Nichtlineare Optimierung II - Restringierte Optimierung

8. Übung

Wintersemester 2011/2012

Bergische Universität Wuppertal

Fachbereich C – Angewandte Mathematik / Optimierung und Approximation Prof. Dr. Kathrin Klamroth, Dipl. Math. Markus Kaiser

Besprechung des Übungsblattes: 27.06.2012, 14-16 Uhr, D 13.15

Aufgabe 24:

Betrachten Sie das Optimierungsproblem

- (a) Skizzieren Sie den zulässigen Bereich und einige Niveaulinien der Zielfunktion von (NLP1).
- (b) Formulieren Sie die Penalty-Funktion $P(x; \alpha)$ zu (NLP1).
- (c) Bestimmen Sie das Minimum des unrestringierten Problems min f(x) und **ausgehend davon** das Minimum $x^*(\alpha)$ der Penalty-Funktion in Abhängigkeit von $\alpha > 0$.
- (d) Bestimmen Sie den Grenzwert der Folge $x^*(\alpha)$ für $\alpha \to \infty$. Ist dieser Punkt optimal für (NLP1)?

Aufgabe 25:

Ein neuer Standort $x=(x_1,x_2)^{\top}$ soll so in der Ebene platziert werden, dass die Summe der quadrierten Entfernungen zu vier existierenden Standorten $a^i=(a_1^i,a_2^i)^{\top}$ minimiert wird. Die existierenden Standorte haben die Koordinaten $(2,3)^{\top}$, $(-3,2)^{\top}$, $(3,4)^{\top}$ und $(-5,-2)^{\top}$. Außerdem soll der neue Standort die Bedingung $3x_1+2x_2=6$ erfüllen.

- (a) Formulieren Sie ein Optimierungsmodell zu obiger Problemstellung.
- (b) Zeigen Sie, dass die Zielfunktion konvex und bestimmen Sie eine optimale Lösung mit Hilfe der KKT-Bedingungen.
- (c) Lösen Sie das Problem mit Hilfe des Penalty-Verfahrens, d.h. bestimmen Sie das Minimum $x^*(\alpha)$ der Penalty-Funktion für ein festes $\alpha>0$ und den Grenzwert der Folge $x^*(\alpha)$ für $\alpha\to\infty$.

Aufgabe 26:

Betrachten Sie das Optimierungsproblem

(NLP2)
$$\min f(x) := 2x_1^2 + 9x_2$$

s.t. $g(x) := x_1 + x_2 \ge 4$

- (a) Skizzieren Sie die Nebenbedingungen und einige Niveaulinien der Zielfunktion von (NLP2).
- (b) Formulieren Sie die inverse Barriere-Funktion $B(x; \alpha)$ zu (NLP2).
- (c) Bestimmen Sie das Minimum der Barriere-Funktion in Abhängigkeit von α .
- (d) Bestimmen Sie den Grenzwert der Folge $x^*(\alpha)$ für $\alpha \to 0$.

Aufgabe 27:

Betrachten Sie das Optimierungsproblem

und bestimmen Sie die Optimallösung analog zum Vorgehen in Aufgabe 26 mit Hilfe der logarithmischen Barriere-Funktion.

Bemerkung: Aktuelle Informationen zur Vorlesung und zu den Übungen finden Sie im Internet unter:

http://www2.math.uni-wuppertal.de/opt/NLO/