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Abstract: Numerical simulation of coupled flows in plain and porous media is essential for
many industrial and environmental problems. In this introductory chapter we shortly review
coupling conditions between the pure liquid flow and the flow in a porous medium. Hereby,
we will discuss the two well studied cases of normal and parallel flow over a porous layer
ans focus on the later one.
As an application, we present two examples modelling Proton exchange membrane (PEM)
fuel cells and an electrochemical channel flow cell.
After discussing different mathematical models this chapter will focus on the description of
the coupling of the free flow in the channel region with the filtration velocity in the porous
diffusion layer as well as interface conditions between them.
The difficulty in finding effective coupling conditions at the interface between the channel
flow and the porous layer lies in the fact that often the orders of the corresponding dif-
ferential operators are different, e.g. when using (Navier-) Stokes and Darcy’s equation.
Alternatively, using the Brinkman model for the porous media this difficuly does not occur.
We will review different interface conditions, including the well-known Beavers-Joseph-
Saffman boundary condition and its recent improvement by Le Bars and Worster.
Finally, three different mathematical models for fluid–porous interfaces in a simple chan-
nel geometry are discussed and explicit Poiseuille-like solutions for the flow velocity are
derived that can lead to semi-analytic numerical methods.

1. INTRODUCTION
Numerical simulation of coupled flows in plain and
porous media is essential for many industrial and en-
vironmental problems, like proton exchange mem-

brane (PEM) fuel cells, flow through oil filters [19],
contaminant transport from lakes by groundwater,
flow in bioreactors, contaminant gas leaking from
atomic waste containers in deep rock depositories,
CO2 sequestration in the subsurface, salt water in-
trusion (sensitive density driven flow), cancer ther-
apy, etc..
In this work we will focus on coupling conditions
between the pure liquid flow and the flow in the
porous media. Hereby, we will discuss the two well
studied cases of normal and parallel flow over a
porous layer ans focus on the later one Furthermore,
we regard mass transport from the fluid region to the
porous layer.
As an application, we present two examples mod-
elling Proton exchange membrane (PEM) fuel cells
and an electrochemical channel flow cell.

Example 1.1 (PEM Fuel Cell). In Proton exchange

membrane (PEM) fuel cells, the transport of the fuel

to the active zones, and the removal of the reaction

products are realized using a combination of chan-

nels and porous diffusion layers. In order to im-

prove existing mathematical and numerical models

of PEM fuel cells, a deeper understanding of the

coupling of the flow processes in the channels and

diffusion layers is necessary.

In general, we distinguish two types of PEM fuel

cells: H2 PEM fuel cells (H2PEMFC) driven by

gaseous hydrogen, and direct methanol fuel cells
(DMFC) operating on methanol in an aqueous so-

lution. Both anode and cathode consist of sup-

ply channels, a porous diffusion layer and an ac-

tive zone. They are connected by a proton conduct-

ing membrane. For details we refer the interested

reader to [13], [14].

The most important chemical reactions in PEM fuel

cells are at the anode

DMFC CH3OH +H2O →CO2 +6H++6e−

PEMFC 3H2 → 6H++6e−

and at the cathode 3
2 O2 +6H++6e− → 3H2O.

Consequently, in an H2PEMFC, ideally, the anode

contains only hydrogen, while the cathode contains

a mixture of liquid water, water vapour and oxygen



resp. air. While for an optimal supply of oxygen, it is

desirable to keep the amount of liquid water at the

cathode minimal, the optimal proton conductivity of

the membrane is reached only if it contains enough

water. Hence, the water management is an essential

issue.

In a DMFC, which is operated on an aqueous so-

lution of methanol, we always can assume that the

membrane is wet enough to ensure high conductiv-

ity. However for this type of fuel cell, methanol per-

meation through the membrane, leading to a para-

sitic reaction on the cathode side, is a key problem.

