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Abstract

We propose transparent boundary conditions (TBCs) for the time–
dependent Schrödinger equation on a circular computational domain.
First we derive the two–dimensional discrete TBCs in conjunction with
a conservative Crank–Nicolson finite difference scheme. The presented
discrete initial boundary–value problem is unconditionally stable and
completely reflection–free at the boundary. Then, since the discrete
TBCs for the Schrödinger equation with a spatially dependent poten-
tial include a convolution w.r.t. time with a weakly decaying kernel, we
construct approximate discrete TBCs with a kernel having the form of
a finite sum of exponentials, which can be efficiently evaluated by re-
cursion. In numerical tests we finally illustrate the accuracy, stability,
and efficiency of the proposed method.
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As a by-product we also present a new formulation of discrete
TBCs for the 1D Schrödinger equation, with convolution coefficients
that have better decay properties than those from the literature.
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1 Introduction

The Schrödinger equation. Consider in the circular geometry with
polar coordinates (r, θ) the following Cauchy problem for the scaled
transient Schrödinger equation:

iψt = −1

2

[

1

r
(rψr)r +

1

r2
ψθθ

]

+ V (r, θ, t)ψ, r ≥ 0, 0 < θ ≤ 2π, t > 0,

(1.1a)

ψ(r, θ, 0) = ψI(r, θ), r ≥ 0, 0 < θ ≤ 2π, (1.1b)

We assume that the given θ-periodical potential V is constant outside
of the computational domain [0, R] × [0, 2π]:

V (r, θ, t) = VR ≡ const for r ≥ R,

and that the sufficiently smooth θ-periodical initial data has a compact
support:

supp ψI ⊂ [0, R) × [0, 2π]. (1.2)

Discussions of strategies to soften these restrictions could be found in
[20, 21, 30, 39]. The strategy from [21] to overcome the assumption
on the compact support of the initial data is directly applicable to
the 2D case considered here. However, the computational effort will
increase tremendously.

In addition to quantum mechanics, equation (1.1a) has many im-
portant applications including electromagnetic wave propagation [31],

2



µm

µ

µ

µ

m

m

m

Cladding 125

Buffer 250

Jacket 400

Core 8

Figure 1: A typical single–mode optical fiber, showing the different compo-
nent layers. Wave propagation mostly takes place in the relatively thin core
region.

modelling of quantum devices [7], integrated optics (Fresnel equation)
[38, 49], plasma physics, seismic migration [16], and (underwater)
acoustics due to the paraxial approximation of the wave equation in
the frequency domain [8, 48], etc.

One quite important application of the Schrödinger equation, espe-
cially in a circular geometry arises in the context of wave propagation
in optical fibers [28, 50]. A sketch of the structure of an optical fiber
with its different layers is shown in Fig. 1.

In modern communication networks optical fibers play a funda-
mental role and there it is often necessary to connect the fibers (e.g.
after a breakage or to extend a cable run) with low lost. Optical fibers
are connected by a fusion process called a thermal splicing and one
has to control this procedure and simulate how small disturbances in
the geometry of the (usually straight) fiber core effect the transported
light in the fiber. Doing so, one can predict the caused loss at these
joining positions of the fibers.

With the proposed transparent boundary conditions in this paper
one can reduce the computational domain significantly (e.g. to the
core region) and obtain a fast, accurate, and reliable simulation using
the beam propagation method [26, 50]. Here, the time variable t
corresponds to the axial variable, i.e. the propagation direction. For
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an adequate treatment of the density jump in the TBC between the
different layers we refer to [8].

Analytic transparent boundary conditions (TBCs). Let us
exemplify first analytic TBCs that can be derived for the Schrödinger
equation on a circular domain. The idea is to eliminate the problem
on the exterior domain r > R, and to replace it by a Dirichlet–to–
Neumann (DtN) map. First we briefly review the construction of the
analytic TBCs for the Schrödinger equation on a circular domain from
[5] and extend them to the case of a nonzero potential VR at infinity
(cf. also [24, 27]). For a review paper about TBCs for linear and
nonlinear Schrödinger equations including a comparison to the widely
used Perfectly Matched Layer (PML) technique we refer the interested
reader to [6].

We consider sufficiently smooth bounded periodical solutions to
(1.1a) on the exterior domain r > R and denote by ψ̂ = ψ̂(r, θ, s)
the Laplace transform of ψ w.r.t. time. The transformation of (1.1a)
reads:

1

r
(rψ̂r)r +

1

r2
ψ̂θθ + 2i(s + iVR)ψ̂ = 0, r ≥ R, 0 < θ ≤ 2π, (1.3)

where we used the assumption (1.2). We use a Fourier series w.r.t.
the angle θ:

ψ̂(r, θ, s) =
∑

m∈Z

ψ̂(m)(r, s) eimθ, r ≥ R. (1.4)

Then, for each mode m ∈ Z, the Fourier coefficient ψ̂(m)(r, s) satisfies
the ordinary differential equation

1

r
(rψ̂(m)

r )r +
(

2is − 2VR − m2

r2

)

ψ̂(m) = 0, r ≥ R. (1.5)

This is the Bessel equation for functions of order m. Hence, its solution
vanishing as r → ∞ is the m-th order Hankel function of the first kind

H
(1)
m :

ψ̂(m)(r, s) = αm(s)H(1)
m (

√

2is − 2VR r), r ≥ R, (1.6)

where αm(s) is an arbitrary multiplier. The radial derivative of ψ̂(m)

is computed as

∂

∂r
ψ̂(m)(r, s) = αm(s)

√

2is − 2VRH(1)′

m (
√

2is − 2VR r)

=
√

2is − 2VR
H

(1)′

m (
√

2is − 2VR r)

H
(1)
m (

√
2is − 2VR R)

ψ̂(m)(R, s),
(1.7)

4



where we have determined the value of the coefficient αm(s) from (1.6)
by setting r = R. Finally, the TBCs are obtained by computing the
series (1.4), using the inverse Laplace transform and setting r = R:

∂ψ

∂r
(R, θ, t) =

1

2πi

∑

m∈Z

γ+i∞
∫

γ−i∞

√

2is − 2VR
H

(1)′

m (
√

2is − 2VR R)

H
(1)
m (

√
2is − 2VR R)

ψ̂(m)(R, s)est ds eimθ,

(1.8)

where Γ = (γ− i∞, γ + i∞) is a vertical contour in the complex plane
chosen such that all singularities of the integrand are to the left of it.

The TBCs (1.8) are non–local both in time and in space. A strat-
egy to derive a spatially localized version of (1.8) by an asymptotic
expansion of the Hankel functions and their derivatives w.r.t. s can
be found in [5].

Because of the nonlocality of the TBCs (1.8), their immediate nu-
merical implementation requires to store the boundary data ψ̂(m)(R, .)
of all the past history and for all modes m ∈ Z. Moreover, the dis-
cretization of the TBCs (1.8), even in one space dimension, is not
trivial at all and has attracted lots of attention. For the many pro-
posed discretization strategies of the TBCs (1.8) in 1D (as well as
semi–discrete approaches), we refer the reader to [1, 4, 9, 12, 14, 19,
32, 33, 36, 37, 38, 39, 40, 51] and references therein. A numerically
efficient treatment of the 2D TBCs (1.8) was recently proposed by
Jiang and Greengard in [27].

Remark (Generalizations). For the case of a time-dependent potential
V = V (t) we can use this trick of gauge change transformation used
e.g. by Antoine and Besse [4] to reduce this case to zero exterior po-
tential. Let us note that a family of absorbing boundary conditions
for the 3D case was recently introduced in [25]. Moreover, a possible
nonlinear Schrödinger equation be handeled by the simple potential
strategy of Szeftel [46, 47], i.e. freezing the potential and updating
this nonlinear term at every time step (and recomputing every coef-
ficient!). This approach of Szeftel was transfered to discrete TBCs in
[52].

