Bergische Universität Wuppertal Prof. Dr. Roland Huber Dr. Thorsten Weist

Aufgabe 1

a) Sei $n \in \mathbb{N}$ mit $n \geq 2$. Zeigen Sie, dass

$$\{(x_1, x_2 \dots, x_n) \in \mathbb{R}^n \mid x_1 = x_2^2\}$$

kein Untervektorraum des \mathbb{R} -Vektorraums \mathbb{R}^n ist.

b) Zeigen Sie, dass

$$\{f \in M(\mathbb{R}, \mathbb{R}) \mid f(x) = 0 \text{ für jedes } x \in \mathbb{R} \text{ mit } x > 1\}$$

ein Untervektorraum des \mathbb{R} -Vektorraums $M(\mathbb{R}, \mathbb{R})$ ist.

Aufgabe 2

Sei V ein endlich erzeugter Vektorraum und sei M ein Erzeugendensystem von V. Zeigen Sie, dass es eine endliche Teilmenge L von M gibt, so dass L ein Erzeugendensystem von V ist.

Aufgabe 3

- a) Sei $a \in \mathbb{Q}$. Im \mathbb{Q} -Vektorraum $V := \mathbb{Q}^3$ haben wir die Vektoren $v_1 = (0, a, 1)$, $v_2 = (a, 1, 0)$ und $v_3 = (1, a, 0)$. Für welche $a \in \mathbb{Q}$ ist das Tupel $(v_1, v_2, v_3) \in V^3$ linear unabhängig?
- b) Ist für den Q-Vektorraum \mathbb{R} (§2, Beispiel 2iii)) das Tupel $(4,\sqrt{2})\in\mathbb{R}^2$ linear unabhängig?
- c) Ist für den \mathbb{R} -Vektorraum $\mathbb{R}^1=\mathbb{R}$ das Tupel $(4,\sqrt{2})\in\mathbb{R}^2$ linear unabhängig?

Aufgabe 4

Sei X eine Menge und sei K ein Körper. Betrachte den K-Vektorraum M(X,K). Für jedes $y \in X$ sei $e_y \in M(X,K)$ die Abbildung $X \to K$ definiert durch

$$x \mapsto \begin{cases} 0, \text{ wenn } x \neq y \\ 1, \text{ wenn } x = y \end{cases}$$
.

Zeigen Sie:

- a) Sind $y_1, y_2, \ldots, y_n \in X$ mit $y_i \neq y_j$ für $i \neq j$, so ist das Tupel $(e_{y_1}, e_{y_2}, \ldots, e_{y_n}) \in M(X, K)^n$ linear unabhängig in M(X, K).
- b) Ist $X = \{y_1, y_2, \dots, y_n\}$ mit $y_i \neq y_j$ für $i \neq j$, so ist das Tupel $(e_{y_1}, e_{y_2}, \dots, e_{y_n}) \in M(X, K)^n$ eine Basis von M(X, K).