Another problem is clogging of the anodic channels

by CO2 bubbles.

In spite of our remark on the validation of cur-

rent coupling models, most models either focus on

the processes in the membrane electrode assembly

(MEA), or in the fluidic channels, simplifying the

other process, respectively. A further complication

comes from the fact that in both cases, the general

process includes two phase flow of a fluid and a gas

mixture.

Example 1.2 (Flow Cell). Secondly, we investigate

in Section 5 a hypothetical electrochemical chan-

nel flow cell which includes a porous diffusion layer

covering the anode. Such a structure is close to a

fuel cell electrode which usually includes a porous

diffusion layer, and therefore the investigation of the

influence of the interface between free and porous

media flow on solute transport processes appears to

be of considerable interest. For the proposed struc-

ture, we can use Poiseuille like solutions to obtain

coupled free and porous media flow velocity fields.

The difficulty in finding effective coupling condi-
tions at the interface between the channel flow and
the porous layer lies in the fact that, when using
stationary (Navier–)Stokes and Darcy’s equations
to model flow in the two regions, the structures of
the corresponding differential operators are differ-
ent. Alternatively, when using the Brinkman model
for the porous media, this difficulty does not oc-
cur: continuity of velocity and stress at the interface
can be satisfied. But the validity of the Brinkman
model for general porous media is discussed con-
troversially, see [33].
We focus on three models: first on the coupling of
the free flow with a Darcy medium, secondly the
coupling with a Brinkman porous medium and fi-
nally we consider a three-layer configuration, where
the porous medium is modeled by a Brinkman
porous transition layer overlying a Darcy porous
material. Exact analytical solutions can be devised

from appropriate interface conditions [6, 17, 35].
The evolution of the species concentration trans-
ported with the coupled free and porous media flow
is modeled by a standard advection diffusion ansatz.
Also, in simple geometries, analytical solutions do
not exist, and for a significant range of flow rates of
interest, asymptotic theory is not applicable even in
the case without a porous layer, calling for numeri-
cal methods to obtain approximate solutions for the
species concentration.
All numerical algorithms for solving the coupled
system of free fluid and porous media can be tra-
ditionally classified into two groups of methods.
The first group of methods uses different equa-

tions in different subdomains, e.g., the Navier–
Stokes equation in the liquid region and the Darcy
/ Brinkman model in the porous zones and couples
them through suitable interface conditions. These
kind of algorithms are (naturally) based on domain

decomposition techniques [9]. The advantage of this
approach is that one can use existing algorithms and
software for solving Navier–Stokes equations and
porous media flows. However, the problem of this
two–domain approach lies in coupling the conser-
vation equations in both regions through the use of
appropriate boundary conditions at the interface.
The second group consists of those algorithms, that
solely uses one system of equations in the whole do-

main (Navier–Stokes–Brinkman system) obtaining
the transition between both fluid and porous regions
through continuous spatial variations of properties
(’single-domain approach’). Usually, like in most
commercial CFD software (e.g. Star-CD, FLUENT,
etc.), the Navier–Stokes–Brinkman system is solved
by algorithms developed for the Navier–Stokes sys-
tem modified such that the main term describing the
flow through the porous media is treated explicitly.

2. MATHEMATICAL MODELS

In this section we will review some adequate
(macroscopic) stationary mathematical models for
the flow in each subdomain. In the following Ω f de-
notes the pure fluid domain and Ωp is the porous re-
gion (membrane). It is essential to recognize that the
velocity and pressure variables in Ω f and Ωp have
different meanings but we will use the same nota-
tion for both. While in the fluid part u and p denote
the usual velocity and pressure, in the porous media
u and p are spatially averaged (over a representative

elementary volume (REV)) microscopic quantities.
The velocity in the porous domain Ωp is often re-
ferred to volumetric flux density, Darcy velocity or
filtration velocity.



