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4 Peter Januschke, Dietmar RatzZusammenfassungEin PASCAL{XSC{�Uberblick und eine Sprachbeschreibungs-Erg�anzung: PASCAL{XSCist eine universelle Programmiersprache, die au�erdem speziell die Implementierung von hochentwick-elten numerischen Algorithmen unterst�utzt. Das PASCAL{XSC System hat den Vorteil der Porta-bilit�at auf verschiedenen Plattformen (Personal Computer, Workstations, Gro�rechner und Super-computer) durch einen portablen Compiler, der nach ANSI-C �ubersetzt.Mittels der mathematischen Module von PASCAL{XSC k�onnen numerische Algorithmen, diehochgenaue und automatisch veri�zierte Ergebnisse liefern, sehr leicht programmiert werden.PASCAL{XSC vereinfacht das Design von Programmmen in den Ingenieurwissenschaften undim wissenschaftlichen Rechnen durch modulare Programmstruktur, benutzerde�nierte Operatoren,�Uberladen von Funktionen, Prozeduren und Operatoren, Funktionen und Operatoren mit allgemeinemErgebnistyp und dynamische Felder. Arithmetische Standard Module f�ur zus�atzliche numerische Da-tentypen (inclusive Operatoren und Standardfunktions von hoher Genauigkeit) und die exakte Aus-drucksauswertungn stellen die wichtigsten numerischen Tools dar.In PASCAL{XSC geschriebene Programme sind leicht lesbar, da alle Operationen, auch die inh�oheren mathematischen R�aumen, als Operatoren realisiert sind und in der �ublichen mathematischenNotation verwendet werden k�onnen.In aktuellen Compiler-Versionen von PASCAL{XSC wurde das Konzept der dynamischen Felderbetr�achtlich erweitert. Ein Benutzer kann nun dynamische Felder mehrfach und mit unterschiedlicherGr�o�e zur Laufzeit seines Programmes allokieren. Dar�uberhinaus k�onnen dynamische Felder auch alsKomponenten anderer PASCAL Strukturen wie Records und statische Felder vereinbart werden.AbstractA Survey of PASCAL{XSC and a Language Reference Supplement: PASCAL{XSC isa general purpose programming language which provides special support for the implementation ofsophisticated numerical algorithms. The new PASCAL{XSC system has the advantage of beingportable across many platforms and is available for personal computers, workstations, mainframesand supercomputers by means of a portable compiler which translates to ANSI-C language.By using the mathematical modules of PASCAL{XSC, numerical algorithms which deliver highlyaccurate and automatically veri�ed results can be programmed easily. PASCAL{XSC simpli�es thedesign of programs in engineering and scienti�c computation by modular program structure, user-de�ned operators, overloading of functions, procedures, and operators, functions and operators witharbitrary result type and dynamic arrays. Arithmetic standard modules for additional numericaldata types including operators and standard functions of high accuracy and the exact evaluation ofexpressions provide the main numerical tools.Programs written in PASCAL{XSC are easily readable since all operations, even those in thehigher mathematical spaces, have been realized as operators and can be used in conventional mathe-matical notation.In current compiler versions of PASCAL{XSC, the concept of dynamic arrays has been signif-icantly extended. A user is now able to allocate a dynamic array variable several times and withdi�erent size during the execution of his or her program. Moreover, dynamic arrays may now bedeclared as components of other PASCAL structures such as records or static arrays.1 IntroductionIn the last decades continuous e�orts have been made to enhance the power of program-ming languages. New powerful languages have been designed, and the enhancementof existing languages such as Fortran is in constant progress. However, since many



A Survey of PASCAL{XSC and a Language Reference Supplement 5of these languages still lack a precise de�nition of their arithmetic, the same programmay produce di�erent results on di�erent processors.These days, the elementary arithmetic operations of electronic computers are usu-ally oating-point operations of highest accuracy. In particular, this means that forany choice of operands, the computed result is the rounded exact result of the opera-tion with just one �nal rounding applied. See the IEEE Arithmetic Standard [4] as anexample. This arithmetic standard also requires the four basic arithmetic operations+;�; �; and = with directed roundings. A large number of processors already providethese operations, but only few programming languages allows easy access to them.On the other hand, there has been a noticeable shift in scienti�c computationfrom general purpose computers to vector and parallel computers. These so-calledsupercomputers provide additional arithmetic operations such as \multiply and add",\accumulate" or \multiply and accumulate" (see [11]). These hardware operationsshould always deliver a result of highest accuracy, but as of yet, no processor whichful�lls this requirement is available. In some cases, the results of numerical algorithmscomputed on vector computers are totally di�erent from the results computed on thesame processor in scalar mode (see [15],[30]).PASCAL{XSC is the result of a long-term venture by a team of scientists to pro-duce a powerful tool for solving scienti�c problems. The mathematical de�nition of thearithmetic is an intrinsic part of the language, including optimal arithmetic operationswith directed roundings which are directly accessible in the language. Further arith-metic operations for intervals and complex numbers and even vector/matrix operationsprovided by precompiled arithmetic modules are de�ned with maximum accuracy ac-cording to the rules of semimorphism (see [25]).The development of PASCAL{XSC programs is supported by the PASCAL{XSCdevelopment system [3] consisting of the PASCAL{XSC compiler [2] and thePASCAL{XSC runtime system [12] which are both written in ANSI C [5]. Insteadof implementing a large variety of \native code generators" for di�erent processor andoperating systems, the PASCAL{XSC system compiles a given PASCAL{XSC sourcecode into C code which is passed to a C compiler. Finally, the resulting object codeand the routines of the PASCAL{XSC runtime system are linked together. Because ofthe wide distribution of C compilers, the PASCAL{XSC system is available on manycomputers (see section 3.3). Both the PASCAL{XSC source code and the generatedC code are portable.From the point of view of mathematics, it is of fundamental importance that resultsof implemented algorithms are reproducible in spite of di�erent computing facilities.Unfortunately, the arithmetical capabilities of computer systems are quite di�erent con-cerning the representation of oating-point numbers and the way arithmetic operationsare processed. Therefore, a common accurate arithmetical basis must be supported bya programming language. The PASCAL{XSC runtime system comprises a completeset of routines which is based on the IEEE 754 binary oating-point arithmetic stan-dard [4]. All arithmetic operations are implemented in software and do not depend onthe actual operations of the processor in use nor on the C runtime system. To achievebetter performance, the runtime system can be con�gured in such a way that it adaptsto the arithmetic hardware unit of the processor in use.



6 Peter Januschke, Dietmar Ratz2 The Language PASCAL{XSCPASCAL{XSC is an eXtension of the programming language PASCAL for Scienti�cComputation, containing the following features:� Standard PASCAL� Universal operator concept (user-de�ned operators)� Functions and Operators with arbitrary result type� Overloading of procedures, functions and operators� Overloading of assignment operator� Overloading of the I/O -routines read and write� Module concept� Dynamic arrays� Access to subarrays� String concept� Controlled rounding� Optimal (exact) scalar product� Standard type dotprecision (a �xed-point format covering the whole range ofoating-point products)� Additional arithmetic standard types such as complex, interval, etc.� Highly accurate arithmetic for all standard types� Highly accurate standard functions� Exact evaluation of expressions (#-expressions)A complete description of the language PASCAL{XSC and the arithmetic modules aswell as a collection of sample programs is given in [21] and [22]. A short survey of thelanguage features is given in the following sections. Moreover, the extended concept ofdynamic and exible arrays contained in current versions (Version 3.0 and higher) ofPASCAL{XSC is described in detail in Appendix B.2.1 Standard Data Types, Prede�ned Operators, and Func-tionsIn addition to the integer and real data types of standard PASCAL, the followingnumerical data types are available in PASCAL{XSC:complex interval cintervalrvector cvector ivector civectorrmatrix cmatrix imatrix cimatrix



