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Abstract

We propose a hierarchy of novel absorbing boundary conditions for the one-dimensional
stationary Schrödinger equation with general (linear and nonlinear) potential. The accuracy
of the new absorbing boundary conditions is investigated numerically for the computation
of energies and ground-states for linear and nonlinear Schrödinger equations. It turns out
that these absorbing boundary conditions and their variants lead to a higher accuracy than
the usual Dirichlet boundary condition. Finally, we give the extension of these ABCs to
N -dimensional stationary Schrödinger equations.
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1. Introduction

The solution of the Schrödinger equation occurs in many applications in physics, chem-
istry and engineering (e.g. quantum transport, condensed matter physics, quantum chem-
istry, optics, underwater acoustics, . . . ). The considered problem can appear in different
forms: time-dependent or stationary equation, linear or nonlinear equation, inclusion of a
variable potential among others. One of the main difficulty when solving the Schrödinger
equation, and most particularly from a numerical point of view, is to impose suitable and
physically admissible boundary conditions to solve numerically a bounded domain equation
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modeling an equation originally posed on an unbounded domain. Concerning the time-
domain problem, many efforts have been achieved these last years. We refer the interested
reader e.g. to the recent review paper [1] and the references therein for further details.

In this paper, we begin to focus on the solution to the one-dimensional stationary
Schrödinger equation. For a given potential V possibly extending to infinity, eventually
nonlinear (V := V (x, ϕ), we want to solve the following equation

(
−α d2

dx2
+ V

)
ϕ = Eϕ, x ∈ R, (1)

or rewritten as (
d2

dx2
+

1

α

[
E − V

])
ϕ = 0, x ∈ R, (2)

with some parameter α that allows for some flexibility. More precisely, we study the extension
of the recently derived time-domain boundary conditions [2] to the computation of stationary
states: we determine here the pair (ϕ,E), for a given linear or nonlinear potential V . This
eigenvalue problem is also known as the computation of ground states. The energy of the
system is then the eigenvalue E and the associated stationary state is the eigenfunction
ϕ. In particular, we seek the fundamental stationary state which is linked to the smallest
eigenvalue. In practice, higher order states are also of interest. After a careful numerical
validation of the 1D case, we develop some ABCs for the generalized N -dimensional case

−α∆u+ V (x)u+ f(u)u = Eu

in R
N for an unbounded potential V and general nonlinearities. Another related problem

which is not treated here is linear and nonlinear scattering. We refer to our extended version
of the present paper [3] where a thorough study of scattering problems with the ABCs is
developed.

For the stationary Schrödinger equation (2), boundary conditions for solving linear scat-
tering problems with a constant potential outside a finite domain have been proposed e.g.
by Ben Abdallah, Degond and Markowich [4], by Arnold [5] for a fully discrete Schrödinger
equation and in a two-dimensional quantum waveguide by Lent and Kirkner [6, 7]. Other
recent contributions include [8, 9] where the case of finite range potentials is treated. The
case of bound states can be found for specific one-dimensional linear Schrödinger equations in
[10, 11, 12, 13, 14]. These boundary conditions are needed e.g. to improve existing simulation
tools for semiconductors that allows to investigate certain stationary (and also transient) be-
havior of the devices, like conductance, capacity, current-voltage curves. Often the physical
relevant effects take place only in a small subregion of the device, and the novel absorbing
boundary conditions offer the possibility to confine the computations to this small domain.
We refer the reader to [15, 16, 17, 18] for more application details.

The goal of this work is to propose and numerically validate some new boundary con-
ditions for modeling linear and nonlinear variable unbounded potentials stationary one-
dimensional Schrödinger equations with application to ground-state computation. Finally,
we extend these absorbing boundary conditions to higher dimensional problems. The paper
is organized as follows. In Section 2, we explain how to obtain the stationary boundary
conditions from the time-dependent case. Sections 3 and 4 are respectively devoted to their
applications to linear and nonlinear eigenstate computation. Section 5 gives an extension
of the boundary conditions to the N -dimensional space for nonlinear stationary Schrödinger
equations with unbounded potentials. Finally, Section 6 draws a conclusion and give an
outlook for possible future research directions.
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2. Absorbing boundary conditions: from the time-domain to the stationary case:
the one-dimensional case

In order to derive some absorbing boundary conditions (ABCs) for the stationary Schrö-
dinger equation (2), let us first start with the time-domain situation. In case of the time-

dependent Schrödinger equation with a linear or nonlinear potential Ṽ

{
i∂tu+ ∂2xu+ Ṽ u = 0, ∀(x, t) ∈ R× R

+,

u(x, 0) = u0(x), x ∈ R,
(3)

the following second- and fourth-order ABCs on the boundary Σ× R
+

ABC2
2: ∂nu = iOp

(√
−τ + Ṽ

)
u, (4)

ABC4
2: ∂nu = iOp

(√
−τ + Ṽ

)
u− 1

4
Op

(
∂nṼ

−τ + Ṽ

)
u, (5)

were derived recently in [2]. Here, Op denotes a pseudodifferential operator and the fictitious
boundary Σ is located at the two interval endpoints xℓ and xr. The outwardly directed unit
normal vector to the bounded computational domain Ω =]xℓ; xr[ is denoted by n.

To obtain some ABCs for the stationary equations (1) or (2), we consider these equations

supplied with a new potential: Ṽ := −V/α. Moreover, we are seeking some time-harmonic

solutions u(x, t) := ϕ(x)e−iE
α
t and since

i∂tu =
E

α
ϕ(x) e−iE

α
t,

the variable −τ can be identified with E/α. These considerations yield some stationary
ABCs that we designate by SABCM (’S’ stands for stationary and M denotes the order of
the boundary condition) :

SABC2: ∂nϕ = i
1√
α

√
E − V ϕ, on Σ, (6)

SABC4: ∂nϕ = i
1√
α

√
E − V ϕ+

1

4

∂nV

E − V
ϕ, on Σ. (7)

The second- and fourth-order ABCs for the time-dependent Schrödinger equation (4), (5)
were developed under a high frequency assumption τ ≫ 1 [2]. This relation can be translated
to the stationary case in terms of links between E and V . The new relations will be given
for the different scattering or eigenvalues problems in the next dedicated sections.

