Mathematik für Studierende technischer Fächer und Studierende der Chemie

Lösungen zum Vorkurs WS 15/16

Prof. Dr. Margareta Heilmann Katharina Baumann, M.Sc. Marco Milano, M.Sc.

Bergische Universität Wuppertal Fachbereich C - Mathematik und Naturwissenschaften

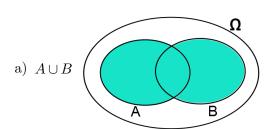
Wuppertal, 17. September 2015

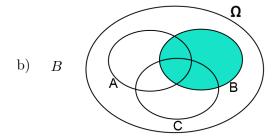
a) wahr b) wahr c) wahr d) wahr e) wahr

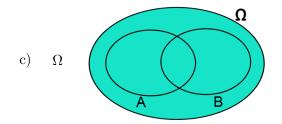
Aufgabe 2

a) wahr b) wahr c) wahr d) wahr

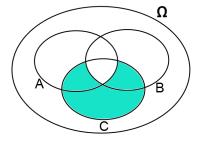
Aufgabe 3

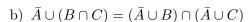

- a) Es existiert ein im März 2013 in Wuppertal zugelassenes Auto der Marke Fiasko, das höchstens
 10 Liter Benzin pro 100 km Autobahnfahrt verbraucht.
- b) Für alle zukünftigen Maschinenbaustudenten im Vorkurs Mathematik für Ingenieure an der Uni Wuppertal gilt, dass sie weder aus Köln noch aus Dortmund stammen.

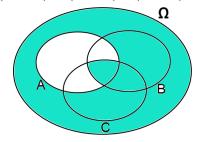

Aufgabe 4


a) $A \cap B = \{2\}$ b) $A \cup B = \{2, 3, 4, 5, 6\}$ c) $A \setminus B = \{3, 4\}$ d) $B \setminus A = \{5, 6\}$ e) $(A \cup B) \setminus (A \cap B) = \{3, 4, 5, 6\}$ f) $A \cap D = \{$ } g) $A \cup B \cup C \cup D = \{2, 3, 4, 5, 6\}$

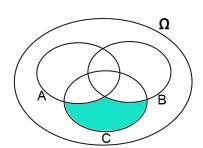
Aufgabe 5

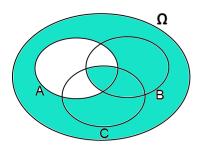

- a) $\Omega \setminus M$: Schülerinnen und Schüler, die nicht Mathe als Lieblingsfach haben
- b) $M \cup C$: Schülerinnen und Schüler, die Mathe als Lieblingsfach haben und im Schulchor singen
- c) $F \cap T$: Schülerinnen, die Tennis spielen
- d) $M\setminus (B\cap T)$: Schülerinnen und Schüler mit Lieblingsfach Mathe, die nicht sowohl Bio nicht mögen als auch Tennis spielen





a) $(\bar{A} \cap C) \cup (\bar{B} \cap C) = (\overline{(A \cup B)}) \cap C$




Die Aussage ist falsch.

Die Aussage ist wahr.

Aufgabe 8

a) $\{9, 16, 25, 36, 49, 64\}$ b) $\{1, 3, 5, 7, 9\}$ c) $\{1\}$

Aufgabe 9

a) $\{n \in \mathbb{N} : 3 \le n \le 10\}$ b) $\left\{\frac{1}{n} : n \in \mathbb{N} \land 3 \le n \le 8\right\}$ c) $\left\{\frac{n}{n+1} : n \in \mathbb{N} \land 1 \le n \le 5\right\}$

Aufgabe 10

a) { }, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} \rightarrow Anzahl Teilmengen: $2^3=8$

b) $\{\}, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\} \}$ \rightarrow Anzahl Teilmengen: $2^4 = 16$

Aufgabe 11

b) B = [13, 19) c) C = [2, 44] d) $D = (-\infty, -33]$ e) $E = (5, \infty)$ a) A = [3, 4)