A Survey of PASCAL{XSC and a Language Reference Supplement 7where the pre�x letters r, i, and c are abbreviations for real, interval, and complex. Socinterval means complex interval and, for example, cimatrix denotes complex intervalmatrices, whereas rvector speci�es real vectors. The vector and matrix types arede�ned as dynamic arrays and can be used with arbitrary index ranges.A large number of operators are prede�ned for these types in the arithmeticmodulesof PASCAL{XSC (see section 2.9). All of these operators deliver results with maximumaccuracy.Compared to standard PASCAL, there are 11 new operator symbols. These are theoperators �< and �>; � 2 f+;�; �; =g for operations with downwardly and upwardlydirected rounding and the operators ��;+�; >< needed in interval computations forthe intersection, the convex hull, and the disconnectivity test.QQQQQQleftoperand rightoperand integerrealcomplex intervalcinterval rvectorcvector ivectorcivector rmatrixcmatrix imatrixcimatrixmonadic1) +;� +;� +;� +;� +;� +;�integerrealcomplex +;+<;+>;�;�<;�>;�; �<; �>;=; =<; =>;+� +;�; �; =;+� �; �<; �> � �; �<; �> �intervalcinterval +;�; �; =;+� +;�; �; =;+�; �� � � � �rvectorcvector �; �<; �>;=; =<; => �; = 2)+;+<;+>;�;�<;�>;�; �<; �>;+� 2)+;�; �;+�ivectorcivector �; = �; = 2)+;�; �;+� 2)+;�; �;+�; ��rmatrixcmatrix �; �<; �>;=; =<; => �; = �; �<; �> � 2)+;+<;+>;�;�<;�>;�; �<; �>;+� 2)+;�; �;+�imatrixcimatrix �; = �; = � � 2)+;�; �;+� 2)+;�; �;+�; ��1) The operators of this row are monadic (i.e. there is no left operand).2) � denotes the scalar or matrix product.+� : Interval hull�� : Interval intersectionTable 1: Prede�ned Arithmetic Operators



8 Peter Januschke, Dietmar RatzTables 1 and 2 show all prede�ned arithmetic and relational operators in connectionwith the possible combinations of operand types.QQQQQQleftoperand rightoperand integerrealcomplex intervalcinterval rvectorcvector ivectorcivector rmatrixcmatrix imatrixcimatrixintegerrealcomplex =; <>;<=; <;>=; > in=; <>intervalcinterval =; <> 1)in; ><;=; <>;<=; <;>=; >rvectorcvector =; <>;<=; <;>=; > in=; <>ivectorcivector =; <> 1)in; ><;=; <>;<=; <;>=; >rmatrixcmatrix =; <>;<=; <;>=; > in=; <>imatrixcimatrix =; <> 1)in; ><;=; <>;<=; <;>=; >1) The operators <= and < denote the \subset" relations,>= and > denote the \superset" relations.>< : Test of disconnectivity for intervalsin : Test of membership of a point in an interval or test onstrict enclosure of an interval in the interior of an intervalTable 2: Prede�ned Relational OperatorsCompared with standard PASCAL, PASCAL{XSC provides an extended set of math-ematical standard functions (see table 3). These functions are available for the typesreal, complex, interval, and cinterval with a generic name and deliver a result of max-imum accuracy. The functions for the types complex, interval, and cinterval are pro-vided in the arithmetic modules of PASCAL{XSC.



A Survey of PASCAL{XSC and a Language Reference Supplement 9Function Generic Name1 Absolute Value abs2 Arc Cosine arccos3 Arc Cotangent arccot4 Inverse Hyperbolic Cosine arcosh5 Inverse Hyperbolic Cotangent arcoth6 Arc Sine arcsin7 Arc Tangent arctan8 Inverse Hyperbolic Sine arsinh9 Inverse Hyperbolic Tangent artanh10 Cosine cos11 Cotangent cot12 Hyperbolic Cosine cosh13 Hyperbolic Cotangent coth14 Exponential Function exp15 Power Function (Base 2) exp216 Power Function (Base 10) exp1017 Natural Logarithm (Base e) ln18 Logarithm (Base 2) log219 Logarithm (Base 10) log1020 Sine sin21 Hyperbolic Sine sinh22 Square sqr23 Square Root sqrt24 Tangent tan25 Hyperbolic Tangent tanhTable 3: Prede�ned Mathematical Functions for the typesinteger, real, complex, interval, and cintervalBesides the mathematical standard functions, PASCAL{XSC provides the necessarytype transfer functions intval, inf, sup, compl, re, and im for conversion between thenumerical data types (for scalar and array types).2.2 The General Operator ConceptBy a simple example of interval addition, the advantages of a general operator conceptare demonstrated. In the absence of user-de�ned operators, there are two ways to



10 Peter Januschke, Dietmar Ratzimplement the addition of two variables of type interval declared bytype interval = record inf, sup: real; end;One can use a procedure declaration (operators with directed rounding such as + <and + > are not available in standard PASCAL)procedure intadd (a, b: interval; var c: interval);beginc.inf := a.inf +< b.inf;c.sup := a.sup +> b.supend;mathematical notation corresponding program statementsz := a+ b+ c+ d intadd(a,b,z);intadd(z,c,z);intadd(z,d,z);or a function declaration (only possible in PASCAL{XSC, not in standard PASCAL)function intadd (a, b: interval): interval;beginintadd.inf := a.inf +< b.inf;intadd.sup := a.sup +> b.supend;mathematical notation corresponding program statementz := a+ b+ c+ d z := intadd(intadd(intadd(a,b),c),d);In both cases the transcription of the mathematical formula looks rather complicated.By comparison, if one implements an operator in PASCAL{XSC ,operator + (a, b: interval) intadd: interval;beginintadd.inf := a.inf +< b.inf;intadd.sup := a.sup +> b.supend;mathematical notation corresponding program statementz := a+ b+ c+ d z := a + b + c + d;then multiple addition of intervals is described in the traditional mathematical nota-tion. Besides the possibility of overloading operator symbols, one is allowed to usenamed operators. The declaration of such operators must be preceded by a prioritydeclaration. There exist four di�erent levels of priority, each represented by its ownsymbol:� monadic : " level 3 (highest priority)� multiplicative : � level 2� additive : + level 1� relational : = level 0



A Survey of PASCAL{XSC and a Language Reference Supplement 11For example, an operator for the calculation of the binomial coe�cient �nk� may bede�ned in the following manner:priority choose = *; { priority declaration }operator choose (n, k: integer) binomial: integer;var i, r : integer;beginif k > n div 2 then k := n - k;r := 1;for i := 1 to k dor := r * (n - i + 1) div i;binomial := r;end;mathematical notation corresponding program statementc := �nk� c := n choose kThe operator concept realized in PASCAL{XSC o�ers the possibilities of� de�ning an arbitrary number of operators� overloading operator symbols or operator names arbitrarily many times� implementing recursively de�ned operatorsAlso, PASCAL{XSC o�ers the possibility of overloading the assignment operator :=to allow a natural notation for assignments:Example:varc : complex;r : real;...operator := (var c: complex; r: real);beginc.re := r;c.im := 0;end;...r := 1.5;c := r; { complex number with real part 1.5 and imaginary part 0 }2.3 Overloading of SubroutinesStandard PASCAL provides the mathematical standard functionssin, cos, arctan, exp, ln, sqr, and sqrt