Remark 1. For the time-dependent case [2], we constructed two families of ABCs, denoted
by ABCM

1 and ABCM
2 . These ABCs all coincide if the potential is time-independent. In the

stationary case, all the potentials fall into this category and thus the ABCs are equivalent.
Hence, we get the unique class of stationary ABCs, SABCM (without subscript index). For
convenience, the form of the boundary conditions (6)–(7) is based on ABCM

2 (we refer to [2]
for more technical details).
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3. Application to the computation of stationary states: the linear case

Let us consider the Hamiltonian H

H = −α d2

dx2
+ V (x), x ∈ R, (8)

defined through α and V . The task here is to determine the pair (φE, E) solution to the
eigenvalue problem:

HφE = EφE, x ∈ R. (9)

This problem can also be formulated as follows: find the eigenvalues (En)n∈N (energies) and
the associated real-valued eigenfunctions (φn)n∈N (eigenstates or ground states) as solutions
of: Hφn = Enφn, x ∈ R. To fix the eigenfunction, it is necessary to impose a normalization
condition: ‖φE‖L2(R) = 1. Let us begin with the case where the potential does not depend
on the eigenfunction (called linear case here). The nonlinear case will be treated later in
Section 4.

3.1. Square-root ABCs

Before discussing the difficulties related to the ABCs, let us consider the numerical so-
lution of our problem with a homogeneous Dirichlet boundary condition. The variational
formulation of (9) reads

−α[∂nφEψ]
xr
xℓ

+ α

∫

Ω

∂xφE∂xψ dx+

∫

Ω

V φEψ dx = E

∫

Ω

φEψ dx, (10)

for some test-functions ψ ∈ H1
0 (Ω) [19]. Let S

0, M0 and M
0
V be respectively the stiffness

matrix, mass and generalized mass matrices associated with the potential V for P1 finite
element and a homogeneous Dirichlet boundary condition (these matrices are some elements
ofMnh−1(R)). The discrete problem can be classically formulated as the following generalized
eigenvalue problem: find the pair (E,φE) as solution to

{ (
αS0 +M

0
V

)
φE = EM0φE,

‖M0φE‖2 = 1,
(11)

which is a generalized eigenvalue problem with an equality constraint. Here, φE is a vector
in R

nh−1 which is normalized by: ‖M0φE‖2 = 1 (‖·‖2 being the usual Euclidian norm
in R

nh−1). The global algorithm complexity is essentially the sum of the complexities for
building the sparse finite element matrices and for computing the eigenvalue problem. In
this paper, we use Matlab’s eigs function which provides the p smallest positive eigenvalues
corresponding to the generalized eigenvalue problem. This function automatically normalizes
the eigenvectors in the Euclidian norm hence fulfilling the normalization constraint in (11).
eigs is associated with the software ARPACK. In the case where the potential is not always
positive, we use the property that the smallest eigenvalue E0 is larger than the minimum
of the potential Vmin and solve (11) by a translation of −Vmin. Finally, the solution to (11)
generates the sequence of the p first eigenvalues (E0

n)0≤n≤p−1, eigenvectors (φ
0
n)0≤n≤p−1 and

finite element eigenfunctions (φ0
n)0≤n≤p−1 associated with the Dirichlet boundary condition.

Since this eigenvalue problem is linear with respect to E, we can solve it without using e.g.
a fixed point algorithm, unlike the case of including a square-root ABC as it is explained
below. For this reason, the solution is called ”direct” in the sequel of the paper.
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Let us consider now the SABC2 boundary condition

∂nφE =
i√
α

√
E − V φE, on Σ. (12)

The main difficulty with this boundary condition is its nonlinear dependence on E. As a
consequence, we cannot isolate the terms (E, φE) in the right-hand side of (10) in a linear
way, that is under the form EφE. More precisely, the nonlinear eigenvalue problem to solve
is { (

αS+MV + BM(EM)
)
φM = EM

MφM ,

‖MφM‖2 = 1,
(13)

using the matrix notations of the scattering problem. We precise that both the eigenval-
ues and eigenfunctions depend on the chosen boundary condition SABCM by the notation:
(EM , φM). The first p eigencomponents are indexed as follows: (EM

n , φ
M
n ), with 0 ≤ n ≤ p−1.

The nonlinear dependence on the boundary term is given by the presence of BM(EM). To
solve the eigenvalue problem with SABCM , we have to apply an iterative scheme like a fixed
point method (with a prescribed tolerance ǫ) and update EM at each iteration step j.

This procedure implies that we have to a priori choose an eigenvalue of index n (denoted
by EM

n ) that we wish to calculate. This is an important drawback since we have to a priori
compute successively all the eigenvalues and associated eigenvectors. In fact, it appears that
eigs is also able to provide an approximation of the first p eigenvalues (EM,j

n )0≤n≤p−1 of
(EM

n )0≤n≤p−1 and the corresponding eigenvectors φM
n . As a consequence, we also have to

recompute the boundary terms arising in BM(EM,j
n ). Hence, the fixed point algorithm reads

{ (
αS+MV + BM(EM,j

n )
)
φM,j+1 = EM,j+1

MφM,j+1,

‖MφM,j+1‖2 = 1,
(14)

each linear problem being solved by using the Matlab routine eigs. More generally, for
a boundary condition with a nonlinear dependence on the energy E, we use an associated
fixed point algorithm. Even if we iterate through a fixed point algorithm, it appears that
the algorithm also simultaneously gives some approximations of the other eigenvalues and
eigenvectors (see the numerical section). This approach is therefore designated by ”direct” if
we only iterate on one a priori fixed eigenvalue. This algorithm can be applied successively
by iteration using the fixed point algorithm and keeping only the computed eigenvalue and
eigenvector related to the current iteration. Of course, the resulting algorithm is more
expensive but at the same time more accurate. This approach is designated by ”loop” in the
sequel. Let us remark that there is no difference between both approaches for the Dirichlet
problem.

