
Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Lehrstuhl für Angewandte Mathematik

und Numerische Mathematik

Lehrstuhl für Optimierung und Approximation

Preprint BUW-AMNA-OPAP 10/03

Markus Kaiser and Alexander Thekale

Solving nonlinear feasibility problems with expensive

functions

January 2010

http://www.math.uni-wuppertal.de

Solving nonlinear feasibility problems with

expensive functions
M. Kaiser, A. Thekale

January 11, 2010

Abstract

We present an algorithm for nonlinear feasibility problems, i.e. for systems of nonlinear equations
and nonlinear inequalities, which depend on the outcome of expensive functions. Our algorithm
combines derivative-free techniques with filter trust-region methods to keep the number of ex-
pensive function evaluations low and to obtain a robust method. Under adequate assumptions,
we show global convergence to a feasible point. Numerical results state a significant reduction in
function evaluations compared to other derivative based and derivative-free solvers for nonlinear
feasibility problems.

Keywords: feasibility problem, nonlinear system, equation, inequality, derivative-free, multidi-
mensional filter, trust-region, global convergence

1 Introduction

In this paper we intend to solve the following general feasibility problem with expensive functions:
Find a vector x ∈ R

n such that the Expensive System of nonlinear equations and inequalities

cE(x, u(x)) = 0
cI(x, u(x)) ≤ 0

(ES)

is satisfied, where u : R
n → R

m is a sufficiently smooth expensive function and cE : R
n+m → R

p

and cI : R
n+m → R

q are sufficiently smooth cheap functions. In our context, we call a function
expensive, if its evaluation is rather costly in some sense and plays the major role in the solution
cost of the system (ES). A function is called cheap if the cost of its evaluation is negligible. In
order to find a solution of (ES), we use the following well known reformulation to a nonlinear
least-squares problem. We try to find a local minimizer x ∈ R

n of the nonlinear unconstrained
problem (see, e.g., [17]):

min
x

f(x, u(x)) =
1

2
‖ϑ(x, u(x))‖2

2 (1)

where we define

ϑ(x, u(x)) :=

(

cE(x, u(x))

[cI(x, u(x))]+

)

∈ R
p+q (2)

1

with [cI(x, u(x))]+ := max[0, cI(x, u(x))] as the violation of the equations and inequalities, respec-
tively.

Feasibility problems occur in many different applications, e.g. as discretized nonlinear partial
differential equations [31] or in the restoration phase of filter methods for nonlinear optimization
[10]. A large number of algorithms have been developed to solve this general type of problem or
related types of problems as nonlinear systems of equations and nonlinear least-squares problems
based on, e.g. Newton methods [24, 29], trust-region methods [7, 12, 17, 21] or evolutionary
algorithms [19]. For a survey of algorithms for nonlinear systems of equations, see also [22]. Espe-
cially in engineering, these systems are often modeled using the outcome of an expensive function,
e.g. a simulation. The evaluation of these expensive functions is often very time consuming and
derivative information cannot be provided. Thus, derivative-free methods are sometimes applied
for solving such systems, see, e.g. [28] for a pattern search method for solving nonlinear equation
systems. The aim of this paper is to construct a globally convergent method for solving nonlinear
feasibility problems. It is based on and extends the filter trust-region algorithm FILTRANE [17]
to problems with expensive functions using derivative-free techniques for the expensive function,
which can mainly be found in [4, 6]. Therefore, our method is a hybrid method using derivative-
based techniques as well as derivative-free ones.
This paper is organized as follows: In Section 2 we describe the general framework of the filter-
trust-region algorithm we propose for solving (ES). Under appropriate assumptions, we show its
convergence to a local first-order critical point in Section 3. A very important step within our
method is the determination of a trial point, which we describe in Section 4. In Section 5, we give
promising numerical results and compare our method to FILTRANE [17] and a pattern search
method for nonlinear systems of equations [28]. Finally, concluding remarks are given in Section
6.

2 An algorithm for nonlinear feasibility problems with ex-

pensive functions

2.1 The general setting of the algorithm

The main idea of our algorithm is to solve (ES) by iteratively solving a sequence of Cheap Systems
(CSk) of nonlinear equations and inequalities in a trust-region framework where, in iteration k,
the expensive function u is replaced by a cheap model function mu

k : R
n → R

m. We denote the
iterates generated by this sequence with xk and restrict the analysis to the case where, if necessary,
mu

k is a valid model of u in a neighborhood of xk given by

Q(xk, δk) := {x ∈ R
n : ‖x − xk‖∞ ≤ δk}

for some δk > 0. In our situation, validity means that mu
k satisfies the following assumption:

Assumption 1 (Validity of model mu
k)

The model mu
k coincides with u in xk, i.e.,

mu
k(xk) = u(xk)

2

and the following error bounds hold for some constants κu > 0, κgu > 0:

‖u(x) − mu
k(x)‖2 ≤ κuδ

2
k (3)

‖∇xu(x) −∇xm
u
k(x)‖2 ≤ κguδk (4)

for all x ∈ Q(xk, δk), where ‖ · ‖2 is the spectral norm in (4).

Note that the assumption mu
k(xk) = u(xk) could also be omitted but significantly facilitates the

subsequent analysis. Similarly, (4) could alternatively be derived from (3), see [4] for more details.
For an explicit derivation of a model satisfying Assumption 1 we refer to [5, 6]. In our method,
the following two assumptions are necessary to guarantee that it is always possible to have access
to a model satisfying Assumption 1 whenever we need it (see, e.g. [1, 4]):

Assumption 2 (Checking validity)
The validity of mu

k in Q(xk, δk) can be checked at each iteration and for any value of δk > 0, if
required.

Assumption 3 (Guaranteeing validity)
The model mu

k can be made valid in Q(xk, δk) in a finite number of model improvement steps for
any k and any δk > 0.

Having the local model at hand, problem (CSk) can be formulated as follows:

cE(x, mu
k(x)) = 0

cI(x, mu
k(x)) ≤ 0

x ∈ Q(xk, δk).
(CSk)

The unconstrained problem (1) is then replaced by the box constrained problem

min
x

f(x, mu
k(x)) = 1

2
‖ϑ(x, mu

k(x))‖2
2

s.t. x ∈ Q(xk, δk).
(5)

In order to decide if a trial point x+
k , i.e. a point that occurred during the attempt to solve

(CSk) and that seems to be probably useful for the progress of the iterative procedure, is suitable
to be the next iterate xk+1, we consider, beside the trust-region mechanism, the concept of a
multidimensional filter. This is a variant of the well known filter method introduced in [11],
adapted for feasibility problems. We will summarize the idea in the following and refer to [12] for
more details. A filter is based on the idea of dominance, which is borrowed (and modified) from
multicriteria optimization. In our context, we say that an iterate xk1

dominates an iterate xk2

whenever
|ϑi(xk1

, u(xk1
))| ≤ |ϑi(xk2

, u(xk2
))| for all i ∈ {1, . . . , p + q}.