12 Peter Januschke, Dietmar Ratzfor numbers of type real only. In order to implement the sine function for intervalarguments, a new function name like isin(: : :) must be used because overloading of thestandard function name sin is not allowed in standard PASCAL.In contrast, PASCAL{XSC allows overloading of function and procedure names,whereby a generic symbol concept is introduced into the language. So the symbolssin, cos, arctan, exp, ln, sqr, and sqrtcan be used not only for arguments of type real, but also for intervals, complex numbers,and other types. To distinguish between overloaded functions or procedures with thesame name, the number and type of their arguments is used, similar to the method foroperators. The type of the result, however, is not used.Example:procedure rotate (var a, b: real);procedure rotate (var a, b, c: complex);procedure rotate (var a, b, c: interval);The overloading concept also applies to the standard procedures read and write in aslightly modi�ed way. The �rst parameter of a newly declared input/output proceduremust be a var-parameter of a �le type and the second parameter represents the quan-tity that is to be input or output. All further parameters are interpreted as formatspeci�cations.Example:procedure write (var f: text; c: complex; w: integer);beginwrite (f, '(', c.re : w, ',', c.im : w, ')');end;When calling an overloaded input/output procedure, the �le parameter may be omittedwhich corresponds to a call with one of the standard �les input or output. The formatparameters must be introduced and separated by colons. Moreover, several inputor output statements can be combined into a single statement just as in standardPASCAL.Example:varr : real;c : complex;...write (r : 10, c : 5, r/5);



A Survey of PASCAL{XSC and a Language Reference Supplement 132.4 The Module ConceptStandard PASCAL basically assumes that a program consists of a single program textwhich must be prepared completely before it can be compiled and executed. In manycases, it is more convenient to prepare a program in several parts, called modules,which can then be developed and compiled independently of each other. Moreover,various other programs may use the components of a module without their having tobe copied into the source code and recompiled.For this purpose, a module concept has been introduced into PASCAL{XSC. Thisnew concept o�ers the possibilities of� modular programming� syntax check and semantic analysis beyond the bounds of modules� implementation of arithmetic packages as standard modulesA module is introduced by the keywordmodule followed by a name and a semicolon.Its body is quite similar in structure to that of a normal program with the exceptionthat the word symbol global can be used directly in front of the keywords const,type, var, procedure, function, and operator and directly after use and the equalsign in type declarations.Thus it is possible to declare private types as well as non-private types. The internalstructure of a private type is not known outside the declaring module. Objects of sucha private type can only be used and manipulated via the procedures, functions andoperators supplied by the declaring module.For importing modules with use or use global the following transitivity rules holdM1 use M2 and M2 use global M3 ) M1 use M3,but M1 use M2 and M2 use M3 6) M1 use M3.Example: Let a module hierarchy be built up byX Y STANDARDSA B Cmain program���� @@@@ QQQQQ ������������ HHHHHHHAll global objects of the modules A, B, and C are visible in the main program unit,but there is no access to the global objects of X, Y and STANDARDS from the mainprogram.



14 Peter Januschke, Dietmar Ratz2.5 Dynamic ArraysIn standard PASCAL there is no way to declare dynamic types or variables. The onlyway to manage memory dynamically in standard PASCAL is through the allocationand deallocation of �xed-size objects which are referred by pointers.For instance, program packages with vector and matrix operations are typicallyimplemented with �xed (maximum) dimensions. For this reason, only part of theallocated memory is used if the user wants to solve problems with lower dimensions.The concept of dynamic arrays removes this limitation. In particular, the new conceptcan be described by the following characteristics:� Dynamics within procedures and functions� Automatic allocation and deallocation of local dynamic variables� Economical employment of storage space� Row access and column access to dynamic arrays� Compatibility of static and dynamic arraysDynamic arrays must be marked with the word symbol dynamic. The great disadvan-tage of the conformant array schemes available in standard PASCAL is that they canonly be used for parameters and not for variables or function results. So, this standardfeature is not fully dynamic.In PASCAL{XSC, dynamic and static arrays can be used in a very similar manner.For example, a two-dimensional dynamic array type can be declared in the followingform: type matrix = dynamic array [*,*] of real;It is also possible to de�ne di�erent dynamic types with corresponding syntacticalstructures. For example, it might be useful in some situations to identify the coe�-cients of a polynomial with the components of a vector or vice versa. Since PASCALis a strictly type-oriented language, such structurally equivalent arrays may only becombined if their types have been previously adapted. The following example showsthe de�nition of a polynomial and of a vector type (note that the type converting func-tions polynomial(: : :) and vector(: : :) are de�ned implicitly). Access to the lower andupper index bounds of each dimension is made possible by the new standard functionslbound(: : :) and ubound(: : :) or their abbreviations lb(: : :) and ub(: : :).type vector = dynamic array [*] of real;type polynomial = dynamic array [*] of real;operator + (a, b: vector) res: vector[lb(a)..ub(a)];var i : integer;beginfor i := lb(a) to ub(a)res[i] := a[i] + b[lb(b) + i - lb(a)]end;varv : vector[1..n];



A Survey of PASCAL{XSC and a Language Reference Supplement 15p : polynomial[0..n-1];...v := vector(p);p := polynomial(v);v := v + v;v := vector(p) + v; { but not v := p + v; }In addition to accessing each component variable, PASCAL{XSC o�ers the possibilityof accessing subarrays. If a component variable contains an � or a range instead of anindex expression, it refers to the subarray with the entire or speci�ed index range inthe corresponding dimension. For example, M[1..2,j] is the array consisting of the1st and 2nd elements of the j-th column of a two-dimensional array M.This example demonstrates access to rows or columns of dynamic arrays:type vector = dynamic array [*] of real;type matrix = dynamic array [*] of vector;...varv : vector[1..n];m : matrix[1..n,1..n];...v := m[i];m[i] := vector(m[*,j]);In the �rst assignment it is not necessary to use a type converting function since boththe left and the right side are of known dynamic type. A di�erent case is demonstratedin the second assignment. The left-hand side is of known dynamic type, but theright-hand side is of anonymous dynamic type, so it is necessary to use the intrinsicconverting function vector(: : :).2.6 Flexible ArraysCurrent releases (Version 3.0 and higher) of PASCAL{XSC include the concept ofexible arrays. A dynamic array is called exible if it can be reallocated with newindex bounds and new size at any time during its lifetime.There are two possibilities of declaring exible array types. The �rst possibility isthe usual declaration of a dynamic array type, i.e. every dynamic array is also a exiblearray.type vector = dynamic array [*] of real;The second possibility is to provide default index ranges for exible array variables(for example in a program using many array variables with identical index bounds andonly a few variables of the same type with other index bounds). The extended rulesfor array declaration allowtype vec = dynamic array [1..10] of real;



16 Peter Januschke, Dietmar Ratzor type vec = vector [1..10];alternatively.Now, there are several possibilities to declare exible array variables:� We can specify index ranges byvar v : vector [1..10];or by var v : dynamic array [1..10] of real;and the variables declared in this way are automatically allocated and deallocatedon entry and exit of the subroutine they belong to. But those variables may alsobe reallocated during the execution of the subroutine they belong to.� We can omit index ranges byvar v : vector;or by var v : dynamic array [*] of real;and we must explicitely allocate v by ourselves. Nevertheless, it will be automat-ically deallocated on exit of the subroutine it belongs to.� We can use a exible array with default index ranges byvar v : vec;or by var v : vec [1..20];where in both cases automatic memory allocation and deallocation will be carriedout, but the allocation process is di�erent. In the �rst case the index bounds forv are the the default index bounds of vec, in the second case the speci�ed indexbounds replace the default bounds.Of course, PASCAL{XSC supplies routines for the memory management of dynamic(exible) arrays. Procedure allocate allows the explicit allocation of a dynamic arraywith speci�ed index bounds. Procedure free allows the deallocation of a variable, i.e.the freeing of the memory occupied by a dynamic array variable. Moreover, sinceaccess to an array might result in a runtime error, PASCAL{XSC provides the booleanfunction allocated for testing the accessibility of dynamic arrays.In the following example, we use a real vector in di�erent lengths to perform com-putations until a desired accuracy is achieved.



