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Abstract

Modeling electric circuits that contain magnetoquasistatic (MQS) devices
leads to a coupled system of differential-algebraic equations (DAEs). In our
case, the MQS device is described by the eddy current problem already dis-
cretized in space (via edge-elements, e.g. the Finite Integration Technique).
This yields a DAE with a properly stated leading term, which has to be
solved in time domain. We are interested in structural properties of this
system, which are important for numerical integration. Applying a standard
projection technique, we are able to deduce topological conditions such that
the tractability index of the coupled problem does not exceed two. Although
index-2, we can conclude that the numerical difficulties for this problem are
not severe due to linear dependence on index-2 variables.

Keywords: modified nodal analysis, differential-algebraic equations,
tractability index, electromagnetic devices, Maxwell’s Equations, Finite
Integration Technique, consistent initialization

1. Introduction

Usually in a TCAD environment, electric circuits are simulated as net-
works of basic elements. In this context, devices such as complex semiconduc-
tors or even conductors and their interactions are described by corresponding
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subcircuits. That is, these devices are modeled via equivalent circuits con-
taining only basic elements. Most often, the set-up of equations uses modified
nodal analysis (MNA), which we also employ. Today, chip technology devel-
ops rapidly and the complexity of the above mentioned devices grows fast and
plays a vital role in circuit design. This has two consequences. On the one
hand, the corresponding equivalent circuits have become more and more com-
plex and they contain already hundreds of parameters, most of them without
a direct physical interpretation. On the other hand, the device simulation of
spatially resolved (complex) models is influenced by secondary effects, such
as the surrounding circuitry, which cannot any longer be neglected. This
has motivated the idea of using distributed device models, represented by a
system of partial differential equations (PDEs), to describe the behavior of
the devices in the circuit. The resulting mathematical model couples DAEs
describing the circuit and PDEs modeling the devices. Thus it gives a set of
partial differential-algebraic equations (PDAE).

To numerically simulate electrical circuits described by such a model, we
first discretize the PDEs in space (method of lines). This results in a coupled
system of DAE to be solved in simulation.

A DAE is generally characterized by its index, which roughly measures
the equation’s sensitivity w.r.t. perturbations of the input and thus it re-
veals the expected numerical difficulties in simulation. Due to various facts
and view point, there exist several index definitions, which all generalize the
Kronecker index [9]. In this paper, we use as index framework the projector-
based tractability index [8, 14]. This is due to the detailed view it reveals on
the structure of the equations. We recall that for a large class of electric cir-
cuits described by equations from MNA, the tractability index is exclusively
determined by the circuit’s topology (e.g. [7]).

For electric circuits of basic elements refined by distributed elements,
there exist already a couple of index results. For circuits containing semi-
conductor devices which are modeled by the drift-diffusion equation, it was
shown in [2, 18, 20] that we can extend the topological index criteria of
circuits containing just the basic elements.

We investigate electric circuits refined by spatially resolved MQS devices.
The structural properties of the corresponding MQS field system, the so-
called eddy current problem, were studied first in [21]. There a Kronecker-
index analysis is given for the linear 2D problem in the magnetic vector
potential formulation. In [17], the differential-index was used to obtain more
general results for the linear 3D-case, where a gauging becomes necessary to
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obtain a uniquely solvable formulation. For electric circuits containing MQS
devices a topological circuit-condition was shown to be sufficient to yield an
overall problem of index-1.

Here, we extend the index analysis of the coupled field/circuit problem
to a more general nonlinear setting and to the case of higher index. The
topological conditions for index-1 and index-2 can be shown to be necessary.

This paper is organized as follows. In the next section, we first introduce
the models for the electric circuits containing basic network elements and the
distributed, but spatially discretized, MQS device models. Then we establish
the coupling and state the coupled problem as a DAE. Section 3 contains the
main part, which is devoted to the index analysis of the deduced DAE. At
the begin of this section, we roughly recall the basics of the tractability index
concept. Then we investigate the structural properties of the electrical circuit
including MQS devices modeled by DAEs after the space discretization of
the distributed devices. This section is concluded by a brief investigation
of the consistent initialization for that system. Here we exploit the special
structure. Eventually, we give a short numerical illustration on the simplest
example and finish with conclusions.

2. Modeling

2.1. Electric Network Model

Let us consider an electric network consisting of capacitors, inductors,
resistors, voltage and current sources with related incidence matrices (re-
duced): AC, AR, AL, AV and AI, which state the node-branch relation for
each element type for the underlying digraph:

(A⋆)ij =





1, if branch j leaves node i

−1, if branch j enters node i

0, if branch j is not incident with node i.

