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Abstract In the present paper we study the question, when a linear partial dif-
ferential operator P(D) with constant coefficients admits a continuous linear right
inverse in the space A(Rn) of real analytic functions on Rn (or, more general, in
A(Ω) where Ω is a open subset of Rn). To obtain a necessary condition we in-
vestigate when P(D) admits solvability ‘with real analytic parameter’ in A(Ω) and
solve it completely for convex Ω , using a different approach than the one used in
DOMAŃSKI [7]. To obtain a sufficient condition we show that the global real analytic
Cauchy problem is solvable if and only if the principal part of P(D) is hyperbolic.
In this way we get a complete solution of our main problem for A(R2) and, in the
homogeneous case, for A(Ω) where Ω is the open unit ball in Rn.

Introduction

Let Ω ⊂ Rn be open and P ∈ C[z1, . . . ,zn]. We study the linear partial differential
operator with constant coefficients P(D1, . . . ,Dn), with D j = −i ∂

∂x j
, acting on the

space A(Ω) of real analytic functions on Ω . We want to know when P(D) admits a
continuous linear right inverse in A(Ω).

We should recall that P(D) needs not to be surjective in A(Ω) even for Ω = Rn.
It had been conjectured by De Giorgi and Cattabriga [5] and shown by Piccinini
[18, 19] that not every linear differential operator P(D) with constant coefficients
is surjective in A(Rn) . Their examples were operators whose principal part has a
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mute variable. Such operators we study in Section 1 of the present paper and we
characterize completely when they are surjective in A(Ω ×R) for convex Ω (the
last variable being assumed to be mute), so extending results of [22]. The same
characterization has been obtained in DOMAŃSKI [7]. However methods and proofs
there are completely different, so that it appears useful to present our approach.
Surjectivity of P(D) in A(Ω) for convex Ω has been characterized by Hörmander
[8] in terms of a Phragmén-Lindelöf condition for plurisubharmonic functions on
the zero variety of the principal part Pm(D) of P(D). In [13] Meise, Taylor and Vogt
characterized, for convex Ω , the polynomials P such that P(D) admits a continuous
linear right inverse in C∞(Ω), also in terms of a Phragmén-Lindelöf condition on
the zero variety of P. While surjectivity in A(Ω) depends only on the principal part,
the existence of right inverses in C∞(Ω) does not and the perturbation conditions
for lower order parts are unknown up to now. The condition for surjectivity with a
mute variable, or surjectivity with parameter dependence connects both. It depends
only on the principal part, which has to admit a continuous linear right inverse in
C∞(Ω).

Surjectivity with parameter dependence or surjectivity in Ω ×R is, of course, a
necessary condition for the existence of a continuous linear right inverse of P(D)
in A(Ω) which yields a necessary condition which depends only on the principal
part. We do not know whether the existence of a right inverse depends in fact only
on the principal part. In some cases, however, the necessary condition turns out to
be also sufficient. This is the case for dimension 2 and Ω = R2. Here the necessary
condition means that the principal part has to be hyperbolic.

We then show, for arbitrary dimension, that hyperbolicity of the principal part
is equivalent to unique solvability of the global Cauchy problem in the real ana-
lytic functions, for real analytic data. This result is interesting in its own and yields
a complete characterization of the P(D) for which there exists a continuous linear
solution operator in A(R2). Another case where the necessary condition is also suf-
ficient and we get such a characterization is the case of homogeneous operators and
Ω a bounded set with C1-boundary, for instance, the unit ball.

1 Preliminaries

Throughout the paper we denote by A(Ω) the linear space of real analytic func-
tions on the open set Ω ⊂ Rn equipped with its natural locally convex topology,
which is as well of (PDF)-type and ultrabornological (see [12]). This implies by
Grothendieck’s (or de Wilde’s) open mapping theorem that any continuous linear
surjective map from A(Ω) to A(Ω) is open.