 $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3), (d, 1), (d, 2), (d, 3)\}$

Aufgabe 13

a) 0.1 b) 0.01 c) 0.6 d) 1.75 e) $0.\overline{3}$ f) $0.\overline{09}$

Aufgabe 14a) $\frac{3}{4}$ b) $\frac{7}{20}$ c) $\frac{31}{25}$

Aufgabe 15

a) $6x^3 - 6y^3 + 9x^2y^2$ b) 0 c) $c^3d - cd^3$ d) $12tu + 3t^3 - 2s^2 - 4u^3$

Aufgabe 16

a) $(x+7y)^2$ b) (2a+3b)(2a-3b) c) $(2a^2-5b^2)^2$ d) $2(x^2-3y)(x^2+3y)$

Aufgabe 17

a) a = 0 nicht erlaubt, ab^8 b) t = 0 nicht erlaubt, $t^{p+q-r-s}$ c) alle Werte erlaubt, $\frac{1}{100}$

d) k = 0 nicht erlaubt, k^4 e) x = -1 nicht erlaubt, $\frac{1}{x+1}$

Aufgabe 18

a) $\{a, b, c \in \mathbb{R} : a \neq 0 \land b \neq 0 \land c \neq 0\}, \frac{c^2 + b^2}{bc}$

b) $\{x, y \in \mathbb{R} : x \neq y \land x \neq -y\}, \frac{1}{2}$

c) $\{s, t \in \mathbb{R} : s \neq 0 \land t \neq 0 \land s \neq -t\}, \frac{1}{4s + 4t}$

Aufgabe 19

a) $K_{15} = 12000 \cdot 1.04^{15} \approx 21611.32$ b) $K_0 = 50000 \cdot 1.06^{-5} \approx 37362.91$

Aufgabe 20

a) G: Gewinn in 2000, Gewinn in 2002: 0.996·G b) circa 20.48% c) circa 16.67%

Aufgabe 21

a) $a \in [-4, \infty)$ b) $y \in (-\infty, -1]$ c) $x \in \mathbb{R} \setminus (-1, 1)$ d) ex. für kein $x \in \mathbb{R}$ e) $a \in [-1, 1]$

Aufgabe 22 a) $\frac{1}{5}$ b) $\sqrt{1+x}$ c) 2(b+5) d) |3a-1| e) $\frac{4}{\sqrt{1-2x}}$ f) |a-5|

a)
$$\frac{3}{2}\sqrt{2}$$
 b) $\frac{7}{3}\sqrt{6t}$ c) $\frac{\sqrt{a(a+b)} - \sqrt{b(a+b)}}{a-b}$ d) 0

Aufgabe 24

a)
$$y \ge 0$$
, $\sqrt[4]{|x|} \cdot \sqrt{y}$ b) $x \ge -1$, $\sqrt[4]{(x+1)^9}$ c) $s \ge 0 \land s \ne \frac{9}{25}$, 2

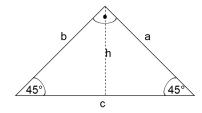
Aufgabe 25

a) 2 b) -3 c) 0 d)
$$\frac{14}{15}$$
 e) $-\frac{1}{2}$

Aufgabe 26

a)
$$1 + \log_3 x$$
 b) $1 + \log_5 |a| - \log_5 |y|$ c) $\frac{1}{2} \lg a + 2 \lg |b| - \frac{1}{4} \lg c$ d) $10 \lg (\sqrt[3]{a} + \sqrt[4]{b}) - \lg c$ e) $\lg 5 + \lg |x| + \frac{1}{2} \lg y - \frac{1}{2} \lg a - \frac{1}{4} \lg b$

