intervals [x] = [x, x] and [y] = [y, y], the extended interval division is
defined as follows

[x]/[y] :=




[x] · [1/y, 1/y], if 0 /∈ [y]
[−∞,+∞], if 0 ∈ [x] and 0 ∈ [y]
[x/y,+∞], if x < 0 and y < y = 0
[−∞, x/y] ∪ [x/y,+∞], if x < 0 and y < 0 < y
[−∞, x/y], if x < 0 and 0 = y < y
[−∞, x/y], if 0 < x and y < y = 0
[−∞, x/y] ∪ [x/y,+∞], if 0 < x and y < 0 < y
[x/y,+∞], if 0 < x and 0 = y < y
[ ], if 0 /∈ [x] and 0 = [y].

As the data type interval admits the points −infinity and infinity as interval
ends, the extended interval division can be included without difficulty in the interval
package. The corresponding command in intpakX is called ext int div. Examples:

> ext_int_div([1.,2.],[-1.,1.]);

[−∞, −.999999999], [.999999999, ∞]
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> ext_int_div([-2.,-1.],[0,2.]);
[−∞, −.4999999999]

For r ∈ IR and an interval [y] ∈ IIR∗ ∪ {[ ]} the extended interval subtraction is
defined by

r − [y] :=




[r − y, r − y], if [y] = [y, y] ∈ IIR
[ −∞,+∞], if [y] = [−∞,+∞]
[r − y,+∞], if [y] = [−∞, y]
[ −∞, r − y], if [y] = [y,+∞]
[ ], if [y] = [ ].

This is already realized by the subtraction operator &− contained in intpak.
Examples:

> 1 &- [1.,infinity];

[−∞, 0]

> 1 &- [-infinity,1.];

[0, ∞]

> 1 &- [];

[]

> 1 &- [-infinity,infinity];

[−∞, ∞]

4.2 Extended Interval-Newton-Iteration

The procedure compute all zeros computes confinements of all zeros of a continuously
differentiable function in a given entered start interval using the interval-Newton-
iteration.

The input parameters of the procedure compute all zeros are

– the function f whose zeros are supposed to be calculated,

– the start interval xstart of the iteration and

– the desired relative diameter eps of the zero-confinements to be calculated.

The relative diameter of a real interval is defined as follows

drel([x]) :=




d([x])
〈[x]〉 , if 0 /∈ [x]

d([x]), otherwise.

Hereby, d([x]) denotes the diameter and 〈[x]〉 the minimum absolute value of the
interval [x].
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The order of the parameters mentioned above is compulsory. As optional fourth
parameter the desired accuracy, i. e. the value of the system variable Digits within the
procedure can be entered. The fourth parameter should therefore be a positive integer
greater than or equal to 10. If this fourth parameter is missing, then the accuracy is
adapted to the relative accuracy needed and the length of the input-parameters, but
in any case is greater than or equal to the current value of the variable Digits.

Given out is the accuracy used, the computed confinements of the zeros, and for
each confinement the information if existence and uniqueness of a zero in the given
interval was proved.

If the calculated interval was only a potential confinement of a zero, then it may
contain either one, various or no zero of f at all.

The computed zero-confinements are stored in a global variable zeros and can
therefore be used further in any way. zeros is a table and the access to an entry of
the table is made in the usual way, e. g. using zeros[2].

Further global variables initialized in the procedure are the table infos containing
the additional informations, the number of calculated zero-confinements N and the
step counter iter counter.

Example 1: Calculating all zeros of

> f:=x->2*exp(tan(cos(x))) - sin(x) + cos(2*x);

f := x→ 2 etan(cos(x)) − sin(x) + cos(2 x)

in the interval [0, 8].

0

2

4

6

8

10

2 4 6 8x

Figure 4: illustration of the function f(x) := 2etan(cos(x)) − sin(x) + cos(2x)

The function has three simple zeros in the interval [0, 8] (see Figure 4). Two of
them can be given exactly, namely π

2
und 5π

2
. An approximation of the third zero can
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be determined with the command fsolve.

