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Due to transaction costs, illiquid markets, large investors or risks from an unprotected portfolio
the assumptions in the classical Black–Scholes model become unrealistic and the model results
in nonlinear, possibly degenerate, parabolic diffusion–convection equations.

Since in general, a closed–form solution to the nonlinear Black–Scholes equation for Amer-
ican options does not exist (even in the linear case), these problems have to be solved nu-
merically. We present from the literature different compact finite difference schemes to solve
nonlinear Black–Scholes equations for American options with a nonlinear volatility function.
As compact schemes cannot be directly applied to American type options, we use a fixed
domain transformation proposed by Ševčovič and show how the accuracy of the method can
be increased to order four in space and time.

Keywords: nonlinear Black-Scholes equation; compact finite difference scheme; American
options; high-order methods; fixed domain transformation; transaction costs
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1. Introduction

In the recent several years stock option was one of the most popular financial
derivatives. There are many types of options on the market including European
Call (Put) options, American Call (Put) options, Exotic options, etc.. But it was
difficult to accurately price options until 1973 when Black and Scholes published
their Black-Scholes model [5].
There exists two types of vanilla options. A Call option is a contract that

gives the right to the holder to buy the underlying asset on a particular date at
a specified value. A Put option is a contract that gives the right to the holder to
sell the underlying asset on a particular date at a specified value. The price in the
contract is called exercise price (or strike price). The date in the contract is called
expiration date (or exercise date, maturity date). Options are also divided into two
types according to the expiration date T . While American options can be exercised
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at any time before maturity date, European options can only be exercised at the
maturity date. In this work we will focus on American options.
In an idealized financial market, the fair price of an American Call option can

be obtained by solving the Black-Scholes partial differential equation (PDE)

Vt +
σ2
0

2
S2VSS + (r − q)SVS − rV = 0, 0 < S < Sf (t), t ∈ (0, T ), (1)

where t is the current date, σ0 the (constant) volatility, S the price of the underlying
asset, r the risk-free interest rate, q the dividend yield and V the option price. In
the financial sense, the partial derivatives indicate the sensitivity of the option
price V to the corresponding parameter and are called Greeks. The option delta
is denoted by ∆ = VS , the option gamma by Γ = VSS and the option theta by
θ = Vt, cf. [38].
Equation (1) is a backward-in-time parabolic PDE and is supplied with the

terminal pay-off condition

V (S, T ) = max(S − E, 0) =: (S − E)+, S ≥ 0. (2)

Since the value of an American Call option equals the value of a European Call
option if no dividends are paid and the volatility is constant, we included the
continuous dividend yield in (1).

Remark 1 discrete dividend payments
Let us note that also discrete dividend payments can be included here, cf. [38].

We assume that there is only one dividend payment of the dividend yield q during
the lifetime of the option at the dividend date tq. Neglecting other factors, such
as taxes, the asset price S must decrease exactly by the amount of the dividend
payment q at time tq.
Thus we have the jump condition

S(t+q ) = (1− q)S(t−q ),

where t−q , t
+
q denote the moments just before and after the dividend date tq. This

leads to the following effect on the option price:

V (S, t−q ) = V ((1− q)S, t+q ), (3)

i.e. the value of the option at S and time t−q is the same as the value immediately
after the dividend date tq but at the asset value (1 − q)S. In order to calculate
the value of a Call option with one dividend payment we solve the Black–Scholes
equation from expiry t = T until t = t+q and use the relation (3) to compute

the values at t = t−q . Finally, we continue to solve the Black–Scholes equation

backwards starting at t = t−q using these values as the initial data. The boundary
conditions, that are discussed next, do not need to be modified for this case.

Since American options can be exercised at any time before expiry, we need to
find the optimal time t of exercise, known as the optimal exercise time. At this
time, which mathematically is a stopping time, the asset price reaches the optimal
exercise price or optimal exercise boundary Sf (t).
This leads to the formulation of the problem for American options by dividing

the domain [0,∞[×[0, T ] of (1) into two parts along the curve Sf (t) and analyzing
each of them (see Fig. 1(a)). Since Sf (t) is not known in advance but has to be
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determined in the process of the solution, the problem is called free boundary value
problem.

hold exercise

S
0

T

t

Sf (0)Sf (T )

Sf (t)

(a) Exercising and holding regions.

V (S, t)

E

S

0

T t

Sf (0)

Sf (T )

Sf (t)

(b) Schematical value V (S, t).

Figure 1. American Call.