In fact, the rows of A⋆ refer to the network nodes. As usual, one node is
identified as mass node. The corresponding row is skipped in A⋆.

The MNA leads to equations of the form (see e.g. [7])

AC

d

dt
qC(A⊤

Ce, t) + ARgR(A⊤

Re, t) + ALjL + AVjV + AIis(t) = 0, (1a)
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d

dt
ΦL(jL, t) − A⊤

Le = 0, (1b)

A⊤

Ve − vs(t) = 0 (1c)

with time t ∈ I, I = [t0, T ]. The given functions qC(v, t), gR(v, t), ΦL(j, t),
vs(t) and is(t) describe the constitutive relations for the circuit elements
(for charge, resistance, flux, voltage source and current source, respectively).
The unknowns are the node potentials e : I → Rn, except of the mass node,
as well as the currents jL : I → RnL through inductors and the currents
jV : I → RnV through voltage sources (for nL inductors and nV voltage
sources). The potential at the mass node is assigned to zero. Thus (1a)
states the current balance at each network node, and (1b) and (1c) state
the constitutive relations for inductances and voltage sources, respectively.
Detail can be found in e.g. [20, 7].

For a mathematically consistent description, we need:

Assumption 2.1 (Soundness of circuits). The circuit shall be connected and
contains neither loops of voltage sources only nor cutsets of current sources
only.

If Ass. 2.1 is violated, the circuit equations (plus initial conditions) would
have either no solution of infinite many solutions due to Kirchhoff’s laws.

Assumption 2.2 (Local Passivity). The functions qC (v, t) , ΦL (j, t) and
gR (v, t) are continuous differentiable with positive definite Jacobians:

C (v, t) :=
∂qC (v, t)

∂v
, L (j, t) :=

∂Φ (j, t)

∂j
, G (v, t) :=

∂gR (v, t)

∂v
.

Next, we add the electromagnetic field-elements to our system. That is,
we enlarge our list of basic elements. This gives an extended circuit. In the
MNA framework, we simply add the unknown current jM ∈ RnM through the
field element (more precisely MQS device) to the current balance equation
(1a) using the corresponding incidence matrix AM. Then (1a) reads

AC

d

dt
qC(A⊤

Ce, t) + ARgR(A⊤

Re, t) + ALjL + AVjV + AIis(t) + AMjM = 0. (2)

To obtain a uniquely solvable system we need further equations for the MQS
device which describe the unknown currents jM in terms of the other vari-
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ables. This will involve the applied potentials A⊤

Me. Before we discuss this,
we now restate Ass. 2.1 in terms of graph theory for our extended circuit:

Assumption 2.3 (Soundness of extended circuit I). The circuit shall be
connected and the matrices

AV and [AC AR AL AV AM]⊤

have full column rank, i.e., it exists neither a loop containing only voltage
sources nor a cutset containing only current sources.

Remark 2.4 (Incidence Matrices). Recall, an incidence matrix (of a sub-
graph) has full column rank if there exists no loop; let [A1, A2] denote the
incidence matrix of a connected graph, A⊤

1 has full column rank iff there ex-
ists a spanning tree of elements from A1; moreover, A⊤

2 has full column rank
iff the graph contains no cutset of elements from A1.

Later on, we need also:

Assumption 2.5 (Soundness of extended circuit II). The circuit shall be
connected and the matrices

AV and [AC AR AL AV]⊤

have full column rank, i.e., it exists neither a loop containing only voltage
sources nor a cutset containing only current sources and MQS devices.

Furthermore, in stating the model as we do, we implicitly assume inde-
pendent voltage and current sources only. Our results can be extended to
broad class of controlled sources [7].

2.2. MQS Device Models

Next, we derive the MQS device model from Maxwell’s space-discrete
equations on a staggered grid. They can be obtained from any spatial dis-
cretization of Maxwell’s Equations, here we use the notation of the Finite
Integration Technique, [22]

C⌢e = −
d

dt

⌢⌢

b , C̃
⌢

h =
d

dt

⌢⌢

d +
⌢⌢

j , S̃
⌢⌢

d = q , S
⌢⌢

b = 0 , (3)

with discrete curl operators C and C̃, divergence operators S and S̃ (on the
staggered grids). The variables are line-integrals of electric and magnetic
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field strength ⌢e and
⌢

h (edges of the cells) and surface integrals of source

current density, discrete magnetic flux density and displacement field
⌢⌢

j ,
⌢⌢

b

and
⌢⌢

d. The Maxwell’s Equations are closed with the constitutive material
relations:

⌢⌢

b = Mµ

⌢

h ,
⌢⌢

d = Mε
⌢e ,

⌢⌢

j = Mσ
⌢e , (4)

where matrices Mµ, Mε and Mσ represent the permeabilities, permittivities
and conductivities.