Based on this idea, we define the set Fu as a list of vectors of dimension (p + q) of the form
‖ϑ(xl, u(xl))‖ := (|ϑ1(xl, u(xl))| , . . . , |ϑp+q(xl, u(xl))|) where l ∈ {1, . . . , k} such that no entry is
dominated by another entry, i.e.

|ϑi(xk1
, u(xk1

))| < |ϑi(xk2
, u(xk2

))| for at least one i ∈ {1, . . . , p + q}

3

holds for all ϑ(xk1
, u(xk2

)), ϑ(xk2
, u(xk2

)) ∈ Fu and k1 6= k2. The set Fu is called multidimensional
filter. Based on Fu, we can now state the following acceptance criterion for the trial point x+

k : x+
k

is acceptable for the filter Fu if and only if for all ‖ϑ(xl, u(xl))‖ ∈ Fu holds:

∃i ∈ {1, . . . , p + q}
∣

∣ϑi(x
+
k , u(x+

k))
∣

∣ ≤ |ϑi(xl, u(xl))| − γθ min(
∣

∣ϑ(x+
k , u(x+

k))
∣

∣ , |ϑ(xl, u(xl))|)

where γθ ∈ (0, 1√
p+q

). If x+
k is not only an acceptable trial point, but is also added to the filter

by the method presented in this paper, every dominated filter entry must be removed. The use
of this filter technique introduces an additional criterion to accept new iterates and therewith the
availability of more potentially suitable iterates.

2.2 On the computation of the trial point

The problems (CSk) are now standard nonlinear systems of equations and inequalities which can be
solved cheaply compared to an evaluation of the expensive function, see Section 4. In comparison
to standard trust-region methods we do not require for the trial point x+

k that

x+
k ∈ Q(xk, δk) (6)

holds in every iteration k, where x+
k is the outcome of some trial point generating subroutine. An

example for such a subroutine will be discussed in Section 4. x+
k shall give a good candidate point

that helps to find a solution of (ES). In many cases, x+
k is the solution of the nonlinear systems of

equations and inequalities (CSk), see Section 4. To state if (6) shall hold or not, we introduce the
label RESTRICT which is set to ′true′ if (6) is required and to ′false′ if not, see also [12]. The
advantage of this strategy is to allow trial points outside the current trust-region if the model mu

k

is assumed to be good in a bigger region than the current trust-region to hopefully converge faster
to a solution of (ES). Note that this is an alternative strategy to the one used in FILTRANE [17],
but this does not affect the theoretical properties of the method.
For the convergence analysis of our method which we present in this paper, we try to ensure that,
as usual in trust-region methods, x+

k satisfies the following sufficient model reduction condition in
every iteration k:

f(xk, m
u
k(xk)) − f(x+

k , mu
k(x

+
k)) ≥ κmdcδ‖gk‖2 min

(‖gk‖2

βk
, δk

)

(7)

where gk := ∇f(xk, m
u
k(xk)), βk is an upper bound on the norm of the Hessian of f(x, mu

k(x)) in
Q(xk, δk) and κmdcδ is a constant in (0, 1). Note that (7) is different from the standard sufficient
model reduction condition since the right hand side depends on the norm of the gradient of the
nonlinear cheap function f(x, mu

k(x)) and not, as usual, of the gradient of the original expensive
function f(x, u(x)).

2.3 The algorithm

Now we can state our algorithm to determine the solution of (1).

4

Algorithm 1 Multidimensional filter algorithm with expensive functions
Step 0: (Initialization) An initial point x0 and an initial trust-region radius δ0 = δref > 0
are given as well as the constants mentioned below. Compute c0 = c(x0, u(x0)), ϑ0 and an initial
model mu

0 of u. Set k = 0, RESTRICT=false, and the initial filter Fu to the empty set.
Step 1: (Optimality test) STOP if ϑ(xk, u(xk)) = 0 or ‖gk‖2 < εend for a valid model mu

k in
Qk(xk, δend) for some δend ∈ (0, µ‖gk‖2].
If mu

k is not valid in Qk(xk, µ‖gk‖2), perform as many improvement steps as necessary to ensure
that the updated model is valid in Qk(xk, αµ‖gk‖2) and return to the beginning of Step 1.
Step 2: (Trial point determination) Try to compute a trial point x+

k satisfying (7) and, if
RESTRICT = true, also satisfying (6). If this is impossible, set xk+1 = xk, RESTRICT = true,
δk+1 = γ0δk, perform model improvement steps, define mk+1 as the improved model and go to Step
1.
Step 3: (Evaluation of the residual at the trial point) Compute u(x+

k), cE(x
+
k , u(x+

k)) and
cI(x

+
k , u(x+

k)). Define

ρk =
f(xk, u(xk)) − f(x+

k , u(x+
k))

f(xk, m
u
k(xk)) − f(x+

k , mu
k(x

+
k))

. (8)

If ρk ≥ η1 then define Xk = {x+
k }, else Xk = {xk}.

Step 4: (Model improvement) If ρk < η2 and mu
k is invalid in Q(xk, δk), perform model im-

provement steps, possibly enlarging Xk by adding the newly evaluated points from the improvement
steps, and define mu

k+1 as the improved model.
Step 5: (New trial point determination) Determine x̂k ∈ Xk such that

f(x̂k, u(x̂k)) = min
x∈Xk

f(x, u(x))

and set ϑ̂k := ϑ(x̂k) and define

ρ̂k =
f(xk, u(xk)) − f(x̂k, u(x̂k))

f(xk, m
u
k(xk)) − f(x+

k , mu
k(x

+
k))

. (9)

Step 6: (Acceptance test)

• If (6) holds for x̂k and ρ̂k ≥ η1:
set xk+1 = x̂k and RESTRICT=false.

• Elseif x̂k is acceptable for the current filter Fu:
set xk+1 = x̂k, RESTRICT=false and add ϑ̂k to Fu.

• Else:
set xk+1 = xk and RESTRICT=true.

Step 7: (Trust-region radius update) If (6) holds, set δref = δk if ρ̂k ≥ η1 or if mu
k is valid

in Q(xk, δk) and update the trust-region radius by choosing

δk+1 ∈







[γ0δref , γ1δref] if ρ̂k < η1

[γ1δref , δref] if ρ̂k ∈ [η1, η2)
[δref , γ2δref] if ρ̂k ≥ η2;

otherwise, set δk+1 = δk. Increment k by one and go to Step 1.