A Survey of PASCAL{XSC and a Language Reference Supplement 17typevector = dynamic array [*] of real;procedure high_accuracy (basic_length: integer; result: real);varaccurate : boolean;rvec : vector;k : integer;beginaccurate := false; k := 0;repeatk:= k+1;allocate (rvec, 1..k*basic_length);... { computations }accurate := ...free (rvec); { might be ommitted }until accurate;result := ...end;In our second example, we give a routine for reading integer vectors from a text �le,where each vector is preceded by the number of its components. Without the possibilityof reallocation of dynamic arrays the solution of this problem is very laborious.typevector = dynamic array [*] of integer;procedure read (var f: text; var v: vector);vari, length : integer;beginif allocated(v) thenfree (v);read(f, length);allocate(v, 1..length);for i:=lb(v) to ub(v) doread(f, v[i]);end;A detailed description of syntax and semantic for the concept of dynamic and exiblearrays is given in Appendix B.2.7 Accurate ExpressionsThe theory of computer arithmetic (see [25]) requires the implementation of the dotproduct with only one rounding according to the following de�nition (see [6]):Given two vectors x and y with n oating-point components each, and aprescribed rounding mode 2, the oating-point result s of the dot productoperation (applied to x and y) is de�ned bys := 2(s) := 2(x � y) = 2( nXi=1 xi � yi); n � 1



18 Peter Januschke, Dietmar Ratzwhere all arithmetic operations are mathematically exact. Thus s shall becomputed as if an intermediate result s correct to in�nite precision and withunbounded exponent range were �rst produced and then rounded to thedesired oating-point destination format according to the selected roundingmode 2.Thus the result of the operation must be the exact result of the dot product with justone �nal rounding applied.The implementation of enclosure algorithms with automatic result veri�cation orvalidation (see [14],[17],[18],[27],[32]) makes extensive use of the accurate evaluationof dot products. To evaluate this kind of expression the new datatype dotprecisionwas introduced. Variables of type dotprecision can hold any possible value whichresults from the evaluation of dot product expressions without loss of accuracy (see[25],[14]). Based upon this type, so-called accurate expressions (#-expressions), canbe formulated by an accurate symbol (#, #�, #<, #>, or ##) followed by an exactexpression enclosed in parentheses. The exact expression must have the form of a dotproduct expression in scalar, vector or matrix structure and is evaluated without anyrounding error. Because of this, the result of an accurate expression has an error of atmost 1 ulp, i.e. at most one unit in the last mantissa place. Tables in the appendixgive an overview of possible exact expressions within the accurate expressions (see [16]for the detailed overview).To obtain the unrounded or correctly rounded result of a dot product expression,the user needs to parenthesize the expression and precede it by the symbol # whichmay optionally be followed by a symbol for the rounding mode. Table 4 shows thepossible rounding modes with respect to the dot product expression form.Symbol Expression Form Rounding Mode Math. Symbol#� scalar, vector or matrix nearest 2#< scalar, vector or matrix downwards 5#> scalar, vector or matrix upwards 4## scalar, vector or matrix smallest enclosing interval 3# scalar only exact, no roundingTable 4: Rounding Modes for Accurate ExpressionsIn practice, dot product expressions may contain a large number of terms making anexplicit notation very cumbersome. To alleviate this di�culty in mathematics, thesymbol P is used. If for instance A and B are n-dimensional matrices, then theevaluation ofd = nXk=1Ai;k �Bk;jrepresents a dot product expression. PASCAL{XSC provides the equivalent shorthandnotation sum for this purpose. The corresponding PASCAL{XSC statement for thisexpression is



A Survey of PASCAL{XSC and a Language Reference Supplement 19d := #(for k:=1 to n sum (A[i,k] * B[k,j]));where d is a dotprecision variable.Dot product expressions or accurate expressions are used mainly in computing adefect (or residual). In the case of a linear systemAx = b, A 2 IRn�n, x; b 2 IRn, Ay�bis considered as an example. Then an enclosure of the defect is given by 3(b � Ay)which in PASCAL{XSC can be realized by means of the dot product expression## (b - A * y);with only one interval rounding operation for each component of the resulting intervalvector. To get veri�ed enclosures for linear systems of equations it is necessary toevaluate the defect expression3(E �RA)where R � A�1 and E is the identity matrix. In PASCAL{XSC this expression can beprogrammed as## (id(A) - R * A);where an interval matrix is computed with only one rounding operation per component.The function id(: : :) is de�ned in the module for real matrix/vector arithmetic andgenerates an identity matrix of the same shape as its arguments (see section 2.9).2.8 The String ConceptThe tools provided for handling character strings in standard PASCAL do not allowconvenient text processing. For this reason, a string concept was integrated into thelanguage de�nition of PASCAL{XSC which admits a convenient treatment of textualinformation and, using the operator concept, even symbolic computation. With newdata type string, the user can work with strings of up to MAXINT characters. Whendeclaring variables of type string, the user can specify a maximum string length lessthan MAXINT. Thus a string s declared byvar s : string[40];can be up to 40 characters long. The following standard operations are available:� concatenation� actual length� conversion string ! real� conversion string ! integer� conversion real ! string� conversion integer ! string� extraction of substrings� position of �rst appearance� relational operators <=, <, >=, >, <>, =, and in



20 Peter Januschke, Dietmar Ratz2.9 Standard ModulesThe following standard modules are available:� interval arithmetic (I ARI)� complex arithmetic (C ARI)� complex interval arithmetic (CI ARI)� real matrix/vector arithmetic (MV ARI)� interval matrix/vector arithmetic (MVI ARI)� complex matrix/vector arithmetic (MVC ARI)� complex interval matrix/vector arithmetic (MVCI ARI)These modules may be incorporated via the use statement described in section 2.4.As an example, Table 5 exhibits the operators provided by the module for intervalmatrix/vector arithmetic.QQQQQQleftoperand rightoperand integerreal interval rvector ivector rmatrix imatrixmonadic +;� +;�integerreal � �interval � � � �rvector �; = +� +�;+;�; �;in;=; <>ivector �; = �; = +�;+;�; �;=; <> +�;��;+;�; �;in;=; <>; ><;<=; <;>=; >rmatrix �; = � +� +�;+;�; �;in;=; <>imatrix �; = �; = � � +�;+;�; �;=; <> +�;��;+;�; �;in;=; <>; ><;<=; <;>=; >Table 5: Prede�ned Arithmetic and Relational Operators of the Mod-ule MVI ARIIn addition to these operators, the module MVI ARI provides the following genericallynamed standard operators, functions, and procedures:intval, inf, sup, diam, mid, blow, transp, null, id, read, and write.The function intval is used to generate interval vectors and matrices, whereas inf andsup are selection functions for the in�mum and supremum of an interval object. Thediameter and the midpoint of interval vectors and matrices can be computed by diamand mid, blow yields an interval ination, and transp delivers the transpose of amatrix.