3.2. Linearized ABCs

Unlike the case of the Dirichlet problem, we previously saw that the algorithm related
to the square-root ABCs is iterative because of the nonlinearity. To avoid this problem,
we can linearize SABC2 and SABC4. The principle is based on a Taylor’s expansion in the
regime E ≪ V . This asymptotic regime is justified in particular for an harmonic potential
V (x) = 1

2
x2 since V grows quickly as soon as we do not place the boundary too close to the

origin and we restrict our computations to relatively not too high energies. For the boundary
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condition SABC2 (12), this leads to the approximation of SABC2 by SABC2
lin given by

∂nφ̃E = −
√
Vℓ,r√
α
φ̃E +

1

2

E√
α
√
Vℓ,r

φ̃E. (15)

Next we can isolate the linear part according to E as ∂nφ̃E = β2
ℓ,rφ̃E + Eγ2ℓ,rφ̃E, with β2

ℓ,r

and γ2ℓ,r defined by (15). Including these ABCs in the weak formulation (10) leads, after
discretization by the P1 finite element method, to the following linear eigenvalue problem
(M = 2) {

(αS+MV + CM) φ̃
M

= ẼM(M+ DM)φ̃
M
,

‖Mφ̃
M‖2 = 1.

(16)

We have defined the two matrices (M = 2)

CM =




αβM
ℓ 0 0 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 0 0 αβM

r



,BM =




−αγMℓ 0 0 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 0 0 −αγMr



. (17)

Problem (16) is directly solved without iteration by using eigs. The computational cost is
therefore the same as for a Dirichlet boundary condition. Furthermore, since we do not have
to iterate, the algorithm provides simultaneously the first p eigenvalues (ẼM

n )0≤n≤p−1 and

associated eigenvectors (φ̃
M

n )0≤n≤p−1. The resulting algorithm is called direct. In the case of
SABC4, a similar strategy of linearization of (7) leads to the approximation

∂nφ̃E = β4
ℓ,rφ̃E + Eγ4ℓ,rφ̃E, (18)

with β4
ℓ,r and γ

4
ℓ,r respectively given by

β4
ℓ,r = β2

ℓ,r −
1

4

∂nV|x=xℓ,r

Vℓ,r
, γ4ℓ,r = γ2ℓ,r −

1

4

∂nV|x=xℓ,r

V 2
ℓ,r

(19)

by using the approximation

1

4

∂nV

E − V
≈ − 1

4

∂nV

V
− 1

4

∂nV

V 2
E. (20)

Adapting the functions, our problem can be written as (16).

3.3. Numerical examples

Example 1 (Harmonic potential). We first consider the well-known (positive) harmonic
potential V (x) = 1

2
x2, i.e. the equation to solve is

−1

2
φ′′
E +

1

2
x2φE = EφE, x ∈ R, (21)

with α = 1
2
. The square-integrable normalized solutions of (21) are the Hermite functions

φex
n (x) =

π−1/4

√
2nn!

ex
2/2 d

n

dxn

(
e−x2

)
, n ≥ 0 (22)
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and the corresponding eigenvalues (energies) are: Eex
n = n + 1

2
. The eigenfunctions φex

n (x)
vanish for |x| → ∞, but this decay is slower and slower as n grows.

Let us recall that, for the case of the square-root ABCs, we have the direct and loop
strategies. In the sequel, when we present an error calculation with respect to xr or h, this
is clearly obtained by the direct approach since n is fixed. When we compute a range of
eigenvalues (curves with n as abscissa), we report the results for both strategies to compare
the respective accuracies.

A first numerical test consists in presenting the error on both the energy and eigenfunc-
tions depending on the computational domain size. For the harmonic potential, we always
consider a symmetric domain Ω =] − xr; xr[. For a fixed n, the value of an eigenfunction
is closer to zero as xr becomes larger. This means that we should observe the impact of
the ABCs compared to the homogeneous Dirichlet boundary condition depending on the
location of xr. Figure 1 reports, for the fundamental state n = 0 and in logarithmic scale,
the absolute error on the eigenvalue |∆E| = |Enum

n − Eex
n | and the error in the L2-norm of

the eigenfunction ||∆φ||L2(Ω) = ||φnum
n −φex

n ||L2(Ω) when the right endpoint xr varies between
1 and 7.

1 2 3 4 5 6 7
10

−15

10
−10

10
−5

10
0

xr

|∆
E
|

 

 

Dirichlet

SABC
2

SABC
4

SABC
2

lin

SABC
4

lin

(a) Eigenvalue

1 2 3 4 5 6 7
10

−15

10
−10

10
−5

10
0

xr

‖∆
φ
‖ L

2

 

 

Dirichlet

SABC
2

SABC
4

SABC
2

lin

SABC
4

lin

(b) Eigenvector

Figure 1: Example 1: Error (n = 0).

Figure 2 presents similar results for n = 4 and xr varying between 3 and 10. The
calculations are obtained for the numerical eigenvalues Enum

n equal to EM
n (for SABCM)

or ẼM
n (for SABCM

lin), depending on the order M of the ABC and its type (square-root or
linearized). In the nonlinear case, corresponding to SABCM , the number of iterations is 50
to reach convergence with ε = 10−12. The spatial step size is h = 1 · 10−3.

For n fixed, we observe an accuracy improvement for both boundary conditions when xr
grows. When xr is close to the origin (for example xr = 1 for n = 0, xr < 3 for n = 4),
all the conditions lead to inaccurate results. However, even for these small values of xr, the
linearized ABCs already give an approximation of the eigenvalue while this is not the case
for the Dirichlet boundary condition as well as for SABC2,4. Indeed for xr = 3 and n = 4,
the ABCs SABC2,4

lin give Ẽn with an error equal to 10−2 when the error for the homogeneous
Dirichlet boundary condition is about 10−1 and 1 for the square-root ABCs. The same
remark holds for n = 0.