We remark that inadequate discretizations may introduce strong
numerical reflections at the boundary or render the discrete initial
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boundary value problem only conditionally stable, see [20] for a de-
tailed discussion.

Difference equations. We consider a Crank–Nicolson finite dif-
ference scheme, which is one of the commonly used discretization
methods for the Schrödinger equation. Let us introduce a polar and
temporal grid:

r−1 < r0 < r1 < · · · < rJ < . . . , r−1 = −r0; rJ−1/2 = R,

rj+1/2 = (rj+1 + rj)/2, ∆rj+1/2 = rj+1 − rj , ∆rj = rj+1/2 − rj−1/2,

θk = k∆θ, k = 0, 1, . . . , K, ∆θ = 2π/K;

tn = n∆t, n = 0, 1, . . .

We denote

ψ
(n)
j,k = ψ(rj , θk, tn), ψ

(n+1/2)
j,k =

(

ψ
(n+1)
j,k + ψ

(n)
j,k

)

/2,

and V
(n+1/2)
j,k = V (rj , θk, tn+1/2). Then the Crank–Nicolson scheme

reads:

− 2i

∆t
(ψ

(n+1)
j,k − ψ

(n)
j,k )

=
1

rj

1

∆rj





rj+1/2(ψ
(n+1/2)
j+1,k − ψ

(n+1/2)
j,k )

∆rj+1/2
−

rj−1/2(ψ
(n+1/2)
j,k − ψ

(n+1/2)
j−1,k )

∆rj−1/2





+
1

r2
j

ψ
(n+1/2)
j,k+1 − 2ψ

(n+1/2)
j,k + ψ

(n+1/2)
j,k−1

∆θ2
− 2V

(n+1/2)
j,k ψ

(n+1/2)
j,k ,

j = 0, 1, ...; k = 0, 1, ..., K − 1; n = 0, 1, ...

(1.9)

and the obvious periodic boundary conditions ψ
(n)
j,0 = ψ

(n)
j,K , ψ

(n)
j,−1 =

ψ
(n)
j,K−1.

Remark (Treatment of singularity at the origin). We use a radial offset

grid here such that the coefficient of ψ
(n+1/2)
−1,k is zero.

The paper is organized as follows. In §2 we prove the discrete
mass conservation property of the Crank–Nicolson scheme and de-
rive discrete TBCs directly for the chosen numerical scheme using the
Z–transform method. In contrast to the 1D and the rectangular 2D
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cases, the convolution coefficients of the discrete TBCs have to be ob-
tained numerically here. Using their large-radius-limit (i.e. the planar
problem) as a starting point, they are computed by a recursion from
“infinity” back to the finite radius R. Next we prove the stability of
the recurrence formulas used to obtain the convolution coefficients of
the new discrete TBCs for a spatially dependent potential.

In §3 we discuss the approximation of the convolution coefficients
by a discrete sum of exponentials and present an efficient recursion for
evaluating these approximate discrete TBCs. Finally, the numerical
examples of §4 illustrate the accuracy, stability, and efficiency of the
proposed method.

In the Appendix we briefly revisit discrete TBCs for the 1D Schrö-
dinger equation. We present a new formulation that leads to convo-
lutions coefficients with better decay properties than those from the
literature [7, 20].

2 The discrete TBCs

First we generate transparent discrete boundary conditions using exact
solutions to the difference scheme (1.9) in the exterior domain r ≥ R.

Reduction to 1D–Problem. In order to reduce the problem to
the simpler 1D case, the discrete Fourier method is used in θ–direction.
Due to the periodic boundary conditions in angular direction we have

ψ
(n)
j,0 = ψ

(n)
j,K , j ∈ N0, n ≥ 0, (2.1)

and hence, use the discrete Fourier transform of ψ
(n)
j,k in θ–direction:

ψ
(m,n)
j :=

1

K

K−1
∑

k=0

ψ
(n)
j,k exp

(

2πikm

K

)

, m = 0, . . . , K − 1. (2.2)

The scheme (1.9) in the exterior domain j ≥ J − 1 then transforms
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into:

− 2i

∆t
(ψ

(m,n+1)
j − ψ

(m,n)
j )

=
1

rj

1

∆rj

[

rj+1/2(ψ
(m,n+1/2)
j+1 − ψ

(m,n+1/2)
j )

∆rj+1/2

−
rj−1/2(ψ

(m,n+1/2)
j − ψ

(m,n+1/2)
j−1 )

∆rj−1/2

]

− 2V
(m)
j ψ

(m,n+1/2)
j ,

V
(m)
j := VR +

2 sin2
(

πm
K

)

r2
j ∆θ2

, 0 ≤ m ≤ K − 1, n ≥ 0.

(2.3)

The modes ψ(m), m = 0, . . . , K − 1 are independent of each other
in the exterior domain r ≥ R since the potential V is constant there.
Therefore we can continue our analysis for each azimuth mode sepa-
rately.

Thus, by omitting in the sequel the superscript m in the notation,
we will consider in the exterior domain j ≥ J−1 the following discrete
1D–Schrödinger equation:

− i
2∆rj∆rj+1/2

∆t
(ψ

(n+1)
j − ψ

(n)
j )

=
1

rj

[

rj+1/2(ψ
(n+1/2)
j+1 − ψ

(n+1/2)
j )

− rj−1/2

∆rj+1/2

∆rj−1/2
(ψ

(n+1/2)
j − ψ

(n+1/2)
j−1 )

]

− 2∆rj∆rj+1/2Vjψ
(n+1/2)
j ,

(2.4)

with the spatially dependent potential Vj = VR +2 sin2(πm
K )/(r2

j ∆θ2).

Mass conservation property. There are two important advan-
tages of this second order (in ∆r and ∆t) scheme (2.4): it is uncondi-
tionally stable, and it preserves the discrete L2–norm in time:

Lemma 2.1. For the scheme (2.4) (considered on j ∈ N0) it holds:

‖ψ(n)‖2
2 :=

∑

j∈N0

∆rj |ψ(n)
j |2rj (2.5)

is a conserved quantity in time.
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Proof. This conservation property can be seen by a discrete energy

estimate. First we multiply (2.4) by ψ̄
(n)
j rj :

− 2i

∆t

(

ψ
(n+1)
j ψ̄

(n)
j − |ψ(n)

j |2
)

rj

= ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

− 2Vjψ
(n+1/2)
j ψ̄

(n)
j rj , j = 0, 1, . . . , (2.6a)

2i

∆t

(

|ψ(n+1)
j |2 − ψ̄

(n)
j ψ

(n+1)
j

)

rj

= ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− 2Vjψ̄
(n+1/2)
j ψ

(n+1)
j rj , j = 0, 1, . . . ,

(2.6b)

with the abbreviation of the centered difference quotient

D0 = D0
∆rj

2

, i.e. D0ψn
j =

ψn
j+1/2 − ψn

j−1/2

∆rj
.

Next we subtract (2.6a) from (2.6b)

2i

∆t

(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj

= ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

− Vj

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj , j = 0, 1, . . . ,

multiply by ∆rj , sum from j = 0 to ∞, and apply summation by
parts:

2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj

= −
∞

∑

N0+ 1
2

(

D0ψ̄
(n+1/2)
j

)(

D0ψ
(n+1)
j

)

rj∆rj −
(

D0ψ̄
(n+1/2)

−
1
2

)

ψ
(n+1)
0 r

−
1
2

+
∞

∑

N0+ 1
2

(

D0ψ
(n+1/2)
j

)(

D0ψ̄
(n)
j

)

rj∆rj +
(

D0ψ
(n+1/2)

−
1
2

)

ψ̄
(n)
0 r

−
1
2

−
∞

∑

j=0

Vj

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj .

(2.7)
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Now, the boundary terms in (2.7) vanish since r
−

1
2

= 0, and hence

2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj

= −1

2

∞
∑

N0+ 1
2

(

|D0ψ̄
(n+1)
j |2 − D0ψ̄

(n)
j |2

)

rj∆rj

−
∞

∑

j=0

Vj

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj .

(2.8)

Finally, taking imaginary parts one obtains the desired result.

Discrete TBCs for a single azimuth mode. Discrete trans-
parent boundary conditions for the 1D Schrödinger equation with con-
stant coefficients of the difference scheme in the exterior domain were
introduced by Arnold [7] (cf. the Appendix for an improved variant,
which is the bases of our presentation below). Here we derive discrete
TBCs for the scheme (2.4) with spatially varying coefficients. In anal-
ogy to the continuous case of §1, the idea is to eliminate the exterior
problem j > J and to replace it by a discrete DtN map.

We use the Z–transform of the sequence {ψ(n)
j }, n ∈ N0 (with j

considered fixed) which is defined as the Laurent series, see [18]:

Z{ψ(n)
j } = ψ̂j(z) :=

∞
∑

n=0

ψ
(n)
j z−n, z ∈ C, |z| > Rψ̂j

, (2.9)

and Rψ̂j
denotes the convergence radius of the series. Now the trans-

formed exterior scheme (2.4) reads

− iρj
z − 1

z + 1
ψ̂j(z)

=
1

rj

[

rj+1/2

(

ψ̂j+1(z) − ψ̂j(z)
)

− rj−1/2

∆rj+1/2

∆rj−1/2

(

ψ̂j(z) − ψ̂j−1(z)
)

]

− 2∆rj∆rj+1/2Vjψ̂j(z), j ≥ J − 1,

(2.10)

with the mesh ratio ρj = 4∆rj∆rj+1/2/∆t and the spatially dependent
potential Vj = VR + 2 sin2(πm

K )/(r2
j ∆θ2). Note that we used here the

following assumption on ψ0:

ψ0
j = 0, j ≥ J − 2. (2.11)
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Thus we obtain a homogeneous second order difference equation with
varying coefficients of the form

ajψ̂j+1(z) + bj(z)ψ̂j(z) + cjψ̂j−1(z) = 0, j ≥ J − 1, (2.12)

where

aj =
rj+1/2

rj
, (2.13a)

bj(z) = − 1

rj

[

rj+1/2 + rj−1/2

∆rj+1/2

∆rj−1/2

]

+iρj
z − 1

z + 1
− 2∆rj∆rj+1/2Vj ,

(2.13b)

cj =
rj−1/2

rj

∆rj+1/2

∆rj−1/2
. (2.13c)

Remark (uniform offset grid). In the special case of a uniform radial
offset grid rj = (j + 1

2)∆r, j ≥ J − 1, we obtain

aj =
j + 1

j + 1
2

, cj =
j

j + 1
2

, (2.14a)

bj(z) = −2 + iρ
z − 1

z + 1
− 2∆r2VR − 4

sin2
(

πm
K

)

(j + 1/2)2∆θ2
. (2.14b)

But such a uniform grid is not a requirement for the rest of this section.

For the formulation of the Z–transformed discrete TBCs at j = J
we regard the ratio ℓ̂j(z) of the decaying (as j → ∞) fundamental
solution to (2.10) at two adjacent points:

ℓ̂j(z) =
ψ̂j(z)

ψ̂j−1(z)
, j ≥ J, (2.15)

and get from (2.12) the following Riccati difference equation (cf. §1.6
in [29]) with variable coefficients:

ℓ̂j(z)
(

aj ℓ̂j+1(z) + bj(z)
)

+ cj = 0, j ≥ J. (2.16)

Suppose (for the moment) that the coefficients ℓ̂j(z) are known.
Setting j = J + 1 we get from (2.15):

ℓ̂J+1(z) =
ψ̂J+1(z)

ψ̂J(z)
. (2.17)
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Calculating the inverse Z–transformation we obtain the discrete con-
volution

ψ
(n)
J+1 = ℓ

(n)
J+1 ∗ ψ

(n)
J , (2.18)

and explicitly

ψ
(n)
J+1 − ℓ

(0)
J+1ψ

(n)
J =

n−1
∑

p=1

ℓ
(n−p)
J+1 ψ

(p)
J , (2.19)

by using the assumption (1.2)

ψ
(0)
j = 0, j ≥ J. (2.20)

We remark that this discrete TBC is structurally different from
those introduced in the literature [7, 8, 20, 42]. There, the discrete
convolution is always placed at the outer of the two boundary grid
points. But in (2.18) it is implemented at the inner boundary point
j = J . This small modification yields a very different behavior of the
convolution coefficient ℓ(n): Since they are oscillatory in [7, 8, 20, 42],

it is necessary to rather use a linear combination of ℓ
(n)
j and ℓ

(n−1)
j ,

which is much “smoother” (considered as functions of n). Hence, in
contrast to the previously used (oscillating) convolution coefficients in
[7, 8, 20, 42], the actual coefficients ℓ(n) here decay like O(n−3/2) (cf.
the Appendix for details).

While the asymptotic behavior (for n large) of ℓ(n) was determined
from the explicit formulas in [20, 42], this is unfeasible here. It can,
however, be deduced from the singularities of ℓ̂j(z). First we consider

ℓ̂∞(z), the ratio in the boundary condition at infinity. Here and in the
sequel we make the assumption of an asymptotically equidistant grid
(i.e. ∆rj → ∆r):

ℓ̂∞(z) = 1 − iρ

2

z − 1

z + 1
+ ∆r2VJ∞

(2.21)

− 1

z + 1

√

[

(z + 1)(1 + ∆r2VJ∞
) − iρ

2
(z − 1)

]2

− (z + 1)2 .

Note that this formula coincides with the 1D case and the planar
2D case (cf. the Appendix or [20, 10]), since for j → ∞ the space-
dependent potential Vj tends to the constant potential value VR. In

(2.21) the branch of the square root has to be chosen such that |ℓ̂∞(z)| ≤
1 holds for z ≥ 1 which selects the decaying solution ψ̂j(z). ℓ̂∞ has no

12



pole at z = −1, but two branch points on the complex unit circle, due
to the quadratic polynomial under the square root. For the special
case VJ∞

= 0 that we shall illustrate numerically, they are located at
z1 = 1, z2 = (ρ−4i)/(ρ+4i). These branch points manifest themselves
as kinks of Im ℓ̂∞(z), for z on the unit circle.

Next we discuss the singularities of ℓ̂j(z) for j finite. Subsequent

ℓ̂j(z)’s are related by the recursion (2.16). But since bj(z) is real on

the unit circle (as well as aj , cj), the kinks of Im ℓ̂j(z) are still located
at z1 = 1, z2 = (ρ − 4i)/(ρ + 4i) for all j and for all modes m.

Now we turn to a discussion of the asymptotic behavior of ℓ
(n)
J for

n → ∞. Since ℓ
(n)
J are just the Fourier coefficients of the 2π–periodic

function ℓ̂J(eiϕ) (cf. (2.9)), its asymptotic behavior is determined by
the singularities of ℓ̂J(z) on the unit circle. Hence, the two square
root singularities imply

ℓ
(n)
J ∼ (c1 zn

1 + c2 zn
2 )n−3/2. (2.22)

To compensate the oscillations with the higher frequency (determined
by zn

2 ) we define the following summed convolution coefficients

s(0) := ℓ
(0)
J+1,

s(n) := ℓ
(n)
J+1 − z2 ℓ

(n−1)
J+1 , n ≥ 1.