A Survey of PASCAL{XSC and a Language Reference Supplement 21Zero vectors and matrices are generated by the function null, while id returns anidentity matrix of appropriate shape. Finally, there are the generic input/output-procedures read and write, which may be used in connection with all matrix/vectordata types de�ned in the modules mentioned above.2.10 Problem-Solving RoutinesRoutines for solving common numerical problems have been implemented in PASCAL{XSC. The applied methods compute a highly accurate enclosure of the true solutionof the problem and, at the same time, prove the existence and the uniqueness of thesolution in the computed interval. The advantages of these new routines are :� The solution is computed with maximum or high, but always controlled accuracy,even in many ill-conditioned cases.� The correctness of the result is automatically veri�ed, i.e. an enclosing set is com-puted, which guarantees existence and often also uniqueness of the true solutioncontained in this set.� If no solution exists or if the problem is extremely ill-conditioned, an error mes-sage is issued.Among others, PASCAL{XSC routines cover the following subjects:� linear systems of equations{ full systems (real, complex, interval, cinterval){ matrix inversion (real, complex, interval, cinterval){ least squares problems (real, complex, interval, cinterval){ computation of pseudo inverses (real, complex, interval, cinterval){ band matrices (real){ sparse matrices (real)� polynomial evaluation{ in one variable (real, complex, interval, cinterval){ in several variables (real)� zeros of polynomials (real, complex, interval, cinterval)� eigenvalues and eigenvectors{ symmetric matrices (real){ arbitrary matrices (real, complex, interval, cinterval)� initial and boundary value problems of ordinary di�erential equations{ linear{ nonlinear



22 Peter Januschke, Dietmar Ratz� evaluation of arithmetic expressions� nonlinear systems of equations� numerical quadrature� integral equations� automatic di�erentiation� optimization3 The Implementation of PASCAL{XSCThe language PASCAL{XSC extends the PASCAL{SC language [7, 8, 28]. Both lan-guages were de�ned and developed at the Institute of Applied Mathematics at theUniversity of Karlsruhe. The �rst PASCAL{SC compiler was implemented for Z80processors in 1980. Because of the small memory of the Zilog machine, an interpreterwas used, which slowed down the execution time. This compiler was ported to DOSmachines in the early 80's [24]. Three years later a PASCAL{SC compiler generatingmachine code for Motorola-68000 processors was developed [23]. This system is muchfaster, but it lacks portability, running only on Motorola-68000 processors. The newPASCAL{XSC system is now available for personal computers, workstations, main-frames, and supercomputers by means of a portable compiler which translates to ANSIC. The main goal of the system is portability. For that purpose, it is necessary� to provide easy porting of the compiler and the runtime system� to avoid the necessity to retarget the compiler for every new computer� to provide porting of the generated code (cross-compilation)� to provide consistency of results for all installationsThe ANSI C language (as de�ned in [5]) was chosen as the implementation languageand the target language. The main reason for this choice was the extremely widerange of computers for which one or more C compilers are available. Besides the Clanguage allows the programming of portable code. The ANSI C language standardwill impel the producers of C compilers to construct the compilers that correspondto the standard and impel them to unify the existing compilers. This makes portingeasier. Special compiler options exist to provide cross-compilation. The C languageis highly modular. Small overhead for function calls results in high e�ciency of thetarget code.There are great semantic di�erences between the PASCAL-XSC and the C language.Since PASCAL-XSC allows dot precision expressions, nested subroutine declarations,overloading of subroutines, dynamic arrays and subarrays, sets and strings, it becomesnecessary to simulate these concepts in the target code. Partly this task can be solvedusing the appropriate functions in the runtime library, but some problems, such as thesimulation of nested subroutines, have to be solved inside the compiler.



A Survey of PASCAL{XSC and a Language Reference Supplement 233.1 Di�erent Real ArithmeticsA special feature of the new compiler is that the basic operations of the real arith-metic are exchangeable to support di�erent applications which may require di�erentproperties of the arithmetic (portability, speed or accuracy). See [12] for details.Supported arithmetics are:� Software emulation of the IEEE 754 standard arithmetic. A complete oating-point arithmetic for the double format of the IEEE binary oating-point standard[4] is simulated in software. All requirements of the standard are ful�lled includ-ing directed roundings, handling of in�nity, and exception handling. No specialproperties of the hardware nor support from the C runtime system are required.� The hardware arithmetic of the computer in use. The arithmetic operations aresupported by the C runtime system. The data format and the accuracy of theoperations need not necessarily satisfy the IEEE standard. This arithmetic isintended to be used by programs that shall be \fast".� Multiple precision arithmetic. It is intended for programs implementing high-precision numerical algorithms. The arithmetic operations are based on the spe-cial multiple precision data type. Variables of this type may hold values with avarying number of mantissa digits during the execution of the program.� Decimal arithmetic. The BCD version with decimal real and longreal formatsis intended to avoid the conversion errors occurring during input and output ofnumerical data.� A user-de�ned arithmetic. Standard real arithmetic can be replaced by a user-de�ned real arithmetic in a very simple manner (see [2], [3]). The user mustensure that all features de�ned for standard real arithmetic will be also availablefor this new arithmetic.3.2 The PASCAL{XSC Development SystemThe PASCAL{XSC system [3] includes:� The manager.� The PASCAL{XSC to C compiler.� The listing generator.� The runtime library.� The con�guration program.The main purpose of the manager is to make the program development cycle more user-friendly and to reduce the number of accidental errors. It is achieved by freeing the userfrom having to supply the information about directory conventions and options of thePASCAL{XSC compiler, C-compiler, and linker in use. The manager o�ers a \make"facility by linking automatically all the modules that the current program depends on.



24 Peter Januschke, Dietmar RatzThe dependencies and connections of modules are completely checked for consis-tency using interface �les associated with the modules that are mentioned in the \use"clause, if any. The number and the types of actual arguments are checked for confor-mity to the formal parameters. A module may import other modules. In general, themodule dependencies in an executable program can be described by a directed acyclicgraph.The compiler o�ers a comprehensive error-checking facility including lexical, syn-tactical and semantical checking and error recovery. If a module is changed, it is quitenatural that it must be recompiled before the modules which \use" it are compiled.The compiler checks this condition automatically and generates an error message if thetime-compatibility of modules is violated. The listing generator is called after compil-ing a program or module containing errors. It produces a readable listing with errormessages and pointers to the exact positions of the errors: the line and the column. Itis possible to correct errors by editing the listing. There exists a program that readsthe listing and reconstructs the source �le from the listing.After the installation of the compiler, the user may change some system dependen-cies such as path names and �letype names as well as default values for the compileroptions. These modi�cations are done by means of the con�guration program.3.3 The Current State of ImplementationThe conformity of the PASCAL{XSC compiler to standard PASCAL [10] was testedusing \The PASCAL validation suite" of the Tasmania University [33]. Extensive testshave been carried out concerning di�erent PASCAL{XSC extensions. The system iswidely spread and used for educational purposes and for software development.Until now the PASCAL{XSC system has been successfully installed and thoroughlytested on many computers (see table 6). On some systems hardware arithmetic issupported, making the generated programs faster.Computer Operating System C compilerPC MS-DOS/Windows GNU C++PC OS/2 3.0 GNU C++PC LINUX GNU CHP 9000/700 Series UNIX HP CSun SPARC Station SunOS 5.x SUN CSun SPARC Station SunOS 4.1 Standard CIBM RS/6000 AIX ANSI CSilicon Graphics IRIX GNU CCONVEX C2-C4 UNIX Convex CCTable 6: Availability of the PASCAL{XSC SystemAlong with the commercial versions several free versions of the PASCAL{XSC compiler(for DOS, OS/2, LINUX, etc.) are available. The software and further informationcan be found on the homepage http://www.xsc.deof Numerik Software GmbH (email: numerik_software@csi.com).