Aufgabe 27


a)
$$\log_5(u^2v^3)$$
 b) $\lg\left(\frac{(a+b)^3}{\sqrt{a}\cdot\sqrt[3]{b}}\right)$ c) $\log_2\sqrt[3]{4x}$
d) $\log_4\frac{1}{x+1} = -\log_4(x+1)$ e) 0 f) $-\log_{\frac{1}{2}}6$ g) $\lg\frac{a^2+1}{a^2}$

Aufgabe 28
a)
$$\frac{\lg 130}{\lg 4} - \frac{\lg 20}{\lg 3}$$
 b) $\frac{\lg 234}{\lg \frac{1}{3}} + \lg 93 - \frac{\lg 92}{\lg 2}$

Aufgabe 29

a)
$$\frac{3}{4} \lg(a) + \frac{1}{4} \lg(b) - \frac{1}{2} \lg(c) - \frac{1}{4} \lg(d)$$
 b) $\frac{7}{8} \ln(x)$

Aufgabe 30

Gleichseitiges Dreieck, d.h. a = b und Höhe $h = \frac{c}{2}$.

Mit Pythagoras gilt also: $a^{2} = h^{2} + \left(\frac{c}{2}\right)^{2} = \left(\frac{c}{2}\right)^{2} + \left(\frac{c}{2}\right)^{2} \Leftrightarrow a^{2} = \frac{c^{2}}{2} \Leftrightarrow \frac{1}{2}\sqrt{2}c$ $\Rightarrow \sin{(45)} = \frac{a}{c} = \frac{1}{2}\sqrt{2} \text{ und } \cos{(45)} = \frac{b}{c} = \frac{1}{2}\sqrt{2}.$

a)
$$\sum_{i=1}^{10} i^2$$
 b) $\sum_{i=1}^{5} \frac{1}{i^3}$ c) $\sum_{i=2}^{9} \frac{1}{i} (-1)^i$ d) $\sum_{i=2}^{9} (-1)^{i+1} \frac{1}{i}$

Aufgabe 32

a) 328 b)
$$-22$$
 c) 6 d) $4+6x+4x^2+x^3$

Aufgabe 33

a) 6 b) 24 c) 120 d) 15.504 e) 10.827.401 f)
$$-2.520$$
 g) $\frac{3434}{675}$

Aufgabe 34

a)
$$32 + 80a + 80a^2 + 40a^3 + 10a^4 + a^5$$
 b) $81 - 216x + 216x^2 - 96x^3 + 16x^4$

Aufgabe 35

a) 0 b) 0 c)
$$2^n$$
 d) 13^{10} e) 3^n

Aufgabe 36

a)
$$\mathbb{L} = \left\{ \frac{1}{5} - \frac{\sqrt{6}}{5}, \frac{1}{5} + \frac{\sqrt{6}}{5} \right\}$$
 b) $\mathbb{L} = \left\{ \frac{3}{2} - \frac{\sqrt{5}}{2}, \frac{3}{2} + \frac{\sqrt{5}}{2} \right\}$ c) $\mathbb{L} = \left\{ 0, \frac{8}{7} \right\}$ e) $\mathbb{L} = \left\{ 1 \right\}$ f) $\mathbb{L} = \left\{ -\frac{1}{3} \right\}$

Aufgabe 37

- a) i) genau eine Lösung: $a=\frac{9}{4}$, zwei Lösungen: $a<\frac{9}{4}$, keine Lösung: $a>\frac{9}{4}$ ii) genau eine Lösung: $a=\pm 4$, zwei Lösungen: $a>4 \lor a<-4$, keine Lösung: $a\in (-4,4)$
- b) $x^2 2x 1 = 0$

