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Texts considered: 
Pr_1871.  
Ministero di agricoltura, industria e commercio. (1871). Ordinamenti degli istituti 
tecnici. Firenze: Claudiana. 
Programmes for the physics-mathematics classes of the Technical Institutes (age 
14-18) 
 

Cre_1873.  
Luigi Cremona (1873). Elementi di geometria projettiva. Vol. I, Roma: G.B. Paravia.  
Textbook for the physics-mathematics classes of the Technical Institutes, later for 
Polytechnics and Universities 
Luigi Cremona (1875). Éléments de géométrie projective, traduits, avec la collaboration 
de l'auteur, par Éd. Dewulf , 1 ptie. Paris: Gauthier-Villars. 



Luigi Cremona (1882). Elemente der projectivischen Geometrie; unter Mitwirkung des 
Verfassers übertragen von Fr. R. Trautvetter. Stuttgart: J. G. Cotta. 
Luigi Cremona (1885). Elements of projective geometry, translated by Charles 
Leudesdorf. Oxford: At the Clarendon Press. 
Textbooks for Polytechnics and Universities 
 

SO_1871.  
Enrico D'Ovidio e Achille Sannia (1871) Elementi di geometria, Napoli, tipografia A. 
Trani 
Textbook for gymnasia and Technical Institutes 
 

Pi_1891.  
Mario Pieri (1891). Geometria proiettiva. Torino, G. Candeletti 
Textbook for students of the Military Academy 
 

BL_1891.  
Anselmo Bassani e Giulio Lazzeri (1891). Elementi di geometria, Livorno, Giusti 
Textbook for students of the Naval Academy in Livorno (secondary school, then 
Polytechnic school) 



 
 
 
 
 
The programmes of 1871 
- explicit introduction of the fundamental principles of projective geometry, seen as a 
necessary preamble to descriptive geometry. 
- the reform recognised the need for a general literary and scientific education in 
technical education and instituted a Physics-Mathematics Section (Sezione fisico – 
matematica). This section permitted university entrance, and could be seen as the 
scientific alternative to the Lycée. 
 

  



Luigi Cremona (1830-1903) 
- after the political unification of Italy in 1861, Cremona can be considered one of the 
period's leading mathematicians.  
- geometric studies of a synthetic nature, within the classical school of projective 
geometry, with particular attention to Poncelet and Chasles, Von Staudt, Plücker, 
Möbius, Steiner and Clebsch.  
- research into birational transformations basis for successive studies carried out in Italy 
in algebraic geometry, culminated in the famous (Roman) school of geometry at the 
beginning of the 20th century. 
- born in Pavia in 1830, graduated in civil engineering and architecture. In 1860 Chair of 
Advanced Geometry at the University of Bologna, where he also taught Descriptive 
Geometry. Milano in 1866, taught Graphical Statics at the Polytechnic and Advanced 
Geometry at the Scuola Normale (annexed to the Polytechnic itself to train Technical 
Institute teachers). In 1873 transferred to Rome to head the School for Engineers, in 
whose reconstruction he played a fundamental role. He became a senator in 1879, was 
made vice-president of the Senate and in 1898, for just one month, was Minister for 
Education. 
 

  



Achille Sannia (1823 - 1892), Enrico D'Ovidio (1843 - 1933) 
- in the 1850s Sannia directed a private school of mathematics in Naples which had – for 
a certain period - greater prestige and efficiency than the university. 
- in 1865 he started to teach projective geometry at the University if Naples. Few 
publications. 
 

- D’Ovidio was his student in the private school and obtained then the degree in 1869. 
From 1872 he taught Algebra and Analytic geometry at the University of Turin. He also 
became rector of the University and director of the Polytechnic. 
His research concerns Euclidean and non-euclidean metrics; he started the research then 
developed by Corrado Segre, who was his student. 
 

Mario Pieri (1860 - 1913) 
Degree in mathematics at the University of Pisa (SNS). He became professor of 
projective geometry at the Military Academy and assistant at the Turin University. Then 
he was transferred to Catania. Influenced by Peano he left the reserch in geometry to 
cultivate logic. 
 