2.1 Models in the Free Fluid Region

The free flow in the fluid region Ω f is usually
modelled by the laminar incompressible isothermal

Navier–Stokes equations (or by Stokes equations,
i.e. neglecting the convective term (ρu ·∇)u in the
case of creeping flows):

−µ∆u+(ρu ·∇)u = fNS −∇p (x,y) ∈ Ω f ,

∇ ·u = gNS in Ω f ,
(1)

where gNS denotes an external source or sink and

∆u = [∆u1, . . . ,∆uN ]⊤,

(u ·∇)u =
[

u ·∇u1, . . . ,u ·∇uN
]⊤

,

with the velocity vector

u = (u1, . . . ,uN)⊤,

for dimensions N = 2,3. In (1) p is the pressure, µ
the fluid viscosity and ρ denotes the density.

2.2 Macroscopic Models in the
Porous Media

Usually the saturated flow in the porous media Ωp

is described by the famous Darcy model discovered
empirically in 1856

µK−1u = fD −∇p in Ωp,

∇ ·u = 0 in Ωp,
(2)

with µ the fluid dynamic viscosity, K permeability
tensor of the porous medium and fD is a force term
(e.g. the gravity). In eq. (2) u denotes the volumetric
average of the velocity and p is the average of the
pressure.
An extension of this model (2), the Brinkman model

[4], is usually used in order to account for the high

porosity of the porous media or to impose no–slip
conditions on solid walls:

−∇ · (µeff∇u)+µK−1u = fB −∇p in Ωp,

∇ ·u = 0 in Ωp,
(3)

where µeff = µ/φ is the effective viscosity of the
fluid in Ωp and φ denotes the porosity of the porous
media. In order to decide which model is adequate
there exists a rule of thumb: the Brinkman model is
used if the Reynolds numbers Re = ρUL/µ of the
corresponding free flow is greater than 10. Here U

and L are characteristic values for the velocity and
the length of the whole problem.
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Fig. (1): Different ansatzes to model and to cou-
ple the problems in the free fluid flow region:
Darcy, (Navier-)Stokes and in the porous flow re-
gion: Darcy, Brinkman, Brinkman-Darcy

3. INTERFACE CONDITIONS BET-
WEEN FLUID AND POROUS MEDIA
(DARCY)

In this section we will discuss the aspects of proper
interface conditions between different media. We
consider in the sequel the (Navier–)Stokes equations
(1) in the free fluid region Ω f , coupled across an
interface with the Darcy equation (2) in the porous
medium Ωp. This is the most common and mathe-
matically the most difficult case, since these two
models are completely different systems of partial
differential equations. Hence, it is not clear what
kind of conditions should be imposed at the inter-
face Σ between Ω f and Ωp.
Classical coupling conditions for an inviscid fluid
are the continuity of the pressure and the continuity
of the normal velocities at the interface. For viscous
flows, one would assume additionally the vanishing
of the tangential velocity at the interface Σ.
Now, if the interface would be a boundary, then in
the fluid part the system needs, e.g., a prescribed ve-
locity (N conditions) and the equation in Ωp must
be supplied with a given pressure or normal flux
(1 condition). For coupling Darcy’s model (2) and
Stokes equation (1) some (well–known) interface
conditions are needed to obtain a well–posed prob-
lem. Usually, these interface conditions describe the
continuity of the mass flux

u ·n|Σp = u ·n|Σ f
, (4)

where Σp, Σ f is the same interface Σ seen from
porous and fluid parts. Let us note that eq. (4) is
not sufficient to calculate the flow in Ωp, since the
flux is yet unknown.



3.1 The Interface Conditions of Ene,
Levy and Sanchez�Palencia

For the choice of further interface conditions we
need a classification of the flow. This was done 1975
by Ene, Levy and Sanchez-Palencia [12, 31]: they
distinguished two principally different cases of flow
situations named in [25]:

npf (near parallel flow): the velocity in Ω f is sig-
nificantly larger than the filtration velocity in
Ωp. The pressure gradients are of similar mag-
nitude in both subdomains.

nnf (near normal flow): the velocities are of similar
magnitude in both subdomains and the pressure
gradient in Ω f is significantly smaller than in
Ωp and nearly orthogonal to Σp.