We will use the following condition HPL(Ω , loc) introduced in Hörmander [8].
K (Ω) denotes the convex, compact subsets of Ω and PSH(W ) the plurisubhar-
monic functions on a complex variety W . For any compact convex set K ⊂ Rp we
denote by hK(x) := sup{⟨x,ξ ⟩ : ξ ∈ K}, x ∈ Rp, the support function of K.
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Let V be the germ of a complex variety at ξ ∈Rn. V satisfies HPL(Ω , loc) if there
are open sets U1 ⊂⊂U2 ⊂⊂U3 ⊂⊂ Cn with ξ ∈U1 such that for each K ∈ K (Ω)
there exists K′ ∈ K (Ω) and δ > 0 such that each u ∈ PSH(U3 ∩V ) satisfying (α)
and (β ), also satisfies (γ), where

(α) u(z)≤ hK(Imz)+δ , z ∈U3 ∩V
(β ) u(z)≤ 0, z ∈U2 ∩Rn ∩V
(γ) u(z)≤ hK′(Imz), z ∈U1 ∩V .

For detailed information on this and other related Phragmén-Lindelöf conditions
we refer to [8] and [16]. For unexplained notation and results on partial differential
equations we refer to [9].

2 Solvability with real analytic parameter

We will use the following notation: For P ∈C[z1, . . . ,zn] we set P+ = P, considered
as a polynomial in C[z1, . . . ,zn+1], and for open Ω ⊂ Rn we consider P+(D) as
acting in A(Ω+) where Ω+ = Ω ×R.

We say that P(D) is solvable in A(Ω) with real analytic parameter if P+(D) :
A(Ω+)−→ A(Ω+) is surjective. Solvability in A(Ω) with a real analytic parameter
has been investigated in a different context in [22] and a characterization for Ω =Rn

was given there. A complete characterization has been given in DOMAŃSKI [7]. Many
results of this section, in particular, Theorem 1 can be found also there. However our
approach and the methods of proof are entirely different.

Various kinds of parameter dependence in different spaces have also been studied
recently in BONET-DOMAŃSKI [1],[2]. Real analytic parameter-dependence in D ′(Ω)
has been studied and characterized in DOMAŃSKI [6].

The following Lemma improves the necessary condition in [22, Proposition 3.1].

Lemma 1. If Ω ⊂ Rn is convex and P+(D) surjective in A(Ω+) then Pm(D) has a
right inverse in C∞(Ω).

PROOF: Let V = {z ∈ Rn : Pm(z) = 0} be the zero variety of Pm and V+ = V ×R
the same for P+

m . By [16, Theorem 3.3], it suffices to show that V satisfies HPL(Ω ,
loc) at zero and, by [8, Lemma 4.1], we have at our disposal HPL(Ω+, loc) at any
point ξ 0 ∈ V+ ∩Rn+1 with |ξ 0| = 1. We apply it to ξ 0 = (0, . . . ,0,1) ∈ Rn+1. We
find 0 < r1 < r2 < r3 and for every K ∈ K (Ω) a K′ ∈ K (Ω+) and δ > 0 such that
each u ∈ PSH(U+

3 ∩V+) satisfying a. and b. also satisfies c., where

a. u(z)≤ hK×{0}(Imz)+δ , z ∈U+
3 ∩V+.

b. u(x)≤ 0, x ∈U+
2 ∩Rn+1 ∩V+.

c. u(z)≤ hK′(Imz), z ∈U+
1 ∩V+.

We have set U+
j = {z ∈Cn+1 : |z−ξ 0|< r j} and put U j = {z ∈Cn : |ζ |< r j}. We

remark that hK×{0}(x) = hK(x1, . . . ,xn) for x ∈ Rn+1.
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Let now u be a plurisubharmonic function on U3∩V and u+ be the same function
acting on U+

3 ∩V+. Notice that for (z1, . . . ,zn+1) ∈ U+
3 we have (z1, . . . ,zn) ∈ U3.

We assume that

α . u(z)≤ hK(Imz)+δ , z ∈U3 ∩V .
β . u(x)≤ 0, x ∈U2 ∩Rn ∩V .