5

Figure 1: Illustration of the decision scheme (Step 6) in Algorithm 1

In the initialitation, we use the constants 0 < γ0 ≤ γ1 < 1 ≤ γ2, γϑ ∈
(

0, 1√
p+q

)

, 0 < η1 < η2 < 1,

µ > 0, εend > 0 and α ∈ (0, 1). A reasonable choice for these parameters is γ0 = 0.1, γ1 = 0.25,
γ2 = 7.5, γϑ = 10−4, η1 = 0.2, η2 = 0.9, µ = 0.5, εend = 10−6 and α = 0.9.
Some further comments on Algorithm 1 are necessary. The criticality test in Step 1 causes problems
if ‖gk‖2 = 0 since in this situation Q(xk, δend) degenerates to {xk} and it is impossible to build
a valid model. Therefore, the model should be chosen in a very small region around xk if this
situation occurs. For the convergence theory it is assumed that Q(xk, δend) can be arbitrarily
small.
In Step 2, we try to compute a trial point x+

k satisfying (7) with some appropriate subroutine.
An example if such a method satisfying the assumptions needed for our convergence analysis (see
Section 3) is presented in Section 4. If this method does not succeed to determine a trial point
satisfying (7) in iteration k (this may happen, for example, if mu

k represents u very badly), we call
iteration k a failure iteration. The set of all failure iterations is denoted by F .
The acceptance test in Step 6 is stated differently from the one in FILTRANE [17], as it gives, in
our opinion, a better insight in this step, see also Figure 1.
Using δref in the trust-region update (Step 7) ensures that the trust-region radius does not reduce
too fast if the model is invalid. Otherwise, the algorithm could be trapped in a small trust-region
at the time when the model is valid again, and relatively many iterations would be needed to
proceed. See also the comments after Algorithm 9.1.1 in [4].

3 Convergence analysis

We now investigate the convergence properties of Algorithm 1. In addition to the assumptions
we made on the model mu

k of the expensive function (Assumption 1, 2 and 3), we assume the
following:

Assumption 4 (Functions)
u(x) is a twice continuously differentiable function in x, cE(x, u(x)) and cI(x, u(x)) are twice
continuously differentiable functions in x and u(x). The functions u(x), mu

k(x), cE(x, u(x)),

6

cI(x, u(x)),
∇cE(x, u(x)) := ∇xcE(x, u(x)) + ∇ucE(x, u(x))∇xu(x)

and
∇cI(x, u(x)) := ∇xcI(x, u(x)) + ∇ucI(x, u(x))∇xu(x)

are Lipschitz continuous with Lipschitz constant γl > 0 and bounded from above by a constant
γb > 0.

Assumption 5 (Iterates)
All points that are evaluated remain in a bounded domain Ω ⊂ R

n.

Assumption 6 (Model continuity)
The model mu

k is twice continuously differentiable in x for all k.

Assumption 7 (Method determining the trial point)
For all ε > 0 there exists an εmdc > 0 such that, if ‖gk‖2 > ε and δk ≤ εmdc hold, the trial point
x+

k determined in Step 2 of Algorithm 1 satisfies (7), i.e. k /∈ F .

Note that Assumptions 2 and 3 imply that the validity test in Steps 1, 2 and 4 of Algorithm 1 is
always possible and that, whenever a model improvement is necessary, no infinite loop is produced
by the algorithm.
Also note that Assumptions 4 and 5 directly imply that we can assume the Hessian of f(x, u(x))
to be bounded from above in the convex hull of the iterates {xk}, i.e. there exists a constant
κufh ≥ 1 such that

1 + ‖∇2f(x, u(x))‖2 ≤ κufh.

Assumption 7 is not common for trust-region methods and its satisfaction is not obvious. How to
satisfy this assumption will be discussed in Section 4.
In the first step of our convergence analysis, we consider the case where infinitely many values
ϑk := ϑ(xk, u(xk)) are added to the filter Fu. Here, we can directly adopt the result of Theorem
3.1 in [12], with adapted notation, as it is independent of the definition of ϑ:

Lemma 1 (Theorem 3.1 in [12]) Suppose that Assumptions 4, 5 and 6 hold and that infinitely
many values of ϑk are added to the filter by Algorithm 1. Then

lim
k→∞

i∈E∪I

‖ϑi(xk, u(xk))‖2 = lim
k→∞

‖∇f(xk, u(xk))‖2 = 0.

We now proceed our analysis analogue to the convergence theory of the derivative-free trust-region
method presented in Chapter 9.2 in [4] but with some modifications in the proofs needed because
of the composite structure of (1) and the usage of the label RESTRICT . First we investigate
the error between the expensive objective function in (1) and the objective in the cheap model
problem (5) as well as between the corresponding gradients at a given point x ∈ Q(xk, δk).

7

Lemma 2 Suppose that Assumptions 1-6 hold. Then

|f(x, u(x)) − f(x, mu
k(x))| ≤ κubhδ

2
k (10)

‖∇f(x, u(x)) −∇f(x, mu
k(x))‖2 ≤ κubh max[δk, δ

2
k] (11)

hold for all x ∈ Q(xk, δk) where

κubh := max[2γbγlκu, (p + q)γb (2γlκu + γbκgu + γbγlκu) , κufh].

Proof: We first prove (10). Using sequently the definition of f and ϑ, the binomial theorem,
Assumption 4 and the triangle inequality, we obtain

|f(x, u(x)) − f(x, mu
k(x))| =

1

2

∣

∣

∣

∣

‖ϑ(x, u(x))‖2
2 − ‖ϑ(x, mu

k(x))‖2
2

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

‖cE(x, u(x))‖2
2 − ‖cE(x, mu

k(x))‖2
2

+‖[cI(x, u(x))]+‖2
2 − ‖[cI(x, mu

k(x))]+‖2
2

∣

∣

∣

∣

≤ 1

2
· 2γb

∣

∣

∣

∣

‖cE(x, u(x)) − cE(x, mu
k(x))‖2

+‖[cI(x, u(x))]+ − [cI(x, mu
k(x))]+‖2

∣

∣

∣

∣

Then, case differentiation for the second term and Assumptions 4 and 1 yield directly

|f(x, u(x)) − f(x, mu
k(x))| ≤ 2γbγl‖u(x) − mu

k(x)‖2

≤ 2γbγlκguδ
2
k.

To prove (11), we first state that

∇f(x, u(x)) =

p
∑

i=1

cEi(x, u(x))∇cEi(x, u(x)) +

q
∑

i=1

[cIi(x, u(x))]+∇cIi(x, u(x)).