Testing if π/2 and 5π/2 are zeros of f :

> f(Pi/2);

0

> f(5*Pi/2);

0

Calculating the third zero with fsolve, Digits=30:

> Digits:=30: zero3:=fsolve(f(x),x=2..2.5); Digits:=10:

zero3 := 2.26480074200004996505814286126

Calculating the zero-confinements, Digits=20 (fourth input parameter):

> compute_all_zeros(f,[0,8.],10^(-10),20);

Digits = 20

[7.8539816339705772082, 7.8539816339775304044]

contains exactly one zero

[2.2648007419999768034, 2.2648007420001249007]

contains exactly one zero

[1.5707963267948966180, 1.5707963267948966204]

contains exactly one zero

number of zero confinements: 3

number of iteration steps: 21

Verifying if the zeros of f are contained in the calculated zero-confinements:

> is_in(evalf(Pi/2,30),zeros[3]);

true

> is_in(evalf(5*Pi/2,30),zeros[1]);

true

> is_in(zero3,zeros[2]);

true

Example 2: Confining the zero of

> f:=x->(x-1)^3;

f := x→ (x− 1)3
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with start interval [−3., 4, ]. The relative diameter of the confinement should be
≤ 10−50. (The accuracy used is adapted automatically.)

> compute_all_zeros(f,[-3.,4.],10^(-50));

Digits = 55

[.9999999999999999999999999999999999999999999999999997208,

1.000000000000000000000000000000000000000000000000005551]

potential zero confinement

number of zero confinements: 1

number of iteration steps: 163

Diameter and relative diameter of the calculated zero-confinement:

> Digits:=55:

> diam:=width(zeros[1]);

diam := .58302 10−50

> ‘relative_diam‘:=rel_diam(zeros[1]);

relative diam :=
.5830200000000000000000000000000000000000000000000001628 10−50

> Digits:=10:

4.3 Graphical Illustration

For graphical illustration of the interval-Newton-iteration, the procedure
compute all zeros with plot is at the user’s disposal. It calculates analogously
to the procedure compute all zeros zero-confinements with the interval-Newton-
iteration. Additionally, however, each iteration step is illustrated graphically.

Here, too, can be entered as optional fourth parameter the value of the variable
Digits. Further, the input of a fifth optional parameter is possible, stating how many
iteration steps may be performed maximally. If this fifth parameter is missing, then
the maximum number of iteration steps must be entered interactively. The input must
end with a colon or a semicolon.

Example: Calculating a zero-confinement of the function

> f:=x->exp(sin(x-1))-1;

f := x→ esin(x−1) − 1
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in the interval [0, 3.]:

> compute_all_zeros_with_plot(f,[0.,3.],10^(-3));

> 10;

The output of the procedure call-up is found on the pages 29 and 30. The slopes
of the dotted lines are given by the smallest resp. greatest slope of all tangents to the
graph of the function in the current argument domain xalt. The lines intersect in the
point (expansion point, f(expansion point)). The intersection points of these lines with
the x-axis are important auxiliary quantities for determining the next iteration of the
extended interval-Newton-iteration (see page 22).

5 Disc Arithmetics

Based on the real interval operations, also a complex interval arithmetic can be
defined. In the extension intpakX, such an arithmetic for disc intervals is realized.

A disc interval with centre z0 ∈ C and radius r > 0

Z = 〈z0, r〉 := {z ∈ C | |z − z0| ≤ r}

is stored in intpakX as a list with three entries: real part of the centre z0 of Z,
imaginary part of z0 and radius r.

The name of this new data type is complex disc. As components of this new type
are permitted numbers of type numeric, i. e. especially numbers of type integer and
of type fraction, too.

For graphical illustration of a disc interval can be used the procedure
complex disc plot. It has as input parameter a variable of type complex disc.
As further optional parameters can be entered the usual illustration options of the
Maple-command plot.

5.1 Arithmetic (Disc-)Operations

The basic arithmetic operations for disc intervals are usually defined (see e. g. [1]) as
follows.