Then u+ satisfies a. and b., hence c. For z∈U1 we set z̃= (z1, . . . ,zn,1). Then z̃∈U+
1

and we have

γ . u(z) = u+(z̃)≤ hK′(Im z̃) = hK′′(Imz)

where K′′ = πK′ and π : (x1, . . . ,xn+1) 7→ (x1, . . . ,xn). Clearly K′′ ⊂⊂ Ω . ⊓⊔
For convex Ω we obtain a complete characterization of differential polynomials

P(D) which admit solvability with a real analytic parameter. The same characteri-
zation has been given by a different method in DOMAŃSKI [7, Theorem 6.1].

Theorem 1. For convex Ω the following are equivalent:
1. P+(D) is surjective in A(Ω+).
2. Pm(D) : C∞(Ω)−→C∞(Ω) admits a continuous linear right inverse.

PROOF: One implication is Lemma 1, the other [22, Proposition 3.2]. ⊓⊔
If we take into account [16, Corollary 3.14] then we get as a special case for

Ω = Rn [22, Theorem 3.4].

Theorem 2. For n > 1 the following are equivalent:
1. P+(D) is surjective in A(Rn+1).
2. Pm(D) is surjective in A(Rn) and Pm has no elliptic factor.

As an immediate consequence of Theorem 1 we obtain:

Corollary 1. If Pm(z) = Pm(z1, . . . ,zp) with 1 ≤ p < n then the following are equiv-
alent:
1. P(D) is surjective in A(Rn).
2. Pm(D1, . . . ,Dp) : C∞(Rp)−→C∞(Rp) admits a continuous linear right inverse.

Since by a theorem of Grothendieck elliptic Pm(D1, . . . ,Dp) :C∞(Rp)−→C∞(Rp)
for p ≥ 2 never admits a continuous linear right inverse (see Trèves [20, Theorem
C.1]) this explains the examples of DI GIORGI, CATTABRIGA and PICCININI. A some-
what more general formulation is:

Theorem 3. If there is N ̸= 0 in Rn such that Pm(z+λN) does not depend on λ for
all z ∈ Rn then the following are equivalent:
1. P(D) is surjective in A(Rn).
2. Pm(D) : C∞(Rn)−→C∞(Rn) admits a continuous linear right inverse.

PROOF: By a linear transformation, we may assume that N = en and the result fol-
lows from Corollary 1. Assertions 2. in both results are then seen to be equivalent,
because Pm(D)=Pm(D1, . . . ,Dn−1)⊗idC∞(R) acting on C∞(Rn)=C∞(Rn−1)⊗̂C∞(R).
⊓⊔

By use of a theorem of LANGENBRUCH [11] we obtain for general open Ω ⊂Rn:
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Corollary 2. If P satisfies the assumptions of Theorem 3, Ω ⊂Rn is open and P(D)
is surjective in A(Ω), then Pm(D) : C∞(Rn)−→C∞(Rn) admits a continuous linear
right inverse.

PROOF: By [11] P(D) is surjective in A(Rn) and we can apply Theorem 3. ⊓⊔
We will need it in the following more special version:

Lemma 2. If n > 1, Ω ⊂Rn open and P(D) is surjective in A(Ω+), then Pm(D) has
no elliptic factor.

PROOF: By [11] P+(D) is surjective in A(Rn+1) and we can apply Theorem 2. ⊓⊔

3 Right inverses in A(Ω) necessary condition

We begin with a simple observation:

Lemma 3. If P(D) has a right inverse in A(Ω) then P+(D) is surjective in A(Ω ×
R).
PROOF: If we identify A(Ω × R) ∼= A(Ω)⊗̂A(R) then P+(D) corresponds to
P(D)⊗ idA(R) which has R⊗ idA(R) as a right inverse, where R is a continuous linear
right inverse for P(D). In particular P+(D) is surjective. ⊓⊔

Lemma 3 and Lemma 2 together imply:

Proposition 1. Let n > 1 and Ω ⊂ Rn open. If P(D) : A(Ω) −→ A(Ω) admits a
continuous linear right inverse, then Pm has no elliptic factor.