For low frequencies (“eddy current problem”) the displacement current
density can be negleced, when compared with the current density:

max |
d

dt

⌢⌢

d| ≪ max |
⌢⌢

j |

Furthermore, we can reformulate the problem in terms of the magnetic vector
potential ⌢a : I → RnM (where nM denotes the number of edges) with

⌢e = −
d

dt
⌢a + S̃⊤Φ and

⌢⌢

b = C⌢a (5)

with electric scalar potential Φ. Starting from Ampère’s law (second equa-
tion of (3)) neglecting the displacement current density, inserting material
relations and using ⌢a, this yields the following first-order DAE (“curl-curl
equation”):

M
d

dt
⌢a + K⌢a = MS̃⊤Φ , (6)

where M := Mσ and K := C̃M−1
µ C. The conductivity matrix is assumed

constant in time but the matrix M−1
µ may depend nonlinearly on the flux

⌢⌢

b due to ferromagnetic saturation; this gives K = K(⌢a) = C̃M−1
µ (C⌢a)C.

The matrices M and K(⌢a) are only (symmetric) positive semi-definite with
a common kernel, where the singularity of M is due to non-conducting areas,
while K is singular due to the nontrivial kernel of the curl operator. Using a
gauging, the common kernel can be removed, [12]. As boundary conditions
we assume that the tangential component of the vector potential ⌢a vanishes
at the boundary of the domain.
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contact at
the boundary

edges
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contact at
the boundary

Figure 1: Coupling as given as in [5] (for a Cartesian grid).

MQS-device and Coupling

The coupling of the MQS device to the circuit is established by subdo-
mains ΩM ⊂ Ω which identify the areas, where an electric current is imposed
by the coupled circuit. In this subdomain the electric scalar potential Φ is
related to the circuit voltage drop vM = A⊤

Me and the current density
⌢⌢

j is
related to the branch current jM of the electric circuit.

Let us consider a single solid conductor (see Fig. 1) with two perfect
conducting contacts. The 0D-voltage drops must be distributed onto the
3D-grid; this defines an applied electric field on the edges. Since we are only
interested in the line integrals of this field, let γ ∈ {−1, 0, 1}nM be a path
from one contact to the other (within ΩM). Due to the linearity of Ohm’s law
(equation three in (4)), it is sufficient to consider an applied voltage vM = 1V
and define a corresponding distribution matrix X ∈ RnM , such that X⊤γ = 1.
A computational beneficial choice [5] is to impose the voltages only onto the
edges crossing a reference plane (see Fig. 1) this yields a sparse coupling
matrix (here given for the Cartesian case with aliged reference plane):

(X)i =

{
±1 if edge i crosses the reference plane,

0 else,

where the sign depends on the directions of the edges. By linearity, the
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distribution matrix X allows us to apply an arbitrary voltage excitation by
multiplication

S̃⊤Φ = XvM (7)

inserted into (6), which results in (vM = A⊤

Me)

M
d

dt
⌢a + K(⌢a)⌢a = MXA⊤

Me. (8)

The total current through the conductor is given by integrating over the
reference cross section. We find by using Ohm’s Law

jM = X⊤
⌢⌢

j = X⊤M⌢e = X⊤MXvM − X⊤M
d

dt
⌢a

or equivalently (using the curl-curl equation (8))

jM = X⊤K(⌢a)⌢a . (9)

We denote the derivative of the curl-curl term w.r.t. ⌢a by

d

d⌢a

(
K(⌢a)⌢a

)
=

d

d⌢a
k(⌢a) = k′

a(
⌢a),

(differential reluctivity matrix, [4]) with Kerk′

a(
⌢a) = KerK(⌢a).

Assumption 2.6 (Gauging/Structure). For the model we have:

(a) The matrix pencil [M,k′

a] is positive definite, i.e., c⊤ (αM + k′

a) c >

0 for all c 6= 0 and α 6= 0.

(b) Without loss of generality, we assume that

M =

[
D 0
0 0

]
,

where D is a positive definite, diagonal matrix.

(c) For the coupling term we assume: ImX ⊂ ImM.

Notice, that Ass. 2.6 (a) can be achieved by gauging, see [3]. Property (b)
can be always achieved by a transformation, since M is symmetric positive
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semi-definite. Additionally, we note that by this assumption, we always have
included non-conducting regions. Ass. 2.6 (c) states that coupling is only
allowed at conductive parts, such that the coupling (7) makes sense.