Let A = 〈a, ra〉 and B = 〈b, rb〉 be two disc intervals. Then
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Digits =    10
      
Iteration step    1
xOld=   [0, 3.]
xNew1=   [2.043797652, 3.]
xNew2=   [0, 1.273700327]

xNew2 xNew1

xOld

x

32.521.510.50

1.5

1

0.5

0

-0.5

Iteration step    2
xOld=   [0, 1.273700327]
xNew1=   [.8650186701, 1.273700327]

xNew1

xOld

x

1.41.210.80.60.40.20

0.2

0

-0.2

-0.4

-0.6
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Iteration step    3
xOld=   [.8650186701, 1.273700327]
xNew1=   [.9840864652, 1.014594170]

xNew1

xOld

x 1.31.21.110.9

0.3

0.2

0.1

0

-0.1

Iteration step    4
xOld=   [.9840864652, 1.014594170]
xNew1=   [.9999902275, 1.000010447]

xNew1

xOld

x 1.0151.011.00510.9950.990.985

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

[ ],.9999902275 1.000010447

contains exactly one zero
         
number of zero confinements:    1
number of iteration steps:    4
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A+B := 〈a+ b, ra + rb〉
A− B := 〈a− b, ra + rb〉
A · B := 〈a · b, |a|rb + |b|ra + rarb〉
1 /B :=

〈
b

bb− r2
b

,
rb

bb− r2
b

〉
, 0 /∈ B

A/B :=A · (1 /B), 0 /∈ B

where |a| =
√
a2

1 + a2
2 denotes the absolute value of the complex number a = a1+i a2

and b = b1 − i b2 the complexe conjugate of b = b1 + i b2.

For the operations defined in this way, we have with the notations as above

A± B = {a± b | a ∈ A, b ∈ B}
A · B i. a. �=⊇ {a · b | a ∈ A, b ∈ B}
1 /B = {1/b | b ∈ B}
A/B

i. a. �=⊇ {a/b | a ∈ A, b ∈ B}
The operations for disc intervals defined above are realized in the extension intpakX

by the operators &cadd, &csub, &cmult and &cdiv. For the inversion, there is no
extra operator.

Area-Optimal Multiplication and Division

The (so-called centred) multiplication of two disc intervals A = 〈a, ra〉 and B = 〈b, rb〉
defined above delivers, for given centre a · b, an optimal confinement of the resulting
point complex {α · β |α ∈ A, β ∈ B}. This confinement, however, is not area-optimal.

Determining an area-optimal confinement of the point–result set under multipli-
cation of two disc intervals is more tedious and leads to solving an equation of third
degree (see [11]).

For A = 〈a, ra〉 and B = 〈b, rb〉, the area-optimal multiplication is defined as

A ·opt B := 〈ab (1 + x0), (3 |ab|2x0
2

+2 (|ab|2 + |rab|2 + |rba|2) x0

+|rab|2 + |rba|2 + (rarb)
2 )

1
2 〉

where x0 is the non-negative zero of the polynomial

P (x) = 2 |ab|2x3 + (|ab|2 + |rab|2 + |rba|2)x2 − r2
ar

2
b
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if grad(P ) ≥ 2 (otherwise, we set x0 = 0).

The area-optimal division of two disc intervals is then defined as

A/optB := A ·opt (1/B).

The package intpakX contains a realization of the area-optimal multiplication
(&cmult opt) and the area-optimal division (&cdiv opt) of two disc intervals.

General Procedure when Implementing the Basic Operations

Let A and B be two disc intervals, which can be displayed on the calculator exactly
and let ∗ ∈ {+,−, ·, /}. In order to obtain a safe confinement C on the machine of the
exact result complex A ∗B, during the implementation was proceeded as follows:

1. Calculate a real machine interval cx confining the real part of the centre of the
result interval, and a real machine interval cy confining the imaginary part.

2. Calculate the radius r of the resulting circle as:

r1 := sup(formula for the radius evaluated with intervals)

r2 := �(r1 + d(cx))

r := �(r2 + d(cy))

where � denotes the rounding from above and d(cx), d(cy) the diameter of cx
resp. cy.

3. Set C = 〈m(cx) + i ·m(cy), r〉. m(cx) and m(cy) denote the centre of cx resp.
cy.

In order to determine the centre of an interval, the procedure mid is used. In
contrast to the intpak-procedure midpoint, it does not calculate a confinement of the
centre of an interval, but a number (approximation of the centre of the interval) lying
certainly within the entered interval.

