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Abstract Using pseudodifferential calculus and factorization theorems we con-

struct a hierarchy of novel absorbing boundary conditions (ABCs) for the stationary

Schrödinger equation with general (linear and nonlinear) exterior potential V (x).
Doing so, we generalize the well-known quantum transmitting boundary condition

of Kirk and Lentner to the case of space-dependent potential. Moreover, we propose

a rapidly converging iterative method based on finite elements suitable for comput-

ing scattering solutions and bound states.

1 Introduction

The solution of the Schrödinger equation occurs in many applications in physics,

chemistry and engineering (e.g. quantum transport, condensed matter physics, quan-

tum chemistry, optics, underwater acoustics, . . . ). The considered problem can ap-

pear in different forms: time-dependent or stationary equation, linear or nonlinear

equation, inclusion of a variable potential among others.
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One of the main difficulty when solving the Schrödinger equation, and most

particularly from a numerical point of view, is to impose suitable and physically

admissible boundary conditions to solve numerically a bounded domain equation

modelling an equation originally posed on an unbounded domain. Concerning the

time-domain problem, many efforts have been achieved these last years. We refer

the interested reader e.g. to the recent review paper [2] and the references therein

for further details.

In this work, we focus on the solution to the stationary Schrödinger equation.

For a given potential V , eventually nonlinear (V := V (x,ψ)), we want to solve the

following equation

(
−α

d2

dx2
+V

)
ψ = Eψ, x ∈ R, (1)

or rewritten as (
d2

dx2
+

1

α

[
E −V

])
ψ = 0, x ∈ R, (2)

with some parameter α that allows for some flexibility. More precisely, we study

the extension of the recently derived time-domain boundary conditions [3] to the

following two situations:

• linear and nonlinear scattering: E is a given value and the potential V being

linear (independent of ψ) or nonlinear, we want to compute ψ as the solution of

(1).

• stationary states: we determine here the pair (ψ,E), for a given linear or non-

linear potential V . This eigenvalue problem is also known as the computation of

ground states. The energy of the system is then the eigenvalue E and the associ-

ated stationary state is the eigenfunction ψ . In particular, we seek the fundamen-

tal stationary state which is linked to the smallest eigenvalue. In practice, higher

order states are also of interest.

For the stationary Schrödinger equation (2), boundary conditions for solving lin-

ear scattering problems with a constant potential outside a finite domain have been

proposed e.g. by Ben Abdallah, Degond and Markowich [6], by Arnold [5] for

a fully discrete Schrödinger equation and in a two-dimensional quantum waveg-

uide by Lent and Kirkner [7]. The case of bound states can be found for the one-

dimensional linear Schrödinger equation with constant potential in [8].

The goal of this work is to propose and validate some new boundary conditions

for modeling variable potentials stationary one-dimensional Schrödinger equations

with application to scattering computation. We provide the whole theory which is re-

lated to previous developments [3] as well as numerical schemes for their validation.

Finally, let us point out that these absorbing boundary conditions can be extended

to higher dimensional problems and other situations like variable mass problems.
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2 Absorbing boundary conditions: from the time-domain to the

stationary case

In order to derive some absorbing boundary conditions (ABCs) for the stationary

Schrödinger equation (2), let us first start with the time-domain situation. In case of

the time-dependent Schrödinger equation with a linear or nonlinear potential Ṽ

{
i∂tu+∂ 2

x u+Ṽ u = 0, ∀(x, t) ∈ R×R
+,

u(x,0) = u0(x), x ∈ R,
(3)

the following second- and fourth-order ABCs

ABC2
2 ∂nu− iOp

(√
−τ +Ṽ

)
u = 0, (4)

ABC4
2 ∂nu− iOp

(√
−τ +Ṽ

)
u+

1

4
Op

(
∂nṼ

−τ +Ṽ

)
u = 0, (5)

on Σ ×R
+ were derived recently in [3]. Here, Op denotes a pseudodifferential op-

erator and the fictitious boundary Σ is located at the two interval endpoints xℓ and

xr. The outwardly directed unit normal vector to the bounded computational domain

Ω =]xℓ;xr[ is denoted by n.

To obtain some ABCs for the stationary equations (1) or (2), we consider these

equations supplied with a new potential: Ṽ := −V/α . Moreover, we are seeking

some time-harmonic solutions u(x, t) := ψ(x)e−i E
α t and since

i∂tu =
E

α
ψ(x)e−i E

α t ,

the variable −τ can be identified with E/α . This yield some stationary ABCs on Σ
that we designate by SABCM (’S’ stands for stationary and M denote the order) :

SABC2 ∂nϕ = i
1√
α

√
E −V ϕ, on Σ , (6)

SABC4 ∂nϕ = i
1√
α

√
E −V ϕ +

1

4

∂nV

E −V
ϕ. (7)

Let us remark that we constructed for the time-dependent case two families of

ABCs, denoted by ABCM
1 and ABCM

2 [3]. These ABCs all coincide if the potential is

time-independent. In the stationary case, all the potentials fall into this category and

thus the ABCs are equivalent. Hence, we get the unique class of stationary ABCs,

SABCM (without subscript index). For convenience, the form of the boundary con-

ditions (6)–(7) is based on ABCM
2 (we refer to [3] for more technical details).