For the American Call option the spatial domain is divided into two regions by
the free boundary Sf (t), the stopping region Sf (t) < S < ∞, 0 ≤ t ≤ T , where
the option is exercised or dead with V (S, t) = S − E and the continuation region
0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T , where the option is held or stays alive and equation (1)
is valid with the following boundary conditions at S = 0 and Sf (t)

V (0, t) = 0 for 0 ≤ t ≤ T,

V (Sf (t), t) = Sf (t)− E for 0 ≤ t ≤ T,

VS(Sf (t), t) = 1 for 0 ≤ t ≤ T,

(4)

Note that we need two conditions at the free boundary S = Sf (t). One condition
is necessary for the solution of (1) and the other one is needed for determining
the position of the free boundary Sf (t) itself. The second condition in (4) (’value
matching’ condition) is the continuity of the mapping S 7→ V (S, t) since V (S, t) =
(S − E)+ = S − E, in the exercise region S ≥ Sf (t). At S = Sf (t) one requires
additionally that V (S, t) touches the payoff function tangentially (’high contact
condition’), i.e. the function S 7→ ∂V (S, t)/∂S should be continuous at S = Sf (t).
The conditions (4) are jointly referred as the ’smooth–pasting conditions’. Note
that this third condition can be derived from an arbitrage argument [38].
For the sake of simplicity we will assume r > q in this work, and therefore we

have Sf (T ) = rE/q for the American Call.
The structure of the value of an American Call can be seen in Fig. 1(b), where

we notice that the free boundary Sf (t) determines the position of the exercise.
This linear model is not very realistic [14], since the Black-Scholes model had

been derived under very restrictive assumptions, such as frictionless, liquid and
complete market. In a real financial market the traders actually work in a different
environment: transaction cost arising [4, 9], the market is incomplete, illiquid, etc..
Although the Black-Scholes model has been used in practice, it has also caused

some criticism, for example because the volatility is not observable. It is often
deduced by calculating the implied volatility from sampled option prices by invert-
ing the Black-Scholes formula. A widely observed unique property, the so-called
volatility smile, is that these computed volatilities are not constant. This leads to
a natural generalization of the Black-Scholes model replacing the constant volatil-
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ity σ0 in the model by a local volatility function σ = σ(E, T ), where E denotes the
exercise price and T is the maturity.
In practice, transaction costs arise when trading securities. Although they are

generally small for institutional investors, they lead to a notable increase in the
option price. In the past years, different models have been proposed to relax un-
realistic assumptions of the Black-Scholes model (1). These models result in fully
nonlinear Black-Scholes equations.
Boyle and Vorst [9] derived an option price taking into account transaction costs

that is equal to a Black-Scholes price but with a modified volatility of the form

σ = σ0
√
1 + cA, A =

µ

σ0
√
∆T

, c = 1. (5)

Here, µ is the proportional transaction cost, ∆T denotes the transaction period,
and σ0 is the original volatility constant. Leland [26] computed c =

√
2/π.

A more complex model has been proposed by Barles and Soner [4]. In their model
the nonlinear volatility reads

σ2 = σ2
0(1 + Ψ[exp(r(T − t)a2S2VSS)]), (6)

where r is the risk-free interest rate, T the maturity and a = µ
√
γN where γ is the

risk aversion factor and N is the number of options to be sold. The function Ψ is
the solution of the nonlinear singular initial-value problem

Ψ′(A) =
Ψ(A) + 1

2
√

AΨ(A)−A
, A 6= 0, Ψ(0) = 0. (7)

In the mathematical literature, only a few results can be found on the numeri-
cal solution of nonlinear Black-Scholes equations. The numerical discretization of
the Black-Scholes equations with the nonlinear volatility (6) has been performed
using explicit finite difference schemes (FDS) [4]. However, explicit schemes have
the disadvantage that restrictive conditions on the discretization parameters (for
instance, the ratio of the time and the space step) are needed to obtain stable and
convergent schemes [36]. Moreover, the convergence order is only one in time and
two in space. Düring et al. [14, 15] combined high-order compact difference schemes
derived by Rigal [32] and techniques to construct numerical solutions with frozen
values of the nonlinear coefficient of the nonlinear Black-Scholes equation

Vt +
1

2
σ(VSS)

2S2VSS + (r − q)SVS − rV = 0, 0 < S < Sf (t), t ∈ (0, T ), (8)

to linearize the formulation.
Since analytical solutions to nonlinear Black-Scholes equations can only be ob-

tained in rather special cases [6–8], we will compute the option prices numerically.
Here, we consider compact FDS for American options and focus on the transac-
tion cost model of Barles and Soner (6). Instead of solving the singular differential
equation (7) we propose to use some properties of Ψ = Ψ(A) described recently in
[10].