Remark 2.7. Special choices of the conductivity matrix M yield certain
conductor models (e.g stranded or foil conductor). Still, using algebraic
manipulations, the coupling can be brought into the structure of (8) and (9),
[17].

2.3. Coupled Problem

Assembling the equations of the MNA (2), (1b), (1c) for the extended
circuit and the space discrete Maxwell equations (8), we can formulate the
field/circuit coupled system

AC

d

dt
qC(A⊤

Ce, t) + ARgR(A⊤

Re, t) + ALjL + AVjV + AIis(t)

+X⊤K(⌢a)⌢a = 0,

d

dt
ΦL(jL, t) − A⊤

Le = 0,

A⊤

Ve − vs(t) = 0,

M
d

dt
⌢a + K(⌢a)⌢a − MXA⊤

Me = 0,

(10)

where the MQS-current (9) is already inserted into the current balance (2).
The unknows of (10) are e, jL, jV, ⌢a for which we will derive the structural
analysis in the following.

3. Index Analysis

The tractability index is a projector-based approach. It provides an in-
dex characterization in terms of the original problem’s unknowns, leads to
a precise solution description and requires low smoothness of the involved
functions [8, 14]. First, we summarize the key ingredients, then we apply the
index concept to our coupled problem.

3.1. Tractability Index

We investigate the DAE

A
d

dt
d (x, t) + b (x, t) = 0 (11)
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with coefficient functions A ∈ Rm×n, d (x, t) ∈ Rn and b (x, t) ∈ Rm that are
continuous in their arguments and are smooth. The unknown solution is,
x = x(t) ∈ D ⊂ Rm, t ∈ I ⊂ R.

Now recall, a projector Q : Rm → Rm is an operator such that Q2 = Q.
For our later investigations we deal with a smaller class of DAEs with a
so-called properly stated leading term.

Definition 3.1 ([14]). The DAE (11) has a properly stated leading term if

Ker A ⊕ Im d′

x (x, t) = R
n for all x ∈ D, t ∈ I,

and if there is a representing projector R ∈ C1 (I, Rn), Ker A = Ker R (t),
Im d′

x (x, t) = Im R (t) and d (x, t) = R (t) d (x, t) for all x ∈ D and t ∈ I.

For the index definition, we need

Definition 3.2 (Matrix Chain and Subspaces). Given the DAE (11), we
define recursively the following objects:

G0 (x, t) := Ad′

x (x, t) ,

N0 (x, t) := Ker G0 (x, t) ,

P0 (x, t) := I − Q0 (x, t) , Q0 (x, t) projector onto N0 (x, t) ,

S0 (x, t) := {z ∈ R
m | b′x (x, t) z ∈ Im G0 (x, t)} ,

G1 (x, t) := G0 (x, t) + b′x (x, t) Q0 (x, t) ,

N1 (x, t) := Ker G1 (x, t)

S1 (x, t) := {z ∈ R
m | b′x (x, t) P0 (x, t) z ∈ Im G1 (x, t)} .

Definition 3.3 ([14]). The DAE (11) with a properly stated leading term is
called DAE of (tractability) index-0 if

N0 (x, t) = {0} for all x ∈ D, t ∈ I

or otherwise it is of index-1 if

(N0 ∩ S0) (x, t) = {0} for all x ∈ D, t ∈ I

or it is of index-2 if

(N0 ∩ S0) (x, t) = constant and (N1 ∩ S1) (x, t) = {0} for all x ∈ D, t ∈ I.
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Solving a DAE with a properly stated leading term is advantageous es-
pecially in index-1 and index-2 cases:

Remark 3.4. Often DAEs are not given with a properly stated leading
term, and not all DAEs can be formulated as such. If possible, it is worth to
formulate the properly stated leading term, because

• the leading term d (x, t) figures out precisely which derivatives are ac-
tually involved and

• for a large class of index-1 and index-2 DAEs it can be shown that BDF
and Runge-Kutta methods are stability preserving [10, 11].

For electric circuits we refer to some standard results:

Remark 3.5. For the MNA (and nodal analysis) with merely basic elements
the index does not exceed two, under the strictly passivity assumption [7].
More precisely, the MNA equations are of index-2 iff there are LI-cutsets or
CV-loops.