A Survey of PASCAL{XSC and a Language Reference Supplement 254 PASCAL{XSC Sample ProgramsIn the following, some PASCAL{XSC programs are listed, demonstrating the use ofthe arithmetic modules and various concepts of PASCAL{XSC.Well-known algorithms were intentionally chosen so that a brief explanation of themathematical background will su�ce. Since the programs are largely self-explanatory,comments are kept to a minimum.1. Interval Newton Method2. Runge-Kutta Method3. Trace of a Product Matrix4. Veri�ed Solution of a Linear System4.1 Interval Newton MethodAn inclusion of a zero of the real-valued function f(x) is computed. It is assumed thatf 0(x) is a continuous function on the interval [a; b], where 0 62 ff 0(x) : x 2 [a; b]g andf(a) �f(b) < 0. If an inclusionXn for the zero of such a function f(x) is already known,a better inclusion Xn+1 may usually be computed by the iteration formula:Xn+1 := (m(Xn)� f(m(Xn))f 0(Xn) ) \Xn ;where m(X) is some point in the interval X (for example the midpoint). For thisexample, the function f(x) = px+ (x+ 1) � cos x is used. In PASCAL{XSC, intervalexpressions are written in mathematical notation. Generic function names are used forthe interval square root and interval sine and cosine functions. For the mathematicaltheory, see [1].program inewt (input, output);usei_ari; { interval arithmetic }varx, y : interval;{----------------------------------------------------------------------------}function f (r: real): interval;varx : interval;beginx := r; { converts r to type interval to obtain a verified inclusion }f := sqrt(x) + (x + 1) * cos(x)end;{----------------------------------------------------------------------------}function deriv (x: interval): interval;beginderiv := 1 / (2 * sqrt(x)) + cos(x) - (x + 1) * sin(x)end;{----------------------------------------------------------------------------}



26 Peter Januschke, Dietmar Ratzfunction criter (x : interval) : boolean;begincriter := (sup(f(inf(x)) * f(sup(x))) < 0) and not (0 in deriv(x));end;{----------------------------------------------------------------------------}begin { main program }{ The interval notation for I/O in PASCAL-XSC is [ inf , sup ] }{ mid(x) is a function returning the midpoint of the interval x }write ('Please enter starting interval : '); read (y);while inf(y) <> sup(y) dobeginif criter(y) thenrepeatx := y;writeln (x);y := ( mid(x) - f(mid(x))/deriv(x) ) ** x;until x = yelsewriteln ('Criterion not satisfied !');writeln;write ('Please enter starting interval : '); read (y);end;end.With the starting interval [2; 3] the computed inclusions are[ 2.0E+000, 3.0E+000][ 2.0E+000, 2.3E+000][ 2.05E+000, 2.07E+000][ 2.05903E+000, 2.05906E+000][ 2.059045253413E+000, 2.059045253417E+000][ 2.059045253415143E+000, 2.059045253415145E+000]4.2 Runge-Kutta MethodThe initial-value problem for a system of di�erential equations is to be solved. TheRunge-Kutta method to solve one di�erential equation may be written in standardPASCAL in an almost mathematical notation. In PASCAL{XSC it is possible to usethe same notation for a system of di�erential equations. The concept of dynamicarrays is used to make the program independent of the size of the system. Only asmuch storage as needed is occupied during runtime. The following system of �rst-orderdi�erential equationsY 0 = F (x; Y )with initial condition Y (x0) = Y0 is considered. If the solution Y is known at a pointx, then the approximation Y (x+ h) is computed byK1 = h � F (x; Y );K2 = h � F (x+ h=2; Y +K1=2);K3 = h � F (x+ h=2; Y +K2=2);



A Survey of PASCAL{XSC and a Language Reference Supplement 27K4 = h � F (x+ h; Y +K3);Y (x+ h) = Y + (K1 + 2 �K2 + 2 �K3 +K4)=6:Starting at x0, an approximate solution may be computed at the points xi = x0+ i �h.We supply function F in a module.module f;usemv_ari; { matrix/vector arithmetic }global constdim = 3;{----------------------------------------------------------------------------}global function F (x: real; y: rvector): rvector[1..dim];beginf[1] := y[1] - y[2];f[2] := exp(x) * y[3];f[3] := (y[1] - y[2]) / exp(x);end;{----------------------------------------------------------------------------}global procedure init (var x, h: real; var y: rvector);beginx := 0; h := 0.1; y[1] := 0; y[2] := 1; y[3] := 1end;end. { of module f }Using module f , we can write the following program.program runge (input, output);usemv_ari, f;vari : integer;x, h : real;y, k1, k2, k3, k4 : rvector[1..dim];begininit(x, h, y);{ Classical Runge-Kutta method (10 steps) for a system }{ of first-order differential equations y' = F(x, y) }for i:=1 to 10 dobegink1 := h * f(x, y);k2 := h * f(x + h / 2, y + k1 / 2);k3 := h * f(x + h / 2, y + k2 / 2);k4 := h * f(x + h, y + k3);y := y + (k1 + 2 * k2 + 2 * k3 + k4) / 6;x := x + h;writeln ('x = ', x);writeln ('y = ', y);end;end.



28 Peter Januschke, Dietmar Ratz4.3 Trace of a Product MatrixThe following PASCAL{XSC program demonstrates the use of accurate-expressions.The trace of a product matrixA�B is computed without evaluating the product matrixitself. The result will be of maximum accuracy, i.e. it is the best possible oating-pointapproximation of the exact solution. The trace of the product matrix is given bynXi=1 nXj=1 aij � bji:A corresponding program isprogram trace (input, output);usemv_ari; { matrix/vector arithmetic }varn : integer;{----------------------------------------------------------------------------}procedure main (n: integer);vari, j : integer;s, d : real;A, B : rmatrix [1..n,1..n];beginread (A, B);s := 0;for i:= 1 to n dos := s + A[i] * rvector(B[*,i]);writeln ( 'Trace of A*B computed with scalar product :', s);d := #*( for i:=1 to n sum( A[i] * rvector(B[*,i]) ));writeln ( 'Trace of A*B computed with #-expression :', d);end;{---------------------------------------------------------------------------}beginread(n); main(n);end.With the following starting matricesA = 0BBB@ 1e9 8 126 {237100 2 {12 11e5 10 {1e7 8113 {3 30 1e{7 1CCCAB = 0BBB@ 1e8 85 8 612 3 1e3 1563 14 1e10 132 {8332 {1e4 {1e{8 1CCCAthe computed results are



A Survey of PASCAL{XSC and a Language Reference Supplement 29Trace of A*B computed with scalar product : -9.999999999999999E-016Trace of A*B computed with #-expression : 5.999999999999999E+0004.4 Veri�ed Solution of a Linear System of EquationsThe example demonstrates a program for the veri�ed solution of a system of linearequations. The program delivers either a veri�ed solution or a corresponding failuremessage.Employing the module LIN SOLV, the solution of a system of linear equations isenclosed in an interval vector by successive interval iterations.The procedure main, which is called in the body of lin sys, is only used for readingthe dimension of the system and for allocation of the dynamic variables. The numericalmethod itself is started by the call to procedure linear system solver de�ned in modulelin solv. This procedure may be called with arrays of arbitrary but matching dimension.For detailed information on iteration methods with automatic result veri�cation,see [14], [17], [18], [27], or [31], for example.module lin_solv;use i_ari, { interval arithmetic }mv_ari, { matrix/vector arithmetic }mvi_ari; { matrix/vector interval arithmetic }{----------------------------------------------------------------------------}priority inflated = *; { priority level 2 }{----------------------------------------------------------------------------}operator inflated (a: ivector; eps: real) infl: ivector[1..ub(a)];{ Computes the so-called epsilon inflation of an interval vector. }vari : integer;x : interval;beginfor i:= 1 to ub(a) dobeginx := a[i];if (diam(x) <> 0) thena[i] := (1+eps)*x - eps*xelsea[i] := intval( pred (inf(x)), succ (sup(x)) );end; {for}infl := a;end; { operator inflated }{----------------------------------------------------------------------------}function approximate_inverse (A: rmatrix): rmatrix[1..ub(A),1..ub(A)];{ Computation of an approximate inverse of the (n,n)-matrix A }{ by application of the Gaussian elimination method. }vari, j, k, n : integer;