(2.23)

This strategy is different from [20, 10, 42] since the asymptotic behav-
ior of the coefficients ℓ(n) is very different in both cases. These new

coefficients s(n) are now less oscillatory than the ℓ
(n)
J+1. Hence, they

are a better starting point for computing approximate convolution co-
efficients (see §3 below). The discrete TBC for a single azimuth mode
reads

ψ
(n)
J+1 − s(0)ψ

(n)
J =

n−1
∑

p=1

s(n−p)ψ
(p)
J + z2 ψ

(n−1)
J+1 . (2.24)

Calculation of convolution coefficients. In order to find a
solution to (2.16) we use the method of series. Let us consider the
Laurent series for ℓ̂j(z):

ℓ̂j(z) = ℓ
(0)
j + ℓ

(1)
j z−1 + · · · + ℓ

(n)
j z−n + . . . , |z| ≥ 1. (2.25)

13



We define the auxiliary functions

αj(z) :=
bj(z)

aj
,

αj := lim
z→∞

αj(z),

βj :=
cj

aj
.

(2.26)

Then (2.16) reads

ℓ̂j(z)
(

ℓ̂j+1(z) + αj(z)
)

+ βj = 0, j ≥ J. (2.27)

Substituting (2.25) for (2.27) we get

(

ℓ
(0)
j + ℓ

(1)
j z−1 + · · · + ℓ

(n)
j z−n + . . .

)

·

·
(

(

ℓ
(0)
j+1 + ℓ

(1)
j+1z

−1 + · · · + ℓ
(n)
j+1z

−n + . . .
)

+ αj(z)
)

+ βj = 0. (2.28)

We shall now discuss the computation of the coefficients ℓ
(n)
j for indi-

vidual indices n:
Coefficient ℓ

(0)
j . Taking |z| → ∞ we have the following recurrence

equation for ℓ
(0)
j :

ℓ
(0)
j

(

ℓ
(0)
j+1 + αj

)

+ βj = 0. (2.29)

We shall solve this equation by “iteration from infinity”, i.e. starting

from a (large) index J∞, putting an initial value ℓ
(0)
J∞

:= ℓ
(0)
∞ , and

running the recursion from J∞ to J + 1:

ℓ
(0)
j =

−βj

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1. (2.30)

Note that a very large index J∞ corresponds to a very large radius
rJ∞

. Therefore we can use the coefficient ℓ(0) from the 1D case (cf.

(4.7), or the 2D plane case) as the starting value ℓ
(0)
∞ . It is obtained

from (2.21) as ℓ
(0)
∞ = ℓ̂∞(z = ∞).

Theorem 2.1. [stability of the recurrence relation]. Let |αj | ≥
2 j+1/2

j+1 , βj ≤ j
j+1 , and |ℓ(0)

J∞

| < βJ∞
. Then:

a) |ℓ(0)
j | < βj ≤ j

j+1 < 1; and

14



b) the recurrence formula (2.30) is stable with respect to small per-
turbations.

Proof. Part (a) is proved by induction. Suppose |ℓ(0)
j+1| < βj+1 ≤ j

j+1 .
Hence

|ℓ(0)
j+1 + αj | ≥ |αj | − |ℓ(0)

j+1| > 2
j + 1/2

j + 1
− j

j + 1
= 1.

Therefore

|ℓ(0)
j | =

βj

|ℓ(0)
j+1 + αj |

< βj . (2.31)

To prove (b) and establish the stability we suppose that we have

a perturbation ℓ
(0)
j+1 + δj+1 instead of ℓ

(0)
j+1 with |δj+1| < 1. Let us

consider the evolution of δj by comparing (2.30) with

ℓ
(0)
j + δj =

−βj

ℓ
(0)
j+1 + δj+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1.

Evidently we obtain:

δj =
−βj

ℓ
(0)
j+1 + δj+1 + αj

− −βj

ℓ
(0)
j+1 + αj

= δj+1

−ℓ
(0)
j

ℓ
(0)
j+1 + δj+1 + αj

= δj+1

−ℓ
(0)
j

−βj/ℓ
(0)
j + δj+1

.

Therefore we get

|δj | = |δj+1|
|ℓ(0)

j |
|βj/ℓ

(0)
j − δj+1|

≤ |δj+1|
|ℓ(0)

j |2

βj − |ℓ(0)
j ||δj+1|

< |δj+1|
|ℓ(0)

j |2

βj

1

1 − |δj+1|
,

and hence

|δj |
|δj+1|

∼
|ℓ(0)

j |2

βj
< βj < 1, (2.32)

for |δj+1| ≪ 1. Thus the recursion (2.30) is stable with respect to
small perturbations (e.g. for truncation errors or for an “incorrect”

initial guess ℓ
(0)
J∞

:= ℓ
(0)
∞ ).
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Remark. The assumptions |αj | ≥ 2 j+1/2
j+1 and βj ≤ j

j+1 in the previous
theorem are valid for the definitions (2.14) (i.e. for a uniform offset
grid) and VR ≥ 0. Moreover |ℓJ∞

| < βJ∞
holds true for J∞ large

enough, since βj
j→∞−→ 1 for an asymptotically equidistant grid.

Remark. The estimate (2.32) explains the fast convergence of the re-

cursion (2.30) to the correct value ℓ
(0)
J in spite of taking an “incorrect”

initial guess ℓ
(0)
J∞

:= ℓ
(0)
∞ , see the numerical examples below. Indeed,

due to (2.32) we can hope for an exponential decay of |δj | with the

factor |ℓ(0)
j |2/βj ∼ |ℓ(0)

j |. For instance, the value |ℓ(0)
j | is estimated

from the case of the “frozen” coefficients at J∞:

|ℓ(0)
j | ∼ |ℓ(0)

∞
| < 1,

where ℓ
(0)
∞ = ℓ̂∞(z = ∞) from (2.21).

Coefficient ℓ
(1)
j . Now we consider the calculation of ℓ

(1)
j . We have

from (2.26), (2.13):

αj(z) := αj − γj(z
−1 − z−2 + z−3 − . . . ), (2.33)

with γj := αj − ᾱj . From (2.28) and (2.33) we can write

(

ℓ
(0)
j + ℓ

(1)
j z−1 + O(z−2)

)

·

·
(

(

ℓ
(0)
j+1 + ℓ

(1)
j+1z

−1 + O(z−2)
)

+
(

αj − γjz
−1 + O(z−2)

)

)

+ βj = 0.

(2.34)

Annihilating leading order terms by using (2.29) we collect terms of
order z−1:

ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj + ℓ

(1)
j ℓ

(0)
j+1 + ℓ

(1)
j αj = 0. (2.35)

Therefore the recursion is defined by

ℓ
(1)
j = −

ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1, (2.36)

with an initial value ℓ
(1)
J∞

:= ℓ
(1)
∞ .

Coefficient ℓ
(n)
j . The case of ℓ

(n)
j with n ≥ 2 is considered simi-

larly by truncating terms of O(z−n−1) in (2.34). We get the following
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recursion formula:

ℓ
(n)
j = −

n−1
∑

k=0

ℓ
(k)
j

[

ℓ
(n−k)
j+1 + γj(−1)n−k

]

ℓ
(0)
j+1 + αj

, j = J∞−1, J∞−2, . . . , J+1,

(2.37)

with an initial value ℓ
(n)
J∞

:= ℓ
(n)
∞ that can be taken from the 1D plane

case: ℓ
(n)
J∞

≡ ℓ
(n)
∞ . Notice that (2.36) is a particular case of (2.37) for

n = 1 .

Theorem 2.2. Under conditions of Theorem 2.1 the recurrence for-
mula (2.37) is stable with respect to small perturbations.

Proof. Let us write (2.37) as an iteration with respect to the index n:

ℓ
(n)
j =

ℓ
(0)
j

ℓ
(0)
j+1 + αj

ℓ
(n)
j+1 + F

(

{ℓ(n1<n)
j }, {ℓ(n1<n)

j+1 }
)

, (2.38)

j = J∞ − 1, J∞ − 2, . . . , J + 1, where the function F contains the
remaining terms with indexes n1 < n. Suppose that the coefficients

{ℓ(n1)
j }, n1 = 0, 1, . . . , n−1, j = J∞−1, J∞−2, . . . , J +1 are exact (or

known with good accuracy). Then the stability of (2.37) is determined
by the magnitude of the multiplier

ℓ
(0)
j

ℓ
(0)
j+1 + αj

.