Rewriting the coupled problem (10) in the abstract form of (11) with properly
stated leading term gives




AC 0 0
0 I 0
0 0 0
0 0 M




d

dt




A+
CACqC (·)
ΦL (·)

M+M⌢a




+




ARgR (·) + ALjL + AVjV + AMX⊤K(·)⌢a

−A⊤

L e

A⊤

Ve

K(·)⌢a − MXA⊤

Me


 = f (·)

(12)

with time dependent function f and unknown x = [e, jL, jV, ⌢a]. Now, let QM

be a constant projector onto KerM, such that QM = Q⊤

M , which is always
possible. Then for PM = I − QM holds PM = M+M, where ’+’ indicates
the (Moore-Penrose) pseudo-inverse. In fact, the DAE (12) has a properly
stated leading term with representing projector

R =




A+
CAC 0 0
0 I 0
0 0 M+M


 .
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Lemma 3.6. From Ass. 2.6 follows (QM constant projector onto KerM)

Ker
(
M + Q⊤

Mk′

a(·)QM

)
= {0}.

Notice, although Q⊤

M = QM , we use still the transposed of QM to keep
the underlying physical meaning visible.

3.2. Index Investigation

For an index-0 result we need to inspect

G0 (x, t) = Ad′

x (x, t) =




ACC (·) A⊤

C 0 0 0
0 L (·) 0 0
0 0 0 0
0 0 0 M


 . (13)

Theorem 3.7 (Index-0). Let Ass. 2.2 and 2.6 be fulfilled. Additionally,
either Ass. 2.3 or Ass. 2.5 shall be fulfilled. Then the DAE (12) has index-
0 iff there exists no MQS device, no voltage sources and a tree containing
capacitors only.

Proof. We have to check that G0 (x, t) is nonsingular. Since C (·) and L (·)
are positive definite the matrix G0 (x, t) is nonsingular iff the zero rows and
columns disappear and Ker A⊤

C = {0}. The null space of Ker A⊤

C is trivial iff
the circuit has a tree containing capacitors only, see Remark 2.4. The block
zero row and column disappears iff there exist no voltage sources. Lastly,
KerM = {0} iff there exists no MQS devices.

Remark 3.8. Certainly, Theorem 3.7 can be extended to include MQS de-
vices that consist of conducting materials only, i.e, KerM = {0}. This
particular case will not be discussed further on.

For the next step we need

Q0 =




QC 0 0 0
0 0 0 0
0 0 I 0
0 0 0 QM


, b′x (x, t) =




ARG (·) A⊤

R AL AV AMX⊤k′

a(·)
−A⊤

L 0 0 0
A⊤

V 0 0 0
−MXA⊤

M 0 0 k′

a(·)


,
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and

b′x (x, t) Q0 =




ARG (·) A⊤

RQC 0 AV AMX⊤k′

a(·)QM

−A⊤

L QC 0 0 0
A⊤

VQC 0 0 0
−MXA⊤

MQC 0 0 k′

a(·)QM


 ,

where Q0 and QC are constant projectors onto KerG0 (x, t) and Ker A⊤

C,
respectively.

Theorem 3.9 (Index-1). Ass. 2.2, 2.6 as well as either Ass. 2.3 or 2.5
hold true and there exists at least one MQS device, voltage source or no tree
containing capacitors only. The DAE (12) has index-1 iff there exist neither
LIM-cutset nor a CV -loop with at least one voltage source.

Proof. We need to compute (N0 ∩ S0) (x, t). By definition, we have

(N0 ∩ S0) (x, t) = Ker G0 (x, t) ∩ Ker (W0b
′

x) (x, t) .

Let, as usual, W0 (x, t) be a projector along ImG0 (x, t); hence W⊤

0 (x, t) is a
projector onto KerG⊤

0 (x, t). It holds true that Ker G⊤

0 (x, t) = Ker G0 (x, t),
i.e., we can choose W⊤

0 (x, t) = Q0. Hence

(N0 ∩ S0) (x, t) = Im Q0 ∩ Ker W0b
′

x (x, t) Q0.

We compute:

W0b
′

x (x, t) Q0 =




Q⊤

CARG (·) A⊤

RQC 0 Q⊤

CAV Q⊤

CAMX⊤k′

a(·)QM

0 0 0 0
A⊤

VQC 0 0 0
0 0 0 Q⊤

Mk′

a(·)QM


 .