Depending on this classification different interface
conditions additional to (4) were proposed in [12,
31].

3.1.1 The Case of 'Near Parallel Flow'

For the case of near parallel flow Ene, Levy and
Sanchez-Palencia [12, 31] suggested to use the con-
ditions

u|Σ f
= 0, p|Σ f

= p|Σp . (5)

The first condition in (5) originates from the conti-

nuity of velocity across the interface where the fil-
tration velocity in Ωp is neglected. Note that this
simplification allows to compute (in principle) the
flow solely in the domain Ω f . Hence, the pressure
field is known in the fluid part Ω f and via the con-

tinuity of pressure condition in (5) also on the inter-
face Σp. Afterwards, the pressure field in the whole
porous media can be determined by solving the el-
liptic Darcy equation (2) with prescribed pressure
values on Σp. Doing so, one obtains a nonzero nor-
mal component of the filtration velocity in Ωp, i.e.,
the mass flux condition (4) holds only roughly.

3.1.2 The Case of 'Near Normal Flow'

For this case of near normal flow the authors pro-
posed in [31] the interface conditions

p|Σp =C,

u · τ j|Σ f
= 0, j = 1, . . . ,N −1.

(6)

C denotes an a-priorily unknown constant and τ j are
the orthogonal unit tangent vectors to the interface
Σ f . Since the pressure is usually defined only up to
a constant, it is often convenient to assume that the

pressure p at the porous interface Σp takes a certain
(arbitrary) constant value C. Doing so, one neglects
the dependence of p|Σp on the fluid flow in Ω f (com-
pared to the strong dependence in the porous media
Ωp). For a chosen constant C first the flow in Ωp

can be determined and then the problem in the fluid
domain is solved using the mass flux condition (4)
and the second condition in (6) for the tangential ve-
locity components.

3.2 The Beavers�Joseph Interface
Condition

In 1967 Beavers and Joseph [3] performed several
experiments in a fluid channel over a porous me-
dia and found out that the mass flux through Ω f

is larger than predicted by the Poiseuille flow (i.e.
with no-slip boundary conditions). This flow sit-
uation can be classified as a case of near parallel

flow (cf. Section 3.1.1) with interface conditions (5).
Beavers and Joseph explained this observation with
a slip velocity at the interface and proposed an em-
pirical slip-flow condition that agreed well with their
experiments (cf. Fig. (4)):

∂u

∂y
(x,0+) =

α√
K

(

u(x,0+)−uD

)

, (7)

where uD denotes the uniform tangential (horizon-
tal) Darcy velocity in Ωp (−H < y < 0) obtained
from the Darcy equation (2) and u(x,0+) is the tan-
gential velocity component in the fluid region Ω f

(0 < y < G) and K denotes the permeability. This
interface condition (7) relates the gradient of the
free flow velocity at the interface y = 0 to the fil-
tration velocity uD. The Beavers–Joseph constant α
(measured slip coefficient) in eq. (7) only depends
on porous media properties. It denotes a dimension-
less quantity depending on the material parameters
which characterize the structure of the permeable
material within the boundary region and its values
ranges between 0.01 and 5 [34]. Let us point out
that eq. (7) allows for a discontinuity in the tangen-
tial velocity, i.e., rapid changes in the velocity in a
small boundary layer are substituted through a jump.
Using the Beavers–Joseph condition (7) the agree-
ment between measurements from their experiments
and the predicted values was quite good, with over
90% of the experimental values having errors of
less than 2% [3]. The work of Beavers and Joseph
was continued by investigations of Taylor [46] and
Richardson [40] and an extension, the Jones condi-

tion, was proposed in [24].
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Fig. (2): Two–layer configuration for Poiseuille
flow overlying a porous medium (Darcy): velocity
is significantly discontinuous at interface

