Abgabe bis 28.06.2013, 12 Uhr

Aufgabe 1

Für $A \in k^{m \times n}$ sei die transponierte Matrix $A^T = B \in k^{n \times m}$ definiert durch $b_{ij} = a_{ji}$ für $1 \le i \le n, 1 \le j \le m$. Zeigen Sie:

- a) Seien $A \in k^{m \times n}$ und $B \in k^{p \times q}$. Dann ist das Produkt BA genau dann definiert, wenn $A^T B^T$ definiert ist. In diesem Fall ist $(BA)^T = A^T B^T$.
- b) Stets ist Rang(A) = Rang (A^T) . Falls A^{-1} existiert, so gilt $(A^T)^{-1} = (A^{-1})^T$

Aufgabe 2

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt symmetrisch, falls $A^T = A$, und schiefsymmetrisch, falls $A^T = -A$. Zeigen Sie:

- a) Die Menge S der symmetrischen Matrizen ist ein Unterraum von $\mathbb{R}^{n\times n}$ mit dim $S=\frac{n(n+1)}{2}$. Geben Sie eine Basis an.
- b) Die Menge A der schiefsymmetrischen Matrizen ist ein Unterraum von $\mathbb{R}^{n\times n}$ mit dim $A=\frac{n(n-1)}{2}$. Geben Sie eine Basis an.
- c) Es gilt $\mathbb{R}^{n \times n} = S \oplus A$.

Aufgabe 3

a) Schreiben Sie die folgenden Permutationen als Produkt von Transpositionen und berechnen Sie die Signen:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 2 & 6 & 1 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$

b) Zeigen Sie, dass jede Permutation aus S_n schon Produkt von Nachbartranspositionen $\tau_i = (i \ i+1)$ mit $1 \le i \le n-1$ ist.

Aufgabe 4

Seien V ein Vektorraum der Dimension $n < \infty$ und $f \in \operatorname{End}_k V$. Setze $f^0 = \operatorname{id}_V$ und $f^i = f \circ f^{i-1}$. Zeigen Sie:

- a) Für alle i gilt $\operatorname{Bild}(f^{i+1}) \subseteq \operatorname{Bild}(f^i)$. Also gibt es ein kleinstes $b \in \mathbb{N}$ mit $\operatorname{Bild}(f^{b+1}) = \operatorname{Bild}(f^b)$ und es ist dann $\operatorname{Bild}(f^{b+m}) = \operatorname{Bild}(f^b)$ für alle $m \in \mathbb{N}$.
- b) Für alle i gilt $\operatorname{Kern}(f^i) \subseteq \operatorname{Kern}(f^{i+1})$. Also gibt es ein kleinstes $c \in \mathbb{N}$ mit $\operatorname{Kern}(f^{c+1}) = \operatorname{Kern}(f^c)$ und es ist dann $\operatorname{Kern}(f^{c+m}) = \operatorname{Kern}(f^c)$ für alle $m \in \mathbb{N}$.
- c) Es ist b = c.
- d) Es gilt $V = \text{Kern} f^c \oplus \text{Bild} f^c$.

Hinweis: Falls Sie an der Klausur teilnehmen möchten, melden Sie sich bitte bis Freitag, den 05.07.2013, bei "Wusel" an.