A Numerical Example

For A = 〈1, 1〉, B = 〈−1 + i, 1〉 we have

A+B= 〈i, 2〉
A−B= 〈2− i, 2〉
1 /B= 〈−1 − i, 1〉

Calculation with Maple

> A:=[1,0,1]: B:=[-1,1,1]:

> A &cadd B;
[0, 1.000000000, 2.000000005]
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> A &csub B;
[2.000000000, −1.000000000, 2.000000007]

> 1 &cdiv B;
[−1.000000001, −1.000000001, 1.000000051]

Using centred multiplication (see p. 31) one obtains

A · B= 〈−1 + i, 2 +
√

2〉 ≈ 〈−1 + i, 3.414213562〉
A/B= 〈−1 − i, 2 +

√
2〉

> A &cmult B;
[−1.000000000, 1.000000000, 3.414213579]

> A &cdiv B;
[−1.000000001, −1.000000001, 3.414213685]

and using area-optimal multiplication leads to

> A &cmult_opt B;

[−1.390388204, 1.390388204, 2.969562256]

> A &cdiv_opt B;

[−1.390388219, −1.390388219, 2.969562345]

In Figure 5 on p. 33 are displayed simultaneously the resulting point set of the
product of A and B, the centred confinement and the area-optimal confinement of the
set.

Im
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-4 -3 -2 -1 1 2

Figure 5: centred and area-optimal confinement of 〈1, 1〉 · 〈−1 + i, 1〉
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5.2 Range of Complex Polynomials

A first possible application of the in intpakX defined disc arithmetic is the determina-
tion of safe confinements for the range of a polynomial with complex coefficients over
a disc interval.

For this, there are three procedures

1. horner eval cent (Horner-scheme using centred multiplication &cmult),

2. horner eval opt (Horner-scheme using area-optimal multiplication
&cmult opt),

3. centred form eval (centred form for complex polynomials).

The procedures horner eval opt and centred form eval generally give certainly
better confinements than the procedure horner eval cent. They have, however, a
substantially higher demand for time and memory.

The first input parameter of each procedure is a (complex) polynomial in the
variable z. The denomination of this variable is compulsory! As second parameter
must be entered a number or variable of type complex disc.

Example 1: Confining the range of

p(z) := (0.15− 0.1i) + (0.15− 0.12i)z + (−0.2 − 0.2i)z2

+(0.1 + 0.3i)z3 + (0.1 − 0.2i)z4 + (0.1 − 0.2i)z5

+(0.2− 0.2i)z6 + (0.1 − 0.2i)z7 + (0.2− 0.1i)z8

+(0.1− 0.1i)z9

over the interval Z = 〈−0.1 + 0.2i, 0.9〉.

> p_H:=horner_eval_cent(p,Z);

p H := [.1590115281, −.04050517670, 3.058832329]
> p_Hopt:=horner_eval_opt(p,Z);

p Hopt := [.2219721872, .2917174855, 2.243412729]

> p_C:=centred_form_eval(p,Z);

p C := [.1590115281, −.04050517670, 1.717944237]
In this example the procedure centred form eval gives the best confinement.

The graphical illustration of the range of p over Z and the calculated confinements
can be found in Figure 6.

Generating the graphics

For illustrating the range of p over Z the command complexplot from the
plots-package can be used. Each command should be ended by a colon (otherwise
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pHopt

pC

pH
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Figure 6: confinement of the range of a complex polynomial

very much, generally unnecessary, information is given out).

> c1:=complexplot(subs(z=Z[1]+I*Z[2]+Z[3]*(cos(t)+I*sin(t)),p),

t=0..2*Pi,color=black,thickness=3,numpoints=200):

For graphical illustration of the computed confinements the command
complex disc plot was used.

> c2:=complex_disc_plot(p_H,color=black,thickness=2,linestyle=4):

> c3:=complex_disc_plot(p_Hopt,color=black,thickness=2,linestyle=3):

> c4:=complex_disc_plot(p_C,color=black,thickness=2):

The labelling of the graphic was generated with a series of plot- and textplot-
commands. textplot is a command from the plots-Package.