This yields

‖∇f(x, u(x)) −∇f(x, mu
k(x))‖2

≤
p

∑

i=1

‖cEi(x, u(x))∇cEi(x, u(x)) − cEi(x, mu
k(x))∇cEi(x, mu

k(x))‖2

+

q
∑

i=1

‖[cIi(x, u(x))]+∇cIi(x, u(x)) − [cIi(x, mu
k(x))]+∇cIi(x, mu

k(x))‖2

≤
p

∑

i=1

[|cEi(x, u(x))|‖∇cEi(x, u(x)) −∇cEi(x, mu
k(x))‖2

8

+|cEi(x, u(x)) − cEi(x, mu
k(x))|‖∇cEi(x, mu

k(x))‖2]

+

q
∑

i=1

[|[cIi(x, u(x))]+|‖∇cIi(x, u(x)) −∇cIi(x, mu
k(x))‖2

+|[cIi(x, u(x))]+ − [cIi(x, mu
k(x))]+|‖∇cIi(x, mu

k(x))‖2] .

Using the definition of ∇cE(x, u(x)) and ∇cI(x, u(x)) and the constants in Assumption 4 as well
as the triangle inequality, we obtain

‖∇f(x, u(x)) −∇f(x, mu
k(x))‖2

≤ γb

p
∑

i=1

[‖∇xcEi(x, u(x)) −∇xcEi(x, mu
k(x))‖2

+‖∇ucEi(x, u(x))∇xu(x) −∇ucEi(x, mu
k(x))∇xm

u
k(x)‖2 + γl‖u(x) − mu

k(x)‖2]

+γb

q
∑

i=1

[‖∇xcIi(x, u(x)) −∇xcIi(x, mu
k(x))‖2

+‖∇ucIi(x, u(x))∇xu(x) −∇ucIi(x, mu
k(x))∇xm

u
k(x)‖2 + γl‖u(x) − mu

k(x)‖2]

≤ γb

p
∑

i=1

[2γl‖u(x) − mu
k(x)‖2 + ‖∇ucEi(x, u(x))∇xu(x) −∇ucEi(x, u(x))∇xm

u
k(x)‖2

+‖∇ucEi(x, u(x))∇xm
u
k(x) −∇ucEi(x, mu

k(x))∇xm
u
k(x)‖2]

γb

q
∑

i=1

[2γl‖u(x) − mu
k(x)‖2 + ‖∇ucIi(x, u(x))∇xu(x) −∇ucIi(x, u(x))∇xm

u
k(x)‖2

+‖∇ucIi(x, u(x))∇xm
u
k(x) −∇ucIi(x, mu

k(x))∇xm
u
k(x)‖2]

≤ γb

p
∑

i=1

[

2γlκuδ
2
k + γb‖∇xu(x) −∇xm

u
k(x)‖2 + γb‖∇ucEi(x, u(x)) −∇ucEi(x, mu

k(x))‖2

]

+γb

q
∑

i=1

[

2γlκuδ
2
k + γb‖∇xu(x) −∇xm

u
k(x)‖2 + γb‖∇ucIi(x, u(x)) −∇ucIi(x, mu

k(x))‖2

]

≤ (p + q)γb

(

2γlκuδ
2
k + γbκguδk + γbγl‖u(x) − mu

k(x)‖2

)

≤ (p + q)γb (2γlκu + γbκgu + γbγlκu) max[δk, δ
2
k].

2

The following lemma shows that the trust-region radius δk is bounded away from zero if gk is
also bounded away from zero. This is important since otherwise the algorithm can get stuck in a
non-critical iterate.

Lemma 3 (Theorem 9.2.1 in [4]) Suppose that Assumptions 1-7 hold. Suppose furthermore
that there exists an ε > 0 such that ‖gk‖2 > ε for all k. Then

δk ≥ γ2
1 min

[

κmdcδε(1 − η2)

κubh
, εmdc

]

=: κlbd

9

for all k.

Proof: As ‖gk‖2 > ε and δk ≤ εmdc, Assumption 7 guarantees that x+
k exists and satisfies (7).

Now, the desired result follows analogue to the proof of Theorem 9.2.1 in [4] with adapted nota-
tion. 2

Now we can directly state the final convergence result from Section 9.2 in [4]. But due to the
usage of the label RESTRICT, we have to ensure, in addition,

‖x+
k − xk‖2 ≤ κδδk for all k ≥ k0 (12)

for some k0 > 0 and some large constant κδ ≥ 1, see the discussion for the convergence analysis
presented in Section 3 in [12] for a detailed explanation of this necessity. This condition ensures
the global convergence of the algorithm as (12) plays the role of a trust-region bound in a larger
trust-region with radius κδδk. We thus have

Lemma 4 (Theorem 9.2.6 in [4]) Suppose that Assumptions 1-7 as well as (12) hold. Then
every limit point x∗ of the sequence {xk} is first-order critical, that is, ∇f(x∗, u(x∗)) = 0.

Combining this with Lemma 1 yields directly our final convergence result:

Theorem 1 Suppose that Assumptions 1-7 as well as (12) hold. Then every limit point x∗ of
the sequence {xk} is first-order critical, that is, ∇f(x∗, u(x∗)) = 0. Moreover, if infinitely many
values are added to the filter, then we have that limk→∞ ‖ϑ(xk, u(xk))‖2 = 0.

4 Computing the trial point

In this section we concentrate on the question how to determine a trial point x+
k in Step 2 of

Algorithm 1 that satisfies Assumption 7. In standard trust-region methods, the model that sub-
stitutes the true objective function is usually a rather simple, in many cases quadratic model of
the objective function in the unconstrained case (see, e.g. Chapter 6 in [4]) or of the Lagrangian
in the constrained case (see, e.g. [10]). The main advantage of these ’easy’ models is the existence
of highly specialized subproblem solvers directly constructed to determine a new trial point that
automatically satisfies a sufficient model decrease condition analogous to (7), see, e.g. Chapter
6.3 in [4]. For trust-region subproblem solvers for quadratic models see, e.g. [4, 9, 13, 25].
In our case, the trust-region subproblem (CSk) is ’easy’ compared to the original problem (ES)
in the sense that function evaluations are fast and derivative information is accessible and there-
fore also the determination of the trial point is rather fast. Modeling the subproblem as general
nonlinear feasibility problem (CSk) as shown in Section 2 maintains all the information that is
available and thus solves the problem with less expensive function evaluations, which is practically
shown in Section 5. But since the problems (CSk) are still arbitrarily nonlinear, (7) cannot be
guaranteed in general. Even the model minimizer, the global solution of (5), does not satisfy a
sufficient model decrease condition in all situations. Nevertheless, it is usually a good candidate
as it predicts the best reduction of f within the current trust-region Q. Thus, we try to generate