It seems from these tests that the linearized ABCs are the most robust boundary con-
ditions concerning the size of the computational domain. From a general point of view,
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4

lin

(a) Eigenvalue

3 3.5 4 4.5 5 5.5 6 6.5 7
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−15
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0

xr

‖∆
φ
‖ L

2

 

 

Dirichlet

SABC
2

SABC
4

SABC
2

lin

SABC
4

lin

(b) Eigenvector

Figure 2: Example 1: Error (n = 4).

the ABCs always provide a better precision, at least about the same as with the Dirichlet
boundary condition but often far better. The ABCs of different orders generally give a sim-
ilar accuracy with however a better accuracy behaviour of the square-root ABCs but at a
higher computational cost. They improve the accuracy of the Dirichlet boundary condition
from a factor between 10 and 103 according to the configuration, before attaining the satura-
tion zone. After a certain value of xr, all the boundary conditions lead to the same accuracy
which only depends on the spatial mesh size. For the computation of the eigenfunctions,
this value can be estimated to xr = 6 for n = 0 and to xr = 6.5 for n = 4.

We also remark that we must increase xr as n grows to get the same accuracy. To confirm
this, we compute the variation of the error when Ω =]− xr; xr[ is fixed and n varies. We set
xr = 4 and for n ∈ [0, 10] we report the error on the eigenvalues En (Figure 3) for both the
”direct” and ”loop” approaches.

0 1 2 3 4 5 6
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10
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10
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10
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10
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10
0

n

|∆
E
|
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(a) Direct approach

0 1 2 3 4 5 6
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−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n

|∆
E
|

 

 

Dirichlet

SABC
2

SABC
4

SABC
2

lin

SABC
4

lin

(b) Loop approach

Figure 3: Example 1: Error on the eigenvalue depending on n (Ω =]− 4; 4[).

For all the boundary conditions, we can clearly see that the accuracy decays as n increases.
Indeed, the ABCs have been built in the high frequency regime. In our context, this means
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that we require that:
En − Vr ≪ 0 (23)

holds for a given point xr and for a fixed potential V . As a consequence, this limits the
calculation of energies under the condition En ≪ x2r/2 for example in the harmonic case.
In the proposed simulation, setting xr = 4 leads to En ≪ 8, which is coherent with the
observations in Figure 3. Another way to interpret this property is that increasing the
accuracy and the range of eigenvalues must be a priori guided by relation (23). To visualize
this, we show in Figure 4 the potential V as well as the first energies En. We can read from
this figure the abscissa x where E − V becomes negative and we can have a first idea of the
choice of the minimal abscissa xr to choose to get a sufficiently large gap between E and
V (xr) according to (23).

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

x

V
(x

)

 

 

V(x)
E

n

Figure 4: Example 1: Harmonic potential and the energies En for 0 ≤ n ≤ 9.

For example, for the fundamental state n = 0, the energy associated with E0 is the lowest
level red curve. From the intersection with the curve of V (x), we can see that E0 − V (x)
is negative for x ≥ 1 and we can estimate that the difference between E0 and V (x) will be
enough starting from about x ≥ 2. Coming back to Figure 1 confirms these values since
choosing xr = 1 provides a possible computation but does not necessarily converge towards
E0 while setting xr = 2 gives a correct approximation of E0. We can do the same analysis for
n = 4 (fifth red curve from the bottom). We see that E4 − V (x) is negative from x ≥ 3 and
”very negative” after x ≥ 4. These values must be connected with the curves of Figure 2.

On this example (n = 4), we also remark that the linearized ABCs are more accurate than
the original square-root ABCs, with a gain of a factor 10 in precision. This remark could also
have been made on Figure 2 corresponding to n = 4, most particularly for the computation of
the eigenvalue. The precision obtained for xr ≥ 4.5 with the linearized boundary conditions is
the same as for the square-root boundary conditions but the linearization yields an accuracy
improvement on smaller computational domains while the iterative algorithm for the square-
root conditions does not converge (2 ≤ xr ≤ 3). Moreover, let us note that the spectrum is
simultaneously obtained in the linear case without iterating which is a crucial gain compared
to the ”loop” approach, showing hence the need of linearizing. As a consequence, the ABCs
SABCM

lin are, for a similar computational cost, to privilege to the Dirichlet boundary condition
for accuracy purpose and/or for reducing the computational domain. Let us also finally
remark that the gain in terms of accuracy of the ”loop” approach is interesting as we can
see it in Figure 2(a) but for a relatively higher computational complexity.
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We now wish to compare the performances of the linearized and square-root ABCs. The
previous curves illustrated the question of accuracy. Generally speaking, the square-root
ABCs provide a better accuracy but at a higher computational cost even for the ”direct”
approach since a fixed point is required. We show in Figure 5 the number of iterations
when using SABC2 and SABC4, with respect to xr, for two situations: n = 0 and n = 4.
Figures 5(a) and 5(b) must be connected to Figures 1 and 2 which are their equivalent in
terms of accuracy.
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(a) n = 0
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Figure 5: Example 1: Number of iterations needed for the algorithms associated with the different ABCs,
with respect to xr for n = 0 and n = 4.

For the first value of xr, we often observe the divergence of the algorithm (the maximal
number of iterations of the fixed point algorithm is 20). Again, this is one of the interesting
property of the linear ABCs since, if we go back to Figures 1 and 2, they also give a rough
estimate of the eigenvalue.

For a slightly larger value of xr, the number of iterations stagnates to 5. Finally, when
the maximal accuracy is reached, the algorithm needs 2 or 3 iterations. Globally, the com-
putational costs for the square-root ABCs are roughly 5 times the costs for the linear ones
and the Dirichlet boundary condition. At the same time, a higher accuracy is obtained by
the square-root ABCs.