Let z ∈ (N0 ∩ S0) (x, t), then Q0z = z and W0b
′

x (x, t) Q0z = 0. From this,
we obtain for z = [z1 z2 z3 z4]

QCz1 = z1, (14)

QMz4 = z4, (15)

z2 = 0, (16)

Q⊤

CARG (·) A⊤

RQCz1 + Q⊤

CAVz3 + Q⊤

CAMX⊤k′

a(·)QMz4 = 0, (17)
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A⊤

VQCz1 = 0, (18)

Q⊤

Mk′

a(·)QMz4 = 0. (19)

From Q⊤

MM = 0 and (19) it follows immediately that

Q⊤

M

(
M + k′

a(·)
)
QMz4 = 0,

where M + k′

a(·) is positive definite by Ass. 2.6 and thus we archive z4 = 0
using (15). Thus, from (14-19) we can conclude

Q⊤

CARG (·) A⊤

RQCz1 + Q⊤

CAVz3 = 0, (20)

A⊤

VQCz1 = 0, (21)

QCz1 = z1 (22)

z2 = 0, z4 = 0. (23)

Left-multiplying (20) by z⊤1 and using (21), we conclude that z1 ∈ Ker A⊤

RQC

and thus Q⊤

CAVz3 = 0. Now, using (22) we have both

z1 ∈ Ker [AC AR AV]⊤ and Q⊤

CAVz3 = 0 .

Then (N0 ∩ S0) (x, t) = {0} holds iff there exist neither a LIM -cutset nor
a CV -loop with at least one voltage source. In a nutshell we have shown
z = 0.

We introduce the constant projector QCRV onto Ker [AC AR AV]⊤ with
QCRV = QCQ⊤

C−V SQR−CV where QC−V and QR−CV a constant projector
onto Ker Q⊤

CAV and Ker A⊤

RQCQ⊤

C−V , respectively, see [7]. With these new
projectors we directly obtain:

Lemma 3.10. The intersection (N0 ∩ S0) (x, t) can be described by

(N0 ∩ S0) (x, t) = {z ∈ R
n | z1 ∈ Im QCRV , z3 ∈ Im QC−V , [z2 z4] = 0} . (24)

Thus, the dimension of (N0 ∩ S0) (x, t) is constant.

Notice, the constant dimension is important for the index-2 case. Now,
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we can compute G1 (x, t) = G0 (x, t) + b′x (x, t) Q0 from the matrix chain:

G1 (x, t) =




ACC (·) A⊤

C + ARG (·) A⊤

RQC 0 AV AMX⊤k′

a(·)QM

−A⊤

L QC L (·) 0 0
A⊤

VQC 0 0 0
−MXA⊤

MQC 0 0 M + k′

a(·)QM


 .

Assumption 3.11 (Consistent Excitation). The excitation is consistent, i.e.,
it holds KerX = Ker (k′

aX) = {0}, [17], and

X⊤Hk (·)X is positive definite

with Hk (·) = k′

a(·)
(
k′

a(·)
+ −

(
Q⊤

Mk′

a(·)QM

)+
)

k′

a(·).

Remark 3.12. Ass. 3.11 is trivially fulfilled for 2D models, because the
discrete curl operator is a regular matrix. It follows immediately the positive
definiteness of the curl-curl matrix Kerk′

a(·) = {0} and thus Hk (·) is positive
definite (the subtrahend is a generalized Schur Complement).

Theorem 3.13 (Index-2). The Assumptions 2.2, 2.6 and either

i) Assumptions 2.3 and 3.11 or

ii) Assumption 2.5

hold true and there exists at least one MQS device, voltage source or no
tree containing capacitors only. The DAE (12) has index-2 iff there exist a
LIM-cutset or a CV-loop with at least one voltage source.

Proof. We show that (N1 ∩ S1) (x, t) is trivial. To this end, we inspect

S̃1 (x, t) = {z ∈ R
n | b′x (x, t) P0z ∈ Im G1 (x, t)}

= {z ∈ R
n |W1 (x, t) b′x (x, t) P0z = 0}

where W1 (x, t) is a projector with (W1G1) (x, t) = 0. We will show that(
N1 ∩ S̃1

)
(x, t) is trivial; since S1 (x, t) ⊂ S̃1 (x, t) holds, we obtain the

desired result. We can choose W1 (x, t) as

W1 (x, t) =




Q⊤

CRV 0 0 −Q⊤

CRV AMX⊤k′

a(·)
(
Q⊤

Mk′

a(·)QM

)+

0 0 0 0
0 0 Q⊤

C−V 0
0 0 0 0



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where
(
Q⊤

Mk′

a(·)QM

)+
= QM

(
Q⊤

Mk′

a(·)QM

)+
Q⊤

M . Then we compute

W1 (x, t) b′x (x, t) P0 =




0 Q⊤

CRV AL 0 Q⊤

CRV AMX⊤Hk (·) PM

0 0 0 0
Q⊤

C−V A⊤

VPC 0 0 0
0 0 0 0


 ,

where we employ Hk (·) = k′

a(·)
(
k′

a(·)
+ −

(
Q⊤

Mk′

a(·)QM

)+
)

k′

a(·). From

(W1b
′

x) (x, t) P0z = 0 follows

Q⊤

CRV ALz2 + Q⊤

CRV AMX⊤T (·) PMz4 = 0, (25)