For convex Ω we can use Theorem 1 to sharpen the necessary criterion.

Proposition 2. Let n > 1 and Ω ⊂Rn open and convex. If P(D) : A(Ω) −→ A(Ω)
admits a continuous linear right inverse, then so does Pm(D) : C∞(Ω)−→C∞(Ω).

Homogeneous polynomials which admit a continuous linear right inverse are
carefully studied in [13]. In the following case we get a sharp criterion and even a
complete characterization:

Proposition 3. Let n > 1 and Ω ⊂Rn open, convex and bounded with C1-boundary.
If P(D) : A(Ω) −→ A(Ω) admits a continuous linear right inverse, then Pm is, up
to a constant factor, a product of real linear forms.

PROOF: This follows from Proposition 2 and [13], Theorem 3.8. ⊓⊔
Example 1. If Ω is the unit ball in Rd and P is homogeneous, then the following are
equivalent:
1. P(D) admits a continuous linear right inverse in A(Ω).
2. P+(D) is surjective in A(Ω+).
3. P(D) admits a continuous linear right inverse in C∞(Ω)
4. P is, up to a constant factor, a product of real linear forms.

The only thing to prove is 4. ⇒ 1. But this is done just by integration. We must
construct a right inverse only for P being a real linear form L, which we may assume
to be L(x) = x1. Then f 7→

∫ x
0 f (ξ ,x2, . . . ,xd)dξ is a right inverse.
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4 Operators with hyperbolic principal part

The existence of a right inverse of P(D) in A(Ω) depends in all cases treated up
to now only on the principal part Pm(D). Therefore it might also be of interest to
mention that also “hyperbolicity” in the sense of global existence and uniqueness
for the Cauchy problem follows from and is even equivalent to the hyperbolicity of
the principal part, and in this case the right inverse can be given in a very explicit
way.

We will consider P(D) as acting not only in A(Ω) but also in C∞(Ω) and in the
Gevrey classes γ(s)(Ω) for s > 1 defined as follows:

γ(s)(Ω) = { f ∈C∞(Ω) : ∀K ⊂⊂ Ω ,ε > 0 ∃C ∀α,x ∈ K : | f (α)(x)| ≤Cε |α|(|α|!)s}.

Here α = (α1, . . . ,αn) ∈ N0 and |α| = ∑α j. γ(s)(Ω) is a Fréchet space when
equipped with the seminorms

∥ f∥n = sup
x∈Knα

| f (α)(x)| n|α |

(|α |!)s ,

where Kn runs through a compact increasing exhaustion of Ω . For matter of conve-
nience we set γ(+∞)(Ω) =C∞(Ω).

Let us remark that γ(s)(Ω) = E(ω)(Ω) with ω(t) = t1/s in the sense of BRAUN-
MEISE-TAYLOR [3].

We set γ(s)0 (Rn) = γ(s)(Rn)∩D(Rn) equipped with its natural (LF)-topology.
P is called γ(m/m−1)-hyperbolic with respect to N if there are fundamental solu-

tions E± ∈ γ(m/m−1)
0

′
(Rn) of P(D) with support in the cones

H± = {x | ⟨x,±N⟩> 0}∪{0}.

From [15, Proposition 2.12] and [9, Theorem 12.7.5] we obtain:

Proposition 4. If Pm is hyperbolic with respect to N, then

1. P is γ(m/m−1)-hyperbolic with respect to N.
2. The Cauchy problem in Proposition 5 is is uniquely solvable in γ(m/m−1)(Rn) for

all data g ∈ γ(m/m−1)(Rn) and f0, . . . , fm−1 ∈ γ(m/m−1)(Rn−1).

We use it to show the unique solvability of the Cauchy problem in A(Rn) .