We have from (2.31):

|ℓ(0)
j |

|ℓ(0)
j+1 + αj |

<
βj

|ℓ(0)
j+1 + αj |

< βj ≤
j

j + 1
< 1.

Remark. The proof of Theorem 2.2 is made by induction with respect
to n = 1, 2, . . . under the assumption that the previous coefficients for
n1 < n are (almost) correct. In practice, while calculating the coeffi-

cients ℓ
(n)
j we must fix some value J∞ and take an “incorrect” initial

value ℓ
(n)
J∞

:= ℓ
(n)
∞ . This could give a numerical instability. However,

ℓ
(0)
j converges sufficiently fast to its correct value and reaches a very

17



good approximation after, say, J0 steps of the recursion (2.30). Hence,

we can start the recursion for ℓ
(1)
j a little bit “later”, i.e. with the de-

layed initial index j = J∞ − J0. Similarly for ℓ
(2)
j , the initial index

can be chosen as j = J∞ − 2J0, etc. In our numerical tests practical
values for J0 satisfy 0 ≤ J0 ≤ 5.

Sample calculations of the coefficients ℓ
(n)
j . We demonstrate

the efficiency of the proposed algorithm for the following example. For
the radius we consider R = 1 and we discretize the circular domain
[0, R] × [0, 2π] with the uniform step sizes ∆r = 1/200 and ∆θ =
2π/200. For the time step size we take ∆t = 0.0003 and calculate

the convolution coefficients ℓ
(n)
j with (2.37) for the free Schrödinger

equation (i.e. V = 0) for n = 0, . . . , 60. In a first set of calculations
we run the algorithm with the choice J∞ = 550 (which corresponds
to r = 3.75) and a retarding shift J0 = 5. Here we just discuss the
results for the mode m = 1, but all other modes behave similarly.
In Figure 2 we show the absolute values of the last seven coefficients

ℓ
(54)
j , . . . , ℓ

(60)
j as a function of r ∈ [R, 3.75]. We observe a good con-

vergence of the coefficients while approaching the artificial boundary
R = 1 from the exterior domain. An error estimate is provided by

a second calculation, where we compute convolution coefficients ℓ̃
(n)
j

with J∞ = 1100 and the same discretization parameters as before.

The difference |ℓ(n)
j − ℓ̃

(n)
j | is plotted for n = 54, . . . , 60 in Figure 3.

With values of the order O(10−14) near the artificial boundary this
error is about the rounding error of Matlab. The influence of the re-
tarding shift parameter J0 can be seen by comparing Figure 2 with
Figure 4. In the third run we determine the convolution coefficients
(still with the same discretization parameters and J∞ = 550) but with
J0 = 3. The absolute values of these convolution coefficients are pre-

sented in Figure 4. The oscillations in ℓ
(n)
j due to the instability near

J∞ in this plot are more obvious than in the coefficients computed
with J0 = 5 shown in Figure 2. But also for the choice J0 = 3 the
coefficients converge well while approaching r = R.

2D discrete TBC. In the Fourier transformed space, i.e. in terms
of separate azimuthal modes, the discrete TBCs read (this is Eq. (2.24)
with recovered mode index m):

ψ
(m,n)
J+1 − s(0)

m ψ
(m,n)
J =

n−1
∑

p=1

s(n−p)
m ψ

(m,p)
J + z2ψ

(m,n−1)
J+1 , (2.39)
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Figure 2: Absolute values of last seven coefficients ℓ
(n)
j , n = 54, . . . , 60, J∞ =

550, J0 = 5;m = 1.
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Figure 3: Absolute values of difference |ℓ(n)
j − ℓ̃

(n)
j | of last seven coefficients

calculated with J∞ = 550 and J∞ = 1100;m = 1.
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Figure 4: Absolute values of last seven coefficients, J∞ = 550, J0 = 3;m = 1.

where m = 0, . . . , K − 1, n ≥ 1. Note that (2.3) implies the following

symmetry in the convolution coefficients: s
(n)
m = s

(n)
K−m. In order to

obtain the discrete TBC in the physical space let us introduce the
diagonal K × K matrices

s(p) = diag{s(p)
m }, m = 0, . . . , K − 1; p = 0, 1, 2, . . . ,

and also matrices F and F−1 of the direct and inverse Fourier trans-
form, respectively, acting in accordance with (2.2):

ψ̂
(n)
j = Fψ̃

(n)
j ,

with the vectors

ψ̂
(n)
j = {ψ(m,n)

j }K−1
m=0, ψ̃

(n)
j = {ψ(n)

j,k }K−1
k=0 .

Then, multiplying (2.39) by F−1 we get the following 2D discrete TBC

ψ̃
(n)
J+1 − F−1s(0)Fψ̃

(n)
J = F−1

n−1
∑

p=1

s(n−p)Fψ̃
(p)
J + z2ψ̃

(n−1)
J+1 . (2.40)

Here, we choose to formulate the discrete TBC (2.40) at the bound-
ary of the computational interval and one grid point in the exterior
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domain. In accordance with (2.20) we have assumed that the initial

condition satisfies ψ
(0)
j,k = 0, j ≥ J ; k = 0, . . . , K − 1.

The use of the formula (2.40) for calculations permits us to avoid
any boundary reflections and it renders the fully discrete scheme un-
conditionally stable (just like the underlying Crank–Nicolson scheme).
Note that we need to evaluate for each mode m just one convolution of
(2.40) at each time step (at the endpoint of the interval [0, tn]). Since
the other points of this convolution are not needed, using an FFT is
not practical.

Remark (Computational Effort for 2D discrete TBC). The computa-
tional costs of 2D discrete TBCs for constant potentials are O(KN2)
without approximation and O(KLN) with sum-of-exponentials ap-
proximation, cf. §3 Now, the additional costs of (2.40) are due to the
recursion from infinity (2.37) and amounts to O(JKN2) without an
approximation and O(JKL2) + O(KLN) with approximation (3.1).

3 Approximation by sums of exponen-

tials

An ad-hoc implementation of the discrete convolution

n−1
∑

p=1

s(n−p)ψ
(p)
J

in (2.24) with convolution coefficients s(n) from (2.23) has still one dis-
advantage. The boundary conditions are non–local both in time and
space and therefore computations are too expensive. As a remedy, to
get rid of the time non–locality, we proposed already in [10] the sum
of exponentials ansatz, i.e. to approximate the convolution coefficients
(2.23) by a finite sum (say L terms) of exponentials that decay with
respect to time. This approach allows for a fast (approximate) evalu-
ation of the discrete convolution (2.24) since the convolution can now
be evaluated with a simple recurrence formula for L auxiliary terms
and the numerical effort per time step now stays constant.

Let us note that such kind of trick has been proposed in [22] for
the heat equation, in [43] for the continuous TBC of the 3D wave
equation, in [27] for the TBC of the 2D Schrödinger equation, and
developed in [2], [44], [45], [17], [23] for various hyperbolic problems.
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In the sequel we will briefly review this ansatz [10]. In order to
derive a fast numerical method to calculate the discrete convolutions
in (2.39), we approximate the coefficients s(n) by the following ansatz
(sum of exponentials):

s(n) ≈ s̃(n) :=















s(n), n = 0, 1, . . . , ν − 1
L

∑

l=1

bl q−n
l , n = ν, ν + 1, . . . ,

(3.1)

where L, ν ∈ N are a fixed numbers. Evidently, the approximation
properties of s̃(n) depend on L, ν, and the corresponding set {bl, ql}.
Thus, the choice of an (in some sense) optimal approximation of this
type is a difficult nonlinear problem. Below we propose a deterministic
method of finding {bl, ql} for fixed L and ν.