> s1:=plot([[2.1,2.3],[2.6,2.6]],color=black,thickness=2):

> t1:=textplot([3,2.8,pH],font=[TIMES,BOLDITALIC,12]):

> s2:=plot([[1.5,1],[3.2,1.8]],color=black,thickness=2):

> t2:=textplot([3.7,2,pC],font=[TIMES,BOLDITALIC,12]):

> s3:=plot([[2.5,0.6],[3.5,1]],color=black,thickness=2):

> t3:=textplot([4.2,1.2,pHopt],font=[TIMES,BOLDITALIC,12]):

For simultaneous display of the generated graphics the command display from
the plots-package can be used.

> display([c1,c2,c3,c4,s1,s2,s3,t1,t2,t3],scaling=constrained);
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Example 2: Confinement of the value of

p(z) := (z − i)4(z − 1 − i)5

at the place z = 1. The exact value is p(1) = 4i.

> subs(z=1,p);

4 I

Calculation of confinements using the disc arithmetic:

> Digits:=60:

> horner_eval_cent(p,1);

[0, 4.00000000000000000000000000000000000000000000000000000000000,

.281310000000000000000000000000000000000000000000000000000045 10−55]

> horner_eval_opt(p,1);

[0, 4.00000000000000000000000000000000000000000000000000000000000,

.281310000000000000000000000000000000000000000000000000000045 10−55]

> centred_form_eval(p,1);

[0, 4.00000000000000000000000000000000000000000000000000000000000,

.112542000000000000000000000000000000000000000000000000000010 10−54]

All three procedures give out as confinement of p(1) a disc interval with centre 4i
and the radii of the computed confinements are around 10−55, if one calculates with 60
digits (Digits = 60).

5.3 The Exponential Function for Disc Intervals

The image of a disc interval Z = 〈c, r〉 under the exponential function is in general not
a disc. If as centre of the resulting interval is prescribed the point exp(c), then

exp(Z) := 〈ec, |ec|(er − 1)〉

defines an optimal confinement (under given centre exp(c) of the resulting point
complex {exp(z) | z ∈ Z}).

A detailed discussion of images of disc intervals under the exponential function is
found in [4].

The realization of the exponential function for disc intervals cexp from the
extension intpakX has as input parameter a variable of type complex disc or a
complex number and gives a safe confinement of the resulting point complex.
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Example: Confinement of the image of Z = 〈0, π + 1〉 under the
exponential function

> Cexp:=cexp([0,0,evalf(Pi+1)]);

Cexp := [1.000000000, 0, 61.90292461]

Graphical illustration of the computed disc interval confinement:

> c1:=complex_disc_plot(Cexp,color=black,thickness=3,numpoints=400):

Image of the boundary of 〈0, π + 1〉 under the exponential function (Attention:
plots must be loaded beforehand with with!):

> c2:=complexplot(exp(polar(Pi+1,phi)),phi=0..2*Pi,

color=black,thickness=3,numpoints=400):

For illustrating inner points of the range, the radius r is varied from 0 to π + 1 for
fixed angle. Example:

> c2:=complexplot(exp(polar(r,0.5)),r=0..Pi+1,

color=black,thickness=3,numpoints=400):

The different graphic commands are bundled afterwards with display. On display
should be entered as additional option scaling=constrained. In order to display a
cut out piece, the plot-option view was used.

The graphical illustration in Figure 7 shows that the centred confinement of the
image of 〈0, π + 1〉 under the exponential function is the optimal confinement for
prescribed result-centre exp(0) = 1. It is far from area-optimal. Figure 8 shows a cut
out piece around the origin.
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40

60

–60 –40 –20 20 40 60

Figure 7: image of the disc interval 〈0, π + 1〉 under the exponential function and
centred disc interval confinement of exp(〈0, π + 1〉)
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Figure 8: illustration of a cut out piece around the origin

The exponential function is 2πi periodic, and as the diameter of the interval Z =
〈0, π+1〉 is greater than 2π, there is an area in the image Z of the exponential function,
in which every point has exactly two preimages. This area can be recognized by its
double hatching. Besides, in the illustration of the cut out piece can be observed the
drop-like image-free area around the origin.

