Bergische Universität Wuppertal Prof. Dr. Klaus Bongartz Dr. Thorsten Weist

Aufgabe 1

Bestimmen Sie die Lösungsmengen folgender linearer Gleichungssysteme über \mathbb{Q} :

a)
$$\begin{pmatrix} 1 & 2 & 3 & 2 & 4 \\ 1 & 1 & 2 & 2 & 4 \\ 1 & 3 & 4 & 3 & 7 \\ 2 & 3 & 5 & 3 & 8 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 9 \\ 5 \end{pmatrix},$$

b)
$$\begin{pmatrix} 1 & 1 & 1 & 2 & 0 \\ 1 & 0 & 2 & 1 & 0 \\ 1 & 1 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 2 & 0 \end{pmatrix} \cdot x = \begin{pmatrix} 14 \\ 11 \\ 19 \\ 12 \\ 2\alpha \end{pmatrix}$$
 in Abhängigkeit von $\alpha \in \mathbb{Q}$.

Aufgabe 2

Für $a \in \mathbb{R}$ sei $A(a) \in \mathbb{R}^{4 \times 4}$ definiert durch

$$A(a) = \begin{pmatrix} 1 & a & 0 & 0 \\ a & 1 & 0 & 0 \\ 0 & 0 & 1 & a \\ 1 - a^2 & 0 & 0 & 1 \end{pmatrix}.$$

- a) Bestimmen Sie den Rang von A(a) in Abhängigkeit von a und gegebenenfalls die inverse Matrix durch gleichzeitige elementare Zeilenoperationen auf A(a) und $E_4 = 4 \times 4$ -Einheitsmatrix.
- b) Erhält man die Inverse auch durch gleichzeitige elementare Spaltenumformungen auf A(a) und E_4 ? Kann man sogar nach Belieben Zeilen- und Spaltenumformungen verwenden?

Aufgabe 3

Sei $A \in \mathbb{R}^{m \times n}$ eine Matrix vom Rang r. Zeigen Sie:

- a) Stets ist $r \leq \min\{m, n\}$.
- b) Genau dann ist m > r, falls ein $b \in \mathbb{R}^m$ mit $L(A, b) = \emptyset$ existiert.
- c) Genau dann ist n > r, wenn es ein $b \in \mathbb{R}^m$ mit $|L(A, b)| \ge 2$ gibt.
- d) Genau dann ist n=m=r, wenn für jedes $b\in\mathbb{R}^m$ das Gleichungssystem Ax=b eindeutig lösbar ist.

Aufgabe 4

Sei $B \in k^{n \times n}$. Der **Kommutant** K(B) von B sei definiert als die Menge aller mit B vertauschenden $(n \times n)$ -Matrizen, d.h.

$$K(B) := \{ A \in k^{n \times n} \mid AB = BA \}.$$

Beweisen Sie:

- a) K(B) ist ein Unterring von $k^{n \times n}$, der auch unter Skalarmultiplikation abgeschlossen ist, also auch ein k-Unterraum von $k^{n \times n}$.
- b) Seien $\mathbf{i} := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ und $\mathbf{1} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$. Zeigen Sie, dass $K(\mathbf{i})$ der reelle Unterraum von $\mathbb{R}^{2 \times 2}$ mit Basis $\{\mathbf{i}, \mathbf{1}\}$ ist.
- c) Zeigen Sie, dass der Ring $\mathbb{R}^{2\times 2}$ nicht-kommutativ ist.
- d) Sei $A=a\cdot \mathbf{1}+b\cdot \mathbf{i}=\left(\begin{smallmatrix} a&b\\-b&a\end{smallmatrix}\right)\in K(\mathbf{i})-\{0\}.$ Zeigen Sie, dass A invertierbar ist und, dass $A^{-1}=\frac{1}{a^2+b^2}(a\cdot \mathbf{1}-b\cdot \mathbf{i})$ gilt. Folgern Sie daraus, dass $K(\mathbf{i})$ ein Körper ist.