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Greedy algorithms for a class of knapsack problems

with binary weights

November 2009

http://www.math.uni-wuppertal.de



Greedy algorithms for a class of knapsack problems

with binary weights
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Abstract

In this article we identify a class of two-dimensional knapsack problems and

related three-criteria unconstrained combinatorial optimization problems that can

be solved in polynomial time by greedy algorithms. For the latter problem, the

proposed algorithm explores the connectedness of the set of efficient solutions. Ex-

tensive computational results show that this approach can solve the three-criteria

problem up to one million items in half an hour.

1 Introduction

The 0/1 multidimensional knapsack problem is a classical NP-hard problem with many
applications and for which several theoretical results are known (see Weingartner and
Ness [14], Kellerer et al. [9]). Due to its hardness, exact algorithms are only able to
solve small to medium sized instances. For this reason, many heuristic procedures have
been proposed in the literature [1, 5, 11, 12, 13]. By transforming the m constraints
into m minimizing criteria, we obtain a special case of the multicriteria unconstrained
combinatorial optimization problem [3]. This problem is also NP-hard and to the best of
our knowledge no algorithm has been proposed to solve it.

In this article, we consider the 0/1 m-dimensional knapsack problem with binary
weight coefficients and the (m + 1)-criteria unconstrained optimization problem with m
binary criteria coefficients. We show that for m = 2, the problems above can be solved
to optimality in polynomial time by following a simple greedy strategy.

Two additional aspects are worthwhile noting. First, the greedy algorithm for the
three-criteria problem with binary criteria coefficients provides a constructive proof that
the set of the efficient solutions for this problem is connected according to a combinatorial
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definition of neighborhood [6, 7]. We remark that this is the first positive and non-trivial
result of connectedness in multicriteria combinatorial optimization. In general, it has been
shown that the efficient set is not connected for many of these problems [4, 7]. Second, the
cardinality of the nondominated set is bounded by a polynomial function of the number
of items, which is often not the case in multicriteria combinatorial optimization [2]. The
greedy algorithm proposed in this article solves the three-criteria problem in polynomial
time and takes constant amount of time to find each efficient solution after a pre-processing
step. Our numerical experiments indicate that this approach is very efficient in practice.

The article is organized as follows. In Section 2, we introduce the notation and the
problems. Furthermore we present the pre-processing phase that is common to all al-
gorithms described in this article. The greedy algorithm for the 0/1 two-dimensional
problem with equality constraints is presented in Section 3. The algorithms for the three-
criteria problem and for the 0/1 two-dimensional problem with inequality constraints are
presented in Sections 4 and 5, respectively. We conclude in Section 6.

2 Notation and Pre-Processing

Let j ∈ {1, . . . , m}. We assume that there exists a set N of n items available. We
denote the profit of each item s ∈ N and its weight at dimension j by p(s) and wj(s),
respectively. The knapsack capacity at dimension j is denoted by cj . Let S ⊆ N be a
subset of items (called a knapsack in the following). We denote by p(S) =

∑

s∈S p(s) and
wj(S) =

∑

s∈S wj(s) the total profit and the total weight at dimension j of the items
in knapsack S, respectively. In our particular case, we assume that wj(s) can only take
binary values for all items s ∈ N .

Definition 2.1 (The 0/1 m-dimensional knapsack problem with binary weights (m-KP≤))
Given a finite set N , for each s ∈ N a profit p(s) ∈ Z

+ and a weight wj(s) ∈ {0, 1}, and
a non-negative integer cj, find a subset S ⊆ N such that p(S) is maximal and wj(S) ≤ cj,
for j = 1, . . . , m.

When m = 1, Problem (m-KP≤) simplifies to a sequential knapsack problem with
divisible weights, which is solvable in O(n log n) time [8]. We introduce the following
special case of (m-KP≤).

Definition 2.2 (The 0/1 m-dimensional knapsack problem with equality constraints and
binary weights (m-KP=)) Given a finite set N , for each s ∈ N a profit p(s) ∈ Z

+ and a
weight wj(s) ∈ {0, 1}, and a non-negative integer cj, find a subset S ⊆ N such that p(S)
is maximal and wj(S) = cj, for j = 1, . . . , m.

If we transform the m constraints of Problems (m-KP=) and (m-KP≤) into m cri-
teria to minimize, we obtain a variant of the multicriteria unconstrained combinatorial
optimization problem [3] that is defined as follows.

Definition 2.3 (The (m + 1)-criteria unconstrained combinatorial optimization problem
with m binary weights (m-MP)) Given a finite set N , for each s ∈ N a profit p(s) ∈ Z

+

and a weight wj(s) ∈ {0, 1}, find a subset S ⊆ N such that p(S) is maximal and wj(S) is
minimal, for j = 1, . . . , m.

We define the notion of optimality for Problem (m-MP) as follows. Let N denote the
set of feasible knapsacks. The image of the set N when using the m+1 criteria forms a set
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of points in the criteria space, denoted here by Z ⊆ N
m+1. We say that a feasible knapsack

S dominates another feasible knapsack S ′ if and only if p(S) ≥ p(S ′) and wj(S) ≤ wj(S ′)
for j = 1, . . . , m, with at least one strict inequality; if strict inequality holds for all m + 1
components, then S strictly-dominates S ′. If there is no feasible knapsack that dominates
S, then we say that S is an efficient knapack ; in case there exists no feasible knapsack
that strictly-dominates S, then this knapsack becomes weakly-efficient. The set of all
efficient knapsacks is denoted by NE. An efficient knapsack is called supported efficient,
if it is a minimizer of a non-trivial weighted sum problem with the three objectives −p(S),
w1(S) and w2(S). We say that a vector Z ∈ Z is non-dominated if there is some efficient
knapsack S ∈ NE such that Z is the criteria vector of S for Problem (m-MP). We denote
the set of all non-dominated vectors, the non-dominated set, by ZND.

We recall that a given efficient knapsack of Problem (m-MP) corresponds to an optimal
knapsack for Problem (m-KP≤) for appropriate chosen, non-negative integers c1, . . . , cm.
Moreover, if there exists an optimal knapsack for Problem (m-KP≤) with non-negative
integers c1, . . . , cm, then this knapsack is at least weakly-efficient for Problem (m-MP)[3].
Note that if there exists an optimal knapsack for Problem (m-KP=) with non-negative
integers c1, . . . , cm, this knapsack may not even be weakly-efficient for (m-MP).

In this article, we are particularly interested in the two-dimensional case (m = 2) of
Problems (m-KP≤) and (m-KP=). For the latter problem, we denote the set of all optimal
knapsacks for the constraint (c1, c2) by S(c1, c2); if c1 = 0 (or c2 = 0) we call S(0, c2) (or
S(c1, 0)) a basis with respect to c2 (or c1). Moreover, ρ(c1, c2) denotes the optimal profit
value for this problem with constraint (c1, c2), i.e. ρ(c1, c2) = p(S) where S ∈ S(c1, c2).

For the Problem (m-MP) with m = 2, we consider the problem of finding set ZND

since to find all efficient knapsacks is an intractable task (cf. [9]); if p(s) = wj(s) = 1 and
cj = n− 1, for all s ∈ N and j = 1, . . . , m, then there exists 2n − 1 efficient knapsacks.

For the sake of the explanation, we give a geometric interpretation of the image of all
feasible solutions for the two weight criteria w1 and w2 as a set

G :=
{(

w1(S), w2(S)
)

, S ⊆ N
}

that forms an hexagonal grid in the R
2-plane (cf. Figure 1). Note that |G| = O(n2) and

that this is a strict upper bound on the cardinality of the non-dominated set as shown in
the following example.

Example 2.4 Let N = {s1, s2, s3}, w(s1) = (1, 0), w(s2) = (0, 1), w(s3) = (1, 1), and
p(s) = w1(s) + w2(s), for all s ∈ N . Then, ZND = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 2)}
and |G| = |ZND|.