Later on Payne and Straughan [38] showed the con-
tinuous dependence of the solution on the Beavers–
Joseph constant α in eq. (7). Moreover, the in-
terface condition eq. (7) was mathematically justi-
fied by Jäger and Mikelić [20, 21]. Although this
condition is not justified in the general case, it is
widely used in practical computations for coupled
fluid flows, e.g., in [8, 28, 32, 41, 47] and especially
many tests in [6].
We note that in the original paper by Beavers and
Joseph [3], the coupling condition (7) has been de-
rived in order to interpret an experiment with paral-
lel channel flow in a porous medium and free space,
very much similar to the structure proposed here. In
their experiment, the amounts of fluid leaving the
device at the porous part and at the free flow part
have been separated, and measured for different val-
ues of the pressure drop. For this setting the exact
analytical solution is easily obtained [6], and can be
used in transport computations.

3.3 Sa�man's Modi�cation of the
Beavers�Joseph Interface
Condition

In the article [42] Saffman gave a ’theoretical’ jus-
tification of the Beavers–Joseph interface condition
at a physical level of rigor. Moreover, Saffman pro-
posed in 1971 a modification of the Beavers–Joseph
law (7): he found out that the tangential velocity
on the interface is proportional to the shear stress
and proposed a modification of the Beavers–Joseph
condition:

u(x,0+) =

√
K

α

∂u

∂y
(x,0+)+O(K). (8)

While the Beavers–Joseph interface condition (7)
couples the fluid velocity in Ω f with the filtra-
tion velocity in Ωp, the modified eq. (8) (Beavers–
Joseph–Saffmann condition) contains only variables

in the free fluid domain Ω f where the filtration ve-
locity is usually much smaller than the slip velocity
u(0). If the slip velocity is smaller than the maximal
filtration velocity then setting the tangential veloc-
ity to zero is a reasonable approximation. We re-
mark that Dagan [7] came in 1979 to the same con-
clusion. He proposed a so-called Slattery’s relation
[44] between the pressure gradient and the first two
derivatives of the Darcy velocity in order to obtain
the condition (8).

4. INTERFACE CONDITIONS BET-
WEEN FLUID AND POROUS MEDIA
(BRINKMAN)

Neale and Nader [36] suggested in 1974 the usage
of the Brinkman correction to the Darcy model (3):
they proposed to assume continuity of velocity and
stress (using µeff) across the fluid–porous interface
since the Stokes and the Brinkman equation are of
the same order. Doing so, Neal and Nader obtained
in the fluid region the same solution as Beavers and
Joseph provided that the slip coefficient is chosen
as α =

√

µeff/µ . An exact analytical solution for a
velocity profile in x direction can be found in [16].
Vafai and Kim [48] constructed 1990 an exact an-
alytic solution for the interface region, including
boundary and inertia effects. Later on, Alazmi and
Vafai [1] classified and analyzed five primary cat-
egories of interface conditions between fluid layer
and porous medium (modelled by Brinkman eq.
(3)).
In 1992 Sahraoui and Kaviany [43] performed a
numerical study and calculated the slip coefficient:
they discovered that the Brinkman extension to the
Darcy equation does not satisfactorily model the
flow field in Ωp . However, this can be overcome
using a variable effective viscosity µeff in the porous
medium.
On the contrary, for the Brinkman model for the
flow in Ωp this ambiguity does not occur. In this
case, the equations in the porous media Ωp and
equations in the fluid region Ω f are of the same type.
Two types of coupling conditions can be found in
the literature. The more common choice are con-
ditions of continuous velocity and continuity of the

normal component of the stress tensor

u|Σp = u|Σ f
(9)

n · (µeff∇u− pI)|Σp = n · (µ∇u− pI)|Σ f
, (10)

where Σp, Σ f is the same interface Σ seen from
porous and fluid parts. Such conditions would nat-
urally arise, if for some reasons (e.g. in the domain



decomposition approach), the fluid region is divided
into subdomains, where the Navier–Stokes equa-
tions are valid. Usually, the condition (9) is the first
one out of N conditions on the interface when con-
sidering a Stokes–Brinkman system. This approach
is used numerically in [19, 27].