Aufgabe 38

a)
$$\mathbb{D} = \mathbb{R} \setminus (-1, 1), \ \mathbb{L} = \{2\}$$
 b) $\mathbb{D} = [-1, 1], \ \mathbb{L} = \left\{0, \frac{1}{2}\right\}$ c) $\mathbb{D} = \mathbb{R}, \ \mathbb{L} = \{0\}$ d) $\mathbb{D} = \left\{x \in \mathbb{R} : x \ge -\frac{10}{3}\right\}, \ \mathbb{L} = \{5\}$ e) $\mathbb{D} = [-2, \infty), \ \mathbb{L} = \{30\}$

f)
$$\mathbb{D} = \{x \in \mathbb{R} : x \ge 1\}, \mathbb{L} = \{4\}$$

Aufgabe 39

a)
$$\mathbb{D} = \mathbb{R} \setminus \{-1\}$$
, $\mathbb{L} = \left\{0, \frac{5}{2}\right\}$ b) $\mathbb{D} = \mathbb{R} \setminus \{-1, 1\}$, $\mathbb{L} = \{\}$ c) $\mathbb{D} = \mathbb{R} \setminus \{2\}$, $\mathbb{L} = \{5\}$

a)
$$x = 1000$$
 b) $x = \sqrt[3]{10}$ c) $x = \sqrt{8}$ d) $x = \sqrt[3]{10}$ e) $x = \frac{\sqrt{10}}{3}$ f) $x = \frac{3}{2}$ g) $x = 5$ h) $x = 16$

a) x = 3 b) $x = \log_5(10)$ c) $x = \log_3(7) + 1$ d) keine Lösung e) x = 4

Aufgabe 42

a) $\mathbb{L} = \{-2, 2, -3, 3\}$ b) $\mathbb{L} = \{-1, 1, -2, 2\}$ c) $\mathbb{L} = \{\}$ d) $\mathbb{L} = \{-\frac{1}{3}, \frac{1}{5}\}$ e) $\mathbb{L} = \{0\}$

f) $\mathbb{L} = \{\frac{1}{e^3}, e^7\}$

Aufgabe 43

a) $\mathbb{L} = \{5, 9\}$ b) $\mathbb{L} = \{$ } c) $\mathbb{L} = \{\frac{1}{5}, 9\}$ d) $\mathbb{L} = [2, 4]$

Aufgabe 44

a) Beide Determinanten haben den Wert 22. b) $x = 2 \lor x = -2$

Aufgabe 45

a) $\mathbb{L} = \left\{ \left(\frac{8}{3}, \frac{1}{3} \right) \right\}$ b) $\mathbb{L} = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : 2x - y = 7 \right\}$

Aufgabe 46

a) $\mathbb{L} = \left\{ \left(\frac{1}{2}, \frac{1}{2}, -2, 10 \right) \right\}$

Aufgabe 47

a) $\mathbb{L} = \{(1, -1, 2)\}$ b) $\mathbb{L} = \{\}$ c) $\mathbb{L} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1, x_2, x_3) = (-\frac{1}{2}\lambda, -\frac{1}{2}\lambda, \lambda), \lambda \in \mathbb{R}\}$

Aufgabe 48

a) $\mathbb{L} = [-8, \infty)$ b) $\mathbb{L} = (-\infty, -9)$ c) $\mathbb{L} = \mathbb{R}$ d) $\mathbb{L} = \left(-\infty, \frac{25}{2}\right]$ e) $\mathbb{L} = \left(-\infty, \frac{19}{7}\right]$ f) $\mathbb{L} = \left(-\frac{17}{12}, \infty\right)$

Aufgabe 49

a) $\mathbb{L} = \begin{bmatrix} \frac{1}{3}, 3 \end{bmatrix}$ b) $\mathbb{L} = \{ \}$ c) $\mathbb{L} = \mathbb{R} \setminus \left\{ \frac{5}{2} \right\}$

Aufgabe 50

a) $\mathbb{D} = \mathbb{R} \setminus \{-5\}, \mathbb{L} = (-\infty, -5) \cup [-4, \infty)$

b) $\mathbb{D} = \mathbb{R} \setminus \{-5\}, \, \mathbb{L} = (-5, -4]$

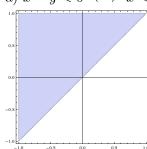
c) $\mathbb{D} = \mathbb{R} \setminus \{-3\}, \mathbb{L} = (-\infty, -4] \cup (-3, 5]$

a) $\mathbb{D} = \mathbb{R}$, $\mathbb{L} = [\ln 2, \ln 3]$ b) $\mathbb{D} = \mathbb{R}$, $\mathbb{L} = \mathbb{R} \setminus (-1, 1)$ c) $\mathbb{D} = (1, \infty)$, $\mathbb{L} = [e, e^4]$