In the following sections, we present greedy algorithms to solve the three problems
defined above. After a pre-processing phase, the algorithm solves Problem (2-KP=) by
inserting items into the knapsack according to a given sequence of items. The non-
dominated set of Problem (2-MP) is found by iteratively solving the previous problem for
several constraints. Finally, Problem (2-KP≤) is solved based on the results for Problem
(2-MP).

The following pre-processing step is common to all algorithms presented in this article.
It consists of partitioning the set of items and sorting its elements with respect to their
profit values. Without loss of generality, we assume that w1(s) + w2(s) ≥ 1 for all items
s of the problem. Note that items with null weights will only augment the profit value
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Figure 1: The hexagonal grid G in the R
2-plane.

of a knapsack. Therefore, we can remove those items, store the sum of their profits and
solve the problem for the remaining ones.

We partition the set of items according to their weights (w1(s), w2(s)) for all items s
and obtain three different sets where all elements in a set have the weights (1, 0), (1, 0)
and (1, 1), respectively. We denote these sets by R, U and D, respectively, and their
cardinalities by nR, nU and nD. Without loss of generality, we assume that nU ≤ nR.
Next, we sort the elements of each set in non-increasing order of the profit values. We store
the profit values of these items in the sequences r = (r1, r2, . . . , rnR

), u = (u1, u2 . . . , unU
)

and d = (d1, d2, . . . , dnD
).

In the following sections, we will interleave between sequences of items and sequences
of profits. The correspondence between an item in the sequence U , R or D and its profit
in the sequence u, r or d should be clear from the context.

3 A greedy algorithm for Problem (2-KP=)

The greedy algorithm described in this section returns an optimal knapsack for Problem
(2-KP=) for an arbitrary constraint (c1, c2) in G. The algorithm starts by finding an
optimal knapsack for a given basis and proceeds by filling it with items taken from sets
U , R and D based on the decomposition

(

w1(S)
w2(S)

)

=
(

c1 − c2
)

·

(

1
0

)

+ c2 ·

(

1
1

)

=

(

c1

c2

)

(1)

for c1 ≥ c2 and a similar decomposition for c2 ≥ c1, respectively.
For the sake of the explanation, we call as super-item a pair of items where one is

taken from set R and the other is taken from set U . A super-item has a weight (1, 1) and
its profit is the sum of the profits of the two items.

For the remaining results of this section, we state the following remark.

Remark 3.1 For a given constraint (c1, c2) ∈ G \ {(0, 0)}, there is at least one optimal
knapsack that contains the first items from set U , R or D.

The first lemma states that it is easy to find the optimal profit value of knapsacks in
a basis.
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Lemma 3.2 Let c1 ∈ {1, . . . , nR} and c2 ∈ {1, . . . , nU}. Then, for all knapsacks S ∈
S(c1, 0) and S ′ ∈ S(0, c2) it holds

p(S) =

c1
∑

i=1

ri and p(S ′) =

c2
∑

i=1

ui.

Starting from an optimal knapsack in a basis, we establish the connection between
these knapsacks and optimal knapsacks in S(c1, c2).

Lemma 3.3 Let (c1, c2) ∈ G with 0 < c2 < c1. Then, there exists an optimal knapsack
S ∈ S(c1, c2) that contains all items of an optimal knapsack S ′ ∈ S(c1 − c2, 0).

Clearly, a similar result to Lemma 3.3 can be obtained for the case that 0 < c1 < c2.
Lemma 3.3 suggests a greedy algorithm to solve Problem (2-KP=) for a given (c1, c2) ∈

G. Assume that 0 < c2 ≤ c1. First, fill the knapsack with the first c1 − c2 items from R.
Then repeat the following procedure c2 times:

(i) Select the three items with the largest profit in R, U and D, respectively, that are
not in the knapsack; let the two items from R and U correspond to a super-item.

(ii) From the item of D or the super-item of R and U , insert the one with the largest
profit into the knapsack.

Let D̄ denote the sequence of these last c2 (super-)items. The following theorem states
that the application of the above given procedure results in an optimal knapsack for a
given instance of (2-KP=) where 0 < c2 ≤ c1.

Theorem 3.4 Let (c1, c2) ∈ G such that 0 < c2 ≤ c1, and let S denote the knapsack that
includes the first c1−c2 items from R and the c2 (super-)items from D̄. Then S ∈ S(c1, c2).

Proof. According to the description above, S is a feasible knapsack and satisfies the
decompostion (1). Now, assume that S is not optimal, i.e. there exists another feasible
knapsack S ′ such that p(S ′) > p(S). According to the construction of S as well as the
result from Remark 3.1 and Lemma 3.3, we may assume that S ′ includes the first c1 − c2

elements of R. Therefore, the weights of the remaining items in S ′ must sum up to (c2, c2),
since otherwise S ′ would not be a feasible knapsack. However, this is only possible if the
cardinality of items from U and the cardinality of additional items from R coincide since
they do not augment the value of the two weight coefficients simultaneously as all the
items in D do. Hence, S ′ must contain a combination of items (aside from the first c1−c2

items of R) whose total profit is equal to the sum of the c2 profit values of (super-)items
in D̄. However, this means that p(S ′) = p(S), which contradicts the assumption that S
is not in S(c1, c2).

Using the same reasoning as above, we can construct an optimal knapsack for the
case where 0 < c1 ≤ c2. This optimal knapsack contains the first c2 − c1 items of U and
the c2 items of the sequence D̄, which corresponds to the sequence of items from D and
appropriate combined super-items of R and the remaining items in U .

Note that since sequences R, U and D are sorted according to the profits, we can find
the optimal knapsack in linear time after the pre-processing phase. The algorithm takes
O(n log n) time due to the sorting step at the pre-processing phase.
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4 A greedy algorithm for Problem (2-MP)

Based on the results of the previous section, we can derive a straight-forward algorithm
that finds the non-dominated set for Problem (2-MP) in polynomial time: First, call
the greedy algorithm to solve Problem (2-KP=) for every constraint (c1, c2) ∈ G (see
Section 3) and store each optimal profit found and corresponding weight vector as a tuple;
then, remove the dominated tuples. Clearly, the remaining set of tuples corresponds
to the non-dominated set of Problem (2-MP). Since the removal of dominated tuples
can be performed in O(n logn) [10], this algorithm has O(n3 log n) time complexity. In
this section we present an improvement on the algorithm above that reduces the time
complexity to O(n2). The resulting algorithm is optimal in terms of upper bound time
complexity.

The remaining parts of this section are organized as follows: After proving important
dominance relations for different pairs of (c1, c2) ∈ G, we derive a strict lower bound on
the cardinality of the non-dominated set. Using these results we show that we can find the
non-dominated set of Problem (2-MP) without even applying the filtering step to remove
dominated knapsacks at the end.

In the following we will focus on the case that 0 < c2 ≤ c1 and only mention equivalent
results for the case that 0 < c1 ≤ c2 briefly. Hence, let 0 < c2 ≤ c1, let c = c1 − c2 and
let λ = min{nR − c, nU}. For a given basis S(c, 0), c ∈ {0, . . . , nR}, let D̄c denote the
sequence of λ (super-)items that are chosen according to the greedy algorithm described
in Section 3. Moreover, we store the profits of the elements in D̄c in the sequence d̄c and
the profits of the super-items in the sequence d̃c. In this case we say that these sequences
correspond to the given basis c.

For the remaining results of this section, we introduce the following corollary.

Corollary 4.1 Let (c1, c2) ∈ G such that c1 = nR + nD. Then there exists a sequence
{Si}i of knapsacks such that Si ∈ S(c1 − c2 + i, i) for i = 0, . . . , c2 and Si and Si+1 differ
in exactly one (super-)item in the sequence D̄c1−c2.

Proof. The proof follows directly from Theorem 3.4. Let S0 ∈ S(c1−c2, 0) be the knapsack
that contains the first c1 − c2 items of R and let Si contains all items from S0 and the
first i (super-)items in sequence D̄c1−c2 for i ∈ {1, . . . , c2}. Then, Si ∈ S(c1− c2 + i, i) for
i = 0, . . . , c2 and Si and Si+1 differ in exactly one (super-)item in the sequence D̄c1−c2.