4.1 The Stress Jump Conditions of
Ochoa-Tapia and Whitaker

Ochoa-Tapia and Whitaker [37] obtained 1995 at
the interface continuity of the velocity and the con-
tinuity of the ’modified’ normal stress by a vol-
ume averaging technique of the momentum equa-
tions in the interface region. In their analysis they
showed that the matching of Stokes equation with
the Brinkman model conserves the continuity of ve-
locity but induces a jump in the shear stress. Hence,
they proposed additionally to the condition (9), a
stress jump condition that takes into account the mo-
mentum transfer at the interface

∂u

∂y
(x,0+)− 1

φp

∂u

∂y
(x,0−) =− β√

K
u. (11)

Here, β denotes a dimensionless parameter of order
one that is defined as a solution of a closure prob-
lem. The authors investigated in [37] the conditions
(9), (11) in a 1D channel geometry and compared
the results with the classical Beavers–Joseph exper-
iment. These boundary conditions proposed in [37]
were used by Kuznetsov [26] to compute solutions
in channels partially filled with a porous material.
Many attempts have been made to estimate the ad-
justable jump coefficient β or to obtain an expres-
sion for β , depending on the microstructure of the
interface region. In [49] the authors derived a stress
jump boundary condition at the interface free of ad-

justable coefficients. The associated local closure
problems, modelling the microstructure of the inter-
face, determine a mixed stress tensor which is the
reason for the jump.
Furthermore, only few authors have studied the
physical nature of these jump coefficients. Jamet
and Chandesris [22, 23] analyzed the physical
meaning based on an upscaling method of the trans-
port equations in the interfacial region. Doing so,
they were able to interpret the jump coefficients as
surface tension quantities depending linearly on the
position of the interface.
In the dissertation of Laptev [27] a new numeri-
cal method in 3D using these interface conditions
(9), (11) was proposed. Furthermore, the mathe-
matical model of the coupling of Navier–Stokes and
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Fig. (3): Three–layer configuration for Poiseuille
flow overlying a porous medium with Brinkman
transition layer: still discontinuity in velocity be-
tween Brinkman and Darcy layers with relative error
γ ∼ 1/β of lower order

Brinkman equations using the stress tensor jump in-
terface condition (11) was validated for a large class
of model problems [27].

4.2 The Transition Zone Approach

There are serious doubts about the validity of the
Brinkman equation, e.g. for the case of lower porosi-
ties [33, 17], whereas Darcy’s law is not disputed
for this case. The Brinkman model suffers from
at least three limitations: first it is only valid for
materials with high porosity, secondly, the effective
viscosity µeff used in this model may change dis-
continuously at the interface. Finally, as a rule of
thumb, the Brinkman model should only be used if
the Reynolds numbers Re = ρUL/µ of the corre-
sponding free flow is greater than 10. Here U and
L are characteristic values for the velocity and the
length of the whole problem.
On the other hand, it appears to be useful to intro-
duce a transition layer between Stokes and Darcy
flow, which may be described by the Brinkman
equation.
When studying a Poiseuille flow over a permeable
region, e.g., by Chandesris and Jamet [5], in turned
out that the sharp interface with its jump conditions
is only the limiting case (i.e. an idealization) of a
transition region, where the physical properties of
the medium have a strong but still continuous vari-
ations. Actually, this idea goes back to Nield [33].
He proposed 1983 to use a Brinkman equation in the
transition region between the fluid and the porous
medium modeled by the Darcy equation. This ap-
proach was also validated experimentally by Go-
harzadeh et al. [15]. They found out experimentally
that the thickness of the transition region should be
of the same order as the grain size of the porous