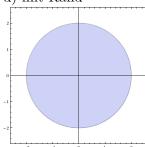
 $\begin{aligned} & \textbf{Aufgabe 52} \\ & a) \ \mathbb{L} = \left[-\frac{3}{2}, \frac{5}{2} \right] \quad b) \ \mathbb{L} = (-\infty, -2] \quad c) \ \mathbb{L} = \mathbb{R} \quad d) \ \mathbb{L} = (-\infty, -6) \cup (2, \infty) \quad e) \ \mathbb{L} = \mathbb{R} \setminus [-3, -1] \end{aligned}$

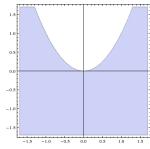
Aufgabe 53

a) Ja, denn $x + 1 > x \Leftrightarrow 1 > 0$

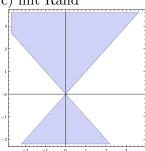

b) Nein, denn z.B. $(\frac{1}{2})^2 = \frac{1}{4} < \frac{1}{2}$

c) Nein, denn $x + x > x \Leftrightarrow x > 0$

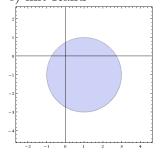

d) Ja, denn $x^2 + y^2 \ge 2xy \Leftrightarrow (x+y)^2 \ge 0$

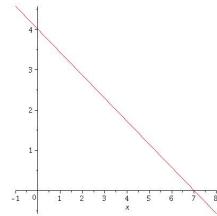

Aufgabe 54

a) $x - y < 0 \iff x < y$, ohne Rand b) mit Rand



d) mit Rand

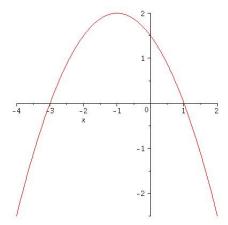




c) mit Rand

e) mit Rand

b) Die Gerade schneidet die x-Achse bei x=7, die y-Achse bei y=4.


c) $\frac{y}{4} + \frac{x}{7} = 1$. Allgemein: Eine Gerade mit der Gleichung $\frac{y}{a} + \frac{x}{b} = 1$ (Achsenabschnittsform) schneidet die x-Achse bei x = a, die y-Achse bei y = b.

Aufgabe 56 a)
$$y = \frac{1}{3}x + \frac{85}{99}$$
 b) $y = -\frac{1}{2}x + \frac{5}{2}$ c) $y = \frac{5}{6}x$

Aufgabe 57

a) Schnittpunkt S(3,2)b) kein Schnittpunkt c) unendlich viele Schnittpunkte

Aufgabe 58

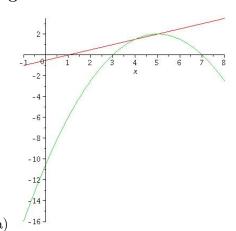
b)

c) Nullstellen bei x = -3 und x = 1.

d) Scheitelpunkt in S(-1,2).

a)
$$f_1(x) = (x+2)^2 - 4 = x(x+4)$$

b)
$$f_2(x) = (x+3)^2 + 9$$


c)
$$f_3(x) = -3(x-5)^2 + 45 = -3(x-(5+\sqrt{15}))(x-(5-\sqrt{15}))$$

d)
$$f_4(x) = 9\left(x - \frac{1}{3}\right)^2 - 45 = 9\left(x - \left(\frac{1}{3} + \sqrt{5}\right)\right)\left(x - \left(\frac{1}{3} - \sqrt{5}\right)\right)$$

e)
$$f_5(x) = -(x+100)^2 + 40000 = -(x+300)(x-100)$$

f)
$$f_6(x) = (x+50)^2 - 22500 = (x+200)(x-100)$$

Aufgabe 60

b) Schnittpunkte bei $P\left(4, \frac{3}{2}\right)$ und Q(5, 2).