Clearly, a similar result holds for the case that c2 = nU + nD.
Corollary 4.1 suggests that Problem (2-KP=) can be solved for several constrained

values by starting from a knapsack in a basis and subsequently adding c2 items from the
sequence D̄c1−c2 for c1 = nR + nD. By repeating this procedure for each basis, we obtain
an algorithm that finds the profit values of Problem (2-KP=) for all constraints in the
grid G in O(n2) time. Then, the non-dominated set for Problem (2-MP) can be found in
O(n2).

In the remaining part of this section, we will show that we may not need to consider
the complete sequence D̄c as defined above and that the removal of dominated knapsacks
does not even need to be performed. For this purpose, we need to split the grid G into
three sectors G1, G2 and G3 defined as follows: G1 corresponds to the points of the grid
that do not lie under the line segment connecting the points (0, 0) and (nU +nD, nU +nD);
G2 consists of all points in the grid between the line segments connecting the points (0, 0)
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Figure 2: Sectors and Dominance.

and (nU +nD, nU +nD) and the points (nR−nU , 0) and (nR +nD, nU +nD), respectively;
the remaining points of the grid form G3 (see also the left-hand side in Figure 2). Note
that all integer points on the border of two sectors belong to both sectors and that it is
assumed that nU ≤ nR.

4.1 Dominance Relations in G

In the following we establish dominance relations among points in G. For a constraint
(c1, c2) ∈ G we know that a knapsack S ∈ S(c1, c2) can be dominated by any other
knapsack in S((c1, c2)−R

2)∩G) and that S potentially dominates knapsacks in S((c1, c2)+
R

2)∩G) by definition of Problem (2-MP) (cf. also Figure 2). In addition, while knapsack
S can never dominate (or be dominated by) knapsacks in S(c1 + 1, c2 + 1) (or in S(c1 −
1, c2 − 1)) by the construction of the sequences in Corollary 4.1, this can be the case for
all knapsacks in S(c1 + 1, c2) or in S(c1, c2 + 1) (or in S(c1 − 1, c2) or in S(c1, c2 − 1)). In
the following we will focus on these cases.

To simplify the notation, we say that there exists horizontal dominance, to the right or
from the left when an optimal knapsack to Problem (2-KP=) with constraint (c1, c2) ∈ G
dominates (or is dominated by) his right (left) neighbor, i.e. an optimal knapsack to
Problem (2-KP=) with constraint (c1 + 1, c2) ∈ G (or (c1 − 1, c2) ∈ G, respectively).
Furthermore, we say that we have vertical dominance, to the top or from the bottom
whenever an optimal knapsack to Problem (2-KP=) with constraint (c1, c2) ∈ G dominates
(or is dominated by) his top (bottom) neighbor, i.e. an optimal knapsack to Problem (2-
KP=) with constraint (c1, c2 + 1) ∈ G (or (c1, c2 − 1) ∈ G, respectively). We will show in
the following that vertical dominance can apply in G1 and G2 while horizontal dominance
is not possible in these sectors. For Sector G3 we will prove that horizontal dominance is
possible but never vertical dominance.

We start by introducing two lemmas that will be useful for deriving the main results
about vertical and horizontal dominance in the three sectors. Starting from a knapsack
S0 ∈ S(0, c) where c ∈ {0, . . . , nU} we have that

ρ(nU + nD − c, nU + nD) =

nU−c
∑

i=1

ri +

nU
∑

i=1

ui +

nD
∑

i=1

di, (2)

in G1, according to Corollary 4.1. For c ∈ {0, . . . , nR − nU} and S0 ∈ S(c, 0) Corollary
4.1 provides that
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ρ(nU + nD + c, nU + nD) =

nU+c
∑

i=1

ri +

nU
∑

i=1

ui +

nD
∑

i=1

di, (3)

in G2, whereas in G3 we have that

ρ(nR + nD, nR + nD − c) =

nR
∑

i=1

ri +

nR−c
∑

i=1

ui +

nD
∑

i=1

di, (4)

where c ∈ {nR−nU , . . . , nR} and S0 ∈ S(c, 0). Since all profits are positive by assumption,
it follows from (2), (3) and (4):

Lemma 4.2 The finite sequences

{ρ(nD + i, nU + nD)}nR

i=0 and {ρ(nD + nR, nD + i)}nU

i=0

are strictly increasing.

Focusing on the Sectors G2 and G3 we establish the following relations.

Lemma 4.3 Let the sequence d̄c correspond to the basis S(c, 0), where c ∈ {0, . . . , nR}.

1. Let c ∈ {0, . . . , nR − 1} and i ∈ {1, . . . , nR − c}. Then d̄c
k ≥ d̄c+i

k for all k ∈
{1, . . . , nD + min(nR − (c + i), nU)}.

2. Let c ∈ {0, . . . , nR − nU − 1}. Then d̄c
k+1 ≤ d̄c+1

k for all k ∈ {1, . . . , nU + nD − 1}.

3. Let c ∈ {nR−nU , . . . , nR−1}. Then d̄c
k+1 ≤ d̄c+1

k for all k ∈ {1, . . . , nR+nD−(c+1)}.

Proof. In the following we prove the three cases above:

(1.) The proof follows immediately from the construction of the sequences d̄c and d̄c+i.

(2.) We distinguish two cases. For the first case we assume that the first element of the
sequence d̄c corresponds to the profit of a super-item. Then, nD of the remaining
nU + nD − 1 elements of d̄c coincide with nD elements of d̄c+1 since both sequences
contain the nD profit values of the items in D. In addition, by the construction of
the super-items it holds that

d̃c
k+1 = rc+k+1 + uk+1 ≤ rc+k+1 + uk = d̃c+1

k

for all k ∈ {1, . . . , nU − 1}. Since the elements of the sequences are sorted in non-
increasing order, this implies that d̄c+1

k ≥ d̄c
k+1 for all k ∈ {1, . . . , nU + nD − 1}.

For the second case, let ℓ > 1 corresponds to the index of the profit of the first
super-item contained in the sequence d̄c. For k ∈ {1, . . . , ℓ − 2} it holds that
d̄c

k = dk ≥ dk+1 = d̄c
k+1 by construction and, in addition, we have that d̄c

ℓ = d̃c
1 =

rc+1 + u1 ≥ rc+2 + u1 = d̃c+1
1 . This implies that d̄c+1

k = dk for k = 1, . . . , ℓ− 1 and
Part (2.) is true at least until k = ℓ. For the remaining indices we can apply the
same reasoning as in the first case taking into account that the remaining elements
of the sequence d̄c and d̄c+1 only coincide in the nD− (ℓ−1) profit values dℓ, . . . , dnD

of items contained in D. This completes the proof for the second case.
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(3.) The proof is similar to the proof of Part (2.).

We will use Lemma 4.2 and Lemma 4.3 to derive results for vertical and horizontal
dominance between neighbor points in the same sector.

Theorem 4.4 For Sector G3 it holds:

1. Let (c1, c2) ∈ G such that nR−nU ≤ c1−c2 ≤ nR−1 and nR−nU ≤ c1 ≤ nR+nD−1.
If S ∈ S(c1, c2) dominates S ′ ∈ S(c1 +1, c2) then S̄ ∈ S(c1+j, c2 +j) also dominates
S̄ ′ ∈ S(c1 + j + 1, c2 + j), where j ∈ {0, . . . , nD + nR − (c1 + 1)}.

2. Let c ∈ {nR−nU , . . . , nR− 1} and let S ∈ S(c+ i+1, i) and S ′ ∈ S(c+ i+1, i+1),
where i ∈ {0, . . . , nR + nD − (c + 1)}. Then S does not dominate S ′.