medium.
In 2003, Goyeau et al. [16] studied the momen-
tum balance at the interface of a two-layer system
and introduced a heterogeneous continuously vary-
ing transition zone between the ’outer’ fluid and
porous zones. The authors derived an explicit for-
mula for the stress jump coefficient β involved in
the momentum transport. However, this approach
assumes the knowledge of the spatial dependence of
the effective quantities in the region around the in-
terface.
Chandesris and Jamet [5] solved in 2006 the prob-
lem in this transition zone using the technique of
matched asymptotic expansions: they obtained an
explicit representation of the stress jump coefficient
in the transition zone depending only on the parame-
ters of the porous medium (permeability and poros-
ity).
Recently, Hill and Straughan [17] considered a
three-layer constellation: a free fluid interfacing a
Brinkman-type porous transition layer, which over-
lies a porous medium modelled by the Darcy eq.
(2). The authors gave the exact analytical solution
for the velocity profile and discovered two instabil-
ity modes that depend on the ratio of the thickness
parameters of the different layers. Also, Nield and
Kuznetsov [35] derived exact solutions using Airy
functions for a transition layer considering a shear
flow in a channel.

4.3 The Interface Conditions of Le
Bars and Worster

Recently, Le Bars and Worster [29] considered spe-
cial ’analytically tractable’ cases for the one-domain
approach with the Brinkman model for the porous
medium. The authors compared their findings with
the two-domain approach of Section 4 using the
Darcy equation and its previously proposed inter-
face conditions, especially the Beavers–Joseph con-
dition (7). Le Bars and Worster considered the
Brinkman equation in the configuration studied by
Beavers and Joseph, and found a new condition at
the fluid-porous interface

u(x,−δ+) = uD(x,−δ ), with δ = c
√

K,
(12)

where c is a constant of order 1. They defined a
viscous transition zone inside Ωp, where the Stokes
equation still applies up to a depth δ , and imposed
continuity of pressure and velocities (9) at the po-
sition y = −δ (cf. Fig. (4)). Here, δ denotes the
characteristic size of this transition zone (a few pore

lengths). Using this new condition (12) the com-
puted values have a (slightly) better coincidence
with the experimental values of Beavers and Joseph.
Let us remark that the authors of [16, 29] found
good agreement between the single-domain ap-
proach of Section 4 and the two-domain approach
of Section 3. However, this can be explained by
the special configurations, cf. [18], namely a one-
dimensional tangential flow in [16] and a seemingly
very small vertical velocity gradient on the interface
in [29].
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Fig. (4): Comparison of Different Interface Models
for Porous Media: From left to right: The standard
case: no-slip condition on the fluid–porous inter-
face, the Beavers–Joseph condition (7): slip of size
1/α on the fluid–porous interface and the Le Bars
and Worster condition (12): slip by δ into the porous
media.

5. APPLICATION TO A FLOW CELL

The spatial domain Ω under consideration with co-
ordinate functions (x,y) is described as: Ω̄ = Ω̄p ∪
Ω̄ f , where Ω f = (0,L)× (0,H f ) is the free flow
domain, and Ωp = (0,L)× (−Hp,0) denotes the
porous part, cf. Fig. (5).
We characterize the porous medium with respect to
the fluid flow by its permeability K =K(ε), and with
respect to species transport by its dispersion coef-
ficient Dp. In order to simplify the discussion we
relate both to the porosity ε of the porous medium.
More precisely, we use the Karman-Kozeny equa-

tion [2]

K = K0
ε3

(1− ε)2 (13)

and the Bruggeman correlation Dp = D f ε
3
2 , cf.