10

this model minimizer and apply a method in Step 2 of Algorithm 1 that shall solve (5). But
due to the problems in guaranteeing (7), we have to add an additional criterion to this method.
This criterion will be described in the following and is strongly connected to the solver we use
for the trust-region subproblem. Depending on a the particular problem, different subproblem
solvers might be reasonable, but to use again a convergent trust-region method for this solver
bears a major advantage: The trial points generated within this method satisfy a sufficient model
decrease condition in the model used inside this method. In the following, we will call this inner
model q as it will usually be a quadratic model in practice. Our main idea now is to link this
internal sufficient model decrease with the model decrease we need in Step 2 of Algorithm 1. To
be able to describe this, we need some further notation. We denote the iterates generated within
our trust-region subproblem solver by ykp and the trial points with y+

kp with double indices kp,
where k denotes the iteration in Algorithm 1 and p the current iteration within the subproblem
solver. The according trust-region radii are called ∆kp and the corresponding trust-region is given
by

Bkp(ykp, ∆kp) := {y ∈ R
n : ‖y − ykp‖∞ ≤ ∆kp} .

Now we require a sufficient model decrease in iteration kp for the trial point y+
kp in the subproblem

solver in the corresponding model qkp, i.e.

qkp(ykp) − qkp(y
+
kp) ≥ κmdcπ(ykp) min

(

π(ykp)

βkp
, ∆kp

)

(13)

where βkp is an upper bound on the norm of the Hessian of qkp in B(ykp, ∆kp), κmdc is a constant
in (0, 1) and π(ykp) is some criticality measure at ykp. For criticality measures see, e.g. Chapter 8
in [4]. Our criterion which decides if the outcome ȳ of the subproblem solver is accepted as trial
point x+

k is then as follows:

Acceptance test 1 We accept ȳ as new trial point x+
k if and only if

f(xk, m
u
k(xk)) − f(ȳ, mu

k(ȳ))

qk0(yk0) − qk0(y
+
k0)

≥ κδ∆ (14)

for some κδ∆ ∈ (0, η2]. Otherwise, we denote k as failure iteration, e.g. k ∈ F .

Thus, (14) guarantees that the model reduction in the cheap nonlinear objective function of (5)
at the trial point is at least a fraction of the predicted model decrease in the first iteration of the
subproblem solver. To guarantee the desired sufficient model decrease (7), we need the following
assumptions on the initialization of the subproblem solver.

Assumption 8 (Initialization of the subproblem solver)

• The subproblem solver is initialized with trust-region radius ∆k0 = δk and starting point
yk0 = xk.

• βk is sufficiently large such that it is also an upper bound of the Hessian of qk0, e.g. βk0 ≤ βk.

11

• For the criticality measure π holds

π(yk0) ≥ κπ‖gk‖2 (15)

for all k and a constant κπ > 0 independent of k.

These assumptions form a reasonable initialization of the subproblem solver and can be guaranteed
very easily since usually convergence theory of trust-region methods is independent of the choice
of the initial starting point and the initial trust-region radius. The requirement that (15) can be
satisfied, for example, if the criticality measure is defined gradient dependent. The subproblem
solver we state below satisfies this assumption.
Note that, in the context of multiscale methods, (15) is similar to a criterion that decides if it is
reasonable to switch to a coarser level or not, see, e.g., [18].
Now, the following corollary shows directly the desired sufficient model decrease (7) for any point
passing Acceptance test 1.

Corollary 1 Suppose that the subproblem solver satisfies (13) in iteration kp and that Assumption
8 holds. Then, every point ȳ that passes Acceptance test 1 satisfies (7).

Proof: Applying sequently (14), (13) and Assumption 8 leads to

f(xk, m
u
k(xk)) − f(ȳ, mu

k(ȳ)) ≥ κδ∆(qk0(yk0) − qk0(y
+
k0))

≥ κδ∆κmdcπ(yk0) min

(

π(yk0)

βk0
, ∆k0

)

≥ κmdcδ‖gk‖2 min

(‖gk‖2

βk
, δk

)

with κmdcδ := κ2
πκδ∆κmdc. 2

Now we can formulate our algorithm for the determination of the trial point x+
k in iteration k of

Algorithm 1:

Algorithm 2 Trying to determine the trial point in Step 2 of Algorithm 1
Step 1: (Solving the cheap problem) Solve Problem (5) using a trust-region method satisfying
(13) in every iteration and Assumption 8. Let Y := {ykp | ykp 6= ykp−1} be the set of non-identic
iterates produced by this trust-region method. Save qk0(yk0) and qk0(y

+
k0).

Step 2: (Trial point) Choose ȳ ∈ Y such that Acceptance test 1 is satisfied. Denote x+
k := ȳ

as trial point. If the acceptance test fails for all ykp ∈ Y, set iteration k as failure iteration, i.e.
k ∈ F .

If there are several points in Y satisfying Acceptance test 1, the theory does not specify here which
one to choose. But in practice, a point close to the solution of the cheap problem (5) is preferred
as it represents the model minimizer. To complete our discussion on how to determine the trial
point, we finally have to assure that the trust-region method applied in Step 1 of Algorithm 2
generates at least one ȳ ∈ Y that passes Acceptance test 1 if we are in the situation of Assumption

12

7, i.e. the gradient gk is still large and the trust-region radius δk is sufficiently small. In our case,
this will follow directly from the convergence analysis of the trust-region method we use in Step
1 of Algorithm 2.

To solve the nonlinear box-constrained problems (5), we apply again a filter trust-region method
as presented in [30], which is based on [16] for unconstrained problems. This method is also
based on the multidimensional filter which we have described in Section 2.1 and solves the general
nonlinear box-constrained problem

min
y

f(y)

s.t. l ≤ y ≤ u,
(16)

where l = (l1, . . . , ln)⊤ ∈ R
n ∪ {−∞} and u = (u1, . . . , un)⊤ ∈ R

n ∪ {+∞} are lower and upper
bounds on the variable y, respectively. Without loss of generality, we assume li < ui for i =
1, . . . , n.
In the context of Algorithm 1, we have to distinguish between two cases. If RESTRICT is ′true′

in iteration k of Algorithm 1, the box constraints are given by Q(xk, δk) and we have

li = (xk)i − δk and ui = (xk)i + δk

where (xk)i denotes the i-th component of xk for i = 1, . . . , n. If RESTRICT is ′false′, Problem
(5) is unconstrained and we set

li = −∞ and ui = +∞

for i = 1, . . . , n. In the unconstrained case, the direct application of, e.g. FILTRANE, see [17],
is also possible. This does not change the discussion below, but, for the sake of simplicity, we
describe the use of the box-constrained method [30] for both cases here.
We first check if the method we have chosen satisfies the assumptions of Corollary 1. Important
for this is the definition of the criticality measure π used in [30]:

π(y) := ‖ḡ(y)‖∞,

where ḡ(y) is the projected gradient (see e.g. [2, 3, 20, 23, 26]) of the objective function f(y, mu
k(y))

into the feasible box of (16). ḡ(y) is given by

ḡ(y) := y − P [y −∇f(y, mu
k(y)), l, u],

where the projection operator P [y, l, u] is defined componentwise by

P [y, l, u]i =







li if yi ≤ li
yi if li ≤ yi ≤ ui

ui if ui ≤ yi,

see [30]. Note that this method uses the projection operator such that all iterates ykp stay feasible,
i.e. ykp ∈ Q(xk, δk) in our situation. If we initialize our subproblem solver with ∆k0 = δk and
yk0 = xk as required in Assumption 8, we get

π(yk0) = ‖∇f(yk0, m
u
k(yk0))‖∞ = ‖gk‖∞.

13

As ‖gk‖∞ ≥ n−1/2‖gk‖2, Assumption 8 is satisfied with κπ := n−1/2. Note that κπ is therefore
problem dependent. (13) is also assumed in the convergence analysis in [30] and can be guaranteed
as described above. Therefore, the assumptions of Corollary 1 hold.
To finally show that also Assumption 7 holds, i.e. the subproblem solver produces an iterate in
Y that passes Acceptance test 1 if ‖gk‖2 is large and δk is sufficiently small, we use the following
lemma from the convergence theory of the subproblem solver presented in [30]:

Lemma 5 (Lemma 3.3 in [30]) Suppose that Assumptions 4 and 5 hold, there exists a constant
κumh > 0 such that

|f(y+
kp, m

u
k(y

+
kp)) − qkp(y

+
kp)| ≤ κumh∆

2
kp (17)

and that ‖ykp − y+
kp‖∞ ≤ ∆kp. Suppose furthermore that ‖ḡ(ykp)‖∞ 6= 0 and that

∆kp ≤
κmdcπ(ykp)(1 − η2)

κumh

. (18)

Then we have that iteration kp is very successful, e.g. ρkp ≥ η2 and ∆kp+1 ≥ ∆kp.

The existence of κumh satisfying (17) follows under standard trust-region assumptions, see the
Assumptions A1-A3 and Lemma 3.2 in [30]. This is the analogous statement for the subproblem
solver like Lemma 2 in our framework. The following theorem guarantees now that Algorithm 2
satisfies Assumption 7 if we use the described subproblem solver:

Theorem 2 Suppose that Assumption 4, 5 and 8 hold. Suppose that we apply the algorithm in
[30] as subproblem solver in Algorithm 2 and that (17) and (13) are satisfied in iteration kp.
Suppose furthermore that ‖gk‖2 > ε and

δk ≤ κmdcε(1 − η2)√
nκumh

=: εmdc.

Then Assumption 7 is satisfied for iteration k.

Proof: By the assumptions, the assumptions of Lemma 5 are satisfied in iteration k0 as

‖ḡk0‖∞ = ‖gk0‖∞ ≥ n−1/2‖gk0‖2 ≥ n−1/2ε > 0

and

∆k0 = δk ≤ κmdcε(1 − η2)√
nκumh

≤ κmdc‖gk‖2(1 − η2)√
nκumh

≤ κmdc‖gk‖∞(1 − η2)

κumh

≤ κmdcπ(yk0)(1 − η2)

κumh

.

Therefore, iteration k0 is very successful, we accept y+
k0 setting yk1 := y+

k0 ∈ Y , and yk1 passes
Acceptance test 1, as ρk0 ≥ η2. Thus, Algorithm 2 produces a trial point x+

k . As our assumptions
satisfy in addition the assumptions of Corollary 1, x+

k also satisfies (7). 2

14

5 Numerical results

5.1 Set-up and test properties

In this section, we test the practical behavior of Algorithm 1. We have implemented our algorithm
in Matlab and call this implementation EFNES1 in the following. For a comparison to existing
algorithms, we apply EFNES to a set of 54 test problems, which were originally a subset of the
CUTEr collection [14], but had to be modified to simulate the existence of one or more expensive
functions. Therefore, we define some parts of the nonlinear systems to be expensive. We made
these definitions in various and quite arbitrary ways.

Example Var. Eq. Ineq. Ex.func. Example Var. Eq. Ineq. Ex.func.

Aircrfta 5 5 0 4-P-O Eigena* 110 55 55 55-P-O
Argauss 3 15 0 15-E-A Eigenb* 6 3 3 3-P-O
Arglale* 10 10 10 20-P-C Eigenc 30 30 0 1-P-O
Arglble* 50 1 99 100-P-C Gottfr 2 2 0 2-P-E
Arglcle 10 19 0 18-P-C Growth* 3 1 11 2-L-O
Argtrig* 10 10 0 10-T-A Hatfldf 3 3 0 3-EP-E
Artif* 10 0 10 10-T-A Hatfldg 25 25 0 10-P-E
Arwhdne* 10 9 9 9-P-E Himmelba 2 2 0 2-P-C
Bdvalue 10 10 0 6-P-O Himmelbc 2 2 0 2-P-O
Bdvalues 10 10 0 3-P-O Himmelbd 2 2 0 2-P-O
Booth 2 2 0 2-P-C Himmelbe 3 3 0 2-P-C
Bratu2d 25 25 0 25-E-A Hypcir 2 2 0 2-P-C
Bratu2dt 25 25 0 25-E-A Integreq 10 10 0 3-P-O
Bratu3d 27 27 0 27-E-A Msqrta 4 4 0 4-P-O
Brownale 10 10 0 1-P-E Msqrtb 9 9 0 9-P-O
Broydn3d 10 10 0 8-P-O Pfit1* 3 2 1 1-X-O
Broydnbd 10 10 0 3-P-O Pfit2 3 3 0 1-X-O
Cbratu2d 8 8 0 4-ET-O Pfit3 3 3 0 1-P-O
Cbratu3d 16 16 0 8-ET-O Pfit4 3 3 0 1-X-O
Chandheq 10 10 0 2-P-E Powellbs 2 2 0 2-PX-C
Chemrcta 10 10 0 4-P-E Powellsq 2 2 0 2-PH-C
Chemrctb* 10 6 4 8-E-O Recipe 3 3 0 3-PH-C
Chnrsbne 10 18 0 5-P-E Rsnbrne 2 2 0 2-P-C
Cluster 2 2 0 2-PT-E Semicon1 10 10 0 9-E-O
Coolhans 9 9 0 5-P-E Semicon2 10 10 0 9-E-O
Cubene 2 2 0 2-P-C Sinvalne 2 2 0 2-PT-C
Deconvne* 61 10 30 5-P-O Zangwil3 3 3 0 3-P-C