Finally, we present in Figures 6 (n = 0) and 7 (n = 4) the influence of the discretization
on the accuracy for a given computational domain ] − xr; xr[. We fix xr and report the
errors |∆E| and ‖∆φ‖L2(Ω) depending to the mesh size h, for h between h = 5 · 10−2 and
h = 1 · 10−4. The value of xr is chosen such that the saturation of the error has not been
reached yet so that we can see an effect of the ABCs compared to the Dirichlet boundary
condition.

One remarkable property is that for n = 0 (Figure 6) the accuracy remains increasing
with the ABCs by refining the mesh while this is not the case for the Dirichlet boundary
condition. Indeed, we cannot gain more accuracy after h = 10−2 if we do not increase the
size of the computational domain. Concerning the ABCs (which are already more accurate
than the Dirichlet boundary condition for h = 10−2), we can still improve the solution by
refining, most particularly with SABC4. Note that this remark holds for both the eigenvalues
and eigenvectors.
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Figure 6: Example 1: Error (xr = 3.5 and n = 0) with respect to h.
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Figure 7: Example 1: Error (xr = 4 and n = 4) with respect to h.
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Example 2 (Pöschl-Teller potential). The potential that we analyze now has the prop-
erty to lead to negative eigenvalues. A necessary condition to justify the application of the
previous approach is that

V (xr)− E ≥ 0. (24)

Hence, according to n and the rank of the eigenvalue that we are looking for, we have to
choose xr sufficiently large so that condition (24) is fulfilled. Since V is negative and even
if we have E ≪ V , then linearizing SABC2,4 by using a Taylor’s expansion with respect to
E/V is no longer relevant since V can be equal to zero. Let us set Vmin = minx∈R V (x) and
using the property that the Schrödinger equation is linear, we define a new positive potential
W = V − Vmin and Fn = En − Vmin. Problem (8)–(9) is then equivalent to

−αφ′′
E +WφE = FnφE. (25)

The boundary conditions SABC2,4
lin are so the linearized versions of SABC2,4 according to

1/(V − Vmin) (and not 1/V ) by using the equivalent assumption: E − Vmin ≪ V − Vmin.
The Pöschl-Teller potential [20] is given by

V (x) = −λ(λ+ 1)

cosh2(x)
, (26)

and α = 1 in (8). This potential is always negative (see Figure 8(a)). For λ = 9, it leads to
nine eigenvalues: En = −(9− n)2, 0 ≤ n ≤ 8. In Figure 8(b), we plot the different energy
levels, compared to the potential. To take into account the translation, we rather present
V (x)− Vmin and En − Vmin.
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Figure 8: Example 2: Pöschl-Teller potential and its first nine energy levels.

For a given eigenstate, we can a priori estimate the size of the computational domain
to consider that the high frequency hypothesis is satisfied and that the convergence of the
iterative algorithm occurs. We set h = 5 · 10−4 and analyze, for n fixed, 0 ≤ n ≤ 8, the
error on En for the different ABCs depending on the position of xr. We depict the results in
Figure 9 for n = 0, n = 4 and n = 8. The ABCs always improve the accuracy compared to
the Dirichlet boundary condition. This is most particularly clear for large n. For n = 8 and
]− 5; 5[, the accuracy obtained with the Dirichlet boundary condition is less than 10−2 and
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about 5 ·10−5 for SABC2,4. To get a similar precision with the Dirichlet boundary condition,
we would have to choose xr = 10 leading therefore to a significant larger computational
domain. The effect of the linearized ABCs is variable. For n = 0 the ABCs SABC2,4

lin are
almost as precise as the ABCs SABC2,4, but when n increases, the accuracy is similar to the
one obtained by using the Dirichlet boundary condition.
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Figure 9: Example 2: Error of the eigenvalues for the different ABCs and the Pöschl-Teller potential.

For the same potential, we observe in Figure 10 the error on En for xr fixed. For xr = 2,
we notice a factor 10 to 100 between the Dirichlet boundary condition and the ABCs for the
states 2 ≤ n ≤ 6. The second- and fourth-order ABCs have a similar accuracy. At xr = 4,
all the boundary conditions are equivalent for the first eigenstates but when n grows the
ABCs remain accurate while the Dirichlet boundary condition is less precise (n = 6, n = 7).
Indeed, they yield an accuracy of the eigenvalue about 10−3 while the Dirichlet boundary
condition gives only 10−1 (n = 8).

Remark 2. In [3, 21], we also study the case of the Morse potential as well as the Woods-
Saxon potential. This extends our conclusions to these two situations.

13



0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

n

|∆
E
|

 

 

Dirichlet

SABC
2

SABC
4

SABC
2

lin

SABC
4

lin

(a) xr = 2 (loop)
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(c) xr = 2 (direct)
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(d) xr = 4 (direct)

Figure 10: Example 2: Error on the eigenvalues according to n for the Pöschl-Teller potential.
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4. Application to the computation of ground states: the nonlinear case

4.1. Problem and numerical scheme

We are interested in computing ground states for nonlinear Schrödinger equations. Most
particularly, we consider a nonlinear potential which is the sum of a cubic nonlinearity and
a harmonic potential. This kind of nonlinearity arises e.g. in Bose-Einstein condensates
[22, 23, 24]. The dimensionless one-dimensional Gross-Pitaevskii equation [25, 26, 27] reads

i
∂ψ

∂t
= −1

2
∂2xψ + V ψ + β|ψ|2ψ, x ∈ R, (27)

setting V (x) = 1
2
x2 and where the nonlinearity coefficient β can be negative or positive. We

restrict ourselves to this special nonlinearity but all results can be directly extended to other
cases. In view of computing the stationary solutions we write: ψ(x, t) = e−iEtφE(x), where
E is the chemical potential of the condensate and φE is a real-valued function independent of
time. Let us note that the stability of exactly this kind of problems was studied analytically
in [28, 29, 30] and hence can be checked numerically using our proposed ABCs.

