Nachklausur zur Linearen Algebra I

Aufgabe 1: (8 Punkte) Unterstreichen Sie jeweils die richtigen der vier Aussagen (und heften Sie dieses Blatt an die Abgabe!!):

- a) Ein Teilsystem eines Erzeugendensystems ist: manchmal ein Erzeugendensystem / nie ein Erzeugendensystem / zu einer Basis ergänzbar / zu einer Basis verkürzbar.
- b) Invertierbare Matrizen: sind quadratisch / haben maximalem Rang / sind Isomorphismen / haben linear unabhängige Spalten.
- c) Seien U und W Unterräume eines Vektorraums V. Die Teilmenge $U \cup W$ ist: manchmal ein Unterraum / immer ein Unterraum / nie ein Unterraum / das Erzeugnis von U und W.
- d) $m \times n$ -Matrizen: haben Rang $\leq m$ / haben Rang $\leq n$ / haben manchmal Rang 0 / haben Zeilenrang $\neq n$.
- e) Der Lösungsraum eines Linearen Gleichungssystems $A \cdot x = 0$ ist: ein Unterraum / manchmal leer / invariant unter Zeilenoperationen / invariant unter Spaltenoperationen.
- f) Das Bild eines Erzeugendensystems unter einer linearen Abbildung $f:V\to W$ ist: ein Erzeugendensystem von Bild(f) / manchmal ein Erzeugendensystem von W / manchmal eine Basis von W / nie ein Erzeugendensystem von W.
- g) Ist \sim eine Äquivalenzrelation auf einer Menge X und $\pi: X \to X/\sim$ die kanonische Projektion, so ist π : immer surjektiv / manchmal injektiv / immer injektiv / manchmal bijektiv.
- h) Die Dimension eines Vektorraums ist:
 manchmal unendlich / eine Isomorphieinvariante / immer ungleich
 0 / größer oder gleich der Dimension jedes Unterraums.

Aufgabe 2: (4 Punkte)

- a) Sei $f:X\to Y$ eine Abbildung zwischen nicht-leeren Mengen X und Y. Beweisen Sie: f ist genau dann surjektiv, wenn es eine Abbildung $g:Y\to X$ mit $f\circ g=\mathrm{id}_Y$ gibt.
- **b)** Sei $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 4 & 10 & 12 & 5 & 7 & 11 & 2 & 15 & 14 & 9 & 8 & 6 & 3 & 13 \end{pmatrix}$ in S_{15} gegeben. Bestimmen Sie Zykelzerlegung und Vorzeichen von σ .
- **Aufgabe 3:** (4 Punkte) Sei V ein 15-dimensionaler Vektorraum, $U \subset V$ ein 7-dimensionaler und $W \subset V$ ein 11-dimensionaler Unterraum. Beweisen Sie, dass $\dim(U \cap W) \neq 2$ gilt. Konstruieren Sie U und W wie oben mit $\dim(U \cap W) = 6$.
- **Aufgabe 4:** (4 Punkte) Sei $f: \mathbf{R}^5 \to \mathbf{R}^4$ gegeben durch f(u, v, w, x, y) := (u+v-y, x+y, u-x, u+x+y). Bestimmen Sie die darstellende Matrix von f bezüglich der Standardbasen von \mathbf{R}^5 bzw. \mathbf{R}^4 . Konstruieren Sie Basen von Bild(f) und Kern(f).

Aufgabe 5: (4 Punkte)

- a) Sei $A \in M_{3\times 3}(\mathbf{R})$ gegeben durch $A_{ij} = 3i + j 3$. Berechnen Sie $\det(A)$.
- **b)** Seien $a, b \in \mathbf{R}$, und sei $A \in M_{(n+1)\times(n+1)}(\mathbf{R})$ gegeben durch $A = (b + (a b)\delta_{i,j})_{i,j}$. Berechnen Sie $\det(A)$.
- c) Sei $n \in \mathbb{N}$ ungerade, und sei $A \in M_{n \times n}(\mathbb{R})$ schiefsymmetrisch, d.h. $A_{ji} = -A_{ij}$ für alle i, j. Beweisen Sie, dass $\det(A) = 0$ gilt.
- **Aufgabe 6:** (4 Punkte) Sei $A = \begin{pmatrix} 2 & 0 & 1 & 4 & 3 & 2 \\ 1 & 0 & 1 & 0 & 4 & 3 \\ 2 & 0 & 3 & -4 & 13 & 10 \end{pmatrix}$. Bestimmen

Sie eine Basis von $\mathbf{L}_{A,0}$. Beweisen Sie, dass $\{b \in \mathbf{R}^3 \mid \mathbf{L}_{A,b} \neq \emptyset\}$ ein Unterraum des \mathbf{R}^3 ist und geben Sie eine Basis dieses Unterraums an. Konstruieren Sie ein $b \in \mathbf{R}^3$ mit $\mathbf{L}_{A,b} = \emptyset$. Beschreiben Sie $\mathbf{L}_{A,(1,1,3)}$.