Table 1: Characterization of the test problems

1solver for Expensive Function based Nonlinear Equation Systems

15

In addition, none of the available test problems in the CUTEr collection that has a suitable
problem size contains inequalities. Thus, we redefine some equations as inequalities to obtain a
well-balanced and significant test set for problems of the form (ES).
In Table 1, we specify the test problems which we have taken over from the CUTEr collection
and the corresponding modifications. We label the problems where we have replaced at least one
equation by an inequality by *. The table also contains information about the specific choice for
the expensive function(s) we use in the corresponding problems.
To denote the modifications we made due to the artificially introduction of expensive function(s)
on the test problems, we use a classification with three positions · − · − ·.
The first position contains the number of expensive functions included in the particular problem.
The next position specifies the type of the expensive function. The expensive function can be
polynomial (P), exponential (E), trigonometrical (T), logarithmical (L), hyperbolical (H) or of
the type xx (X). If more than one of these types is involved, all of them are mentioned.
The last position yields information if the expensive function satisfies one of the following condi-
tions: The complete system of nonlinear equations and inequalities is considered as expensive (C),
entire equations or inequalities of the system are considered as expensive function (E), or all of
the equations and inequalities of the system contain at least one part that is defined as expensive
function (A). If none of these conditions is satisfied, i.e, the expensive functions appear only in
some of the equations or inequalities, the letter (O) is added.

5.2 Using available information

The nested function formulation of the feasibility problems (ES) yields a lot of freedom and gives
the possibility to model available information in the outer functions cI and cE . Such information
is given in practical applications, for example, in the post-processing process of numerical simu-
lations. In general, incorporating as much information as possible in the outer functions leads to
better results, i.e. fewer expensive function evaluations are necessary. The reason is that the more
information is modeled in the outer functions instead of inside the expensive function, the more
accurate is, in average, the local model (CSk). This modeling approach is, together with the use
of the local models for the expensive function, the main reason for the effectiveness of EFNES.
The following example shows the effect of modeling available information. Let us consider the
example Argauss, see Table 1, which is the following nonlinear system of equations (without any
expensive function):

ci := x1e
x2

2
(αi−x3)2 − βi = 0

for i = 1, . . . , 15, where αi = 4− i
2

and βi ∈ R are small constants. For this system, we artificially
established expensive functions ei (i = 1, . . . , 15) and gradually expand the part of the functions
ci that is defined to be expensive. The corresponding number of expensive function evaluations
and the runtime of EFNES without the time for the evaluation of the expensive function are given
in Table 2. This illustrates the benefit that arises from taking as much information into account
as possible.

16

ei = (α − x(3))2 ei = x2

2
(αi − x3)

2 ei = e
x2

2
(αi−x3)2 ei = x1e

x2

2
(αi−x3)2 − βi

CPU time 0.6362 1.7265 2.1693 3.3095
evaluations 8 17 19 24

Table 2: Effect of different definitions of expensive functions in problem Argauss

5.3 Comparison to other methods

We compare our method to four other solvers for nonlinear feasibility problems. As EFNES is
primary based on the filter trust-region method FILTRANE [17], we have chosen FILTRANE as
part of the GALAHAD package [15] for comparison. Moreover, we consider TRESNEI [27], which
is another trust-region method, as well as fmincon and the derivative free function patternsearch

from the optimization and direct search toolbox in Matlab, respectively.
All tests mentioned in this section were run on a workstation with a 2.8 GHz dual-core processor
and 1GB of memory, openSUSE 11.1, Fortran compiler g95 0.91 and Matlab 7.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ln(s)

p(
ln

(s
))

EFNES
FILTRANE
TRESNEI
fmincon
patternsearch

Figure 2: Performance profile counting the number of expensive function evaluation

All algorithms are compared in the number of evaluations of the expensive function and in the
required computation time. To measure the computation time, we use the tools provided by
Matlab (or the operation system in case of FILTRANE) to obtain comparable results. The
required number of function evaluations of fmincon and patternsearch are part of their output.
Also TRESNEI provides information about the number of evaluations, but without consideration
of the additional function evaluations necessary for building the Jacobian. Thus, we added these
evaluations to obtain the total number of expensive function evaluations. We run FILTRANE

17

with forward differentiation to obtain the derivative, i.e., the gradient and the hessian that are
normally used were not regarded to simulate that expensive functions generally do not provide
derivative information.
We stop EFNES, FILTRANE, TRESNEI and fmincon, if the norm of the gradient of f is smaller
than 10−6, and patternsearch if the grid width is smaller than 10−6.
Figure 2 presents a performance profile [8] comparing all codes in the number of evaluations of
the expensive function. For every s ≥ 1, a performance profile shows the fraction p(ln(s)) of test
problems, on which the considered algorithm has solved the problem within time or expensive
function evaluation, respectively, given by a factor s of the best. For a better visualization, the
s−axis is logarithmical here.
The numerical results show a considerable decrease in the number of expensive function evaluations
by EFNES on this set of test problems. It is also notable that EFNES is almost as reliable as the
other trust-region methods.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ln(s)

p(
ln

(s
))

EFNES
FILTRANE
TRESNEI
fmincon
patternsearch

Figure 3: Performance profile comparing the computation time

Figure 3 shows the performance profile in terms of computation time. Obviously, the pure com-
putation time of EFNES is, in general, significantly larger than that of the best solver as, in
every iteration, a whole feasibility problem has to be solved as subproblem (CSk). Taking into
account in addition the evaluation time of the expensive function, the total runtime is completely
different due to the smaller number of expensive function evaluations in EFNES. On our set of
testproblems, EFNES would be faster than FILTRANE if the evaluation of an expensive function
needed more than 0.56 seconds (respectively 0.18 seconds if only those problems that are solved
by both algorithms are taken into account). Compared to TRESNEI, EFNES would be faster if
an evaluation needed more than 34.74 (respectively 10.06) seconds.

18

In many practical applications, numerical simulations have a much longer execution time. Thus,
our method significantly reduces, in general, the total cost of solving feasibility problems that
involve expensive function evaluations.