Proof. The proof for the two cases above is as follows:

(1.) Let S dominate S ′, i.e. p(S) ≥ p(S ′). Since according to Lemma 4.3 it holds that

d̄c1−c2

k ≥ d̄c1−c2+1
k for all k ∈ {1, . . . , nD + nR − (c1 − c2 + 1)}, we have that

p(S̄) = p(S) +

c2+j
∑

k=c2+1

d̄c1−c2

k ≥ p(S) +

c2+j
∑

k=c2+1

d̄c1−c2+1
k

≥ p(S ′) +

c2+j
∑

k=c2+1

d̄c1−c2+1
k = p(S̄ ′),

for j ∈ {1, . . . , nD + nR − (c1 + 1)}. This implies that S̄ dominates S̄ ′.

(2.) To prove this case, assume that there exists an index i ∈ {0, . . . , nR + nD − (c + 1)}
such that S ∈ S(c + i + 1, i) dominates S ′ ∈ S(c + i + 1, i + 1). Using the fact that
d̄c+1

k ≥ d̄c
k+1 for all k ∈ {1, . . . , nR +nD− (c+1)} from Lemma 4.3 this would imply

that S̄ ∈ S(nR + nD, nR + nD − (c + 1)) dominates S̄ ′ ∈ S(nR + nD, nR + nD − c)
and hence ρ(nR + nD, nR + nD − (c + 1)) ≥ ρ(nR + nD, nR + nD − c), which is a
contradiction to Lemma 4.2.

We established that there can exist horizontal dominance but never vertical dominance
in Sector G3. Note that the same reasoning as in Part (1.) of Theorem 4.4 can be applied
for Sector G2 assuming that there is dominance to the right somewhere in this sector.
Nevertheless, the next theorem shows that the assumption of dominance to the right is
never met in G2.

Theorem 4.5 For Sector G2 it holds:

1. Let c ∈ {0, . . . , nR − nU − 1} and let S ∈ S(c + i, i) and S ′ ∈ S(c + i + 1, i), where
i ∈ {1, . . . , nU + nD}. Then S does not dominate S ′.

2. Let (c1, c2) ∈ G such that 1 ≤ c1 − c2 ≤ nR − nU and 0 ≤ c2 ≤ nU + nD − 1. If
S ∈ S(c1, c2) dominates S ′ ∈ S(c1, c2 + 1), then S̄ ∈ S(c1 + j, c2 + j) also dominates
S̄ ′ ∈ S(c1 + j, c2 + j + 1), where j ∈ {0, . . . , nU + nD − (c2 + 1)}.
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Proof. The proofs for (1.) and (2.) follow the same line of argument as the proofs of (2.)
and (1.) in Theorem 4.4, respectively. To prove (1.), the first part of Lemma 4.3 has to
be used, while the second result can be deduced from (2.) of Lemma 4.3.

For Sector G1 we briefly state an analogous result to Lemma 4.3.

Lemma 4.6 Let the sequence d̄c correspond to the basis S(0, c), where c ∈ {0, . . . , nU}.

1. Let c ∈ {0, . . . , nU − 1} and i ∈ {1, . . . , nU − c}. Then d̄c
k ≥ d̄c+i

k for all k ∈
{1, . . . , nU + nD − (c + i)}.

2. Let c ∈ {0, . . . , nU − 1}. Then d̄c
k+1 ≤ d̄c+1

k for all k ∈ {1, . . . , nU + nD − (c + 1)}.

Proof. The proofs follow the same idea of the proofs for Part (1.) and Part (3.) in Lemma
4.3.

We use Lemma 4.6 to derive that there cannot be horizontal dominance in G1 but that
vertical dominance is possible.

Theorem 4.7 It holds:

1. Let (c1, c2) ∈ G such that 0 ≤ c2 − c1 ≤ nU − 1 and c2 ≤ nU + nD − 1. If
S ∈ S(c1, c2) dominates S ′ ∈ S(c1, c2 + 1) then S̄ ∈ S(c1 + j, c2 + j) also dominates
S̄ ′ ∈ S(c1 + j, c2 + j + 1), where j ∈ {0, . . . , nU + nD − (c2 + 1)}.

2. Let c ∈ {0, . . . , nU − 1} and let S ∈ S(i, c + i + 1) and S ′ ∈ S(i +1, c + i + 1), where
i ∈ {0, . . . , nU + nD − (c + 1)}. Then S does not dominate S ′.

Proof. The proofs follow the same ideas of the proofs for Theorem 4.5 using Lemma 4.6
instead of Lemma 4.3.

To summarize, we have shown that there can be vertical dominance in Sectors G1 and
G2 and there can be horizontal dominance in Sector G3. We will use these properties to
show the following technical theorem which is very important for the next subsections.

Theorem 4.8 Let S ∈ S(c1, c2), where c1 · c2 6= 0.

1. Let (c1, c2) ∈ G1 ∪ G2. Then S cannot be dominated by any knapsack S ′ satisfying
c2 ≥ w2(S ′) ≥ w1(S ′) + c2 − c1. Furthermore if S is dominated, then there exists a
knapsack S̄ ∈ S(c̄1, c̄2), where c̄1 = c1, c̄2 < c2, (c̄1, c̄2) ∈ G1 ∪ G2 and p(S̄) ≥ p(S)
that dominates S.

2. Let (c1, c2) ∈ G3. Then S cannot be dominated by any knapsack S ′ satisfying c1 ≥
w1(S ′) ≥ w2(S ′) + c1 − c2. Furthermore if S is dominated, then there exists a
knapsack S̄ ∈ S(c̄1, c̄2), where c̄1 < c1, c̄2 = c2, (c̄1, c̄2) ∈ G3 and p(S̄) ≥ p(S) that
dominates S.

Proof. Let S ∈ S(c1, c2) be a dominated knapsack and let (c1, c2) ∈ G1∪G2 with c1 ·c2 6= 0.
Then there exists a knapsack S̄ such that p(S̄) ≥ p(S), w1(S̄) ≤ c1 and w2(S̄) ≤ c2 with
at least one strict inequality. Without loss of generality we may assume that S̄ ∈ S(c̄1, c̄2)
where c̄i = wi(S̄) for i = 1, 2.
Since S ∈ S(c1, c2), we have that S̄ 6∈ S(c1, c2). Hence, c̄1 < c1 or c̄2 < c2.
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Figure 3: Construction of the line segment ℓ in the proof of Theorem 4.8 for (c1, c2) ∈ G2.

Assume that c̄2 ≥ c̄1 + c2 − c1, i.e. the point (c̄1, c̄2) does not lie underneath the line
segment ℓ connecting the point (c1, c2) with (0, c2 − c1), if (c1, c2) ∈ G1, and (c1 − c2, 0)
if (c1, c2) ∈ G2, respectively (see also Figure 3). Using Eq. (2) and Eq. (3) we conclude
that (c̄1, c̄2) must lie above the line segment.
Without loss of generality we may assume now that c̄2 = c2 and c̄1 < c1 since otherwise
we can construct a new knapsack S̃ ∈ S(c̃1, c2) by applying Corollary 4.1, such that
p(S̃) > p(S̄) ≥ p(S) and c̃1 < c1.
First assume that p(S̄) > p(S). This implies that there exist two knapsacks S̄1 ∈ S(c̄1 +
j, c2) and S̄2 ∈ S(c̄1 + j +1, c2) for a fixed j ∈ {0, . . . , c1− c̄1−1} such that p(S̄1) > p(S̄2)
and hence, S̄1 would dominate S̄2 to the right. However, this is not possible in G1 ∪ G2

due to Theorem 4.5 and Theorem 4.7, respectively.
Hence, we have that p(S̄) = p(S). Assume that c̄1 = c1−1. This implies that S̄ dominates
S to the right which is not possible. Hence, c̄1 ≤ c1−2 and there exists another knapsack
S̄1 ∈ S(c̄1 + 1, c2) such that p(S̄1) > p(S̄) since otherwise S̄1 would be dominated from
the left by S̄. But this implies once more that now p(S̄1) > p(S), which is not possible in
G1 ∪G2.
We conclude that (c̄1, c̄2) must lie underneath the line segment ℓ. If c̄1 < c1 we use once
more Corollary 4.1 to construct a knapsack S̄ ∈ S(c̄1, c̄2), where c̄1 = c1, c̄2 < c2 is
satisfied. Obviously, S̄ dominates S. Since there is no dominance to the top in Sector G3

according to Theorem 4.4, we finally can assume that (c̄1, c̄2) ∈ G1 ∪G2. This proves (1.).
By a similar line of argument, (2.) can be proven.