Anselmo Bassani (1856 - 1911) and Giulio Lazzeri (1861 - 1935) 
Both teachers at the Naval Academy of Livorno. Very active in Mathesis, the association 
of Mathematics teachers. 
Their book, based on the fusion of plane and solid geometry, was translated in German 
by Treutlein. 



From Cremona’s introduction 

This book is not … for those whose … mission is … the progress of science; they 
would find … nothing new, neither as regards principles, nor as regards methods. 
The propositions are all old; in fact, not a few of them owe their origin to 
mathematicians of the most remote antiquity. They may be traced back to EUCLID 
(285 B.C.), to APOLLONIUS of Perga ( 247 B.C.), to PAPPUS of Alexandria (4th century 
a. C.); to DESARGUES of Lyons (1593-1662) ; to PASCAL (1623-1662); to DE LA HIRE 
(1640-1718) ; to NEWTON (1642-1727); to MACLAURIN (1698-1746); to J.H. 
LAMBERT (1728-1777), &c. The theories and methods which make of these 
propositions a homogeneous and harmonious whole it is usual to call modern, 
because they have been discovered or perfected by mathematicians of an age nearer 
to ours, such as CARNOT, BRIANCHON, PONCELET, MöBIUS, STEINER, CHASLES, 
STAUDT, etc., whose works were published in the earlier half of the present century. 

… I have chosen the name of Projective Geometry, as expressing the true nature of 
the methods, which are based essentially on central projection or perspective. One 
reason … is that the great PONCELET, the chief creator of the modern methods, 
gave to his immortal book the title of Traité des propriétés projectives des figures 
(1822). 



... I have laid more stress on descriptive properties than on metrical ones; and have 
followed rather the methods of the Geometrie der Lage of STAUDT than those of 
the Géométrie supérieure of CHASLES. 

... I have made use of central projection in order to establish the idea of infinitely 
distant elements; and, following … STEINER and STAUDT, I have placed the law 
of duality quite at the beginning of the book, as being a logical fact which arises 
immediately and naturally from the possibility of constructing space by taking 
either the point or the plane as element. The enunciations and proofs which 
correspond to one another by virtue of this law have often been placed in parallel 
columns; occasionally however this arrangement has been departed from, in order 
to give to students the opportunity of practising themselves in deducing from a 
theorem its correlative. Professor REYE remarks, with justice, … that Geometry 
affords nothing so stirring to a beginner, nothing so likely to stimulate him to 
original work, as the principle of duality; and for this reason it is very important to 
make him acquainted with it as soon as possible, and to accustom him to employ it 
with confidence. 

... I have taken from [the masters], …the proofs of many theorems and the solutions 
of many problems…  

 



Historical development of the concept of duality and place in the texts considered 
 

Spherical triangles: duality point-great circle; and polar (or dual) triangle (Viète, 
1650s) 
 

Pr_1871 and other programs for technical institutes: 

Spherical triangles: equality, symmetry; perimeter, area.  

Polar figures - stereographic projection. 

 

BL_1891 and others: 
Duality (not explicit) of side and angle in the congruence of spherical triangles. 
Congruence of the polar triangle.  

 
  



Menelaus (1st century a.C. - translated from Arab by Maurolico in 1500s) – Ceva 
(1678) 
Ceva's theorem: Given a triangle ABC, 
let the lines AO, BO and CO be drawn 
from the vertices to a common point O 
(not on one of the sides of ABC), to meet 
opposite sides at D, E and F respectively,  

Menelaus's theorem: Given a triangle 
ABC, and a transversal line that crosses 
BC, AC and AB at points D, E and F 
respectively, with D, E, and F distinct 
from A, B and C,  

Then, using signed lengths of segments, 
  AF .  BD .  CE    =  -1 

FB   DC    EA 

                             
 

 



 
Cre_1873.  p. 110. Theorems of Ceva and Menelaus derived from the theorem 
of the complete quadrilateral (the duality is not explicit). 