Function φE is then solution to

−α∂2xφE + V φE + β |φE|2 φE = EφE, x ∈ R, (28)

where α = 1
2
, under the normalization constraint

‖φE‖L2(R) = 1. (29)

Finally, the function φE of the problem (28)–(29) satisfies the boundary conditions φ′
E(0) = 0

and φE(±x) → 0 for x→ +∞. The resulting system is a nonlinear eigenvalue problem under
constraint. The eigenfunction φE being known, we can determine the associated eigenvalue
E by

E =

∫

R

α |∂xφE|2 + V φ2
E + βφ4

E dx. (30)

The problem (28)-(29) is solved on a symmetric computational domain Ω =]−R;R[, with
R > 0 and Σ = {−R;R}. We keep on denoting this domain by Ω =]− xℓ; xr[. We introduce
(E0, φ0) as a solution to the boundary value problem with Dirichlet boundary condition





−α∂2xφE + V φE + β|φE|2φE = EφE, in Ω,

φE = 0, on Σ,

‖φE‖L2(Ω) = 1.

(31)

Analogously, we designate by (EM , φM) the solution computed with aM -th order nonlin-
ear ABC obtained from the linear stationary ABCs (6)–(7). To this end, we replace formally
the potential V by the new nonlinear potential V + β|φ|2 to get the second-order ABC

∂nφE =
i√
α

√
E − V − β|φE|2 φE, on Σ, (32)

and fourth-order ABC

∂nφE =
i√
α

√
E − V − β|φE|2 φE +

1

4

∂n(V + β|φE|2)
E − V − β|φE|2

φE, on Σ. (33)
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For the sake of clarity, we keep on designating by SABCM the above M -th order ABC.
The interior equation is discretized by the semi-implicit scheme

−α∂2xφM,j+1 + V φM,j+1 + β|φM,j|2φM,j+1 = EM,j+1φM,j+1, (34)

for j ≥ 0 and M = 0, 2, 4. Now and independently of the boundary condition, the algorithm
must be iterative since the interior scheme is nonlinear. As a consequence, we systematically
use the fixed point method on the n-th eigenvalue EM

n and eigenfunction φM
n for solving the

eigenvalue problem. The variational formulation reads

− α[∂nφ
M,j+1
n ψ]xr

xℓ
+ α

∫

Ω

∂xφ
M,j+1
n ∂xψdx+

∫

Ω

V φM,j+1
n ψdx

+ β

∫

Ω

|φM,j
n |2φM,j+1

n ψdx = EM,j+1
n

∫

Ω

φM,j+1
n ψdx, (35)

for any test-function ψ. In the Dirichlet case, by choosing ψ ∈ H1
0 (Ω), which makes the first

term of the equation vanish, the discrete problem is, for M = 0,





(
αS0 +M

0
V + βM0

|φM,j
n |2

)
φM,j+1

n = EM,j+1
n M

0φM,j+1
n ,

‖M0φM,j+1
n ‖2 = 1.

(36)

For the ABCs, we use for ∂nφ
M,j+1
n the fixed point version

∂nφ
M,j+1
n =

i√
α

√
EM,j

n − V − β|φM,j
n |2 φM,j+1

n (37)

for the second-order ABC (32) and

∂nφ
M,j+1
n =

(
i√
α

√
EM,j

n − V − β|φM,j
n |2 + 1

4

∂n(V + β|φM,j
n |2)

EM,j
n − V − β|φM,j

n |2

)
φM,j+1
n (38)

for the fourth-order condition (33). Hence, the term −α[∂nφM,j+1
n ϕ]xr

xℓ
leads, from a discrete

point of view, to a matrix contribution B
j
MφM,j+1 for theM -th order ABC, where the matrix

coefficients B
j
M only depend on the values of φM,j

n and EM,j
n . By applying the fixed point

algorithm on the n-th eigenvalue EM
n and eigenvector leads to the iterative scheme φM

n





(
αS− αBM,j +MV + βM|φM,j

n |2

)
φM,j+1

n = EM,j+1
n MφM,j+1

n ,

‖MφM,j+1
n ‖2 = 1.

(39)

The matrix coefficients BM,j are given by

(BM,j)1,1 =
i√
α

√
EM,j

n − Vℓ − β|φM,j
n,ℓ |2 +

1

4

∂n(V + β|φM,j
n |2)|x=xℓ

EM,j
n − Vℓ − β|φM,j

n,ℓ |2
(40)

and

(BM,j)nh+1,nh+1 =
i√
α

√
EM,j

n − Vr − β|φM,j
n,r |2 +

1

4

∂n(V + β|φM,j
n |2)|x=xr

EM,j
n − Vr − β|φM,j

n,r |2
(41)
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for SABC4 (M = 4). For SABC2 (M = 2), it is sufficient to retain only the first term of
each of the above expressions. We have set here: φM,j

n,ℓ = φ
M,j
n,|x=xℓ

and φM,j
n,r = φ

M,j
n,|x=xr

.
As in the linear case, we can formulate the linearized versions of the second- and fourth-

order ABCs. These ABCs are then designated by SABC2,4
lin . Doing so, we have the second-

order ABC

∂nφ
M,j+1
n = −

√
V√
α
φM,j+1
n − β

2

1
√
α
√
V
|φM,j

n |2φM,j+1
n +

1

2

1
√
α
√
V
EM,j+1

n φM,j+1
n (42)

and the fourth-order ABC

∂nφ
M,j+1
n = −

√
V√
α
φM,j+1
n − β

2

1
√
α
√
V
|φM,j

n |2φM,j+1
n +

1

2

1
√
α
√
V
EM,j+1

n φM,j+1
n

+

(
−1

4

∂n(V + β|φM,j
n |2)

V
+
β

4

|φM,j
n |2∂n(V + β|φM,j

n |2)
V 2

)
φM,j+1
n

− EM,j+1
n

∂n(V + β|φM,j
n |2)

V 2
φM,j+1
n .