4.2 Lower Bound on the Cardinality of ZND

In this second part we establish a strict lower bound on the cardinality of the non-
dominated set ZND using the dominance relations in the different sectors.

Remark 4.9 Without loss of generality we assume in the following that super-items are
always included first in an optimal knapsack if there exist other items in D having the
same profit value.

Applying the rule stated in Remark 4.9 does not change the profit value of an optimal
solution, but simplifies the reasoning in the following since tedious case differentiations
can be omitted. We start with the knapsacks that belong to a basis.

Lemma 4.10 Let c′ ∈ {0, . . . , nR} and c⋆ ∈ {1, . . . , nU}. Then, S ′ ∈ S(c′, 0) and S⋆ ∈
S(0, c⋆) are efficient knapsacks of Problem (2-MP) with non-dominated criteria vectors
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(p(S ′), c′, 0) and (p(S⋆), 0, c⋆).

Proof. The efficiency of all knapsacks in the bases follows immediately from Lemma 3.2.

Next we state that all optimal knapsacks to Problem (2-KP=) for constraints corre-
sponding to integer points on the common boundary line between G2 and G3 are also
efficient knapsacks of Problem (2-MP).

Lemma 4.11 Let (c1, c2) ∈ G such that c1 − c2 = nR − nU and S ∈ S(c1, c2). Then
S ∈ NE.

Proof. The lemma is an immediate consequence of Theorem 4.8 and Lemma 4.10.

To complete the second part of this section, we finally show that optimal knapsacks
of Problem (2-KP=) for constraint vectors (c1, c2) contained in the rectangle

Q =
{

(x, y) ∈ R
2 : x ∈ {0, 1, . . . , nR}, y ∈ {0, 1, . . . , nU}

}

,

also correspond to efficient knapsacks of Problem (2-MP).

Theorem 4.12 Let S ∈
⋃

(c1,c2)∈Q

S(c1, c2). Then S ∈ NE.

Proof. We have to distinguish the three cases S ∈ Gi for i ∈ {1, 2, 3}. We give a proof
for the case that S ∈ G2. The proofs for the remaining two other sectors follow the same
ideas as the proof for Sector G2.
If (c1, c2) ∈ G2 ∩ G3, there is nothing to show according to Lemma 4.11. So let (c1, c2) ∈
G2 \ G3. We assume that there exists a knapsack S̄ that dominates S. According to
Theorem 4.8 there exists a well-defined index c̄2 ∈ {0, . . . , c2− 1} such that S̄ ∈ S(c1, c̄2),
and (c1, c̄2) ∈ G1 ∪ G2. Since (c1, c2) ∈ G2, also (c1, c̄2) ∈ G2 must hold.
Next we show that we may assume that S̄ ∈ S(c1, c2 − 1). Otherwise there must exist a
fixed index i ∈ {0, . . . , c2− c̄2 − 1} and S̄i ∈ S(c1, c̄2 + i) and S̄i+1 ∈ S(c1, c̄2 + i + 1) such
that p(S̄i) > p(S̄i+1). Setting S = S̄i+1 and S̄ = S̄i implies that S is dominated by its
neighbor S̄ from below.
Now let c = c1 − c2 and let µ denote the number of super-items contained in S̄. Note
that since (c1, c2) ∈ Q it holds that 0 ≤ µ ≤ c2 − 1 ≤ nU − 1 < nU . According to Lemma
4.3 we know that d̄c

k ≥ d̄c+1
k ≥ d̄c

k+1 for all k ∈ {1, . . . , nD + nU − 1}. This implies that S
must contain at least µ but at most µ+ 1 super-items, assuming Remark 4.9 is valid. We
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get:

p(S̄)− p(S) = rc+1 +

c2−1
∑

i=1

d̄c+1
i −

c2
∑

i=1

d̄c
i (5)

= rc+1 +

µ
∑

i=1

d̃c+1
i +

c2−1−µ
∑

i=1

di −





µ
∑

i=1

d̃c
i +

c2−1−µ
∑

i=1

di + d̄c
c2





= rc+1 +

µ
∑

i=1

rc+1+i +

µ
∑

i=1

ui −

(

µ
∑

i=1

rc+i +

µ
∑

i=1

ui

)

− d̄c
c2

= rc+1+µ − d̄c
c2

= rc+1+µ −max (dc2−µ, rc+µ+1 + uµ+1) (6)

< rc+1+µ − rc+1+µ = 0.

Note that the element dc2−µ is not guaranteed to exist, but d̃c
µ+1 always exists since

µ + 1 ≤ nU . Hence, p(S̄) < p(S) and S cannot be dominated by S̄.

We summarize the last results in the following corollary.

Corollary 4.13
∣

∣ZND
∣

∣ ≥ (nU + 1) · (nR + 1) + nD.

Proof. The proof follows immediately from Lemma 4.10, Lemma 4.11 and Theorem 4.12.

At the end of the next subsection we will show that the stated lower bound on the
cardinality of the set of all non-dominated solutions is tight.

4.3 Omit the filtering step

The aim of this subsection is to show that we can omit the filtering step to remove
dominated knapsacks at the end. We state necessary and sufficient conditions on the
value of the profits of the items contained in R, U and D, respectively, which allow to
decide whether an optimal knapsack for (2-KP=) given by an element of the sequence
{Si}i stated in Corollary 4.1 is also an efficient knapsack of (2-MP).

We concentrate on Sector G2 in the following and give a detailed outline of the proofs
implying our necessary and sufficient condition for this sector. Note that for (c1, c2) ∈ G2

the maximal number of super-items contained in a feasible knapsack for Problem (2-KP=)
is restricted to nU . We start with the following lemma.

Lemma 4.14 Let (c1, c2) ∈ G2 where c2 > nU and let S ′ ∈ S(c1, c2 − 1) dominate
S ∈ S(c1, c2). Then, S and S ′ contain all nU super-items and rc1−c2+nU+1 ≥ dc2−nU

.

Proof. Let µ and µ′ denote the number of super-items that are contained in S and S ′,
respectively. Applying Lemma 4.3 and Remark 4.9, we conclude that µ ∈ {µ′, µ′ + 1}
whenever µ < nU . By applying the same reasoning of the proof for Theorem 4.12, it
implies that p(S ′) < p(S), and S ′ cannot dominate S. Hence, S must contain all nU

super-items.
Now, assume that S ′ does not contain all nU super-items but only nU − 1 although it
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dominates S. Analyzing the elements of R, U , and D that are contained in S and S ′

leads to
0 ≤ p(S ′)− p(S) = −unU

< 0.

Hence, also S ′ must contain all super-items. Using Eq. (6) from the proof of Theorem
4.12 and knowing that µ = nU is maximal, we conclude that

0 ≤ p(S ′)− p(S) = rc1−c2+1+nU
− dc2−nU

.

Hence, rc1−c2+1+nU
≥ dc2−nU

.

Note that Lemma 4.14 is valid for 0 ≤ c1−c2 < nR−nU , whereas for c1−c2 = nR−nU ,
S ∈ S(c1, c2) is always an efficient solution according to Lemma 4.11. We also take care
of this fact in the following lemma.

Lemma 4.15 Let (c1, c2) ∈ G2 with 0 ≤ c1 − c2 < nR − nU and nU < c2 < nU + nD, and
let S ′ ∈ S(c1, c2 − 1) dominate S ∈ S(c1, c2). Then S dominates S̄ ∈ S(c1, c2 + 1).