Theorem 1.1 [10]The nonlinear volatility correction function Ψ, unique solution
of (7) satisfies the following properties:
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(i) Ψ is implicitly defined by

A =

(
−arcsinh

√
(Ψ)√

Ψ+ 1
+
√
Ψ

)2

, if Ψ > 0, (9)

A = −
(
arcsin

√
(−Ψ)√

Ψ+ 1
−

√
−Ψ

)2

, if 0 > Ψ > −1. (10)

(ii) Ψ is an increasing function mapping the real line onto the interval ] −
1,+∞[.

Many of the developed methods for solving the Black-Scholes equation can only
be applied to European options, like the method of Liao and Khaliq [27] and
methods derived by Rigal [32]. Hence, for American options another strategy is
needed. Usually, the equation is transformed into the heat equation and the domain
is modified into a semiunbounded one with a free boundary.
Exact analytical formulas for the free boundary Sf (t) in (8) with conditions

(4) are not known, but there exist several deductions of approximate formulas for
American option estimation in the linear case. Recently, Ševčovič [33] proposed a
new method to transform the free boundary problem for the early exercise bound-
ary location into deduction of a time dependent nonlinear parabolic equation on a
fixed domain, cf. Section 3.
Liao and Khaliq [27] offered an unconditionally stable compact FDS of fourth

order both in space and time applied to European options.
This paper is organized as follows. First, in Section 2 we review from the literature

a couple of compact high order finite difference schemes. As compact schemes
cannot be directly applied to American type options, we will employ them using
a novel fixed domain transformation proposed by Ševčovič, cf. [3, 33]. Finally, we
use in Section 4 the approach in combination with the new method of Liao and
Khaliq [27] for solving the nonlinear Black-Scholes equation (8) with transaction
costs.

2. Compact schemes

Here we will review from [14, 15] a couple of standard difference schemes and
compact schemes and also present the schemes developed by Rigal [32]. Before we
start with presenting the schemes, we briefly mention a useful transformation of
the nonlinear PDE (8) that will be the starting point for the methods. In order
to transform the nonlinear Black-Scholes equation (8) with volatility (6) into a
convection-diffusion problem, we use the following transformation [14]:

x(S) = ln
S

E
, τ(t) =

σ2
0

2
(T − t), u = e−xV

E
.

Then (8) may be rewritten in the following form

uτ =
(
1 + Ψ[e(Kτ+x)a2E(uxx + ux)]

)
(uxx + ux) +Kux, x ∈ R, (11)

where 0 ≤ τ ≤ σ2
0T/2, K = 2r/σ2

0. τ denotes the (scaled) time to maturity.
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(a) (b)

Figure 2. Solutions of (9), (10) (left figure) and ODE (7) (right figure, for
A > 0), where T = 1, K = 10, r = 0.1, q = 0.05.

2.1 Finite difference methods

All considered difference schemes have two time levels. Let An and Bn be the
system matrices of AnUn+1 = BnUn

An = [a−1, a0, a1], Bn = [b−2, b−1, b0, b1, b2],

where ai, bi denote the main diagonals, superdiagonals and subdiagonals. The ma-
trix An is tridiagonal and thus the obtained linear systems may be solved efficiently
using the Thomas algorithm. We further assume the normalization conditions

1∑

i=−1

ai =
2∑

i=−2

bi = 1

and following [15], we discretize the volatility correction in (6) as

sni = Ψ

[
exp (Knk + xi)a

2E

(
Un
i−2 − 2Un

i + Un
i+2

4h2
+

Un
i+1 − Un

i−1

2h

)]
. (12)

This formula gives an explicit discretization of the nonlinearity and uses a special
stencil for the second derivative (spatial step 2h instead of h).
Another problem lies in the initial condition for u(x, 0), as it is nondifferentiable

in the point x = 0. Oosterlee et al. [29] solved this problem of reduced accuracy
and proposed a grid stretching technique, which is based on an idea of placing more
points in the neighborhood of the nondifferentiable payment condition.
Figure 2 shows the solutions of (9), (10) (on the left), and of the ODE (7)

(on the right) and their spline interpolation. It is easily seen that the plots show
indistinguishable results.
Let us also introduce the following notations. λ = −(1 +K) denotes the linear

part of the coefficient of the convection term in (11), i.e. (11) reads

uτ = Ψ[e(Kτ+x)a2E(uxx + ux)](uxx + ux) + uxx − λux, x ∈ R. (13)

Moreover, h = ∆x, k = ∆τ are the step sizes in space and time, α = λh/2 is
the cell Reynolds number, ζ = k/h2 the parabolic mesh ratio and µ = k/h the
hyperbolic mesh ratio.
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2.2 Classical finite difference schemes

Here we summarize the most well-known schemes, cf. [15].