Proposition 5. Let N = e1, and we set x = (x1,x′). If Pm is hyperbolic with respect
to N, then the Cauchy problem

P(D) f = g,
∂ k

∂xk
1

f (0,x′) = fk(x′), k = 0, . . . ,m−1

is uniquely solvable for all g ∈ A(Rn) , f0, . . . , fm−1 ∈ A(Rn−1) with f ∈ A(Rn) .
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PROOF: Since the assumption implies, by [8, Theorem 6.5], that P(D) : A(Rn) →
A(Rn) is surjective, it is easily seen that we may assume g = 0. Since f0, . . . , fm−1 ∈
γ(m/m−1)(Rn−1) there is, by assumption and Proposition 4, a unique solution f ∈
γ(m/m−1)(Rn) of the Cauchy problem.

Due to the Cauchy-Kowalewski theorem this solution is real analytic in a neigh-
borhood U of {0}×Rn−1.

Let x ∈ Rn, x1 > 0. We choose ϕ ∈ γ(m/m−1)(Rn), such that ϕ ≡ 1 in a neigh-
borhood of 0 and supp(ϕ 2 −ϕ)⊂ x−V , where V =U ∩{ξ | |ξ1|< x1}. Using the

fundamental solution E+ ∈ γ(m/m−1)
0

′
(Rn), which exists by Proposition 4, we set

T = ϕE+ and P(D)T = δ −S.

Then suppS ⊂ x−V and suppT ⊂ H+∩ suppϕ . We obtain

0 = (P(D) f )∗T = f ∗ (P(D)T ) = f −S∗ f ,

i.e. f (ξ ) = Sy( f (ξ − y)) for all ξ .
For y ∈ suppS we have x−y ∈V , and the same holds for all ξ in a neighborhood

of x. Therefore f is real analytic in a neighborhood of x. An analogous argument
applies for x1 < 0. ⊓⊔

Theorem 4. If Pm is hyperbolic, then P(D) admits a continuous linear right inverse
in A(Rn).

PROOF: Let Pm be hyperbolic with respect to N. We may assume N = e1. We set
R(g) := f where g is the unique solution of the Cauchy problem in Proposition 5
with f0 = · · · = fm−1 = 0. R is clearly a linear right inverse for P(D), it is contin-
uous because the inverse of the ’Cauchy map’ χ is continuous (see the proof of
Proposition 6). ⊓⊔

Proposition 6. If the Cauchy problem

P(D) f = 0,
∂ k

∂xk
1

f (0,x′) = fk(x′), k = 0, . . . ,m−1

is uniquely solvable for all f0, . . . , fm−1 ∈ A(Rn−1) with f ∈ A(Rn) , then Pm(D) is
hyperbolic with respect to e1.

PROOF: For x ∈Rn we set again x = (x1,x′). Let χ be the ’Cauchy map’ A(Rn)−→
A(Rn−1)m, i.e.

χ(φ) = (φ(0,x′),φ ′(0,x′), . . . ,φ(m−1)(0,x′))

where all derivatives are taken with respect to the first variable. By assumption χ is
surjective, hence bijective and therefore, due to the de Wilde-Grothendieck theorem,
a topological isomorphism.

We consider the functions φζ (x) := eixζ , P(ζ ) = 0. Then
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χ(φζ ) = (φζ (0,x
′), iζ1φζ (0,x

′), . . . ,(iζ1)
m−1φζ (0,x

′))

= φζ (0,x
′)(1, iζ1, . . . ,(iζ1)

m−1).

Since χ−1 is continuous we have the following estimates for φζ , P(ζ ) = 0:

∀ r ∃ R ∀ ε > 0 ∃ δ > 0,C : ∥φζ∥r,δ ≤C∥χ(φζ )∥R,ε

where

∥φζ (x)∥r,δ = sup
|x|≤r
|y|≤δ

e−yξ−xη = er|η |+δ |ξ |

∥φζ (0,x
′)∥R,ε = sup

|x′ |≤r
|y′ |≤ε

e−y′ξ ′−x′η ′
= eR|η ′|+ε|ξ ′|.

Therefore, taking in A(Rn−1)m the maximum of the ’norms’, we have for P(ζ ) = 0

∥χ(φζ )∥R,ε = (1+ |ζ |)m−1eR|η ′|+ε|ξ ′|.