 
 
(ACA’B’) = (ABA’C’) = (A’C’AB)  
!  
(projecting from T)  
(BCAA’)(CABB’)(ABCC’) = –1  
!  
(SQR’A’) (QRS’B’)(RSQ’C’) = –1 
 
 
 

Suppose now the transversal to lie at infinity; then the anharmonic ratios (SQR'A'),  
(QRS'B'), and ( RSQ'C')  become  respectively   equal  to  SR' : QR', 
QS': RS', and RQ': SQ'; so that the preceding proposition reduces to the following: 
(THEOREM of CEVA) 



Considering   again   the   triangle   QRS, and taking  the transversal  to be  entirely  
arbitrary, let ST, QT be taken so as  to be parallel to QR, RS  respectively.  Then the 
figure QRST  becomes a parallelogram; the points  S'  and Q' pass to infinity, and R'  
(being the point of intersection  of  the diagonals QS , RT)  becomes  the  middle 
point  of  SQ.  Consequently the anharmonic  ratios  (SQR'A'),  (QRS'B'), (RSQ'C') 
become equal respectively to –(QA':SA'), (RB':QB'), and (SC':RC').   Thus … 
(THEOREM of MENELAUS) 
 
Pi_1891.  Proves using similarity both theorems (before speaking of duality) in 
a section concerning oriented segments. 

 
 
 
 
  



Desargues theorem (published in 1648)  
Cre_1873. Presented in the first pages 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
  



Then a specific chapter XVII on page 148. Presented dually,  but … 
THEOREM. Any transversal meets a conic 
and the opposite sides of an inscribed 
quadrangle in three conjugate pairs of 
points of an involution. 
(This is known as DESARGUES theorem) 
 

CORRELATIVE THEOREM. The 
tangents from an arbitrary point to a conic 
and the straight lines which join the same 
point to the opposite vertices of any 
circumscribed quadrilateral form three 
conjugate pairs of rays of  an involution. 

 
  

 
Pi_1891.  The same, the correlative theorem is presented as theorem of Sturm. 

 



Pascal (1640) – Brianchon (1806) 
 

Pr_1871: theorems of Pascal, Brianchon, Desargues and their consequences. 
Construction of a conic section given five conditions (points or tangents) 
 
Cre_1873, intro:  

When only sixteen years old (in 1640) PASCAL discovered his celebrated 
theorem of the mystic hexagram, and in 1806 BRIANCHON deduced the 
correlative theorem (Art. 153) by means of the theory of pole and polar. 

The properties of the quadrilateral formed by four tangents to a conic and of the 
quadrangle formed by their points of contact are to be found in the Latin appendix 
(De linearum geometricarum proprietatibus generalibus tractatits) to the Algebra of 
MACLAURIN, a posthumous work (London, 1748). He deduced from these properties 
methods for the construction of a conic by points or by tangents in several cases 
where five elements (points or tangents) are given.  This problem, in its full 
generality, was solved at a later date by BRIANCHON. 

 
 



Cre_1873. p. 123. Theorems of Pascal and Brianchon 

Through five given points O, O', A , B, C 
in a plane, no three of which lie in a 
straight line, a conic  can  be  
described.  

Given five straight lines o, o', a, b, e in a 
plane, no three of which meet in a point, 
a conic can be described to touch them.   

If a hexagon is circumscribed to a  
conic, the straight lines joining the three 
pairs of opposite vertices are con 
current. 
This is known as BRIANCHON's theor. 

If a hexagon is inscribed in a conic, the 
three pairs of opposite sides intersect 
one another in three collinear points. 
This is known as PASCAL's theorem. 
 

 

 

 



 
 

Pi_1891: mentions the duality Pascal-Brianchon, but separated and 
different proofs (Brianchon proved as above, Pascal much earlier as 
transformation of a circle). 

 
 
 
Polar reciprocation (Poncelet, 1818) 
 

Pr_1871:  Poles and polars in a circle. Polar reciprocal figures. 
 

 Cre_1873, intro:  
The theory of pole and polar was already contained, under various names, in 
the works already quoted of DESARGUES and DE LA HIRE; it was perfected 
by MONGE, BRIANCHON, and PONCELET. The last-mentioned geometer 
derived from it the theory of polar reciprocation, which is essentially the 
same thing as the law of duality, called by him the 'principe de réciprocité 
polaire.' 