Aufgabe 61
$$P(x) = (x-1)(x+1)(x-2)$$
 $P(x) > 0$ für $x \in (-1,1) \cup (2,\infty)$; $P(x) < 0$ für $x \in (-\infty,-1) \cup (1,2)$

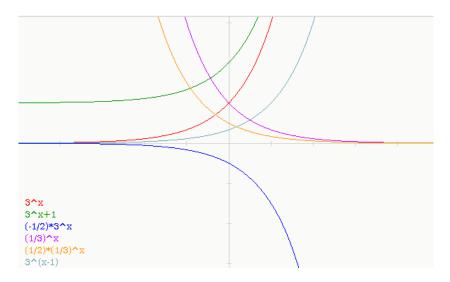
Aufgabe 62
$$P(x) = (x-1)^3(x+1)^2$$

 $P(x) \ge 0$ für $x \in [1,\infty)$; $P(x) \le 0$ für $x \in (-\infty,1]$

Aufgabe 63 Nullstellen bei $x=3,\,x=-4,\,x=\frac{1}{2}$ und bei $x=-\frac{1}{2}$

a)
$$f(x) = \frac{2(x-1)^2(x+\frac{1}{2})(x-3)^2}{-2(x-1)(x-3)(x+1)}$$
$$g(x) = -\frac{(x-1)(x+\frac{1}{2})(x-3)}{x+1}$$

b) Nullstellen bei x = 1, x = -1/2 und bei x = 3Polstelle bei x = -1


c)
$$g(x) = -x^2 + \frac{9}{2}x - \frac{11}{2} + \frac{4}{x+1}$$

Aufgabe 65

a)
$$N(x) = 2x$$

b)
$$N(x) = x^2 - 2x + 5$$

Aufgabe 66

 $g_1(x) = 3^x + 1$: Verschiebung um 1 in positiver y-Richtung

 $g_2(x) = \left(-\frac{1}{2}\right) \cdot 3^x$: Ordinatenhalbierung mit anschließender Spiegelung an der x-Achse

 $g_3(x) = \left(\frac{1}{3}\right)^{x}$: Spiegelung an der y-Achse

 $g_4(x) = \left(\frac{1}{2}\right) \cdot \left(\frac{1}{3}\right)^x$: Ordinatenhalbierung mit anschließender Spiegelung an der y-Achse $g_5(x) = 3^{x-1}$: Ordinatendrittelung bzw. Verschiebung um 1 in pos. x-Richtung

Eigenschaften von Exponentialfunktionen (zusätzliche Infos): Die Graphen von Funktionen mit $f(x) = a^x$ verlaufen immer oberhalb der x-Achse. Da a > 0 gehen alle Graphen durch den Punkt P(1,0).

Für a > 1 ist mit $x_2 > x_1$ auch $a^{x_2} > a^{x_1}$; der Graph von f wächst. Für a < 1 folgt aus $x_2 > x_1$ stets $a^{x_2} < a^{x_1}$; der Graph von f fällt.

Für a > 1 gilt: $a^x \to 0$ für $x \to -\infty$; die x-Achse ist waagerechte Asymptote. Für 0 < a < 1 und $x \to +\infty$ ist die x-Achse ebenfalls Asymptote.

Aufgabe 67

$$k = \ln(a)$$

Aufgabe 68

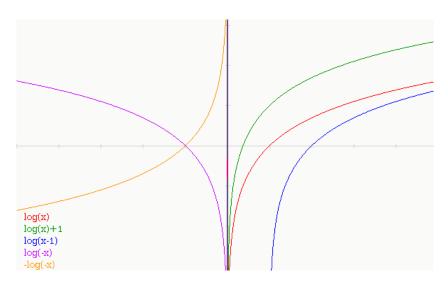
Symmetrisch zueinander sind a,c und e,f.