With the quantifiers as above and c = logC we obtain

r|η |+δ |ξ | ≤ c+(m−1) log(1+ |ζ1|)+R|η ′|+ ε|ξ ′|.

Looking for the solutions of P(ζ ) = 0 for real ζ ′, i.e. η ′ = 0, and choosing r = 1
we obtain for every ε > 1 a Cε so that

|η1| ≤Cε +(m−1) log(1+ |ζ1|)+ ε|ξ ′|

which implies

|η1|− (m−1) log(1+ |η1|)≤Cε +(m−1) log(1+ |ξ1|)+ ε|ξ ′|

and, for large |η1|,

1
2
|η1| ≤Cε +(m−1) log(1+ |ξ1|)+ ε|ξ ′|. (1)

Assume that there is ξ ∈ Rn, η ∈ R so that Pm(ξ + iηe1) = 0. We set g(z) =
Pm(ξ + i(η + z)e1) for z ∈ C. Since g(0) = 0 and g ̸≡ 0 there is k, so that g(z) =
zkg0(z) and |g0(z)| ≥ A > 0 in a neighborhood Ur(0).

Now t−mP(t(ξ + i(η + z)e1)) = g(z)+h(z) where |h(z)| ≤ M
t for z in Ur(0) and

all t > 0. We apply the theorem of Rouché for large t to the disc Uρ(0) with ρ =

Ct−1/k where C is chosen such that ACk > M and obtain zt with |zt | ≤ Ct−1/k such
that for ζt = t(ξ + i(η + zt)e1) we have P(ζt) = 0.

We assume now η ̸= 0 and apply inequality (1) with ε > 0, such that ε |ξ ′| <
1
2 |η |, to ζt for large t. Then instead of η1 we have Im(it(η +zt) and we can estimate
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|Im(it(η + zt))|= t|η +Rezt | ≥ t(|η |− |zt |)≥ t(|η |−Ct−1/k).

Instead of ξ1 we have t(ξ1 − Imzt) and the estimate

|t(ξ1 − Imzt)| ≤ t(|ξ1|+Ct−1/k).

So (1) takes for all large enough t the form

t
2
(|η |−Ct−1/k)≤Cε +(m−1) log(t(|ξ1|+Ct−1/k))+ ε(|ξ ′|t).

Dividing by t and letting t → +∞ we get a contradiction to the choice of ε . Hence
η has to be zero. ⊓⊔

So finally we obtain the following characterization:

Theorem 5. The following are equivalent:

1. The Cauchy problem in Proposition 5 (‘inhomogeneous Cauchy problem’) is
solvable.

2. The Cauchy problem in Proposition 6 (‘homogeneous Cauchy problem’) is solv-
able.

3. Pm is hyperbolic with respect to e1.

5 Case of n=2

We may use this to prove a complete characterization for n=2. We assume Ω to be
open in R2.

Lemma 4. If n = 2 and P+(D) is surjective in A(Ω+) then Pm is, up to a constant
factor, the product of real linear forms.

PROOF: Pm decomposes into irreducible factors, as follows:

Pm(z1,z2) = Azm1
2

m2

∏
µ=1

(z1 +aµ z2)

where A ∈ C, a1, . . . ,am2 ∈ C and m1 +m2 = m. If aµ ∈ C \R then D1 + aµ D2 is
elliptic which, by Lemma 2, cannot occur. ⊓⊔

We arrive at the theorem:

Theorem 6. For n = 2 the following are equivalent:

1. P(D) admits a continuous linear right inverse in A(Ω) for some open convex set
Ω ⊂ R2.

2. P(D) admits a continuous linear right inverse in A(R2).
3. P+(D) is surjective in A(R3).
4. Pm is, up to a constant factor, the product of real linear forms.
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PROOF: 2. ⇒ 1. is obvious, 1. ⇒ 4. follows from Lemma 3 and Lemma 4, 2. ⇒ 3.
is Lemma 3, 3. ⇒ 4. is Lemma 4. It remains to prove 4. ⇒ 2. We notice that Pm(D)
is hyperbolic, even with respect to every non-characteristic direction. Theorem 4
then gives the result. ⊓⊔

Example 2. Consider the polynomial P(x, t) = x2 + it ∈ C[x, t]. Then P(Dx,Dt) =
∂/∂ t−∂ 2/∂x2 is the heat operator in one space dimension. By Theorem 6 it admits
a continuous linear right inverse in A(R2), while it does not admit such an inverse
in C∞(R2), since it is hypoelliptic (see [21, Theorem 3.3] or [13, Corollary 2.11]).