Q⊤

C−V A⊤

VPCz1 = 0, (26)

and G1 (x, t) z = 0 gives

(
ACC (·) A⊤

C + ARG (·) A⊤

RQC

)
z1 + AVz3 + AMX⊤k′

a(·)QMz4 = 0, (27)

z2 − L−1 (·) A⊤

L QCz1 = 0, (28)

A⊤

VQCz1 = 0 (29)

−MXA⊤

MQCz1 + (M + k′

a(·)QM) z4 = 0. (30)

Left-multiplying (30) by (QMz4)
⊤ we obtain

QMz4 = 0, that is, z4 = PMz4, (31)

because M + k′

a(·) is positive definite by Ass. 2.6.
From (30) with PM = M+M and z4 = PMz4, we can conclude that

z4 = XA⊤

MQCz1 (32)

since it holds X = PMX using Ass. 2.6 (c). Multiplying (27) from left by
(QCz1)

⊤, using both (29) and (31), we obtain

QCz1 ∈ Ker A⊤

R. (33)

Putting (28),(33) and the definition of QC together, we have

QCz1 ∈ Ker [AC AR AV]⊤ = Im QCRV

17



that is, QCz1 = QCRV QCz1. Inserting (28) and (32) into (25) gives

Q⊤

CRV ALL−1 (·) A⊤

L QCz1 + Q⊤

CRV AMX⊤Hk (·)XA⊤

MQCz1 = 0

where

i) X⊤Hk (·)X is positive definite due to Ass. 3.11. Therefore it follows
that A⊤

L QCz1 = 0 and A⊤

MQCz1 = 0 (using QCz1 = QCRV QCz1). Hence
QCz1 ∈ Ker [AC AR AL AV AM]⊤, which is trivial due to Ass. 2.3.

ii) Hk (·) is positive semidefinite since it consists of the Schur comple-
ment of the positive semidefinite k′

a(·) and therefore it follows that
0 = A⊤

L QCz1. Hence QCz1 ∈ Ker [AC AR AL AV]⊤, which is trivial due
to Ass. 2.5.

Thus in both cases we find QCz1 = 0, in other words, PCz1 = z1. From (28)
we deduce z2 = 0. Using this, (27) can be written as

HC (·) PCz1 = −AVz3,

where HC (·) = ACC (·) A⊤

C + Q⊤

CQC is positive definite. Thus

z1 = −HC (·)−1
AVz3.

Multiplying (27) from left by Q⊤

C leads to z3 ∈ Im QC−V . Together with (26)
and z3 ∈ Im QC−V this gives

Q⊤

C−V A⊤

VHC (·)−1
AVQC−V z3 = 0.

Hence we can conclude AVz3 = 0 and from this we have z3 = 0, since AV

has full column rank. Consequently from HC (·) z1 = 0 follows z1 = 0. Hence(
N1 ∩ S̃1

)
(x, t) and (N1 ∩ S1) (x, t) is trivial iff there exist a LIM -cutset or

a CV -loop with at least one voltage source.

Remark 3.14. The index-2 variables are those components that depend on
first derivatives of the input functions. They can be described by Tx, [6],
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where T is a constant projector onto (N0 ∩ S0) (x, t) with

T =




QCRV 0 0 0
0 0 0 0
0 0 QC−V 0
0 0 0 0


 .

Then we can write b (x, t) = b (Ux, t) + BTx and d (x, t) = d (Ux, t) with
U = I − T . Thus index-2 variables enter our system linearly.
Using perturbation-index analysis, it has been shown for index-2 Hessenberg
systems with linear index-2 variables, [1], and for index-2 circuits, [19], that
the numerical difficulties in time-integration are moderate, because the dif-
ferential (index-0) variables are not affected by derivatives of the numerical
perturbations.

Remark 3.15. Notice that the introduction of jM as an additional unknown
of our coupled problem (cf. Section 2.3) would not change our index results.

4. Consistent Initialization

To solve a DAE numerically, it is important to start at least from an
consistent initial value [9]:

Definition 4.1. a) A vector x0 ∈ Rm is a consistent initial value of the
DAE (11) if there exists a solution of (11) that fulfils x0 = x (t0), t0 ∈ I.

b) A tuple (x0, y0) ∈ Rm+n is an operating point of the DAE (11) if
Ay0 + b (x0, t0) = 0 is fulfilled, t0 ∈ I.

c) A tuple (x0, y0) ∈ Rm+n is a consistent initialization of the DAE (11)
if x0 is a consistent value of (11) and (x0, y0) is an operating point.