 
Cre_1873. Chapter XX, first 
definitions; XXII, p. 239 

Polar reciprocal curves; polarity with 
regard to a conic. 
Every point on the polar of a given point 
E has for its polar a straight line passing 
through E. Every straight line passing 
through the pole of a given straight line 
e has for its pole a point lying on e. 

Consider now as polars all the tangents 
of a given curve C, or in other words suppose the polar to move, and to envelope the 
given curve. Its pole will describe another curve, which may be denoted by C’. Thus 
the points of C’ are the poles of the tangents of C. 
The polar reciprocal of a conic with respect to another conic is a conic. 
… 

  



Two figures which are polar reciprocals one of the other are correlative figures in 
accordance with the law of duality in plane Geometry (Art. 33); for to every point of 
the one corresponds a straight line of the other, and to every range in the one 
corresponds a pencil in the other. They lie moreover in the same plane; their 
positions in this plane are determinate, but may be interchanged, since every point in 
the one figure and the corresponding straight line in the other are connected by the 
relation that they are pole and polar with respect to a fixed conic. Thus two polar 
reciprocal figures are correlative figures which are coplanar, and which have a 
special relation to one another with respect to their positions in the plane in which 
they lie.    
 On the other hand, if two figures are merely correlative in accordance with the law 
of duality, there is no relation of any kind between them as regards their position. 
 

  



Pi_1891. cap XV.  
Two polar reciprocal figures with regard to a conic are dual or correlative in the 
ordinary sense (n. 117 [a property concerning position can be obtained from another 
exchanging the words point and line]). 
This is a consequence of the fact that the points of each figure correspond to the 
lines of the other, and to two intersecting elements correspond intersecting elements.  
Therefore, the theory of reciprocal polars teaches how to construct the dual figure of 
any given figure. Moreover it is clear that, given to polar reciprocal figures F and F’, 
if a certain property is fulfilled for one of them, necessarily the correlative property 
is fulfilled for the other figure. So we can conclude that 
The theory of polar forms with respect to a conic gives a direct proof of the 
principle of duality in the plane. 
From now on we could retain this principle as a completely proven truth, and use it 
without the restrictions that were indicated in n. 119 [namely, that the properties 
deduced by duality need to be proven separately]. 
 
Then, theorems on poles and polars presented “dually” (in parallel)  
 

  



SO_1871: p. 218 Brief reference to duality with elementary examples 
Harmonic ratio associated with four collinear points, polarity with respect to a 
circle, polar reciprocal figures. 
From what we have seen before, we deduce that – if between some elements of a 
figure certain relations expressed by a theorem hold – it will be sufficient to 
substitute the reciprocal elements of the polar reciprocal figure to obtain a theorem 
concerning the latter.  
This correspondence is a particular case of the law of duality (about which it is not 
the case to speak) and gives a method to deduce a theorem from another one. 
 
Let us see some examples: 
The three altitudes of a triangle are concurrent in a point. Therefore, if from a point 
we draw three lines to each vertex of a triangle, and then the perpendiculars to these, 
the intersecting points of these perpendiculars with the opposite sides are collinear. 
 
 



 



 
 

Duality principles (Gergonne 1826, Poncelet 1827-29) 
 

Pr_1871:  

The duality principle in the plane;  

 
 

Cre_1873, intro:  
The law of duality, as an independent principle, was enunciated by 
GERGONNE; as a consequence of the theory of reciprocal polars (under the 
name principe de reciprocité polaire) it is due to PONCELET. 
I have placed the law of duality quite at the beginning of the book, as being a 
logical fact which arises immediately and naturally from the possibility of 
constructing space by taking either the point or the plane as element. 
 
 



Cre_1873.: Everywhere (starts at page 26). 
 