2.2.1 The Forward-Time Central-Space explicit scheme (FTCS)

This scheme is given by the coefficients

a±1 = 0, a0 = 1, b±1 = ζ ± µ

2
(sni − λ), b0 = 1− 2ζ − ζ

2
sni , b±2 =

ζ

4
sni .

It is of order 1 in time, 2 in space, with a very strict stability condition ζ ≤ 1/2.
The condition |α| ≤ 1 must be satisfied to avoid oscillations.

2.2.2 The Backward-Time Central-Space semi-explicit scheme (BTCS)

This scheme treats explicitly the nonlinearity and is given by

a±1 = ∓λ

2
µ− ζ, a0 = 1 + 2ζ, b±2 =

ζ

4
sni , b±1 = ±1

2
µsni , b0 = 1− ζ

2
sni .

This scheme is of order 1 in time and 2 in space. It is unconditionally stable and if
|α| ≤ 1 is satisfied, then it is non-oscillatory.

2.2.3 The Crank-Nicolson scheme (CN)

This scheme, with an explicit treatment of the nonlinearity, is given by

a±1 =

(
−ζ

2
∓ µ

4

)
sni − ζ

2
± λ

4
µ, b±1 =

(
ζ

2
± µ

4

)
sni +

ζ

2
∓ λ

4
µ,

a0 = 1 + ζ(1 + sni ), b0 = 1− ζ(1 + sni ), b±2 = 0.

It is of the order 2 both in time and space and unconditionally stable.

2.3 The compact schemes of higher order

Rigal [32] introduced several FDS for linear convection-diffusion problems and
Düring et al. [14, 15] applied them to the problem (11). These schemes are both
compact two-level schemes of order 2 in time and 4 in space in the linear case. The
nonlinearity is handled semi-implicitly as in the previous subsection.

2.3.1 The R3A scheme

In this scheme the coefficients are chosen as

a±1 =

(
1

12
− ζ

2

)
(1∓ α)− α2ζ

6
+

α2ζ2

3
, a0 =

5

6
+ ζ +

α2ζ

3
− 2α2ζ2

3
,

b±2 =
ζ

4
sni , b±1 =

(
1

12
+

ζ

2

)
(1∓ α)∓ α2ζ

6
+

α2ζ2

6
± 1

2
µsni ,

b0 =
5

6
− ζ − α2ζ

3
− 2α2ζ2

3
− ζ

2
sni .

It is stable in the linear case sni = 0 if ζ ≤ 1/(
√
2|α|) and the scheme is non-

oscillatory, for arbitrary α, cf. [32].
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2.3.2 The R3B scheme

The coefficients for this scheme read

a±1 =

(
1

12
− ζ

2

)
(1∓ α)− α2ζ

6
∓ α3ζ2

3
− 2α4ζ3

3
,

a0 =
5

6
+ ζ +

α2ζ

3
+

4α4ζ3

3
,

b±2 =
ζ

4
sni , b0 =

5

6
− ζ − α2ζ

3
− 4α4ζ3

3
− 2ζsni ,

b±1 =

(
1

12
∓ ζ

2

)
(1 + α) +

α2ζ

6
∓ α3ζ2

3
+

2α4ζ3

3
−
(
ζ

4
∓ 1

2
µ

)
sni .

It is unconditionally stable and non-oscillatory in the linear case sni = 0, cf. [32].

3. The fixed domain transformation

Compact schemes that many authors applied to the Black-Scholes equation with
transaction costs have one disadvantage: these schemes cannot be generalized to
multi-dimensional problems, and are (directly) applicable to European type options
only. However, with the fixed domain transformation introduced by Ševčovič [3, 33]
we overcome this second shortcoming.
We consider the nonlinear Black-Scholes equation (8) for an American Call op-

tion, i.e. supplied with the terminal condition (2) and boundary conditions (4).
Equation (8) subject to (2), (4) is a backward-in-time parabolic free boundary

problem. To solve this free boundary problem numerically, many different methods
are developed, for instance the standard method consists in the reformulation to
a linear complementary problem (LCP) and solution by a projected SOR method.
Alternatively, penalty and front-fixing methods were developed (e.g. in [18], [28]).
A disadvantage of these methods is the change of the underlying model. A differ-
ent approach [21] is based on a recursive calculation of the early exercise bound-
ary, estimating the boundary by Richardson interpolation. The explicit boundary
tracking algorithms are for example a finite difference bisection scheme [24] or the
front-tracking strategy of Han and Wu [20].
Here we consider the approach of Ševčovič [33] to simplify the numerical solu-

tion of (8), with (2), (4) for American call options and get rid of the (explicit)
appearance of the free boundary. To do this, we need to transform the problem
into a problem posed on a fixed, but unbounded domain additionally to the forward
transformation in time. Then, the domain does not depend on the free boundary
Sf (t) anymore. All we need is to calculate an algebraic constraint equation for the
position of the free boundary. To do so, we make the following substitution:

τ = T − t, x = ln

(
̺(τ)

S

)
⇔ S = e−x̺(τ), ̺(τ) = Sf (T − τ),

such that x ∈ R
+ and τ ∈ [0, T ]. The constructed (synthetic) portfolio will be

Π(x, τ) = V (S, τ)− SVS(S, τ), (14)

made by buying ∆ = VS shares S and selling an option V .
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Differentiating this artificial portfolio Π with respect to x and τ gives us

Πx = VSSx − SxVS − SVSSSx = S2VSS (15)

Πτ = VSSτ + Vttτ − SτVS − S(VSSSτ + VSttτ )

= −Vt −
̺′(τ)

̺(τ)
S2VSS + SVSt

= −Vt −
̺′(τ)

̺(τ)
Πx − S∂S(−Vt).

(16)

Equation (15) will be used e.g. to reformulate the nonlinear volatility correction of
Barles and Soner also in terms of function Π
Substituting (15), (16) into (8) we get

Πτ =
1

2
∂x(σ̃

2Πx) +

(
σ̃2

2
− b(τ)

)
Πx − rΠ, x ∈ R

+, τ ∈ (0, T ), (17)

where the time-dependent coefficient b(τ) reads

b(τ) = ∂τ log(̺(τ)) + r − q. (18)

The initial conditions (2) and boundary conditions (4) after substitution (14) trans-
form to

Π(x, 0) = V (S, T )− SVS(S, T ) =

{
−E for S > E ⇔ x < ln r

q

0 otherwise
(19)

Π(x, τ) = 0 as x → ∞, 0 ≤ τ ≤ T,

Π(0, τ) = −E for 0 ≤ τ ≤ T.
(20)

With the assumption r ≥ q we obtain the constraint equation

̺(τ) =
1

2q
σ̃2Πx(0, τ) +

rE

q
with ̺(0) =

rE

q
, (21)

where 0 ≤ τ ≤ T and the modified volatility function becomes

σ̃2 = σ2
0

(
1 + Ψ[erτa2Πx]

)
. (22)

Our transformed problem (17) subject to (19)–(21) with the volatility function (22)
can be solved by the split-step FDS proposed by Ševčovič [33]. However, we will
propose another scheme recently developed by Liao and Khaliq [27]. After solving
the transformed problem with some suitable method, we calculate the value of the
American call option V (S, t) by transforming (14) back to the original variables.
Since we know that

Π(x, τ)

S2
=

V (S, t)

S2
− VS(S, t)

S
= ∂S

(
−V (S, t)

S

)
,
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we integrate the above equation from S to Sf (t) with the boundary condition
V (Sf (t), t) = Sf (t)− E and we obtain

V (S, T − τ) =
S

̺(τ)


̺(τ)− E +

ln ̺(τ)

S∫

0

exΠ(x, τ)dx


 . (23)

yielding the price of an American call V (S, t) in the presence of transaction costs.

4. The method of Liao and Khaliq

Liao and Khaliq [27] proposed a new efficient fourth-order compact scheme based
on the Padé approximation. The method was applied to the nonlinear Black-Scholes
equation for European options. In this section we will briefly review their work and
show in the following Section 5 how it can be applied to American options.
Let us consider the following one-dimensional time dependent convection-

diffusion equation

ut = βuxx + λux − ru, (24)

where β, λ and r are constants. Instead of solving a single convection-diffusion
equation (24), Liao and Khaliq transform it into a system of two equations. The
following new unknown function v(x, t) = ux(x, t) is introduced, hence we consider

ut = βuxx + λv − ru (25)

vt = βvxx + λuxx − rv. (26)

We state for u(x, t) the initial conditions u(x, 0) = u0(x) and boundary conditions

u(0, t) = b0(t), u(1, t) = b1(t).