[39].
We consider a steady-state flow process in a free
flow domain modeled by the incompressible Navier-

Stokes equation (1)
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Fig. (5): Schematic of a flow cell with porous diffu-
sion layer

.

Every channel flow profile satisfies the no-slip con-

dition at the impermeable wall

u(y) = 0 at y = H f , (14)

and due to the incompressibility condition ∇ ·u = 0
one immediately obtains the continuity of the nor-
mal velocity across the fluid-porous interface at y =
0.
We assume several flow profiles in the joint do-
main which are motivated by different approaches
to model and to couple the problems in the free
and porous flow regions. For all flow profiles, let
1/µ∇p = (δp,0)⊤ be the constant pressure gradient
with δp < 0.

5.1 Species transport modeling

At fixed temperature T and fixed pressure p, a
H2SO4 based electrolyte containing dissolved H2

enters the cell at the inlet, flows over the anode, and
leaves the cell at an outlet. At the inlet, the solute
concentration is given by a value cI , which depends
on the pressure and the temperature. H2 is trans-
ported to the anode and reacts at the catalytic surface
according to

H2 → 2H++2e−, (15)

creating two electrons and two protons per reacted
molecule. The amount of electrons generated dur-
ing this reaction is measured as an electrical cur-
rent. For high enough ion concentration due to the
support electrolyte, ohmic potential drops are neg-
ligible. Furthermore, the reaction rate of hydrogen
oxidation is large in comparison to the transport pro-
cesses in the cell, therefore we say that it is purely

transport limited. The current I measured in such a
situation is called limiting current.

5.2 Transport equation

According to [13, 14] the stationary species trans-
port (convection and diffusion) in such a flow cell
can be described by the partial differential equation

∇ · (D(x,y)∇c− cu(x,y)) = 0 in Ω (16)

supplied with the incompressibility condition ∇ ·
u = 0. Here, D is the molecular diffusion coeffi-
cient and c = c(x,y) denotes the concentration of a
dissolved species.
Let us assume that the diffusion coefficient D =
D(x,y) is piecewise constant: D(x,y) =D f for y> 0
and D(x,y) = Dp for y < 0 and for the velocity pro-
file, we assume u(x,y) = (ux(y),0)⊤ with a given
x component ux(y). In the sequel, we will write
shortly u(y) instead of ux(y). We consider the fol-
lowing boundary conditions:

free �ow inlet: c = c f on Γ f = 0× (0,H f )

porous inlet: c = cp on Γp = 0× (−Hp,0)

anode: c = 0 on Γa = (Lo,L−Lo)×−Hp

outlet: ∂c
∂n

= 0 on Γo = L× (−Hp,H f )

On all other parts of the domain, we assume no flow

boundary conditions

(D(x,y)∇c− cu(x,y)) ·n = 0. (17)

The values c f , cp in the boundary conditions denote
the inlet concentrations. The boundary concentra-
tion at the anode will be assumed to be 0, modeling
a surface reaction with infinitely fast kinetics. For
reaction (15), the limiting current can be calculated
from the amount of solute leaving the domain at the
anode as

I = 2F

∫

Γa

(D(x,y)∇c− cu(x,y)) ·nds. (18)

5.3 Asymptotic models

Due to the lack of analytical solutions, asymptotic
models based on boundary layer theory have been
used for a long time to derive quantitative estimates.
For the channel flow with an infinite strip electrode,
the solution was given in [30]. In [13] the following
expression for the limiting current was established

I = 2FD(cI − c0)
A

L
Sh, (19)



where F the Faraday constant and

Sh =
3

4
3

2Γ( 1
3 )

Pe
1
3 ≈ 0.8075491Pe

1
3 , (20)

is the dimensionless Sherwood number, D the diffu-
sion coefficient and A is the electrode surface, which
in this case is equal to L. The dimensionless Peclet
number Pe is defined by Pe = 6v̄L2/(DH f ).
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