Remark. The “split” definition of {s̃(n)} in (3.1) is motivated by the
fact that the implementation of the discrete TBCs (2.39) involves a
convolution sum with p ranging only from 1 to p = n − 1. Since the
first coefficient s(0) does not appear in this convolution, it makes no
sense to include it in our sum of exponential approximation, which
aims at simplifying the evaluation of the convolution. Hence, one may

choose ν = 1 in (3.1). The “special form” of ℓ
(0)
∞ and ℓ

(1)
∞ given in [10]

suggests even to exclude s(1) from this approximation and to choose
ν = 2 in (3.1). We use this choice in our numerical implementation in
the example in §4.

Also, there is an additional motivation for choosing ν = 2: With
the choice ν = 0 (or ν = 1) we typically obtain (for each mode)
two (or, resp., one) coefficient pairs (bl, ql) of big magnitude. These
“outlier” values reflect the different nature of the first two coefficients.
Including them into our discrete sum of exponentials would then yield
less accurate approximation results.

Let us fix L and consider the formal power series:

g(x) := s(ν) + s(ν+1)x + s(ν+2)x2 + . . . , |x| ≤ 1. (3.2)

If there exists the [L − 1|L] Padé approximation

g̃(x) :=
PL−1(x)

QL(x)

of (3.2), then its Taylor series

g̃(x) = s̃(ν) + s̃(ν+1)x + s̃(ν+2)x2 + . . .
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satisfies the conditions

s̃(n) = s(n), n = ν, ν + 1, . . . , 2L + ν − 1, (3.3)

due to the definition of the Padé approximation rule.

Theorem 3.1 ([10]). Let QL(x) have L simple roots ql with |ql| >
1, l = 1, . . . , L. Then

s̃(n) =
L

∑

l=1

bl q−n
l , n = ν, ν + 1, . . . , (3.4)

where

bl := −PL−1(ql)

Q′

L(ql)
ql 6= 0, l = 1, . . . , L. (3.5)

Remark. We remark that the assumption in Theorem 3.1 on the roots
of QL(x) to be simple is not essential. For multiple roots one only has
to reformulate Theorem 3.1. All our practical calculations confirm
that this assumption holds for any desired L, although we cannot
prove this.

Evidently, the approximation to the convolution coefficients s(n)

by the representation (3.1) using a [L − 1|L] Padé approximant to
(3.2) behaves as follows: the first 2L coefficients are reproduced ex-
actly, see (3.3). However, the asymptotics of s(n) and s̃(n) (as n → ∞)
differ strongly – algebraic versus exponential decay. The difference

‖s(n)
m − s̃

(n)
m ‖ℓ2n, m

decreases strongly w.r.t. to L, cf. Table 1 in §4.2.
Note, however, that only the value of L effectively chosen in the algo-
rithm counts here (cf. §4.2 for details).

Fast Evaluation of the Discrete Convolution. Let us consider
the approximation (3.1) of the discrete convolution kernel appearing
in the discrete TBC (2.39). With these “exponential” coefficients the
approximated convolution

C̃
(n−1)
J :=

n−1
∑

p=1

s̃(n−p)ψ
(p)
J+1, s̃(n) =

L
∑

l=1

bl q−n
l , |ql| > 1, (3.6)

of the discrete function ψ
(p)
J+1, p = 1, 2, . . . with the coefficients s̃(n)

can be calculated by recurrence formulas, and this will reduce the
numerical effort significantly.
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A straightforward calculation (cf. [10]) yields:

C̃
(n−1)
J =

L
∑

l=1

C̃
(n−1)
J,l , n ≥ 2, (3.7)

where
C̃

(0)
l ≡ 0,

C̃
(n−1)
J,l = q−1

l C̃
(n−2)
J,l + bl q−1

l ψ
(n−2)
J+1 , (3.8)

n = 2, 3, . . . , l = 1, . . . , L. Finally we summarize the approach by the
following algorithm. For each azimuth mode m = 0, ..., K − 1:

1. Calculate ℓ
(n)
J+1, n = 0, . . . , N − 1, with formulas (2.37) with a

boundary value ℓ
(n)
J∞

:= ℓ
(n)
∞ that can be taken from the 1D plane

case ℓ
(n)
∞ ≡ ℓ(n) from [10], and use (2.23) to find s(n).

2. Calculate s̃(n) via the Padé–algorithm.

3. The corresponding coefficients bl, ql are used for the efficient
calculation of the discrete convolutions.

Remark. The sum-of-exponentials approximation of the discrete TBCs
reduces the numerical effort drastically. The effort for the evalua-

tion of the convolution sum
∑n−1

p=1 s
(n−p)
m ψ

(m,p)
J is of quadratical order

O(Kn2). With the proposed approximation of the discrete TBCs this
can be reduced to linear effort O(KLn), where L denotes the number
of terms in the sum-of-exponentials (3.4). For using the exact discrete

TBCs the convolution coefficients s
(n)
m (cf. (2.23)) have to be calcu-

lated once in a set–up before the time-stepping for all modes m and all
time levels p = 0, . . . , n. As a further advantage of the approximated
discrete TBCs, the coefficients (2.23) only need to be calculated for
p = 0, . . . , 2L + ν − 1 (cf. (3.3)).

4 Numerical results

In this section we present some numerical examples concerning the
exact discrete TBCs and the approximated discrete TBCs. For further
examples we refer the reader to [41].
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4.1 Exact discrete TBCs

Here we shall illustrate that our algorithm can compute the convolu-
tion coefficients of the TBC with almost machine accuracy. Hence,
the (numerically computed) TBC in the circular case is essentially as
accurate as in the rectangular case [10], where the TBCs are obtained
analytically.

We recall the Example 2 from [24], i.e. we consider (1.1) with the
vanishing potential V ≡ 0 and the angle-dependent initial data

ψI(r, θ) =
e
2ikxr cos θ+2ikyr sin θ−

(r cos θ)2

2αx
−

(r sin θ)2

2αy

√
αxαy

. (4.1)

Then the exact solution to (1.1a) for t > 0 is given by the Gaussian
beam

ψ(r, θ, t) =
e
2ikx(r cos θ−kxt)+2iky(r sin θ−kyt)−

(r cos θ−2kxt)2

2(αx+it)
−

(r sin θ−2kyt)2

2(αy+it)

√
αx + it

√

αy + it
.

(4.2)
We set αx = αy = 0.04, let kx = 1, ky = −1 and calculate a solution
ψ1 to (1.9) with an equidistant discretization on the circular domain
Ω1 = [0, R] × [0, 2π] with R = 1 and J + 2 grid points in r-direction
and K in θ-direction for the time interval 0 < t ≤ 0.5. In order to
satisfy the assumption that the initial data is compactly supported in
Ω1 (cf. §2) we use a small numerical cut-off close to R, ψI(r, θ) = 0
for r ≥ R − ∆r for all angles θ, i.e. in discrete notation ψ0

j,k = 0 for
j ≥ J, k = 0, . . . , K − 1. We remark that this assumption of com-
pactly supported initial data is not essential; strategies to overcome
this restriction can be found in [20]. Since we use an offset grid, dis-
crete TBCs are implemented as described before (cf. (2.39)–(2.40))
at r = R − ∆r/2, using the grid points R and R − ∆r. A reference
solution ψ2 is calculated on the domain Ω2 = [0, 2R] × [0, 2π] with
discrete TBCs at r = 2R − ∆r/2. To determine the error due to the
PDE–scheme (1.9) we compare the numerical solution ψ2 with the
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exact one ψ on Ω1: The relative L2-error

LΩ1(ψ2, ψ, tn) =

(

∑

(rj ,θk)∈Ω1

rj |ψ2(rj , θk, tn) − ψ(rj , θk, tn)|2
)

1
2

max
tn







(

∑

(rj ,θk)∈Ω1

rj |ψ(rj , θk, tn)|2
)

1
2







,

(4.3)
is based on the norm defined in (2.5). This test includes also the error
due to the cut-off of the initial function. The effects of the boundary
should be negligible here, because the “main wave” of ψ2 does not
cross the boundary 2R during the considered time interval.