For v(x, t) the initial condition is simply the x-derivative of u(x, t): v(x, 0) = u′0(x).
In the sequel we will make frequent use of the standard central difference operator

∆0
hui := ui+1 − ui−1 = 2hD0

hui

and the standard second order difference operator

∆2
hui := ui+1 − 2ui + ui−1 = h2D2

hui

Suppose now the spatial grid is uniform, i.e. N sub-intervals form the interval
[0, 1] and h = 1/N . The second order approximation

v(h, t) =
∂u

∂x
(h, t) ≈ D0

hu(h, t) =
∆0

h

2h
u(h, t).
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can be improved to fourth order if ∆0
h is replaced by ∆0

h/(1 +
1
6∆

2
h)

v(h, t) =
∆0

h

2h(1 + 1
6∆

2
h)u(h, t)

+ O(h4).

Doing so, we obtain a fourth order approximation

v(0, t) =
3

h
(u(2h, t)− u(0, t))− 4v(h, t)− v(2h, t).

Hence, we can approximate the right boundary condition of v at x = 1 as

v(1, t) =
3

h
(u(1− h, t)− u(1− 2h, t))− 4v(1− h, t)− v(1− 2h, t).

Let us consider a more general system

ut = βuxx + f(u, v), (27)

vt = λuxx + βvxx + g(u, v), (28)

where the term λv is included in the general function f(u, v) and there is only one
diffusion term βuxx in (27). The method starts from the Crank-Nicolson scheme

un+1
i − uni

k
=

1

2

(
β

h2
∆2

hu
n+1
i +

β

h2
∆2

hu
n
i + fn+1

i + fn
i

)
, (29)

vn+1
i − vni

k
=

1

2

(
λ

h2
∆2

h[u
n+1
i + uni ] +

β

h2
∆2

h[v
n+1
i + vni ] + gn+1

i + gni

)
, (30)

where

fn+1
i = f(un+1

i , vn+1
i ), fn

i = f(uni , v
n
i ), g

n+1
i = g(un+1

i , vn+1
i ), gni = g(uni , v

n
i ),

We improve this second order approximation to the fourth order by using instead
of the previous approximation the Padé approximation

(uxx)i ≈
∆2

h

h2(1 + 1
12∆

2
h)
. (31)

We apply this Padé approximation in (29)–(30), multiply both sides by 1+ 1
12∆

2
h:

(
1 +

∆2
h

12
− βζ

2
∆2

h

)
un+1
i =

(
1 +

∆2
h

12
− βζ

2
∆2

h

)
uni

+
k

2

(
1 +

∆2
h

12

)
(fn+1

i + fn
i ),

(32)
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(
1 +

∆2
h

12
− βζ

2
∆2

h

)
vn+1
i =

(
1 +

∆2
h

12
− βζ

2
∆2

h

)
vni + λ

ζ

2
∆2

h(u
n+1
i + uni )

+
k

2

(
1 +

∆2
h

12

)
(gn+1

i + gni ),

(33)

with the parabolic mesh ratio ζ = k/h2. The truncation error of (32)–(33) is
C1k

2 +C2k
4 +C3h

4 and since we solely have even powers w.r.t. the time step k, a
Richardson extrapolation technique can improve the approximation to fourth order
in time.
Suppose the solutions of (32) and (33) after l iterations are denoted by un+1(l)

i

and vn+1(l)

i respectively. To get un+1(l+1)

i and vn+1(l+1)

i , we first expand fn+1
i :

f(un+1
i , vn+1

i ) = f(un+1(l)

i , vn+1(l)

i ) +
∂f

∂u
(un+1(l)

i , vn+1(l)

i )(un+1
i − un+1(l)

i ) (34)

and insert it into (32), then solve the following equation for un+1(l+1)

i

(
1 +

1

12
∆2

h −
βζ

2
∆2

h −
k

2
(1 +

1

12
∆2

h)Ĵ
n+1(l)

i

)
un+1(l+1)

i

=

(
1 +

1

12
∆2

h −
βζ

2
∆2

h

)
uni

+
k

2
(1 +

1

12
∆2

h)
(
f(un+1(l)

i , vn+1(l)

i )− Ĵn+1(l)

i un+1(l)

i + f(uni , v
n
i )
)
,

(35)

where Ĵn+1(l)

i = ∂f
∂u

(un+1(l)

i , vn+1(l)

i ). Once we have found un+1(l+1)

i , we expand gn+1
i

g(un+1
i , vn+1

i ) = g(un+1(l+1)

i , vn+1(l)

i ) +
∂g

∂u
(un+1(l+1)

i , vn+1(l)

i )(vn+1
i − vn+1(l)

i ). (36)

Substituting (36) into (34) we get:

(
1 +

1

12
∆2

h −
βζ

2
∆2

h −
k

2
(1 +

1

12
∆2

h)J̃
n+1(l)

i

)
vn+1(l+1)

i

=

(
1 +

1

12
∆2

h −
βζ

2
∆2

h

)
uni

+
k

2
(1 +

1

12
∆2

h)
(
f(un+1(l)

i , vn+1(l)

i )− J̃n+1(l)

i un+1(l)

i + f(uni , v
n
i )
)
,

(37)

where

J̃n+1(l)

i =
∂g

∂v
(un+1(l)

i , vn+1(l)

i ).

