Aufgabe 1

Seien A, B, C und D Mengen und $f: A \to B, g: B \to C, h: C \to D$ Abbildungen. Zeigen Sie:

- a) Ist $g \circ f$ injektiv, so ist f injektiv.
- b) Ist $g \circ f$ surjektiv, so ist g surjektiv.
- c) Ist $g \circ f$ bijektiv, so ist f injektiv und g surjektiv. Geben Sie ein möglichst einfaches Beispiel an, wo weder f noch g bijektiv sind.
- d) Sind $g \circ f$ und f bijektiv, so ist g bijektiv.
- e) Sind $g \circ f$ und g bijektiv, so ist f bijektiv.
- f) Sind $g \circ f$ und $h \circ g$ bijektiv, so sind f, g und h bijektiv.

Aufgabe 2

Seien M, N endliche Mengen mit gleich vielen Elementen und $f: M \to N$ eine Abbildung. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- f ist injektiv
- f ist surjektiv
- \bullet f ist bijektiv

Aufgabe 3

Überprüfen Sie, welche der folgenden Abbildungen $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ injektiv, surjektiv bzw. bijektiv sind:

a)
$$f(x,y) = (x+y^2, y+2)$$

b)
$$f(x,y) = (xy, x + y)$$

c)
$$f(x,y) = (x-y, x^2 - y^2)$$

d)
$$f(x,y) = (x/\sqrt{1+x^2+y^2}, y/\sqrt{1+x^2+y^2})$$

Falls f bijektiv ist, so geben Sie eine Umkehrabbildung an.

Aufgabe 4

Seien M eine Menge, P(M) ihre Potenzmenge und $f: M \to P(M)$ eine Abbildung. Sei

$$X := \{ m \mid m \in M, \, m \notin f(m) \}.$$

Zeigen Sie, dass X nicht im Bild von f liegt.

Tipp: Sonst wäre $X = f(m_0)$ für ein $m_0 \in M$. Folgern Sie den Widerspruch: $m_0 \in X$ genau dann, wenn $m_0 \notin X$.

Bemerkung: Diese Aufgabe geht auf Cantor (1845-1918) zurück. Insbesondere wird dadurch gezeigt, dass es keine Bijektion zwischen einer Menge und ihrer Potenzmenge gibt.