(43)

The iterative scheme then reads




(
αS− αBM,j +MV + βM|φM,j

n |2

)
φM,j+1

n = EM,j+1
n

(
M+ αBj

E,M

)
φM,j+1

n

‖MφM,j+1
n ‖2 = 1.

(44)

The matrix coefficients BM,j et BM,j
E are given by

(BM,j)1,1 = −
√
Vℓ√
α

− β

2

1√
α
√
Vℓ

|φM,j
n,ℓ |2

− 1

4

∂n(Vℓ + β|φM,j
n,ℓ |2)

Vℓ
+
β

4

|φM,j
n,ℓ |2∂n(Vℓ + β|φM,j

n,ℓ |2)
V 2
ℓ

(45)

and

(BM,j
E )1,1 =

1

2

1√
α
√
Vℓ

−
∂n(Vℓ + β|φM,j

n,ℓ |2)
V 2
ℓ

(46)

for the fourth-order ABC. The expression of the coefficients of index (nh + 1, nh + 1) is the
same but taking its value at x = xr. We can easily extract the coefficients associated with
the second-order ABC by keeping only the first term of each expression. Unlike the linear
situation, there is no gain in terms of computational time since the problem is fully nonlinear.

4.2. Numerical results

We consider (28) for different values of the parameter β. For each value, we uniquely
determine the fundamental state n = 0. To get some reference eigenvalues, we numerically
compute them on the domain ] − 30; 30[, with a step size h = 10−4 and SABC2 (33). This
method provides some values reported in Table 1 which are conform with the ones given
in [26]. Let us note here that we do not give some results for larger values of β because
the fixed point algorithm then diverges. It would be necessary at this point to use another
numerical algorithm (a Newton method or a continuation method) for solving the problem
with an ABC. Finally, we present in the sequel the absolute errors: ∆E = |Enum−Eref | and
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β φE(0) E
−6.2742 1.265512713848083 −4.956873352670034
−2.5097 0.913230941756339 −0.806257128073956
3.1371 0.645961493829006 1.526594842533555

Table 1: Numerical values Eref and φref

E
(0) computed on a larger domain for different β.

∆φ(0) = |φnum(0)−φref(0)|, where ’ref’ refers to the values in Table 1 and ’num’ to the ones
computed with the proposed method.

For the simulations, the initialization of the fixed point algorithm uses the exact harmonic
potential solution (β = 0): φM,0

0 (x) = 1
π1/4 e

−x2/2. The fixed point algorithm tolerance is
ε = 10−12 and the mesh size of the linear finite element method is h = 10−3. Figures 11, 12
and 13 report the error on both the eigenvalue and eigenfunction at the origin depending on
the right endpoint xr, for the values β = −6.2742, β = −2.5097 and β = 3.1371, respectively.

1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

xr

|∆
E
|

 

 

Dirichlet

SABC
2

SABC
4

(a) Eigenvalue

1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

xr

|∆
φ
(0

)|

 

 

Dirichlet

SABC
2

SABC
4

(b) Value of the eigenfunction at the origin

Figure 11: Errors ∆E and ∆φ(0) for β = −6.2742.

Generally speaking, for a given case, all the algorithms converge with about the same
number of iterations, independently of the boundary condition. We also note that, for
negative values of β, the linearized ABCs lead to the same accuracy as the nonlinear ABCs
(not reported here) for a similar computational time. In Figures 11 and 12, we only present
the results for the Dirichlet boundary condition and SABC2,4. For β > 0 (Figure 13), the
linearized ABCs possess an accuracy at least equal to the one with SABC2,4. We do not have
any explanation about this fact. For β = −6.2742 (Figure 11), all the algorithms converge
in 23 iterations. The ABCs improve the accuracy from a factor 10 compared with the
Dirichlet boundary condition for xr = 1.5, and almost 100 when xr = 2, then for xr ≥ 2.5,
all the boundary conditions have the same accuracy: 10−5. The precision of the second-
order ABC is slightly better than the fourth-order ABC. The reason is that these ABCs are
formally derived, unlike the linear case. For β = −2.5097 (Figure 12), the convergence takes
14 iterations. The ABCs again provides a gain of precision compared with the Dirichlet
boundary condition for xr between 1.5 and 3.5, with a better accuracy for the second-order
ABC (see the points xr = 3 and xr = 2.5 for example). For β = 3.13712, the situation
is quite similar but requires 77 iterations to converge. Unlike, the two previous cases, the
linearized ABCs give a slightly better accuracy than for the original ABCs.
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Figure 12: Errors ∆E and ∆φ(0) for β = −2.5097.
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Figure 13: Errors ∆E and ∆φ(0) for β = 3.1371.

5. Extension to N -dimensional stationary problems

In the N -dimensional linear time-dependent case, the ABCs take the following form

ABC1
2 : ∂nu− iOp(

√
−τ +∆Σ + Ṽ ) u = 0 (47)

for the first-order condition and

ABC2
2 : ∂nu− iOp(

√
−τ +∆Σ + Ṽ ) u

+HOp((−τ +∆Σ + Ṽ )−1)
(
i∂t + Ṽ

)
u = 0

(48)

for the second-order one on Σ × R
+. The Schrödinger equation under consideration is the

following {
i∂tu+∆u+ Ṽ (x)u = 0, ∀(x, t) ∈ R

N × R
+,

u(x, 0) = u0(x), x ∈ R
N ,

(49)
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Here, the computational domain Ω is a bounded set of the R
N dimensional space. Its

boundary Σ is supposed to be a (N − 1)-dimensional convex and compact manifold. Its
mean curvature H is defined by: H = trace(R)/(N − 1), where R is the curvature tensor of
the surface. For example, for a two-dimensional surface, we have: H = κ/2, where κ is the
local curvature at a point of the surface. For a 2-sphere of radius R, we get H = 1/R. The
operator ∆Σ is the Laplace-Beltrami operator over the surface. For the sphere it is defined
by

∆Σf :=
1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂f

∂ϕ

)
+

1

r2 sin2 ϕ

∂2f

∂θ2
.

for a function f expressed in spherical coordinates (r, ϕ, θ). Other expressions exist for the
hypersphere and other manifolds. The asymptotics behind the construction of the ABCs is
somewhat different which results in a different definition of the order of an ABC. We do not
develop the whole theory and refer to [21] for more details in the 2-dimensional case.