30 Peter Januschke, Dietmar Ratzfactor : real;R, Inv, E : rmatrix[1..ub(A),1..ub(A)];beginn := ub(A); { dimension of A }E := id(E); { identity matrix }R := A;{ Gaussian elimination step with unit vectors as }{ right-hand sides. Division by R[i,i]=0 indicates }{ that matrix A is probably singular . }for i:= 1 to n dofor j:= (i+1) to n dobeginfactor := R[j,i]/R[i,i];for k:= i to n doR[j,k] := #*(R[j,k] - factor*R[i,k]);E[j] := E[j] - factor*E[i];end; { for j:= ... }{ Backward substitution delivers the rows of the inverse of A. }for i:= n downto 1 doInv[i] := #*(E[i] - for k:= (i+1) to n sum(R[i,k]*Inv[k]))/R[i,i];approximate_inverse := Inv;end; { function approximate_inverse }{----------------------------------------------------------------------------}global procedure linear_system_solver (A: rmatrix; b: rvector;var x: ivector; var ok: boolean);{ Computation of a verified enclosure vector for the solution of the }{ linear system of equations. If an enclosure is not achieved after }{ a certain number of iteration steps, the algorithm is stopped and }{ the parameter ok is set to false. }constepsilon = 0.25; { Constant for the epsilon inflation }max_steps = 10; { Maximum number of iteration steps }vari : integer;y, z : ivector[1..ub(A)];R : rmatrix[1..ub(A),1..ub(A)];C : imatrix[1..ub(A),1..ub(A)];beginR := approximate_inverse(A);{ R*b is an approximate solution of the linear system }{ and z is an enclosure of this vector. However, it does }{ not usually enclose the true solution. }z := R * intval(b);{ An enclosure of I - R*A is computed with maximum accuracy. }{ The (n,n) identity matrix is generated by the function call id(A). }C := ##(id(A) - R*A);



A Survey of PASCAL{XSC and a Language Reference Supplement 31x := z; i := 0;repeati := i + 1;y := x inf/lated epsilon; { To obtain a true enclosure, the interval }{ vector c is slightly enlarged. }x := z + C*y; { The new iterate is computed. }ok := x in y; { Is c contained in the interior of y? }until ok or (i = max_steps);end; { procedure linear_system_solver }{----------------------------------------------------------------------------}end. { module lin_solv }The following program can be used to apply the routine supplied by module lin solv.program lin_sys (input, output);use lin_solv, { linear system solver }mv_ari, { matrix/vector arithmetic }mvi_ari; { matrix/vector interval arithmetic }var n : integer;{----------------------------------------------------------------------------}procedure main (n : integer);{ The matrix A and the vectors b, x are allocated dynamically with }{ this subroutine being called. The matrix A and the right-hand side }{ b are read in and linear_system_solver is called. }varok : boolean;b : rvector[1..n];x : ivector[1..n];A : rmatrix[1..n,1..n];beginwriteln('Please enter the matrix A:');read(A);writeln('Please enter the right-hand side b:');read(b);linear_system_solver(A,b,x,ok);if ok thenbeginwriteln('The given matrix A is non-singular and the solution ');writeln('of the linear system is contained in:');write(x);endelsewriteln('No solution found !');end; { procedure main }{----------------------------------------------------------------------------}beginwrite('Please enter the dimension n of the linear system: ');read(n);main(n);end. { program lin_sys }



32 Peter Januschke, Dietmar RatzAppendixA Review of #-ExpressionsA.1 Real and Complex #-ExpressionsSyntax: #-Symbol ( Exact Expression )#-Symbol Result Type Summands Permitted in the Exact Expression# dotprecision � variables, constants, and special function calls of typeinteger, real, or dotprecision� products of type integer or real� scalar products of type realreal � variables, constants, and special function calls of typeinteger, real, or dotprecision� products of type integer or real� scalar products of type realcomplex � variables, constants, and special function calls of typeinteger, real, complex, or dotprecision� products of type integer, real, or complex� scalar products of type real or complex#�#<#> rvector � variables and special function calls of type rvector� products of type rvector (e.g. rmatrix � rvector, real �rvector etc.)cvector � variables and special function calls of type rvector orcvector� products of type rvector or cvector (e.g. cmatrix � rvec-tor, real � cvector etc.)rmatrix � variables and special function calls of type rmatrix� products of type rmatrixcmatrix � variables and special function calls of type rmatrix orcmatrix� products of type rmatrix or cmatrix



A Survey of PASCAL{XSC and a Language Reference Supplement 33A.2 Real and Complex Interval #-ExpressionsSyntax: ## ( Exact Expression )#-Symbol Result Type Summands Permitted in the Exact Expressioninterval � variables, constants, and special function calls of typeinteger, real, interval, or dotprecision� products of type integer, real, or interval� scalar products of type real or intervalcinterval � variables, constants, and special function calls oftype integer, real, complex, interval, cinterval, ordotprecision� products of type integer, real, complex, interval, orcinterval� scalar products of type real, complex, interval, or cin-terval## ivector � variables and special function calls of type rvector orivector� products of type rvector or ivectorcivector � variables and special function calls of type rvector,cvector, ivector, or civector� products of type rvector, cvector, ivector, or civectorimatrix � variables and special function calls of type rmatrix orimatrix� products of type rmatrix or imatrixcimatrix � variables and special function calls of type rmatrix,cmatrix, imatrix, or cimatrix� products of type rmatrix, cmatrix, imatrix, or cimatrix



34 Peter Januschke, Dietmar RatzB Dynamic and Flexible Arrays { A LanguageReference SupplementThis section describes the current concept of dynamic and exible arrays, which is notpart of early compiler versions (< 3.0). First, a summary of the basic concept (see[22]) is given. Then, the new features are discussed. Since this section is intendedto be a supplement to the Language Reference [22], we use the notation from [22] fordescribing the syntax of the new constructs. It is a simpli�ed Backus-Naur-form whichlooks similar to usual program code. Syntax descriptions are marked by a verticalblack bar at the left margin.B.1 Dynamic ArraysThe basic characteristic of this concept is the possibility of using dynamic entitieswithin subroutines. Locally declared dynamic array variables are automatically allo-cated and deallocated during the execution of the subroutine they belong to. Moreover,it is possible to access subarrays.The type declaration for a dynamic array is similar to the declaration of a staticarray type. One only has to insert the keyword dynamic and to replace the indexranges by asterisks.Example: Type declaration for a real vector.type vector = dynamic array [*] of real;The index ranges can be declared individually for each dynamic array variable.Example: Declaration of a real vector variable.var v : vector [1..10];The main application of dynamic arrays is their use within subroutines. Consider thefollowing schematic example of the procedure do_something:procedure do_something (n: integer);varlocal : vector [1..n];begin... { do something }end;Here, the procedure is declared with an integer parameter n. By means of this pa-rameter the index bounds of the local variable local are speci�ed. This means, thatlocal may hold a di�erent number of elements upon di�erent calls of do_something.The disadvantage of this method is that it is not possible to reallocate local while theprocedure is being executed. In practice, however, it is desirable to be able to use astructured variable1 with a di�erent number of elements for di�erent purposes withinthe same subroutine. This could be realized by declaring several dynamic array vari-ables with di�erent element numbers. However, to minimize memory usage it shouldbe possible to reuse variables, i.e. to reallocate them, whenever this is appropriate.This is the motivation for the extension to the concept of dynamic arrays we discussin the next section.1In our example this is a real vector