In order to distinguish between the error due to the difference
scheme and the error due to the discrete TBCs, we compare the numer-
ical solution ψ1 with the numerical reference solution ψ2 and calculate
the relative error LΩ1(ψ2, ψ1, tn) due to the boundary condition.

Discretization and Results. The solutions ψ1 and ψ2 are cal-
culated for three parameter sets. First we let J = K = 64, i.e. ∆r =
1/64, ∆θ = 2π/64 and ∆t = 1/64, then ∆r = ∆t = 1/128, ∆θ =
2π/128, and finally ∆r = ∆t = 1/256, ∆θ = 2π/256. These dis-
cretization parameters are taken from [24]. The relative error of the
initial function due to the cut–off is about O(10−6), O(10−7), O(10−7),
respectively. We present in Figure 5 the absolute value of the initial
function (4.1) and of the evolution of the numerical solution ψ1 on the
computational domain Ω1 until t = 0.5 for the last set of discretiza-
tion parameters and the potential V = 0. The Gaussian beam has
an initial momentum specified by kx = 1, ky = −1. As expected,
the beam leaves the computational domain without any unphysical
reflections at the artificial boundary. The observable broadening of
the beam (as t grows) is due to dispersive effects, which are equally
present in the exact solution (4.2). Figure 6(a) shows the relative er-
ror LΩ1(ψ2, ψ, tn) of the numerical solution ψ2 w.r.t. the exact solution
restricted on Ω1 for the three sets of parameters: The scheme is sec-
ond order in ∆r, ∆θ, ∆t. The relative error LΩ1(ψ1, ψ2, tn) due to the
boundary condition is presented in Figure 6(b) also for all sets; with
values around O(10−13) it approximately amounts to the rounding
error of Matlab.

Remark. Note that the error due to the boundary condition may in-
crease with finer t-discretizations (see Figure 6(b)), since longer dis-
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Figure 5: Absolute value (as normal/contour plots) of the initial function
((4.1) with cut-off) and the calculated solution ψ1 of the scheme (1.9) on the
computational domain Ω1 with ∆r = ∆t = 1/256, ∆θ = 2π/256, αx = αy =
0.04, and the wave numbers kx = −1, ky = 1. v = 0; a discrete TBC is
implemented at r = 1 − ∆r/2: No reflections are visible.
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Figure 6: (a): Relative error LΩ1(ψ2, ψ, tn) due to the scheme and (b): rela-
tive error LΩ1(ψ1, ψ2, tn) due to the boundary conditions. Both errors are cal-
culated for the time evolution of initial function (4.1) for the three parameter
sets with 64 (solid line), 128 (dashed line) and 256 grid points (dashed-dotted
line).
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crete convolutions have to be computed in this case. Although we have
a fine time resolution, the effect of the accumulation of round–off er-
rors in the boundary convolutions dominate and leads to the increase
of the error. The order of the error due to the boundary coincides with
the residuum of the solver for the system of linear equations. The con-
dition number of the system matrices for the three sets of parameters
are about 5 · 104, 4 · 105, 3 · 106, respectively.

Note that the error of our discrete TBC is negligible compared to
the error of the finite difference scheme in the interior. In [24], how-
ever, the truncated TBCs introduce an additional error, which seems
to be larger than the discretization error (cf. Fig. 10 in [24]).

Our next test concerns the long–time behavior of the relative er-
ror due to the discrete TBCs. Therefore we calculate the numerical
solutions ψ1, ψ2 of (1.9) for the initial data (4.1) for kx = ky = 0,
αx = αy = 0.5 on the circular domains Ω1 = [0, R]× [0, 2π] and, resp.,
Ω2 = [0, 2R] × [0, 2π] with R = 2.5 until t = 4. Since kx = ky = 0,
the beam does not travel and only spreads due to dispersion. We use
the three sets of discretization parameters ∆r = R/64, ∆θ = 2π/64;
∆r = R/128, ∆θ = 2π/128; and ∆r = R/256, ∆θ = 2π/256. For all
calculations we let ∆t = 0.01. In Figure 7 we show the relative error
LΩ1(ψ1, ψ2, tn) due to the boundary conditions for this long-time test.
Observe that in this long-time calculations the error due to the dis-
crete TBCs grows only sublinearly and is still only around O(10−13).

In a separate numerical test (presented in [41]) we also applied our
discrete TBC-approach to the example of [5] (again ψI from (4.1),
but with modified parameters kx, ky, αx, αy). Since the authors of [5]
only use (approximate) absorbing boundary conditions, their relative
error is larger than with our discrete TBC–approach.

4.2 Approximated discrete TBCs

To illustrate the sum-of-exponential ansatz we consider again the ini-
tial function (4.1) with the parameters αx = αy = 0.04 and kx =
−ky = 1. We consider the initial data (4.1) with a cut-off at R − ∆r,
which causes a relative error of the order O(10−6). With this ini-
tial data a solution ψ1 of (1.9) is calculated on the circular domain
Ω1 = [0, R] × [0, 2π] with the radius R = 1. For the discrete TBCs
we use the approximation (3.6). As a numerical reference solution we
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Figure 7: Relative error LΩ1(ψ1, ψ2, tn) due to the boundary condition for
the time evolution of initial function (4.1) with kx = ky = 0, αx = αy = 0.5
for the three parameter sets with 64 (solid line), 128 (dashed line), and 256
grid points (dashed-dotted line). The time step size equals ∆t = 0.01.
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take ψ2, which is obtained with the exact discrete TBCs (2.40) on the
larger domain [0, 2] × [0, 2π].

Discretization and Results. For the discretization parameters
∆t = 0.002, ∆r = 1/64, ∆θ = 2π/64 we evolve the solution up to
t = 0.5. In the sum-of-exponentials we choose ν = 2 in the three dif-
ferent calculations, L = 10, 20, and 40. We obtain the first 2L+ ν − 1
convolution coefficients exactly by the recursion formula (2.37) with an

initial value ℓ
(n)
J∞,m := ℓ

(n)
∞,m taken from the 1D plane case ℓ

(n)
∞,m ≡ ℓ

(n)
m

from [10] for each mode m = 0, . . . , K − 1 and sum them according to
(2.23). The sets {bl,m, ql,m}, l = 1, . . . , L needed for the calculation of

the approximated convolution coefficients s̃
(n)
m , n > 2L + ν − 1 for all

modes m are obtained by the Padé algorithm described in §3. We re-
alized these calculations by a Maple code, within which we try to find
L roots ql,m of the polynomial QL(x) as it is described in Theorem 3.1
(separately for each mode). Due to a “nearly breakdown” by ill condi-
tioned steps in the Lanczos algorithm (cf. [15]) it is not always possible
to find L roots of QL,m fulfilling the condition |ql,m| > 1, l = 1, . . . , L
for each mode m = 0, . . . , K − 1. Consequently, the Maple code au-
tomatically chooses smaller and smaller values (L − 1, L − 2, . . . ) to
guarantee that all roots have an absolute value larger than 1. E.g.,
with the initial choice L = 40 you will find values for L fulfilling the
above condition that vary from 18 to 32 for the different modes. The
number of summands L is hence just an initial guess for the final num-
ber of summands in the sum-of-exponentials, cf. Table 1.

initial L 10 20 30

‖s(n)
m − s̃

(n)
m ‖ℓ2n,m

2.75e-04 1.61e-05 1.32e-05

Lmin 5 14 14
Lmax 10 20 30

Table 1: L2–errors in the approximated coefficients s̃
(n)
m for different initial

choices of L. Lmin, Lmax are the effectively used smallest and largest numbers
of summands w.r.t. the 64 modes.