Proof. Let S, S ′ and S̄ be given as defined above. According to Lemma 4.14, S must
contain all nU super-items and it holds that rc+1+nU

≥ dc2−nU
. We assume first that

(c1, c2) ∈ G2 \ G1, i.e. c1 > c2. We use Lemma 4.3 to deduce that S̄ ∈ S(c1 − c2 − 1, 0)
must also contain all nU super-items, since it contains an additional item compared to S.
We conclude that

p(S)− p(S̄) = rc1−c2+nU
− dc2−nU+1 ≥ rc1−c2+nU+1 − dc2−nU+1

≥ rc1−c2+nU+1 − dc2−nU
≥ 0.

If (c1, c2) ∈ G2 ∩ G1, i.e. c1 = c2, S̄ contains all nU − 1 super-items with respect to its
basis S(0, 1) according to Lemma 4.14. Adapting the chain of inequalities stated above
to this special case shows that S dominates S̄.

We are now able to derive the main result for G2.

Theorem 4.16 Let (c1, c2) ∈ G2 with 0 ≤ c1−c2 ≤ nR−nU−1 and nU +1 ≤ c2 ≤ nU +nD,
and let S ∈ S(c1, c2). Then the following statements are equivalent:

(A) S 6∈ NE.

(B) S is dominated by S ′ ∈ S(c1, c2 − 1).

(C) rnU+c1−c2+1 ≥ dc2−nU
.

Proof. ’(B)⇒(A)’ is obviously true and the proof for ’(B)⇒(C)’ was already shown in
Lemma 4.14. We prove the following implications:

’(A)⇒(B)’. Let S ∈ S(c1, c2) be dominated by S̄ ∈ S(c̄1, c̄2) with c̄1 ≤ c1 and c̄2 ≤ c2

with at least one strict inequality. According to Theorem 4.8 we may assume that
(c̄1, c̄2) ∈ G2, c̄1 = c1 and c̄2 < c2. Assume that S is not dominated by S ′ ∈
S(c1, c2 − 1), i.e. c̄2 < c2 − 1 and p(S ′) < p(S) ≤ p(S̄). Then, there must exist a
fixed index i ∈ {0, . . . , c2− c̄2− 2} and S̄i ∈ S(c1, c̄2 + i) and S̄i+1 ∈ S(c1, c̄2 + i + 1)
such that p(S̄i) > p(S̄i+1) holds. But this implies that S̄i+1 is dominated by its
neighbor S̄i from below. By applying Lemma 4.15, also S must be dominated by
its neighbor from below, i.e. S ′ dominates S, which contradicts our assumption.
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’(C)⇒(B)’. Since

rc1−c2+nU
+ unU

> rc1−c2+nU
≥ rc1−c2+nU+1 ≥ dc2−nU

,

S consists of all first c1 − c2 items of R, all nU super-items and the first c2 − nU

items of D. Furthermore, it holds that

rc1−c2+nU+1 + unU
> rc1−c2+nU+1 ≥ dc2−nU

,

and S ′ contains at most c2 − nU − 1 items of D, at most nU super-items and the
first c1 − c2 + 1 items of R. But since (c2 − nU − 1) + nU = c2 − 1 and this is the
number of elements that are added to the knapsack in basis S(c1 − c2, 0), S ′ must
contain exactly the above mentioned items. We conclude that

p(S ′)− P (S) = rc1−c2+nU+1 − dc2−nU
≥ 0.

In Theorem 4.16 we have proven a necessary and sufficient condition for the efficiency
of an optimal knapsack S ∈ S(c1, c2) where (c1, c2) ∈ G2, which supersedes the filtering for
dominated solutions. Given the sequence {Si}i stated in Corollary 4.1 we stop calculating
the elements of this sequence when rc1−c2+nU+1 ≥ dc2−nU

is satisfied for the first time.
Starting from this element all remaining knapsacks of the sequence will be dominated by
their neighbor from below. Hence, an additional filtering is no longer needed.

By a similar line of argument as used in Lemma 4.14 and Lemma 4.15, it is possible
to prove similar results of Theorem 4.16 for G1 and G3.

Theorem 4.17 Let (c1, c2) ∈ G1 with 1 ≤ c2 − c1 ≤ nU and nU + 1 ≤ c2 ≤ nU + nD, and
let S ∈ S(c1, c2). Then the following statements are equivalent:

(A) S 6∈ NE.

(B) S is dominated by S ′ ∈ S(c1, c2 − 1).

(C) rnU+c1−c2+1 ≥ dc2−nU
.

For Sector G3 we get:

Theorem 4.18 Let (c1, c2) ∈ G3 with nR − nU + 1 ≤ c1 − c2 ≤ nR and nR + 1 ≤ c1 ≤
nR + nD, and let S ∈ S(c1, c2). Then the following statements are equivalent:

(A) S 6∈ NE.

(B) S is dominated by S ′ ∈ S(c1 − 1, c2).

(C) unR−c1+c2+1 ≥ dc1−nR
.

The pseudo-code of the resulting algorithm for G2 is described in Algorithm 1. We
omit the pseudo-code for G1 and G3. For the sake of the explanation, we assume that the
non-dominated vector (0, 0, 0) is computed at sector G2 in Algorithm 1.

Note that the last results imply that the lower bound on the number of non-dominated
solutions that was stated in Corollary 4.13 is tight. Assume that for a given instance of
(2-MP) we have that min{rnR

, unU
} > d1. Then the third criterion stated in the Theorems

4.16 to 4.18 for the different sectors immediately implies that the bound is tight. If by
contrast max{rnR

, unU
} < dnD

the stated criteria imply that solving (2-KP≤) for any
(c1, c2) ∈ G will lead to a non-dominated solution of (m-MP).
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Algorithm 1 Greedy algorithm for Problem (2-MP) in Sector G2

input: An instance of Problem (2-MP).
output: The non-dominated set in sector G2 (ZG2

).

1: Pre-processing step (see Section 2).
2: b← 0
3: ZG2

← ∅
4: for c = 1 to nR − nU do
5: b← b + rc

6: ZG2
← ZG2

∪ {(c, 0, b)}
7: p← b
8: i← 1
9: j ← 1

10: repeat
11: if dj < rc+i + ui then
12: p← p + rc+i + ui

13: ZG2
← ZG2

∪ {(c + i + j − 1, i + j − 1, p)}
14: i← i + 1
15: else
16: p← p + dj

17: ZG2
← ZG2

∪ {(c + i + j − 1, i + j − 1, p)}
18: j ← j + 1
19: end if
20: until rnU+c+1 ≥ di+j−1−nU

and nU + 1 ≤ i + j − 1 ≤ nU + nD

21: end for
22: return ZG2

4.4 Connectedness

Corollary 4.1 introduces an important result in terms of connectedness of efficient knap-
sacks, for which only negative results are known [4]. We define a graph where the nodes
represent the efficient knapsacks and edges are introduced between all pairs of nodes that
are adjacent with respect to the following definition of k-change neighborhood:

Definition 4.19 (k-change neighborhood) Two knapsacks are neighbors with respect to
the k-change neighborhood if and only if one knapsack can be obtained from the other
either by either adding or removing at most k items.

We say that the efficient set of Problem (2-MP) is connected if and only if the corre-
sponding graph is connected. In our case, we state the following result for the 2-change
neighborhood.

Corollary 4.20 There exists a set of efficient knapsacks of Problem (2-MP) that is con-
nected with respect to the 2-change neighborhood and its image in the criteria space coin-
cides with the non-dominated set.

Corollary 4.20 only states that a subset of the set of efficient knapsacks is connected
but not the complete set itself. However, this property applies to the complete set of
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efficient knapsacks, if we consider also the following extended definition of neighborhood:

Definition 4.21 (k-exchange neighborhood) Two knapsacks are neighbors with respect
to the k-exchange neighborhood if and only if one knapsack can be obtained from the other
by exchanging and adding or removing at most k items.

Note that in a k-change neighborhood it is only allowed to either add or remove k
items to or from a knapsack, respectively, while in a k-exchange neighborhood, we can
exchange a number of items and either add or remove another fixed number. For example,
exchanging a super-item by another one is considered as a 2-exchange, as well as an
exchange of a super-item by an item contained in D. In this case we have to exchange one
item and either add or remove another one. By the definition of a k-exchange, a k-change
is always a k-exchange, but not necessarily the other way round.