Firstly, we focus on the index-1 case, which can be handled very generally.

Theorem 4.2. Let the DAE (11) have a properly stated leading term with
representing projector R and let it have index-1. Then for any t0 ∈ I and
x0 ∈ Rm (starting value), the following system

Ay0 + b (x0, t0) = 0

(I − R (t0)) y0 + Rd (x0, t0) − Rd
(
x0, t0

)
= 0
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is locally uniquely solvable for (x0, y0) ∈ Rm+n, which provides a consistent
initialization.

For a proof see e.g. [15]. The starting value x0 can be chosen arbitrarily.
In the case of an index-2 DAE, the calculation of an consistent initialization
becomes more complicated. At least for DAEs with linear index-2 compo-
nents we can obtain a consistent value after one (implicit) Euler integration
step starting from an operation point [6] (after the first step at the next time
level). Recalling Remark 3.14, this hold in our case for (24).

5. Numerical Example

Here, we will prove the numerical importance of the index results, by
discussing two simple examples that illustrate the different behavior of the
index-1 and index-2 cases. The most simple problems are the following:
Fig. 2,

(a) a circuit with no devices but a voltage source and a one-port MQS de-
vice (AV = [1] and AM = [−1]) states an index-1 problem (see Fig. 2a),

(b) a circuit with no devices but a current source and a one-port MQS de-
vice (AI = [1] and AM = [−1]) states an index-2 problem (see Fig. 2b).

The tractability indeces of those particular problems agree with the Kro-
necker index and differentiation index results in [17, 21].

The simplest one-port MQS device is a (linear) inductor without eddy
currents; we consider the axisymmetric PDE model Fig. 2c discretized by
FEMM1. In this simple linear setup the conductor model is equivalently
given by a series connection of a lumped resistance R and an inductance L,
[13]. Hence, for this simple problem, we have the analytic solution of the
voltages and currents of the coupled DAE problem at hand: in the index-2
setting, cf. Fig. 2b, with a sinusoidal current source

is(t) = sin(2πft), with a frequency f = 1Hz

1D. C. Meeker, Finite Element Method Magnetics, Version 4.2 (02Nov2009 Build),
http://www.femm.info
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vs(t)
MQS
device

(a) index-1 problem

is(t)
MQS
device

(b) index-2 problem (c) MQS device

Figure 2: Examples. a) voltage-driven MQS device is index-1, b) current-driven MQS
device is index-2, c) axisymetric inductor model discretized by FEMM coupled to a circuit
via its coil (white).

the voltage (at the RL-element) is analytically given by

e(t) = −2πL cos(2πft) − Ris(t).

In the index-1 case, cf. Fig. 2a, a voltage source is connected to the MQS
device and it is chosen accordingly to the previous case as e(t) = vs(t) and
therefore the solution is given by jL(t) = is(t).

Fig. 3 shows the numerical error due to time-integration by the implicit
Euler scheme using fixed time step sizes h = 10−11s, 10−9s and 10−7s. Al-
though both, the index-1 and index-2 circuits describe the same physical
phenomenon, the error due to time-integration is much larger in the index-2
case, Fig. 3b compared to the index-1 case, Fig. 3a.

In the index-1 case all errors are below the machine precision (round-
off errors) and hence they are all equally good. In contrast to these, the
errors in the index-2 case are much larger and especially for small step sizes
(h = 10−11s) they become very large and oscillate. Nonetheless they are not
propagated in time because they do not affect the differential components,
see Remark 3.14. Only when using adaptive step size control, one has to take
special care, i.e, exclude the index-2 voltages from the set of variables that
are monitored, such that the oscillations do not require unreasonable step
sizes.

6. Conclusion

In this paper we have modeled a network of lumped resistors, induc-
tors, capacitors, independent current and voltage sources, and spatially dis-
tributed MQS devices by applying MNA. Starting from spatially discretized
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(a) error in current (index-1 problem)
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Figure 3: Numerical Errors for a) the index-1 problem (voltage-driven) and b) the index-2
problem (current driven)

MQS devices, we have deduced a coupled system of DAEs with properly
stated leading term. Then the structural properties of this system have been
analyzed: We have proven that the index does not exceed two under cer-
tain conditions and we have generalized the topological index criteria of the
electrical circuits. A simple numerical example illustrates the results.

Although the MQS devices are modelled as controlled current sources, our
structural analysis shows that they behave topologically as inductances. This
correspondes to the physcial effects covered by the eddy current problem.
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