We then solve (37) for vn+1(l+1)

i . The two steps are repeated alternatively until
convergence occurs.
Liao and Khaliq [27] made a careful von Neumann stability analysis for their

scheme and proved that this high order compact scheme is unconditionally stable.
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Figure 3. Uniform grid for American options.

5. The Numerical Solution of the American Option problem

In this section we will explain the steps, how to solve the nonlinear Black-Scholes
equation (8) in case of American options.
We confine the unbounded domain x ∈ R

+ and τ ∈ [0, T ] to x ∈ (0, R) with
R > 0 large enough (see [33]). For the calculation Ševčovič chooses to take R = 3,
since this is equivalent to S ∈ (Sf (t)e

−R, Sf (t)) and yields a good approximation
for S ∈ (0, Sf (t)) (as the transformation was S = Sf (t)e

−x). We also take h > 0 as
spatial step size, k > 0 as temporal step size, xi = ih, i ∈ [0, N ], R = Nh, τn = nk,
n ∈ [0,M ], T = Mk, cf. [3] (see Fig. 3).
Our computations rely on the transformation technique of Section 3 and thus we

compute numerically values of the synthetic portfolio Π = Π(x, τ) and use in the
sequel the standard notation Πn

i ≈ Π(xi, τn), b
n
i ≈ b(τn) In all our computations

the nonlinearity is discretized explicitly in the scheme, i.e. now sni denotes the
nonlinear volatility correction of Barles and Soner (6) written in terms of Π:

sni = Ψ
[
erτna2D+

h Π
n
i

]
(38)

We emphasize that another advantage of this synthetic portfolio formulation is
that, compared to (12), we do not need to evaluate here a second derivative, i.e. we
can use a smaller stencil. Now, the synthetic portfolio equation (17) can be written
as a “semi-discretized” equation

Πτ =
1

2
∂x(σ

2
0(1 + sni )Πx) +

(σ2
0

2
(1 + sni )− bn

)
Πx − rΠ, (39)

i.e.

Πτ =
σ2
0

2
(1 + sni )Πxx +

(σ2
0

2
(1 + sni + ∂xs

n
i )− bn

)
Πx − rΠ, (40)

that has the form

Πτ = βΠxx + λΠx − rΠ, (41)

and we will consider FDS for solving (41) with arbitrary parameters β, r > 0 and
λ ∈ R. Especially the scheme of Liao and Khaliq [27] fits to this equation and will
be used.
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We can sketch our procedure for the time advancement as follows:

Πn −→ ̺n −→ bn −→ Πn+1.

Hence, assume Πn is given, we describe in the next part how to determine ̺n and
the coefficient bn.
We consider the free boundary (21) in the point x = 0 and approximate the

derivative in space by forward differences:

̺n =
1

2q
σ2
0

(
1 + sn0

)
D+

h Π
n
0 +

rE

q
with ̺0 =

rE

q
, (42)

where D+
h Π

n
0 = (Πn

1 − Πn
0 )/h is the forward difference quotient in point x = 0.

Clearly, this finite difference approximation is only of first order, but this equation
is just to determine the approximate location of the free boundary. We expect
that our detailed numerical tests in [17] will show that the order of accuracy of
the overall scheme is not reduced. Anyway, the approximation error can easily be
increased by using one-sided finite difference approximations of higher order.
Next, the coefficent bn is readily obtained by discreting (18)

bn =
log ̺n − log ̺n−1

k
+ r − q, n = 2, 3, . . . . (43)

Only, in the first step, to compute b1 we use with very high accuracy an asymptotic
expansion for the free boundary.

Remark 1 For the American Call option (in contrast to the American Put option)
it is possible to derive a series for the location of the optimal exercise boundary
close to expiry using standard asymptotic analysis [38]. This local analysis of the
free boundary Sf (t) yields

Sf (t) ∼ Sf (T )

(
1 + ξ0

√
1

2
σ2(T − t) + . . .

)
, as t → T, (44)

where ξ0 = 0.9034 . . . is a universal constant of Call option pricing. Equation (44)
can be rewritten as

̺(τ) ∼ ̺(0)

(
1 + ξ0

√
1

2
σ2(τ) + . . .