Theorem 4.22 The set of efficient knapsacks of Problem (2-MP) is connected with re-
spect to the 2-exchange neighborhood.

Proof. According to Corollary 4.20 it suffices to show that for an efficient S ∈ S(c1, c2)
and an alternative efficient knapsack S̄ ∈ S(c1, c2), there exist a finite sequence of efficient
knapsacks starting from S and ending by S̄, such that all knapsacks of this sequence
are contained in S(c1, c2) and subsequent knapsacks are neighbors with respect to the
2-exchange.

For the case that S is contained in a basis S(c, 0) (or S(0, c)), alternative optima exist
if and only if the profit value rc (or uc) is not unique, i.e. there exists c̃ ∈ {c + 1, . . . , nR}
(or c̃ ∈ {c + 1, . . . , nU}) such that rc = . . . = rc̃ (or uc = . . . = uc̃). But obviously all the
resulting efficient knapsacks are connected with respect to a 1-exchange neighborhood,
since we can exchange items having the same profit value one by one to construct an
appropriate sequence.
Now let min{c1, c2} > 0. If for efficient S ∈ S(c1, c2), there exist another alternative
efficient knapsack S̄ ∈ S(c1, c2), a similar reasoning as in the case of a basis applies.
Either a number of profit values in the sequences R and U are not unique or the same
property applies to the the profit value d̄c1−c2

c2
, if c2 ≤ c1, or d̄c2−c1

c1
, if c1 < c2 of the

sequence D̄c1−c2 or D̄c2−c1. But all the resulting alternative knapsacks are connected with
respect to a 2-exchange neighborhood, since at worst we have to exchange a super-item
by another super-item to construct another alternative efficient knapsack. Hence, an
appropriate sequence, starting from S and ending by S̄ such that subsequent knapsacks
are neighbors with respect to the 2-exchange neighborhood can always be found within
the set S(c1, c2).

It is worth mentioning that the (proof of the) connectedness of the set of efficient
knapsack is not based on the connectedness of supported efficient knapsacks as shown in
[3], but that the proof is constructive.

4.5 Experimental Results

To verify the efficiency of our approach in practice, we implemented it in C and tested
it on a set of randomly generated instances.1 We generated 100 instances for each of the

1The code is available at http://eden.dei.uc.pt/~paquete/mpt.c.
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n CPU-time (in secs.) |ZND|
avg. std. avg. std.

1 000 0.00 0.00 182 329 42 472
2 500 0.01 0.00 1 116 855 256 644
5 000 0.04 0.01 4 478 076 1 192 776
7 500 0.09 0.02 9 786 613 2 388 547

10 000 0.15 0.02 18 211 143 3 919 746
25 000 0.97 0.19 117 716 464 26 611 280
50 000 3.80 0.79 448 329 030 110 881 051
75 000 8.10 2.12 980 416 031 275 287 540

100 000 14.73 3.62 1 766 044 758 469 409 790
250 000 93.81 22.74 11 267 090 109 3 036 879 464
500 000 381.11 89.58 44 872 436 605 11 436 272 293
750 000 877.49 178.36 102 117 237 786 23 926 930 515

1000 000 1542.83 333.52 179 661 247 582 41 598 896 050

Table 1: Average (avg.) and standard deviation (std.) of CPU-time in seconds taken
by the greedy algorithm and the size of the non-dominated set for randomly generated
instances of Problem (2-MP).

sizes n = {10 × 10i, 25 × 10i, 50 × 10i, 75 × 10i} with i = 2, 3, 4. The profit values are
positive integers uniformly distributed in the range [1, 11]; we choose a small range of
profit values to avoid number overflow in large instances. In order to generate values for
nR, nU and nD, we first generated three real numbers randomly and uniformly distributed
in the range [0, 1]; then, we normalized these values with respect to their sum; finally, we
multiplied each normalized value by n to obtain nR, nU and nD, respectively. We ran
our implementation on an Intel Core 2 Duo 2.33Ghz, 4MB cache L2, 4GB RAM, with
Windows Vista 32 bits, compiler MSVC 2008.

Table 4.5 shows the average and standard deviation of CPU-time in seconds taken by
our greedy algorithm, as well as the cardinality of the non-dominated set for the randomly
generated instances. They clearly indicate that our approach can perform very fast.

5 A greedy algorithm for Problem (2-KP≤)

Based on the results for solving Problem (2-MP), we can derive an efficient algorithm to
solve Problem (2-KP≤). Note that if Problem (2-KP≤) is feasible, i.e. c1 and c2 are chosen
to be non-negative, an optimal knapsack S̄ to this problem is contained in the efficient
set of Problem (2-MP). Obviously, for such a knapsack it holds that f(S̄) ≥ f(S) for all
S ∈ NE where wj(S) ≤ cj and wj(S̄) ≤ cj, j = 1, 2, respectively. Hence, the results of
Section 4 can be used to solve Problem (2-KP≤).

We will show that we only need to consider one of the sequences {Si}i starting from
an efficient knapsack contained in an appropriate chosen basis. The superscripts of the
optimal knapsacks in the following theorems indicate which element of the sequence {Si}i
has to be calculated.

To apply the results of Section 4 we need to consider an additional partition of each
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Figure 4: Illustration of the partition of G for theorems 5.1, 5.2 and 5.3.

sector G1, G2 and G3 as illustrated in Figure 4. We start with Sector G2 and recall that there
is no dominance to the right in this sector and that an efficient knapsack is dominated if
and only if it is dominated by its neighbor from below.

Theorem 5.1 Let (c1, c2) ∈ G2.

1. If (c1, c2) ∈ Q or c1 − c2 = nR − nU , then Sc2 ∈ S(c1, c2) is an optimal knapsack of
Problem (2-KP≤).

2. Let (c1, c2) 6∈ Q, c1 − c2 6= nR − nU and c1 ≤ nR. If there exists an index j such
that j = min{i ∈ {0, . . . , (c2 − 1) − nU} : dc2−i−nU

> rnU+c1−c2+i+1}, then Sc2−j ∈
S(c1, c2−j) is an optimal knapsack of Problem (2-KP≤). Otherwise SnU ∈ S(c1, nU)
is optimal.

3. Let (c1, c2) 6∈ Q, c1 − c2 6= nR − nU and let c1 > nR. If there exists an index j
such that j = min{i ∈ {0, . . . , nR − nU − c1 + c2 − 1} : dc2−i−nU

> rnU+c1−c2+i+1},
then Sc2−j ∈ S(c1, c2 − j) is an optimal knapsack of Problem (2-KP≤). Otherwise
Sc1−nR+nU ∈ S(c1, c1 − nR + nU) is optimal.

Proof. In the following, we prove the three cases above:

(1.) Let (c1, c2) ∈ Q and assume that Sc2 ∈ S(c1, c2) is not optimal for Problem (2-
KP≤). Then there must exist another feasible knapsack S 6∈ S(c1, c2) satisfying
p(S) > p(Sc2) and wj(S) ≤ wj(Sc2), j = 1, 2 with at least one strict inequality.
But this implies that S dominates Sc2, which is not possible due to Theorem 4.12.
Hence, Sc2 must be optimal. A similar reasoning in combination with Lemma 4.11
can be applied for the case that c1 − c2 = nR − nU .