THE   PRINCIPLE   OF   DUALITY * (refers to von Staudt) 

32. GEOMETRY (speaking generally) studies the generation and the 
properties of figures lying (1) in space of three dimensions, (2) in a plane, (3) in a 
sheaf. In each case, any figure considered is simply an assemblage of elements; or, 
what amounts to the same thing, it is the aggregate of the elements with which a 
moving or variable element coincides in its successive positions. The moving element 
which generates the figures may be, in the first case, the point or the plane; in the 
second case the point or the straight line; in the third case the plane or the straight   
line.  There are therefore always two correlative or reciprocal methods by which figures 
may be generated and their properties deduced, and it is in  this that geometric Duality 
consists. By this duality is meant the co-existence of figures (and consequently of 
their properties also) in pairs; two such co-existing (correlative or reciprocal) figures 
having the same genesis and only differing from one another in the nature of the 
generating element. 

In the Geometry of space the range and the axial pencil, the plane of points and the 
sheaf of planes, the plane of lines and the sheaf of lines, are correlative forms. The 
flat pencil is a form which is correlative to itself. 



In the Geometry of the plane the range and the flat pencil are correlative forms. 
In the Geometry of the sheaf the axial pencil and the flat pencil are correlative 
forms. 

The Geometry of the plane and the Geometry of the sheaf, considered in three-
dimensional space, are correlative to each other. … 

Two correlative propositions are deduced one from the other by interchanging the  
elements point and plane 

 
Examples 
If two points A, B determine a straight 
line (viz. the straight line AB which 
passes through the given points) 
which contains an infinite number of 
other points. 

Two planes α, β determine a straight line 
(viz. the straight line αβ, the intersection of 
the given planes), through which pass an 
infinite number of other planes. 

A straight line a and a point B (not 
lying on the line) determine a plane, 
viz. the plane aB which connects the 
line with the point. 

 
A straight line a and a plane β (not passing 
through the line) determine a point,  viz.  the  
point aβ where the line cuts the  plane. 
 

  



Three points A, B, C which are not 
collinear determine a plane, viz. the 
plane ABC which passes through the 
three points. 

Three planes α, β, γ, which do not pass 
through the same line determine a point, 
viz. the point αβγ, where the three planes 
meet each other. 

a. Two straight lines which cut one 
another lie in the same plane. 
 

Two straight lines which lie in the same 
plane intersect in a point. 

Given four points A, B, C, D; if the 
straight lines AB, CD meet, the four  
points will  lie in a plane, and 
consequently the straight lines BO and  
AD,  CA and BD will also meet two 
and two. 
 

Given four planes α, β, γ, δ, if  the  straight 
lines αβ, γδ meet, the four planes will 
meet in a point, and consequently the 
straight lines  βγ and αδ, γα and 
βδ, will   also meet two and two. 

Given any number of straight lines; if 
each meets all the others, while the 
lines do not all pass through a point, 
then they must lie all in the same 
plane (and constitute a plane of lines). 

Given any number of straight lines; if each 
meets all the others, while the lines do not  
all  lie in the same plane, then they must 
pass all through the same point (and 
constitute a sheaf of lines). 
 



 
In the Geometry of the plane, two correlative propositions are deduced one 
from the other by interchanging the words point and line, as in the 
following examples: 

Four points A, B, C, D (Fig. 13), no three 
of which are collinear, form a figure 
called a complete quadrangle. The four  
points are called the vertices, and the six 
straight lines joining them in pairs are  
called  the  sides  of the  quadrangle. 

 

 Four straight lines a, b, c, d (Fig. 14), 
no three of which are concurrent, form 
a figure called a complete quadrilateral.  
The four straight lines are called the 
sides of the quadrilateral, and the six 
points in which the sides cut one 
another two and two are called the 
vertices. 

 



 
Pi_1891. p. 180-186. Duality Point-line and point-plane with some examples. 
Rarely used. 
In plane geometry the following duality principle or law holds: 
From every theorem of plane geometry which expresses a property of position, 
another can be deduced – generally different from the first one – by means of the 
substitution of the word point with the word straight line and vice versa, and of the idea of 
point on a line with the idea of line passing through a point, and vice versa. 
 

 (Plücker, 1831)  
 