6 Evaluation and Outlook

Using verification algorithms it is possible, if occasion arises, to prove with the
calculator automatically the existence and uniqueness of a solution for a given
problem, and also to compute a (narrow) confinement of the exact solution. The
results obtained in this way have the same mathematical quality as results obtained
e. g. by using computer algebra systems, i. e. by automatic formula manipulations.
Thereby it turns out to be a great advantage that verification algorithms can handle
safely numerical input-data with errors within tolerance. In such cases infinitely many
problems are solved simultaneously. For an entire family of problems it is e. g. proved
that each has a unique solution.

Whenever computer algebra packages make use of numerical routines (e. g. when
computing determined integrals), a verification algorithm should be used if possible.
The results obtained are then mathematically safe (a property usually expected when
working with a CA-system). Pretended solutions resp. far off approximations are then
excluded.

Also by using interval methods, the graphic abilities of computer algebra systems
can be improved resp. made secure. That this is necessary, is impressively shown by



Interval Calculus in Maple 39

Example 3 in the appendix.

Computer algebra and verification numerics complete each other ideally. Thus the
computer becomes for the mathematician, but also for the engineer, a safe mathemat-
ical tool. Especially in view of processors which are becoming faster and faster and
more powerful, the symbiosis of symbolic calculus and safe numerical routines should
be pushed forward massively.

7 Appendix: Questionable Maple Results

The following examples show that also results obtained with computer algebra systems
should be examined carefully. In order to improve the reliability and to disclose more
areas of application, verification algorithms should be integrated additionally into such
systems. All examples have been computed using Maple V.

Example 1: Wrong computation of minimum and maximum

> f:=x->x^2+sin(x)+cos(2*x);

f := x→ x2 + sin(x) + cos(2 x)

Attempt of calculating the range of f over the interval [-2.,0] using the Maple-functions
minimize and maximize:

> minimize(f(x),x,-2..0);

1

> r1:=evalf(%);

r1 := 1.

> maximize(f(x),x,-2..0);

4− sin(2) + cos(4)

> r2:=evalf(%);

r2 := 2.437058952

> range_f:=[r1,r2];

range f := [1., 2.437058952]

Figure 9 shows that range f is obviously not a confinement of the range of f over the
interval [−2., 0]!

Range confinement using compute range:

> compute_range(f,[-2.,0],3,adaptive,Nx=4,quadratic):

> range_f:=r[3];

range f := [−.2786237965, 2.437058957]
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Figure 9: illustrating the funktion f(x) := x2 + sin(x) + cos(2x)

Coarse estimation of the maximal error in determining the minimum:

> max(seq(width(list_of_ranges[i]),i=8..11));

.0499309122

Graphical illustration of the last iteration step:

> display([q[3],q[4]],view=[-1.8..-0.51,-0.28..1.5]);

This command generates figure 10.
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Figure 10: verfied range confinement

Example 2: Questionable integration result and limit calculation

> int(x/cosh(x), x=1..2);
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−2 I ln(1 + I e2) − 1

2
ln(1 + I e2) π − I dilog(1 + I e2) +

1

2
ln(e− I e(−1)) π − I dilog(I e2)

+
1

2
ln(e+ I e(−1)) π +

1

2
π + I ln(1 + I e) +

1

2
ln(1 + I e) π + I dilog(1 + I e)

− 1

2
ln(e(1/2) − I e(−1/2)) π + I dilog(I e) − 1

2
ln(e(1/2) + I e(−1/2)) π

Is this formula correct?

> for k from 2 to 5 do evalf(Int(x/cosh(x), x=0..10^k)); od;

1.831931188
1.831931188

.2300979673 10−28

0
Does ∫ t

0

x

cosh(x)
dx

really converge with increasing t towards 0?

Example 3: Unreliable graphics

The following Maple command should generate a circle. In fact, however, the result is
Figure 11:

> implicitplot(x^2+y^2 = 1, x=-1..1, y=-15..50, numpoints=10000,
scaling=constrained);
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Figure 11: A circle?
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Now it is attempted to generate a daisy with 90 blossom leaves (the result is given in
Figure 12):

> r:= 1/2*sin(90*t): plot( [(1+r)*cos(t), (1+r)*sin(t), t=0..2*Pi]);
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Figure 12: A daisy with 90 blossom leaves?

If the graphic routines are supported by suitable verification steps [3], then the
results in the figures are, as expected, a circle resp. a stilized blossom.

References
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