To get the ABCs for the N -dimensional stationary case

−α∆u+ V (x)u = Eu, in Ω,

we make the substitutions: −τ → E/α and Ṽ → −V/α. This leads to the first-order
Stationary ABC:

SABC1 : ∂nu+
1√
α

√
V − (α∆Σ + E) u = 0 (50)

and

SABC2 : ∂nu+
1√
α

√
V − (α∆Σ + E) u+H(V − E)(V − (α∆Σ + E))−1u = 0 (51)

As in the one-dimensional case, both conditions are nonlinear with respect to the energy E.
Furthermore, the square-root involves now the surface Laplace-Beltrami operator ∆Σ. Here,
we propose the formal asymptotics: V ≫ α∆Σ + E which can be justified by theoretical
arguments of operator theory [21]. Using a second-order Taylor expansion, we obtain the
approximate linearized SABC

SABC1
lin : ∂nφ̃E +

√
V√
α
φ̃E −

√
α

2
√
V
∆Σφ̃E +

√
α

2
√
V
Eφ̃E = 0 (52)

on Σ. For the second-order SABC, we do not really have to linearize the corrective term
which can be considered linearly through the introduction of an auxiliary function ΨE. More
precisely, we have

SABC2
lin : ∂nφ̃E +

√
V√
α
φ̃E −

√
α

2
√
V
∆Σφ̃E +

√
α

2
√
V
Eφ̃E +H(V − E)ΨE = 0 (53)

coupled to the surface equation: −α∆ΣΨE + (V − E)ΨE − φ̃E = 0. With such a trick, the
coupled system with unknowns (φ̃E,ΨE) remains linear and is well-adapted to a symmetrical
weak formulation for instance. Moreover, each term can be very easily implemented in usual
numerical codes based for example on finite difference, finite element or spectral methods.
The adaptation to the nonlinear stationary Schrödinger equation (for a smooth nonlinearity
like f(u) = β|u|2): −α∆u + V (x)u + f(u)u = Eu, in Ω, can be made by simply replacing
V (x) by V (x) + f(u) in the above ABCs.
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6. Conclusion

We have proposed some accurate and physically admissible absorbing boundary con-
ditions for modeling linear and nonlinear stationary Schrödinger equations with variable
potentials. Based on numerical schemes, these boundary conditions have been validated
for many configurations including linear and nonlinear ground-state computations. Further-
more, the extension to N -dimensional problems that can be used in scattering problems like
[31, Section 12.1], is given.

Future extensions would include variable mass Schrödinger equations [32] among others.
It might also be valuable to extent the presented work to systems of Schrödinger equations
that arise as so-calledmultiband effective mass approximations (MEMAs) to model electronic
states in modern semiconductor nanostructures, cf. [33, 34, 35]. Let us finally remark that
applications to generalized Schrödinger equations could also be developed by adapting the
methods developed in [2, 36].
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artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,
Commun. Comput. Phys. 4 (4) (2008) 729–796.

[2] X. Antoine, C. Besse, P. Klein, Absorbing boundary conditions for the one-dimensional
Schrödinger equation with an exterior repulsive potential, J. Comput. Phys. 228 (2)
(2009) 312–335.

[3] X. Antoine, C. Besse, M. Ehrhardt, P. Klein, Modeling boundary conditions for solv-
ing stationary Schrödinger equations, Report Preprint 10/04 (http://www.math.uni-
wuppertal.de), Lehrstuhl für Angewandte Mathematik und Numerische Mathematik.

[4] N. Ben Abdallah, P. Degond, P. A. Markowich, On a one-dimensional Schrödinger-
Poisson scattering model, Z. Angew. Math. Phys. 48 (1) (1997) 135–155.

[5] A. Arnold, Mathematical concepts of open quantum boundary conditions, Trans. The-
ory Stat. Phys. 30 (2001) 561–584.

[6] C. Lent, D. Kirkner, The quantum transmitting boundary method, J. Appl. Phys.
67 (10) (1990) 6353–6359.

[7] D. Kirkner, C. Lent, S. Sivaprakasam, The numerical simulation of electron transmission
through a two-dimensional quantum device by the finite element method, Int. J. Numer.
Meth. Engineering. 29 (1990) 1527–1537.

[8] M. Heinen, H.-J. Kull, Radiation boundary conditions for the numerical solution of the
three-dimensional time-dependent Schrödinger equation with a localized interaction,
Physical Review E 79 (5).

[9] M. Heinen, H.-J. Kull, Numerical calculation of strong-field laser-atom interaction: An
approach with perfect reflection-free radiation boundary conditions, Laser Physics 20 (3)
(2010) 581–590.

21



[10] M. Ehrhardt, R. E. Mickens, Solutions to the discrete Airy equation: Application to
parabolic equation calculations, J. Comput. Appl. Math. 172 (1) (2004) 183–206.

[11] M. Ehrhardt, A. Zisowsky, Fast calculation of energy and mass preserving solutions of
Schrödinger-Poisson systems on unbounded domains, J. Comput. Appl. Math. 187 (1)
(2006) 1–28.

[12] C. Moyer, Numerov extension of transparent boundary conditions for the Schrödinger
equation in one dimension, Amer. J. Phys. 72 (3) (2004) 351–358.

[13] C. Moyer, Numerical solution of the stationary state Schrödinger equation using trans-
parent boundary conditions, Comput. Sci. Engrg. 8 (4) (2006) 32–40.

[14] M. Ehrhardt, C. Zheng, Exact artificial boundary conditions for problems with periodic
structures, J. Comput. Phys. 227 (14) (2008) 6877–6894.
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