Bergische Universität Wuppertal Prof. Dr. Markus Reineke Dr. Thorsten Weist

Aufgabe 1

Berechne die Determinanten der folgenden Matrizen über Q:

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & -2 & 4 \\ 0 & 1 & 1 & 3 \\ 2 & -1 & 1 & 0 \\ 3 & 1 & 2 & 5 \end{pmatrix}, \qquad \begin{pmatrix} 3 & 5 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 1 & -3 \\ 3 & 9 & 0 & 0 & 0 \end{pmatrix}.$$

Aufgabe 2

Betrachte die Basen $\mathcal{B} = ((1,0),(0,1))$ und $\mathcal{B}' = ((1,1),(i,1))$ von \mathbb{C}^2 .

- a) Bestimme $M_{\mathcal{B},\mathcal{B}'}(\mathrm{id})$ und $M_{\mathcal{B}',\mathcal{B}}(\mathrm{id})$.
- b) Betrachte die Abbildung $f: \mathbb{C}^2 \to \mathbb{C}^2$, die durch die Matrix

$$M_{\mathcal{B},\mathcal{B}}(f) = \begin{pmatrix} 2i & 3\\ 2 & 1-i \end{pmatrix}$$

definiert ist. Bestimme die Matrizen $M_{\mathcal{B}',\mathcal{B}}(f), M_{\mathcal{B},\mathcal{B}'}(f)$ und $M_{\mathcal{B}',\mathcal{B}'}(f)$.

Aufgabe 3

Sei V ein endlich erzeugter K-Vektorraum mit $V \neq 0$ und sei $f \in \text{End}(V)$. Zeige, dass folgende Aussagen äquivalent sind:

- Für alle Basen \mathcal{A} und \mathcal{B} von V gilt $M_{\mathcal{A},\mathcal{A}}(f) = M_{\mathcal{B},\mathcal{B}}(f)$.
- Es gibt ein $\lambda \in K$, so dass $f = \lambda \cdot id_V$.

Aufgabe 4

Sei K ein Körper. Definiere die Abbildung $\frac{d}{dx}:K[X]\to K[X],$ die formale Ableitung, durch

$$\frac{d}{dx}(\sum_{i=0}^{n} a_i x^i) = \sum_{i=1}^{n} a_i i x^{i-1}.$$

- a) Zeige, dass $\frac{d}{dx}$ eine K-lineare Abbildung ist.
- b) Bestimme $M_{\mathcal{B},\mathcal{B}}(\frac{d}{dx})$ für die Basis $\mathcal{B}=(1,X,X^2,X^3,\ldots)$ von K[X].
- c) Bestimme $\ker(\frac{d}{dx})$ und $\operatorname{Bild}(\frac{d}{dx})$ für $K=\mathbb{Q}.$