In the next section we investigate numerically these absorbing boundary condi-

tions in the case of linear scattering problems.
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3 Application to linear scattering problems

Let us consider an incident right-traveling plane wave

ϕ inc(x) = eikx, k > 9, x ∈]−∞;xℓ], (8)

coming from −∞. The parameter k is the real valued positive wave number and the

variable potential V models an inhomogeneous medium. We consider a bounded

computational domain Ω =]xℓ;xr[ and assume that the wave ϕ −ϕ inc is perfectly

reflected back at the left endpoint xℓ. Furthermore, we assume that the wave is totally

transmitted in [xr;∞[, propagating then towards +∞. As a consequence, we have to

solve the following boundary value problem

(
−α

d2

dx2
+V

)
ψ = Eψ, for x ∈ Ω ,

∂nϕ = gM,ℓϕ + fM,ℓ, at x = xℓ,

∂nϕ = gM,rϕ, at x = xr,

(9)

with fM,ℓ = ∂nϕ inc(xℓ)−gM,ℓϕ
inc(xℓ). Here, the order M is equal to 2 or 4 according

to the choice of SABCM (6) or (7) and thus we have

g2,(ℓ,r) := i
1√
α

√
E −Vℓ,r, (10)

g4,(ℓ,r) := g2,(ℓ,r)+
1

4

∂nV|x=xℓ,r

E −V|x=xℓ,r

. (11)

In the sequel of this paper, we will also use the following other concise writing

∂nϕ = gMϕ + fM, on Σ , (12)

for each function being adapted with respect to the endpoint. Finally, for a plane

wave, we have the dispersion relation: E = αk2 +Vℓ, where Vℓ =V (xℓ).
We use a finite element method (FEM) to solve numerically this problem. One

benefit of using FEM in this application is that the ABCs can be incorporated di-

rectly into the variational formulation. The interval [xℓ;xr] is decomposed into nh

elementary uniform segments of size h. Classically, the ABCs are considered as

(impedance) Fourier-Robin boundary conditions. Let ϕ ∈ C
nh+1 denote the vector

of nodal values of the P1 interpolation of ϕ and let S ∈ Mnh+1(R) the P1 stiff-

ness matrix associated with the bilinear form
∫

Ω ∂xϕ ∂xψ dx. Next we introduce

MV−E ∈ Mnh+1(R) as the generalized mass matrix arising from the linear approxi-

mation of
∫

Ω (V −E)ϕψ dx, for any test-function ψ ∈ H1(Ω). Let BM ∈Mnh+1(C)
be the matrix of the boundary terms related to the ABC SABCM . The right-hand

side bM ∈ C
nh+1 is given by b =

(
α fM,ℓ,0, . . . ,0

)⊤
and the linear system reads

(αS+MV−E +BM)ϕ = bM, (13)
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For an example we study the stationary Schrödinger equation (1) with α = 1/2:

−1

2

d2

dx2
ϕ +V ϕ = Eϕ, x ∈ R, (14)

and consider an incident right-traveling plane wave with wave number k = 10. We

analyze the results for a Gaussian potential V (x) = Aexp{−(x−xc)
2/w2}, centered

at xc = 20 with the amplitude A =−5 and the parameter w = 3.

The numerical reference solution is computed on the large domain ]0;58[ using

the fourth-order ABC. At the fictitious boundary points xℓ and xr of the computa-

tional domain, the values of the potential are V (58)≈ 10−69 and V (0)≈ 10−19, i.e.

from a numerical point of view, the potential can be considered as compactly sup-

ported in this reference domain. Then, the ABCs are highly accurate [2] yielding a

suitable reference solution ϕref with spatial step size h = 5 ·10−3.

We next compute the solution obtained by applying the ABCs on a smaller com-

putational domain by shifting the right endpoint to xr = 18, now the potential being

far from vanishing at this endpoint. In the negative half-space x < xℓ = 0, the poten-

tial is almost equal to zero and hence the second-order ABC is very accurate.
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Fig. 1 Real parts of the numerical solutions.

Figure 1 shows the computed solutions (denoted by ϕnum), superposed on the po-

tential and reference solution, with the second-order (green) and fourth-order (cyan)

ABCs placed at the right endpoint xr. Since the solutions are complex valued, we

only plot here their real parts. Note that we would obtain roughly the same curves for

their complex parts. The ABCs give quite good results as it can be clearly observed

in Figure 1 (right) where we zoom around the boundary xr = 18 to distinguish the

different curves. At first sight, the curves coincide. Next we plot in Figure 2 (left)

the error curves on the real part x 7→ |Re(∆ϕ(x))| and in Figure 2 (right) we show

the modulus x 7→ |∆ϕ(x)|, with the error ∆ϕ = ϕnum −ϕref.

We can see that the approximation error by using the SABC2 is roughly 5 ·10−4

while the error associated with ABC4 is almost 10−6, which is also the linear finite

element approximation error h2 ≈ 10−6. Hence, not only the results are precise but

they are also of increasing accuracy as the order of the SABC increases.
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Fig. 2 Errors |ϕnum −ϕref| for the potential V (x) =−5e−(x−20)2/9, real part (left), modulus (right).

Conclusion

We have proposed some accurate and physically admissible absorbing boundary

conditions for modeling linear (and nonlinear) stationary Schrödinger equations

with variable potentials. Based on numerical schemes, these boundary conditions

have been validated for linear scattering computations.

A more detailed discussion and examples including the consideration of linear

and nonlinear eigenstate computation with applications to many possible given vari-

able potentials and nonlinearities can be found in [4].

Acknowledgements This work was supported partially by the French ANR fundings under the

project MicroWave NT09 460489 (http://microwave.math.cnrs.fr/)

References

1. Antoine, X., Besse, C., Mouysset, V.: Numerical schemes for the simulation of the two-

dimensional Schrödinger equation using non-reflecting boundary conditions. Math. Comp.

73, 1779–1799 (2004)

2. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., A. Schädle, A.: A review of transparent and
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