In Figure 8 we present the contour plots of the absolute value of the
solution ψ1 at time t = 0.5, calculated with the approximated discrete
TBCs with L = 10 and L = 40 terms in the sum-of-exponentials. For
L = 10 there are strong unphysical reflections (see Figure 8(a)), for
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Figure 8: Contour plots of the absolute value of the calculated solution ψ1 of
(1.9) at t = 0.5 with the initial function (4.1) on the computational domain
Ω1. We use approximated discrete TBCs with (a) L = 10 and (b) L = 40.

larger values of L these reflections become significantly smaller (see
Figure 8(b)).

The relative L2-error due to the approximated discrete TBCs is
shown in Figure 9. For different initial choices of the number of coeffi-
cients L in the sum-of-exponentials we present the error LΩ1(ψ1, ψ2, tn)

(cf. (4.3)) there. Although the coefficients s
(n)
m , s̃

(n)
m have differ-

ent asymptotic behaviors (algebraic vs. exponential decay) the error
grows only sublinearly in time. In our next test we show that long
time calculations with the approximated discrete TBCs are stable. To
this end we evolve the initial data (4.1) with αx = αy = 0.04 and
kx = ky = 0 for discretization parameters ∆t = 0.002, ∆r = 1/64,
∆θ = 2π/64 for different initial choices of the number of summands
L up to t = 20. Due to dispersion the norm of the solution decays in
time, as it is shown in Figure 10.

In [41] we applied the sum-of-exponentials approximation to an-
other numerical example and compared it to the example from [27]
(again ψI from (4.1), but with modified parameters kx, ky, αx, αy).
In [27] the authors presented a different sum-of-exponentials approxi-
mation for the convolution kernel of the TBC for the 2D Schrödinger
equation.

We remark that the sum-of-exponentials approach for discrete TBCs

32



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

relative L2−error due to the DTBCs, ∆t = 0.002, ∆r = 1/64, ∆θ = 2π /64

t
n

 

 

approximated DTBCs with L=10
approximated DTBCs with L=20
approximated DTBCs with L=40
exact DTBCs

Figure 9: Relative error LΩ1(ψ1, ψ2, tn) due to the approximated discrete
TBCs as a function of tn ∈ [0, 0.5] for the time evolution of the initial function
(4.1) for different initial choices of the number L in the sum-of-exponentials,
10 (solid line), 20 (dashed line), and 40 grid points (dashed-dotted line). The
relative error due to the exact discrete TBCs for this problem is plotted in
the dotted line.
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Figure 10: L2-norm for the long time evolution of the initial function (4.1)
with αx = αy = 0.04 and kx = ky = 0 again for different initial choices of
the number L in the sum-of-exponentials, 10 (solid line), 20 (dashed line)
and 40 grid points (dotted line). We choose the discretization parameters
∆r = 1/64, ∆θ = 2π/64, ∆t = 0.002.
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of the 1D Schrödinger equation (including the Maple code) is presented
at http://www.dtbc.de.vu.

Conclusion and future work

In this paper we extend the ideas and the fast evaluation technique of
the paper [10] to the case of a two–dimensional circular domain. We
proved a discrete energy conservation for the proposed Crank-Nicolson
type finite difference scheme. After a Z-transformation w.r.t. the time
level we considered for each angular mode a variable-coefficient Riccati
difference equation to derive the discrete TBC. Then we proposed and
proved a stable algorithm to compute the convolution coefficients for
each angular mode. We conclude with several numerical examples
illustrating that the new TBC yields accurate results.

The Laplace transformed Schrödinger equation (1.3) can be re-
garded as a Helmholtz–type equation and this type of equation can
be solved by Mathieu functions for elliptical shaped boundaries, cf.
[11, 13, 34, 35] and the references therein. Hence, it is a very inter-
esting future research direction to further generalize our approach to
ellipsoidal domains. A second challenging future work direction would
be to generalize our method to 3 space dimensions. This was done in
the case of the continuous TBC in [25]. This paper suggests that it
can be adapted more or less straightforwardly.
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Appendix: new discrete TBCs for the

1D Schrödinger equation

With a uniform spatial discretization, the Crank–Nicolson finite dif-
ference scheme for the Schrödinger equation with constant potential
V reads:

− 2i

∆t

(

ψ
(n+1)
j − ψ

(n)
j

)

=
ψ

(n+ 1
2
)

j+1 − 2ψ
(n+ 1

2
)

j + ψ
(n+ 1

2
)

j−1

∆x2
− 2V ψ

(n+ 1
2
)

j ,

j ∈ Z, n ∈ N0.

Let the index interval j = 0, . . . , J denote the computational do-
main, and abbreviate the mesh ratio by ρ := 4∆x2/∆t. Using the
Z–transform method of §2 (or [7]) one first derives the discrete TBC
for the Z–transformed variable:

ψ̂J(z) = ℓ̂(z) ψ̂J−1(z), (4.4)

with ℓ̂(z) given by (2.21), if replacing there VR by V . As before, we
choose the branch of the square root such that |ℓ(z)| ≤ 1 for z ≥ 1.
An inverse Z–transformation of (4.4) yields (similarly to [20, §3.2]):

ψ
(n)
J = ℓ(n) ∗ ψ

(n)
J−1. (4.5)

or explicitly (when assuming ψ
(0)
j = 0, j ≥ J − 1)

ψ
(n)
J − ℓ(0)ψ

(n)
J−1 =

n−1
∑

p=1

ℓ(n−p) ∗ ψ
(p)
J−1. (4.6)

Here, the convolution coefficients are given by

ℓ(n) =
[

1 + i
ρ

2
+

σ

2

]

δ0
n − iρ(−1)n +

i

2
4

√

(ρ2 + σ2)
[

ρ2 + (σ + 4)2
]

e−iϕ/2·

· e−inϕ

{

λPn(µ) + Pn−1(µ) + τ
n−1
∑

k=0

(−λ)n−kPk(µ)

}

,

(4.7)

with κ = V ∆t/2, σ = ρκ, δ the Kronecker delta, Pn the Legendre
polynomials, and P−1 ≡ 0. Here we used the following abbreviations

λ :=
ρ − 4κ − ρκ2 + 2i(ρκ + 2)
√

(1 + κ2)
[

ρ2 + (ρκ + 4)2
]

= eiϕ, with ϕ = arctan
2(ρκ + 2)

ρ − 4κ − ρκ2
.
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Moreover

µ :=
ρ(1 + κ2) + 4κ

√

(1 + κ2)
[

ρ2 + (ρκ + 4)2
]

∈ (−1, 1),

τ :=
4ρ

√

(1 + κ2)
[

ρ2 + (ρκ + 4)2
]

∈ R.

Note that the convolution in (4.5) is implemented at the grid point
J − 1, i.e. at the interior of the two boundary grid points J − 1, J .
This is in contrast to the discrete TBC in [7], which uses a convolution
on the exterior boundary grid point:

ψ
(n)
J−1 = ℓ̃(n) ∗ ψ

(n)
J .

There, the convolution coefficients ℓ̃(n) are defined with the opposite
sign in front of the fourth root of (4.7).

This slight reformulation of the discrete TBCs has an important
practical consequence: While the coefficients ℓ̃(n) are oscillatory (ℓ̃(n) ≈
2iρ(−1)n, cf. [20, S3.3]), the coefficients ℓ(n) decay like n−3/2. Hence,
this new formulation (4.5) does not require to introduce the “summed
convolution coefficients” of [7, 20].

A more refined asymptotic of the coefficients ℓ(n) is given in (2.22).
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