)
, as τ → 0. (45)

With only very few terms we get a fairly accurate result for the free boundary
and thus equation (45) will serve us as a check for the case of a constant volatility
σ̃2 = σ2 (see Fig. 4). Note that this result is especially useful in the first time levels
of a numerical calculation where rapid changes in ̺(τ) influence the whole solution
region.

Figure 4 shows the difference between the free boundary and the asymptotic free
boundary taken with exercise date T = 1 year, exercise price E = 10 and dividend
yield q = 0.05.
Finally we can compute the solution πn+1 on the next time level by solving the

semi discretized equation (41) subject to the initial conditions (19) and boundary
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Figure 4. The free boundary (solid) and the asymptotic free boundary
(dashed) for nonlinear Black-Scholes equation (8) with a nonlinear volatil-
ity (6) with T = 1, E = 10, σ0 = 0.2, r = 0.1, q = 0.05, a = 0.02, h = 0.1,
k = 0.1

conditions (20):

Π0
i = Π(xi, 0) =

{
−E for xi < ln ̺(0)

E
= ln r

q

0 otherwise
,

Πn
0 = −E,

Πn
N = 0.

(46)

Sometimes high order methods need more (numerical) boundary conditions to close
the system of equations. In these cases on uses high order extrapolation techniques,
cf. [19] for the necessary order of accuracy.
Recall that at each time level n, we can calculate V (Si, tn) = V (e−xi̺n, T − τn)

with these values and proceed to the next time level n+1. From (23) we then know
that:

V (Si, tn) = e−xi
(
̺n − E + Ii

)
, (47)

where

Ii =
i−1∑

j=0

Ik +
∫ xi

xi−1

exΠ(x, τ)dx

=
i−1∑

j=0

Ik +
xi − xi−1

2

(
exi−1Πn

i−1 + exiΠn
i

)
.

Here, we use the trapezoidal rule in order to approximate the integral (23).
Figure 5 shows the computed value V (S, 0) of an American Call option deter-

mined from the nonlinear Black-Scholes equation (8) using the discretization steps
h = 0.1, k = 0.1 and the parameters: exercise date T = 1 year, exercise price
E = 10 and dividend yield q = 0.05. with T = 1, E = 10, σ0 = 0.2, r = 0.1,
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Figure 5. Price of the American Call option V (S, 0) in the presence of trans-
action costs (in case of nonlinear Black-Scholes equation).

q = 0.05, a = 0.02.

5.1 The algorithm description

The calculations of the price V (S, t) for American options in the presence of trans-
action costs lead us to the following algorithm.

Algorithm 1 Computation of the price V (S, t) for the American option.
Input parameters: σ, r, q, E, a, R, T , h, k, M , N , γ, α, β

(1) Use formula (22) for the Barles and Soner volatility model (6) and interpo-
late the solutions

(2) initialize Π0, ̺0, V (S, T )
(3) calculate Πn+1 for each time level iteratively

a) calculate from (38) the volatility correction sni for the time step τn
using results from the previous time step

b) calculate the free boundary ̺n for the time step τn using (42)
c) calculate the coefficient bn from (43)
d) calculate the solution Πn+1 using an FDS for solving (41), e.g. method

of Liao and Khaliq [27]
(4) transform Π into V
(5) plot V for each time level and each stock price

Conclusions and Future Work

In this work we considered the numerical solution of nonlinear Black-Scholes equa-
tions in the presence of transaction costs in case of American options.
While we focused in this paper on standard options (known as plain–vanilla

options) of American type, our future work will deal with extensions: forward and
future contracts, options on futures, more general pay–off functions (e.g. ‘cash–or–
nothing call’) with transaction costs and instalment options.
We presented several high-order compact schemes and discussed how to increase

the order of accuracy to be fourth order both in time and space. It turned out in
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our preliminary tests that the method of Liao and Khaliq [27] performs better than
other methods described in Section 2.2.
We showed that the compact methods can be used very efficiently to price Amer-

ican options using the fixed domain transformation technique of Ševčovič [34].
In a second follow-up paper [17] we will present concisely the numerical results

of our comparison study including details about the obtained rates of convergence.
Our future research will be directed towards the implementation of (discrete) artifi-
cial boundary conditions, cf. [16, 37], since (17) is posed on an unbounded domain.
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[14] B. Düring, Black-Scholes Type Equations: Mathematical Analysis, Parameter Identification and Nu-
merical Solution, Dissertation, Universität Mainz, Germany, 2005.
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