6 Case of convex Ω with boundary

In this section we return to the case handled in Proposition 2 and Example 1. We
collect the information we have up to now in the following theorem:

Theorem 7. If Ω ⊂ Rn, n > 1, is a bounded, open, convex set with C1-boundary,
then the following are equivalent:

1. P+(D) is surjective in A(Ω+).
2. Pm(D) admits a continuous linear right inverse in C∞(Ω).
3. Pm is proportional to a product of real linear forms.
4. P(D) is γ(m/m−1)-hyperbolic in every noncharacteristic direction.
5. P(D) admits a continuous linear right inverse in γ(m/m−1)(Ω).
6. P+(D) admits a continuous linear right inverse in γ(m/m−1)(Ω+).

If P is homogeneous then there is also equivalent:
7. P(D) admits a continuous linear right inverse in A(Ω).

PROOF: 1. ⇒ 2. This is Lemma 1
2. ⇒ 3. Follows from [13, Theorem 3.8].
3. ⇒ 4. Since Pm is hyperbolic in every non-characteristic direction, this follows
from Lemma 4.
4. ⇒ 5. Follows from [14, Theorem 4.6].
5. ⇒ 6. Obvious tensor argument, or also from [14, Theorem 4.6], since 5. implies
3. and 3. implies 3. for P+

m .
6. ⇒ 1. Follows from [14, Corollary 5.11].
7. ⇒ 1. is always true, as follows from Lemma 3.
Let now P be homogeneous.
3. ⇒ 7. We have only to show that a real differential operator of order 1 has
a continuous linear right inverse in A(Ω). We may assume that P(D) = ∂/∂x1.
We act in a similar way as in the proof of Example 1. Set ω = {x′ ∈ Rn−1 :
exists x1 with (x1,x′) ∈ Ω} and for x′ ∈ ω let ]γ1(x′),γ2(x′)[= {x1 : (x1,x′) ∈ Ω}.
We put γ̃ = 1

2 (γ1 + γ2). Then γ̃ ∈C(ω). By Whitney’s approximation theorem (see
[17, Theorem 1.6.5]) we find γ ∈ A(ω) such that |γ(x′)− γ̃(x′)|< 1

2 (γ1(x′)− γ2(x′))
for all x′ ∈ ω . Then x′ 7→ (γ(x′),x′) is a real analytic section of ω to Ω and
f 7→

∫ x1
γ(x′) f (ξ ,x′)dξ is a continuous linear right inverse. ⊓⊔
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The author wants to thank P. Domański for suggesting the use of Whitney’s ap-
proximation theorem in 3. ⇒ 7, which lead to a considerable improvement of the au-
thor’s original statement, where real analyticity of the boundary had been assumed.
We have even:

Remark 1. 3. ⇒ 7. in Theorem 7 holds for any convex, open, bounded Ω .

The last part we can formulate also in the following way:

Theorem 8. If Ω is bounded, convex with C1-boundary, then the only non-constant
irreducible homogenous differential operators P(D) which admit a continuous lin-
ear right inverse are, up to a factor, directional derivatives of order one.

We end the paper by two more special cases. First we assume that Ω ⊂ Rn and
ω ⊂Rn−1 are convex and open and {0}×ω ⊂Ω ⊂R×ω . So Ω might, for instance,
be the open unit ball.

We obtain the following analogue to Proposition 5. For some of the tools we will
be using we refer to the proof of Proposition 5.