(2.) Let (c1, c2) 6∈ Q and c1 − c2 6= nR − nU , but c1 ≤ nR. Furthermore, let S be an
optimal knapsack of Problem (2-KP≤). Without loss of generality we may assume
that S ∈ NE and that there exist c̄1 ∈ {0, . . . , c1} and c̄2 ∈ {0, . . . , c2} such that
S ∈ S(c̄1, c̄2) where either c̄1 = c1 or c̄2 = c2 due to the Equations (2), (3) and (4).
Since there cannot be dominance to the right in the Sectors G1 and G2 according
to Theorem 4.5 and Theorem 4.7 we conclude that c̄1 = c1. Now, define j =
min{i ∈ {0, . . . , (c2 − 1)− nU} : dc2−i−nU

> rnU+c1−c2+i+1}, if the minimum exists.
Otherwise let j =∞. Note that the index nU + c1− c2 + i + 1 is well-defined for all
i ∈ {0, . . . , (c2 − 1)− nU}, since obviously nU + c1 − c2 + i + 1 ≥ 1 and further

nU + c1 − c2 + i + 1 ≤ nU + (nR)− c2 + (c2 − nU − 1) + 1 = nR.
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If j = 0, Sc2 ∈ S(c1, c2) must be optimal, since Sc2 is efficient due to Theorem
4.16 and hence, p(S) must be maximal for all knapsacks S satisfying wj(S) ≤ cj

for j = 1, 2. Now, assume that 1 ≤ j < ∞ and let Sc2−j ∈ S(c1, c2 − j). Theorem
4.16 states that a knapsack S ∈ S(c1, c̃2) is dominated by its neighbor from below
whenever c̃2 ∈ {c2 − j + 1, . . . , c2}. But this implies that p(S) ≤ p(Sc2−j) for all
S ∈ S(c1, c̃2). Since Sc2−j is efficient according to the same theorem, it follows
that p(S) < p(Sc2−j) for all S ∈ S(c1, c̃2) whenever c̃2 ∈ {0, . . . , c2 − j − 1}. This
shows, that p(Sc2−j) is optimal for Problem (2-KP≤). If j = ∞ this implies that
all knapsacks S ∈ S(c1, c̄2) are dominated by its neighbor from below for c̄2 ∈
{nU + 1, . . . , c2}. Let SnU ∈ S(c1, nU). Since SnU is contained in Q, SnU is efficient
by Theorem 4.12, and hence it must be optimal for Problem (2-KP≤).

(3.) The proof for the case that c1 > nR follows the same line of argument as the proof for
the case c1 ≤ nR. Note that now Lemma 4.11 has to be used instead of Theorem 4.12
and that the index c2− i−nU is well-defined for all i ∈ {0, . . . , nR−nU−c1 +c2−1}
since c2 − i− nU ≤ c2 − nU ≤ nD and further

c2 − i− nU ≥ c2 − (nR − nU − c1 + c2 − 1)− nU = c1 − nR + 1 > 1.

For (c1, c2) ∈ G1 it is easy to varify that we can find an optimal knapsack S to Problem
(2-KP≤) such that S ∈ S(c1, c̄2) and (c1, c̄2) is also contained in G1, whenever c1 ≤ nU

holds. For the case that c1 > nU , it may happen that (c1, c̄2) is no longer contained in G1

but in G2.

Theorem 5.2 Let (c1, c2) ∈ G1.

1. If (c1, c2) ∈ Q, then Sc1 ∈ S(c1, c2) is an optimal knapsack of Problem (2-KP≤).

2. Let (c1, c2) 6∈ Q and let c1 ≤ nU . If there exists an index j such that j = min{i ∈
{0, . . . , (c2−1)−nU} : dc2−i−nU

> rnU +c1−c2+i+1}, then Sc1 ∈ S(c1, c2− j) optimally
solves Problem (2-KP≤). Otherwise Sc1 ∈ S(c1, nU) is optimal.

3. Let (c1, c2) 6∈ Q and let c1 > nU If there exists an index j such that j = min{i ∈
{0, . . . , c2−c1−1} : dc2−i−nU

> rnU+c1−c2+i+1}, then Sc1 ∈ S(c1, c2−j) is an optimal
knapsack of Problem (2-KP≤). Otherwise there exists c̄2 ∈ {nU , . . . , c1}, such that
(c1, c̄2) ∈ G2 and S c̄2 ∈ S(c1, c̄2) is optimal for Problem (2-KP≤).

Proof. The proofs of the three cases are similar to the proofs the corresponding statements
in Theorem 5.1. In the last two cases, the minimum may not exist since either c1 = c2

or all knapsacks S ∈ S(c1, c̃2) with c̃2 ∈ {c1 + 1, . . . , c2} are dominated by their neighbors
from below. But both implies that there must exist an efficient knapsack S ∈ S(c1, c̄2),
where (c1, c̄2) ∈ G2 and c̄2 ∈ {nU , . . . , c1} holds.

For the Sector G3 we find similar results compared to the other two sectors.

Theorem 5.3 Let (c1, c2) ∈ G3.

1. If (c1, c2) ∈ Q or c1 − c2 = nR − nU , then Sc2 ∈ S(c1, c2) is an optimal knapsack of
Problem (2-KP≤).
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Step Greedy Solution Optimal Solution
profit value 171 174 profit value

1 L 22 22 L
2 L + R 16 + 12 = 28 16 + 12 = 28 L + R
3 L + R 9 + 5 = 14 8 RL
4 D 40 40 D
5 D 39 39 D
6 R + LU 28 9 + 28 = 37 L + RU

Table 2: Steps of the greedy algorithm to an instance of Problem (3-KP=).

2. Let (c1, c2) 6∈ Q, c1 − c2 ≥ nR − nU + 1 and let c2 ≤ nU . If there exists an
index j such that j = min{i ∈ {0, . . . , (c1 − 1) − nR} : dc1−i−nR

> unR−c1+c2+i+1},
then Sc2 ∈ S(c1 − j, c2) is an optimal knapsack of Problem (2-KP≤). Otherwise
Sc2 ∈ S(nR, c2) is optimal.

3. Let (c1, c2) 6∈ Q, c1 − c2 ≥ nR − nU + 1 and let c2 > nU . If there exists an index j
such that j = min{i ∈ {0, . . . , nU − nR + c1 − c2 − 1} : dc1−i−nR

> rnR−c1+c2+i+1},
then Sc2 ∈ S(c1 − j, c2) is an optimal knapsack of Problem (2-KP≤). Otherwise
Sc2 ∈ S(nR − nU , c2) is optimal.

The Theorems 5.1 to 5.3 show that we can determine an optimal knapsack to Problem
(2-KP≤) by calculating a fixed number of elements of a sequence {Si}i used in Corollary
4.1 for a knapsack S0 contained in an approriate chosen basis. Therefore, the algorithm for
solving this problem has the same time complexity of the greedy algorithm for (2-KP=).

6 Discussion and conclusions

In this article we presented efficient algorithms to solve interesting special cases of three
hard optimization problems within a polynomial amount of time. In particular, for the
case of Problem (2-MP), our implementation of the algorithm is able to find the com-
plete non-dominated set in half an hour for instances with one million of items, which
corresponds to more than 400 millions distinct solutions on average.

Note that the proposed greedy algorithm for Problem (2-KP=) may suggest that this
approach can be easily extended to larger dimensions/criteria, depending only on the way
the items are partitioned in the pre-processing step and using a similar decomposition as
in (1). Unfortunately, it is not the case, not even for the Problem (3-KP=), as shown in
the following example.

Example 6.1 Consider an instance of Problem (3-KP=). We partition the set of items
according to their weights (w1(s), w2(s), w3(s)) for all items s and obtain seven different
sets where all elements in a set have the weights (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1),
(0, 1, 1) and (1, 1, 1), respectively. We denote these sets by R, L, U , RL, RU , LU and D,
respectively. Consider the following partitoning of items: R = (12, 5, 4), L = (22, 16, 9),
U = (7, 6, 5), RL = (8, 5, 4), RU = (28, 8, 7), LU = (24, 9, 7), D = (40, 39, 20), and a
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constraint given by c = (5, 6, 3), it holds that





5
6
4



 = 1 ·





0
1
0



+ 2 ·





1
1
0



+ 3 ·





1
1
1



.

The left-hand side of Table 2 shows which solutions would be included by the greedy ap-
proach using the above decomposition while the right-hand-side shows the corresponding
decomposition of the optimal solution. Choosing the last element from L in step 3 for
the greedy solution is “the wrong choice” since it blocks all elements from UR for further
inclusion in better solutions.
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