A Survey of PASCAL{XSC and a Language Reference Supplement 35B.2 Flexible ArraysWe call an array exible if it can be reallocated with new index bounds and new sizeat any time during its lifetime.The realization of this concept led to the following basic ideas:� The syntax and semantics for declaring dynamic array types and dynamic arrayvariables is extended.� The use of exible arrays according to the previous rules for dynamic arrays doesnot result in di�erent behaviour of PASCAL{XSC programs.� Standard procedures for memory allocation and deallocation for exible arraysare provided.� Assignment of a exible array to another exible array implicitly allocates thedestination array, if it has not been allocated before.� The semantics of type declarations is extended: exible arrays may be used ascomponents of other composite data types.B.2.1 Declaring a Flexible Array TypeThe syntax for specifying a exible array type (FlexTypeSpeci�cation) in a type dec-laration is as follows:dynamic array [DimensionList] of TypeIdenti�erA DimensionList is either a list2 of asterisks (*) or a list of index types. An index typeis speci�ed by either the type identi�er of an integer subrange type or by explicitlyspecifying the index bounds in the usual way:IntegerExpression .. IntegerExpressionThus, there are two possibilities of declaring exible array types. The �rst possibilitysimply is the adaption of the old declaration rules,type vector = dynamic array [*] of real;i.e. every dynamic array is also a exible array. The second possibility is to providedefault index ranges bytype vec = dynamic array [1..10] of real;or by type vec = vector [1..10];for exible array variables. In practice, a program often uses many array variables ofthe same array type with identical index bounds and only a few variables of the sametype but with other index bounds. For this situation, the extended rules for arraydeclaration allow the speci�cation of default index ranges.When declaring exible array types with more than one index ranges it is notallowed to mix asterisks with default index ranges. Thus the semantics for usingexible arrays is kept simple.2A list always consist of at least one element. If more than one element is to be speci�ed then theelements have to be separated by commas.



36 Peter Januschke, Dietmar RatzB.2.2 Declaring Flexible Array VariablesThe syntax for the declaration of a dynamic array variable has been extended accordingto the changes for type declarations in Section B.2.1. It is possible to use a typeidenti�er byvar Identi�erList : FlexTypeIdenti�er [DimensionList] f may be omitted gor an explicit type speci�cation byvar Identi�erList : FlexTypeSpeci�cationAgain, these rules allow several possibilities of declaring exible array variables. Withthe type identi�ers from Section B.2.1, we can� specify index ranges byvar v : vector [1..10];or by var v : dynamic array [1..10] of real;and the variables declared in this way are automatically allocated and deallocatedon entry and exit of the subroutine they belong to. But those variables may alsobe reallocated during the execution of the subroutine they belong to.� omit index ranges byvar v : vector;or by var v : dynamic array [*] of real;and we must explicitly allocate v by ourselves. Nevertheless, it will be automat-ically deallocated on exit of the subroutine it belongs to.� use a exible array with default index range byvar v : vec;or by var v : vec [1..20];where in both cases automatic memory allocation and deallocation will be carriedout, but the allocation process is di�erent. In the �rst case the index bounds forv are the the default index bounds of vec, in the second case the speci�ed indexbounds replace the default bounds.



A Survey of PASCAL{XSC and a Language Reference Supplement 37The variable v may be reallocated by the user in any case.The concept of exible arrays is an extension to that of dynamic arrays. Programsdeveloped by exclusively using the previous dynamic array features can be compiledwith current (exible) compiler versions without change.In the following descriptions of further language extensions it is no longer necessaryto distinguish between dynamic and exible arrays. These features apply to both.Consequently we only speak of dynamic arrays from now on.B.2.3 Memory Management SubroutinesThis section introduces a set of subroutines for handling dynamic arrays, in particularfor memory management. The �rst routine is the procedure allocate which allows theexplicit allocation of a dynamic array with the speci�ed index bounds. It is called inthe form:allocate ( DynamicArrayVariable , IndexRangesList );Its �rst parameter is a dynamic array variable which is followed by a list of indexranges. Index ranges are speci�ed in the usual way by specifying the index bounds:IntegerExpression .. IntegerExpressionThe number of index ranges speci�ed must be the same as the number of index rangesin the declaration of the corresponding dynamic array type of the �rst parameter. Ifthe array variable passed to allocate is not allocated yet, it will be allocated withthe speci�ed index bounds. If an array variable is already allocated, it �rst will bedeallocated. The latter allows the user to reallocate an array with new index boundsand new size.A further procedure provides the possibility of freeing memory occupied by a dy-namic array variable, i.e. a dynamic array may explicitly be deallocated. It is calledby free ( DynamicArrayVariable );free has only a single parameter which must be a dynamic array variable. After a callof free the index bounds of the array parameter are unde�ned as long as the arrayis not allocated again. free will have no e�ect if an array is not allocated when it ispassed as a parameter.Access to an array which is not allocated may have undesirable consequences suchas a runtime error (see B.2.4). Therefore, PASCAL{XSC provides a function for testingthe accessibility of dynamic arrays. It is called byallocated ( DynamicArrayVariable )and delivers a boolean result. allocated yields the value true, if the dynamic arrayvariable which has to be passed as the only parameter is allocated, and false otherwise.



38 Peter Januschke, Dietmar RatzExample: In Section B.1, procedure do_something was an example of how to usedynamic arrays within subroutines. It contained a declaration of the local variablelocal the size of which was speci�ed by the integer parameter of the procedure.Now, let us assume that we want to double the size of local within the procedure.By means of the new standard subroutines described in Section B.2.3, we may changedo_something as follows:type vector = dynamic array [*] of real;procedure do_something (n: integer);varlocal : vector;beginallocate (local, 1..n);... { do something }free (local); { might be omitted }allocate (local, 1..2*n);... { do something else }end;The �rst call to allocate sets up the variable local with indices ranging from 1 to n.After some further statements we deallocate local by calling free. In this example,this would not be necessary because the following call of allocate �rst deallocates localautomatically. However, if the program was in danger to run out of memory and localwas not be used in the remaining statements of the procedure, it would surely be usefulto deallocate the array here. Finally, the second call to allocate sets up local oncemore, this time with an index range from 1 to 2n.B.2.4 Access to and Assignment of Dynamic ArraysCompared to the present implementation (see [22]), the semantics of an assignmentstatementA := B;where A and B are assignment compatible dynamic arrays, will not change with thefollowing exceptions.1. A runtime error will be issued if B is not allocated.2. if A is not allocated, it will be allocated before assignment will be carried out. Awill have the same size and index bounds as B.A runtime error is issued if a dynamic array which is not allocated is accessed in anexpression and if array indices are to be checked. Otherwise, if array indices are notchecked then the e�ect of accessing a dynamic array which is not allocated is unde�ned.33The checking of array indices is controlled by compiler options.



A Survey of PASCAL{XSC and a Language Reference Supplement 39B.2.5 Dynamic Arrays as Components of Other TypesDynamic arrays may now be components of other structured data types like staticarrays or records. They may also be referenced by pointers. This is not a syntaxextension but an extension to the semantics of type declarations. The declaration of adynamic array type as the component type of a composite data type follows the rulesfor dynamic array type declarations given in Section B.2.1. In particular, default indexranges may be speci�ed.Examples:typerec = recorda, b : real;v : dynamic array [*] of realend;typerec = recorda, b : real;v : dynamic array [1..5] of realend;The rules for allocation and deallocation of dynamic components are the same as fordynamic array variables.Special care has to be taken when a program uses pointers to dynamic arrays.Consider the followingExample:typedyn = dynamic array [*] of integer;dyn2 = dynamic array [1..10] of integer;varp1 = �dyn;p2 = �dyn2;beginnew (p2); { automatic allocation of p2� }new (p1); { allocation of a runtime descriptor only }allocate (p1�, 1..10); { explicit allocation of p1� }... { do something }end.As you can see p2 points to a dynamic array with default index range from 1 to 10.Therefore, the call of new automatically allocates the dynamic array p2 points to. Thisis not the case for the second call of new. Since p1 points to a dynamic array whichhas no default index ranges new only creates a runtime descriptor for the array. Thearray itself has to be explicitly allocated with a call of allocate.
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