6 Conclusion

We have introduced a new algorithm for solving feasibility problems that involve expensive function
evaluations like, e.g., numerical simulations. This algorithm is based on the trust-region idea. In
addition, it is combined with the filter of Fletcher and Leyffer [12] to achieve feasibility and it
applies conditional models for the expensive function to keep, on average, the number of expensive
function evaluations low. Moreover, a nested function approach for the problem formulation yields
a lot of flexibility to incorporate as much information as available. We show that this problem
formulation can also reduce the number of required expensive function evaluations. For our
algorithm, we prove convergence to a first-order critical point of a least-squares reformulation of
the feasibility problem from an arbitrary starting point under common assumptions. Numerical
results on a set of 54 test problems show, in comparison to four other algorithms for feasibility
problems, a considerable reduction of expensive function evaluations. If the functions are expensive
in terms of evaluation time, our algorithm turns out to be, on average, more effective if a single
function evaluation takes longer than some seconds. Consequently, as numerical simulations often
take minutes or even hours in practical applications, our algorithm can provide a significant
improvement in the total solution time of simulation based feasibility problems.

7 Acknowledgement

The authors would like to thank Prof. Dr. Philippe Toint and Prof. Dr. Kathrin Klamroth for the
fruitful discussions and helpful comments.
The content of this work was partially funded by the Elite Network of Bavaria within the Interna-
tional Doctorate Program Identification, Optimization and Control with Applications in Modern
Technologies.

References

[1] Benôıt Colson. Trust-Region Algorithms for Derivative-Free Optimization and Nonlinear
Bilevel Programming. PhD thesis, Facultés Universitaires Notre-Dame de la Paix, Namur,
Belgium, 2003.

[2] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Global convergence of a class
of trust region algorithms for optimization with simple bounds. SIAM Journal on Numerical
Analysis, 25(2):433–460, 1988.

19

[3] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Testing a class of methods
for solving minimization problems with simple bounds on the variables. Mathematics of
Computation, 50(182):399–430, 1988.

[4] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. MPS-
SIAM Series on Optimization. Society for Industrial Mathematics, 2000.

[5] Andrew R. Conn, Katya Scheinberg, and Lúıs N. Vicente. Geometry of interpolation sets in
derivative free optimization. Mathematical Programming, 111(1):141–172, 2007.

[6] Andrew R. Conn, Katya Scheinberg, and Lúıs N. Vicente. Introduction to Derivative-Free
Optimization. MPS-SIAM Series on Optimization. Society for Industrial Mathematics, 2009.

[7] John E. Dennis, Mahmoud El-Alem, and Karen Williamson. A trust-region approach to
nonlinear systems of equalities and inequalities. SIAM Journal on Optimization, 9(2):291–
315, 1999.

[8] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[9] Jennifer B. Erway, Philip E. Gill, and Joshua D. Griffin. Iterative methods for finding a
trust-region step. Technical Report NA 07-02, Department of Mathematics, University of
California, San Diego, 2007.

[10] Roger Fletcher, Nicholas I. M. Gould, Sven Leyffer, Philippe L. Toint, and Andreas Wächter.
Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming.
SIAM Journal on Optimization, 13(3):635–659, 2002.

[11] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Math-
ematical Programming, 91(2):239–269, 2002.

[12] Nicholas I. M. Gould, Sven Leyffer, and Philippe L. Toint. A multidimensional filter algorithm
for nonlinear equations and nonlinear least-squares. SIAM Journal on Optimization, 15(1):17–
38, 2005.

[13] Nicholas I. M. Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. Solving the
trust-region subproblem using the Lanczos method. SIAM Journal on Optimization, 9(2):504–
525, 1999.

[14] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. CUTEr, a constrained and
unconstrained testing environment, revisited. ACM Transactions on Mathematical Software,
29(4):373–394, 2003.

[15] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. GALAHAD, a library of
thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Transactions
on Mathematical Software, 29(4):353–372, 2003.

20

[16] Nicholas I. M. Gould, Caroline Sainvitu, and Philippe L. Toint. A filter-trust-region method
for unconstrained optimization. SIAM Journal on Optimization, 16(2):341–357, 2005.

[17] Nicholas I. M. Gould and Philippe L. Toint. FILTRANE, a Fortran 95 filter-trust-region pack-
age for solving nonlinear least-squares and nonlinear feasibility problems. ACM Transactions
on Mathematical Software, 33(1):3–25, 2007.

[18] Serge Gratton, Annick Sartenaer, and Philippe L. Toint. Recursive trust-region methods for
multiscale nonlinear optimization. SIAM Journal on Optimization, 19(1):414–444, 2008.

[19] Crina Grosan and Ajith Abraham. A new approach for solving nonlinear equations systems.
IEEE Transactions on Systems, Man, and Cybernetics, Part A, 38(3):698–714, 2008.

[20] Chih-Jen Lin and Jorge J. Moré. Newton’s method for large bound-constrained optimization
problems. SIAM Journal on Optimization, 9(4):1100–1127, 1999.

[21] Maria Macconi, Benedetta Morini, and Margherita Porcelli. Trust-region quadratic methods
for nonlinear systems of mixed equalities and inequalities. Applied Numerical Mathematics,
59(5):859–876, 2009.

[22] José Mario Mart́ınez. Algorithms for solving nonlinear systems of equations. In E. Spedicato,
editor, Algorithms For Continuous Optimization, The State Of The Art, pages 81–108. Kluwer
Academic Publishers, 1994.

[23] Jorge J. Moré. Trust regions and projected gradients. In M. Iri and K. Yajima, editors,
System Modelling and Optimization Proceedings of the 13th IFIP Conference, Tokyo, Japan,
Aug./Sept. 1987, volume 113 of Lecture Notes in Control and Information Sciences, pages
1–13. Springer Verlag, Berlin, Germany, 1988.

[24] Jorge J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom. User Guide for MINPACK-1.
ANL-80-74, Argonne National Laboratory, 1980.

[25] Jorge J. Moré and Danny C. Sorensen. Computing a trust region step. SIAM Journal on
Scientific and Statistical Computation, 4:553–572, 1983.

[26] Jorge J. Moré and Gerardo Toraldo. On the solution of large quadratic programming problems
with bound constraints. SIAM Journal Optimization, 1:93–113, 1991.

[27] Benedetta Morini and Margherita Porcelli. TRESNEI, a Matlab trust-region solver for sys-
tems of nonlinear equalities and inequalities. Technical report, Dipartimento di Energetica,
Università di Firenze, 2009.

[28] Pu-Yan Nie. A derivative-free method for the system of nonlinear equations. Nonlinear
Analysis: Real World Applications, 7:378–384, 2006.

[29] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, August 1999.

21

[30] Caroline Sainvitu and Philippe L. Toint. A filter-trust-region method for simple-bound con-
strained optimization. Optimization Methods Software, 22(5):835–848, 2007.

[31] Jonas Tölke, Manfred Krafczyk, and Ernst Rank. A multigrid-solver for the discrete Boltz-
mann equation. Journal of Statistical Physics, 107(1–2):573–591, 2002.

22