Seien $f_a(x) = x - ae^x$ und $f_b(x) = x - be^x$ mit $a, b \in \mathbb{R} \setminus \{0\}$.

Durch Berechnung der Nullstellen von $x-ae^x=x-be^x$ ergibt sich a=b. Somit gibt es für $a\neq b$ keinen Schnittpunkt.

Aufgabe 70

$$f_1(x): \mathbb{D} = \mathbb{R}^+$$

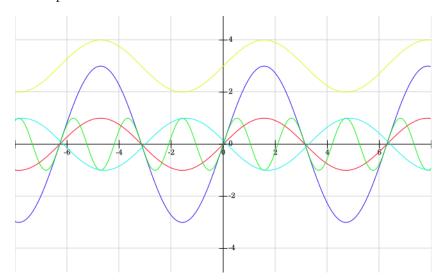

$$f_2(x): \mathbb{D} = \mathbb{R}^-$$

$$f_3(x): \frac{x}{x+1} > 0 \text{ wenn } \{x > 0 \land x+1 > 0\} \text{ oder } \{x < 0 \land x+1 < 0\} \Rightarrow \mathbb{D} = \{x \in \mathbb{R}: x < -1 \lor x > 0\}$$

$$f_4(x): \frac{1-x}{1+x} > 0$$
 wenn $\{1-x>0 \land 1+x>0\}$ oder $\{1-x<0 \land 1+x<0\} \Rightarrow \mathbb{D} = \{x \in \mathbb{R}: -1 < x < 1\}$

$$f_5(x): \mathbb{D} = \mathbb{R}^+$$

Aufgabe 71


- $g_1(x) = \ln(x) + 1$: Verschiebung um 1 in positiver y-Richtung
- $g_2(x) = \ln(x-1)$: Verschiebung um 1 in positiver x-Richtung
- $g_3(x) = \ln(-x)$: Spiegelung an der y-Achse
- $g_4(x) = -\ln(-x)$: Spiegelung an der y-Achse und Spiegelung an der x-Achse

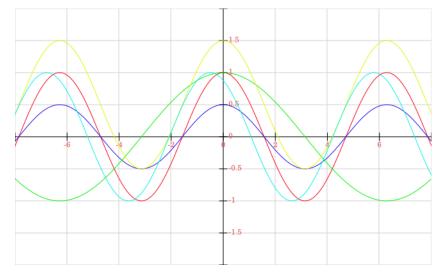
Aufgabe 72

- a) $\mathbb{D} = (-\infty, 0], x = 1 e^{e^2}$ b) $\mathbb{D} = \mathbb{R}^+, x = 1 \lor x = e^3$ c) $\mathbb{D} = \mathbb{R}^+, x = 0 \notin \mathbb{D} \lor x = 1$
- d) $\mathbb{D} = \mathbb{R}^+, \ x = 0 \notin \mathbb{D} \lor x = e$ e) $\mathbb{D} = \mathbb{R}^+, \ \text{keine Nullstelle}$ f) $\mathbb{D} = \mathbb{R}, \ x = 1 \frac{1}{3} \ln{(2)}$

11

 $\sin(x)$ ist der rote Graph.

 $g_1(x) = 3\sin(x)$: blau; Streckung entlang y-Achse; Ordinatenverdreifachung

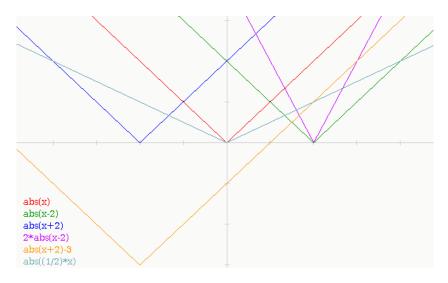

 $g_2(x) = \sin(3x)$: grün; Stauchung entlang x-Achse

 $g_3(x) = 3 + \sin(x)$: gelb; Verschiebung in positive y-Richtung um 3

 $g_4(x) = \sin(x+3)$: türkies; Verschiebung in negative x-Richtung um 3.