Proposition 7. Assume that Pm(x) = xm
1 . Then the Cauchy problem

P(D)u = 0,
∂ k

∂xk
1

f (0,x′) = fk(x′), k = 0, . . . ,m−1

is uniquely solvable for all f0, . . . , fm−1 ∈ A(ω) with u ∈ A(R×ω).

PROOF: Due to the Cauchy-Kowalewski theorem we find an open neighborhood
W ⊃ {0}×ω in Rn and u0 ∈ A(W ) which solves the Cauchy problem. We choose
φ ∈ γ(m/m−1)(Ω) with suppφ ⊂ W such that {x : φ(x) = 1} contains a neighbor-
hood of {0}×ω .

Then w := P(D)(φu0) ∈ γ(m/m−1)(R×ω), suppw ⊂ W and w ≡ 0 in a neigh-
borhood of R×ω . By the assumption and [15, Corollary 2.11] there are fundamen-
tal solutions E+ and E− with support in [0,+∞)×{0} and (−∞,0]×{0}, respec-
tively. By decomposition of w in an ‘upper’ and a ‘lower’ part, convolution with E+

or E− and putting the results again together we obtain v ∈ γ(m/m−1)(R×ω) with
P(D)v = w and v ≡ 0 in a neighborhood of {0}×ω .

We set now u := u0 − v and obtain a solution in γ(m/m−1)(R×ω) of the Cauchy
problem such that u is real analytic in a neighborhood of {0}×ω . Now we proceed
like in the proof of Proposition 5, using E+ and E−. ⊓⊔

In the following we set N(X) = { f ∈ A(X) : P(D) f = 0} for any open subset
X ⊂ Rn.

Theorem 9. Under the assumptions of Proposition 7 we obtain:

1. The restriction map N(R×ω)→ N(Ω) is surjective.
2. N(Ω) is complemented in A(Ω).
3. P(D) has a continuous linear right inverse in A(Ω).
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PROOF: f → u( f ) where u( f ) is the unique solution of the Cauchy problem of
Proposition 7 with fk(x′) = ∂ k

∂xk
1

f (0,x′) is a continuous linear extension operator

N(Ω)→ N(R×ω). This proves 1. Composition with the restriction A(R)→ A(Ω)
gives the required projection to prove 2. Now P(D) is surjective in A(Ω), which
follows from an easy evaluation of the Phragmén-Lindelöf condition in [8], or from
our Remark 1 together with the fact that surjectivity depends only on the principal
part (see [8]). Then it is also open (see the Preliminaries). Together with 2., this
shows 3.. ⊓⊔

Example 3. If Ω = {(t,x) ∈ R2 : t2 + x2 < 1} is the open unit ball in R2, then the
heat operator ∂/∂ t −∂ 2/∂x2 has a continuous linear right inverse in A(Ω).

Finally we consider the case of a non-characteristic half-space.

Theorem 10. Let Ω = {x : ⟨x,N⟩ < γ} where Pm(N) ̸= 0. Then the following are
equivalent:

1. P(D) admits a continuous linear right inverse in A(Ω).
2. Pm is hyperbolic with respect to N.

PROOF: If 1. is given then, by Proposition 2, Pm(D) admits a continuous linear right
inverse in C∞(Ω) and therefore, by [13, Proposition 3.2], Pm(D) is hyperbolic with
respect to N.

To prove the converse we may assume that N = e1 and Ω = {x : x1 < 1}. The
map which assigns to every f ∈ A(Ω) the restriction to Ω of the unique solution
u ∈ A(Rn) of the Cauchy problem

P(D)u = 0,
∂ k

∂xk
1

u(0,x′) =
∂ k

∂xk
1

f (0,x′), k = 0, . . . ,m−1

is a continuous projection in A(Ω) onto N(Ω). Since, by [13, Proposition 3.2] and
[13, Proposition 4.12], P(D) is surjective in A(Ω) we obtain, like in the proof of
Theorem 9, assertion 1. ⊓⊔
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6. P. Domański, Real analytic parameter dependence of solutions of differential equations, Rev.
Mat. Iberoamericana 26 (2010), 175–238.
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