Aufgabe 74

 $\cos(x)$ ist der rote Graph.



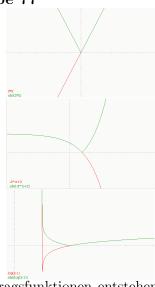
 $f_1(x) = \frac{1}{2}\cos(x)$: blau; Stauchung entlang y-Achse

 $f_2(x)=\cos{(\frac{1}{2}x)}$: grün; Streckung entlang x-Achse $f_3(x)=\frac{1}{2}+\cos{(x)}$: gelb; Verschiebung in positive y-Richtung um $\frac{1}{2}$ $f_4(x)=\cos{(x+\frac{1}{2})}$: türkies; Verschiebung in negative x-Richtung um $\frac{1}{2}$.

Aufgabe 75
a)
$$x = \pm \sqrt{2k\pi}, k \in \mathbb{N}_0$$
 b) $x = \left(\frac{3}{4} + k\right)\pi, k \in \mathbb{Z}$ c) $x = 1 + k\pi, k \in \mathbb{Z}$ d) $x = 2 + 4k, k \in \mathbb{Z}$

Aufgabe 76

 $g_1(x) = |x-2|$: Verschiebung um 2 in positive x-Richtung


 $g_2(x) = |x+2|$: Verschiebung um 2 in negative x-Richtung

 $g_3(x) = 2|x-2|$: Verschiebung um 2 in positive x-Richtung und Ordinatenverdopperlung

 $g_4(x) = |x+2| - 3$: Verschiebung um 2 in negative x-Richtung und Verschiebung um 3 in negative y-Richtung

 $g_5(x) = |\frac{1}{2}x|$: Ordinatenhalbierung

Aufgabe 77

Die Betragsfunktionen entstehen jeweils, indem alle Teile von f unterhalb der x-Achse an der x-Achse nach oben gespiegelt werden.

a)
$$a_n = 2(-1)^{n+1}$$
 b) $a_n = 1 + \frac{1}{n} = \frac{n+1}{n}$ c) $a_n = 2^n - 1$ d) $a_n = n^n$

Aufgabe 79

a) Die Folge ist monoton wachsend, durch -2 nach unten und durch 0 nach oben beschränkt und somit konvergent.

b) Die Folge ist streng monoton wachsend, durch 0 nach unten und nach oben nicht beschränkt mit $\lim_{n\to\infty} a_n = \infty$.

c) Die Folge ist alternierend, nicht beschränkt und somit auch nicht konvergent.

d) Die Folge ist monoton wachsend, nach unten beschränkt und nach oben unbeschränkt mit $\lim_{n\to\infty}a_n=\infty$.

Aufgabe 80

a)
$$\lim_{n \to \infty} \frac{n^2 + 5}{n} = \infty$$
 b) $\lim_{n \to \infty} \frac{7n - 20n^2 + 3}{4n^2 - 11n + 2} = -5$ c) $\lim_{n \to \infty} \frac{1 - 10^{50}n^2}{n^3 + 1} = 0$

Aufgabe 81

a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^4 - 16} = \frac{1}{8}$$
 b) $\lim_{x \to 3} \frac{x^4 - 81}{x^3 - 3x^2 + 2x - 6} = \frac{108}{11}$ c) $\lim_{x \to \infty} \frac{-2x^5 + 3x^2 - 1}{5x^5 - x + 10} = -\frac{2}{5}$

Aufgabe 82

$$a = 3$$
 und $b = 0$

Aufgabe 83

f ist an der Stelle x = 0 nicht stetig.