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Abstract

Let X be a compact coherent real analytic subvariety of Rd. It is shown that
a continuous linear operator which extends real analytic functions on X to real
analytic functions on Rd exists if and only if X is of type PL, which means that in
every point of X the local complexification satisfies Hörmander’s local Phragmén-
Lindelöf condition. This is in particular true if X is a manifold.

In the present paper we study the question under which condition on a compact coherent
subvariety X ⊂ Rd there is a continuous linear operator which extends the real analytic
functions on X to the whole of Rd or, equivalently, under which condition on X the
ideal of X in the algebra A (Rd) is complemented. We solve the problem completely
and it turns out that the characterizing condition is well known and appears in various
other connections. An extension operator exists if and only if in every point of X the
local complexification of X satisfies Hörmander’s local Phragmén-Lindelöf condition.
This condition is well studied, see for that Section 1 below. There is a significant
difference to the corresponding problem for complex subvarieties of Ω ⊂ Cd. While our
condition is purely local and, in fact, is a condition on the type of singularities, this
aspect plays no role in the complex case. If Ω = Cd there it is true for algebraic varieties
(Zahariuta [27], Djakov-Mityagin [7]) and, more general, if and only if the variety is of
strong Liouville type ([23], [24] with [29]). Moreover it is true for strictly pseudoconvex
Ω with C2-boundary and a complex manifold transversal at ∂Ω (Mityagin-Henkin [20,
Theorem 4.2]). Here the difficulties one has to overcome at the boundary resemble
those we have to overcome at the singularities. A proof of this result in the spirit of
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the present work has been given in [22]. A significant difference there is also to the
differentiable case. Then coherence alone implies that the ideal of functions in C∞(Rd)
vanishing on X is complemented (see Malgrange [14, Chap. VI] and Bierstone-Schwarz
[1, Theorem 0.1.3]). The present work has been motivated by the study of vector-valued
interpolation in Bonet, Domański and Vogt [3]. In Lemma 4.4 and Remark 4.6 there
we give an explicit formula for an extension operator in the case where X is the unit
circle in R2. As a particular case we obtain in the present paper that such an extension
exists for any compact real analytic submanifold of Rd and, for purely 1-dimensional
X, the only singularities which are admitted are self-intersections.

1 The local Phragmén-Lindelöf condition

Let Xa be the germ of a real analytic variety at a point a ∈ Rd. This means, there is
a neighborhood Ua of a in Cd and holomorphic functions f1, . . . , fm on Ua, so that

Xa = {x ∈ Rd ∩ Ua | f1(x) = . . . = fm(x) = 0}.

Let Ja be the ideal of Xa in Oa, i.e. all germs (f, U) ∈ Oa so that f |U∩Xa = 0. This
ideal is finitely generated. We may assume that f1, . . . , fm are generators.

We put Va = {z ∈ Ua | f1(z) = . . . = fm(z) = 0}. Va defines the germ of a complex
variety at a, which is called the complexification of Xa. Each germ of a real analytic
function on Xa can be uniquely extended to the germ of a holomorphic function on Va.
Notice that Va is uniquely determined by Xa.

We recall the following definition which goes back to Hörmander (see [11, p. 176]) and
plays an important role in [16, Theorem 4.7.], [18, Remark 3.12.]. In recent time it was
carefully studied in the work of R. Braun, R. Meise and B. A. Taylor (see [6]).

In this definition and in the following remarks and lemmata let V be a complex subva-
riety of an open set U ∈ Cd, X = V ∩ Rd and a ∈ X.

Definition 1.1 V satifies PLloc(a) (i. e. Hörmander’s local Phragmén-Lindelöf con-
dition at a) if there are r1 > r2 > 0 and A > 0 so that B(a, r1) ⊂ U and for any
plurisubharmonic function u on Va∩B(a, r1) we have that (α) and (β) imply (γ) where

(α) u(z) ≤ 1; z ∈ V ∩B(a, r1)

(β) u(x) ≤ 0; x ∈ X ∩B(a, r1)

(γ) u(z) ≤ A |Im z|; z ∈ V ∩B(a, r2)
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Here and throughout the paper B(ξ, r) = {z ∈ Cd : |z − ξ| < r}, |z| = maxj |zj |.
From [6] we take the following lemma:

Lemma 1.2 Let Ω ⊂ Ω0 be open in Cd, W a closed subvariety of Ω0, V = Ω ∩ W ,
Ω0 ⊂ {z | |Im z| ≤ r}. We assume that for every plurisubharmonic function u on W
with u(z) ≤ 1 on W and u(x) ≤ 0 on W ∩ Rd we have u(z) ≤ A |Im z| for z ∈ V .
Then for every ξ ∈ Rd and r1 > r2 > 0 so that B(ξ, r1) ⊂ Ω, there is A′ > 0
with the property that for every plurisubharmonic function u on B(ξ, r1) ∩ V , with
u(z) ≤ 1 on B(ξ, r1) ∩ V and u(z) ≤ 0 on B(ξ, r1) ∩ V ∩ Rd we have u(z) ≤ A′ |Im z|
on V ∩ {z | |Re z − ξ| < r2}.

Applying this to V ∩ B(a, r2) ⊂ Va ∩ B(a, r1) in Definition 1.1 we obtain that the
assertion will be true then, for r1 > r2 > 0 replaced by any r1 ≥ ρ1 > ρ2 > 0 with
possibly changed A. We obtain the following consequences:

Lemma 1.3 If V satisfies PLloc(a) then the germ Va defined by V is the complexifi-
cation of the germ Xa defined by X.

Proof: By use of [10, Proposition III, 2.1, iii] this follows from the proofs of [17,
Proposition 2.7] and [17, Lemma 2.8]. 2

Lemma 1.4 If V satisfies PLloc(a) then there is a neighborhood U of a so that V
satisfies PLloc(b) for all b ∈ U ∩X

In the previous definition and in the related results the primary object of study was a
complex variety and how it is situated in relation to Rd. In the present work the object
of study is a real analytic variety. This leads to the following definition, where Xa is
the germ of a real analytic variety at a.

Definition 1.5 Xa is of type PL if its complexification Va satisfies PLloc(a).

Here a germ Va is said to satisfy PLloc(a) if there is a V defining Va which satisfies this
condition. For the consistency of this definition cf. the remark after Lemma 1.2.

Lemma 1.6 If Xa is of type PL, then also Xb for any b close to a.

In terms of Definition 1.1 this holds for any b ∈ Xa ∩ B(a, r1). An immediate conse-
quence is the following proposition:

Proposition 1.7 If Xa is of type PL then it is a coherent germ.
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Proof: By use of Lemma 1.3 and 1.4 this follows from [10, Proposition III, 2.8]. 2

Let now X be a real analytic subvariety of some open ω ⊂ Rd. This means that X is a
closed subset of ω so that for every a ∈ X there are an open neighborhood U and real
analytic functions f1, . . . , fm on U so that X∩U = {x ∈ U : f1(x) = · · · = fm(x) = 0}.
This means, for any a ∈ X we have the germ Xa as before.

Definition 1.8 For a ∈ X we say that X satisfies PLloc(a) if its germ in a is of type
PL. We call X of type PL if it satisfies PLloc(a) for every a ∈ X.

Theorem 1.9 If X is of type PL then X is coherent.

Since PLloc(·) is obviously invariant under real analytic diffeomorphisms we obtain the
following consequence of Lemma 1.6.

Proposition 1.10 A homogenous real analytic subvariety of Rd is of type PL if and
only if it satisfies PLloc(0).

Lemma 1.11 If Xa is the germ of a real analytic manifold, then it is of type PL.

Proof: We may assume that there exist a real analytic chart ϕ : Xa −→ B(0, r) ⊂ Rd,
if n is the dimension of Xa. This can be extended to a holomorphic chart from a
neighborhood of a in Va onto a neighborhood of 0 in Rd. Then the claim follows from
the classical Phragmén-Lindelöf theorem. 2

We denote by S(X) the singular locus, i.e. the complement of the manifold points in
X and by σ(X) the PL-singular locus, i.e. the complement of the PL-points in X.

Theorem 1.12 σ(X) is a closed subset of X and σ(X) ⊂ S(X).

2 Main theorem

We are now in the position to formulate our main results. Before we do this we recall
the linear topological background.

If K ⊂ Rd is compact we denote by H (K) the space of germs of holomorphic functions
on K equipped with its natural topology of an inductive limit of Banach spaces given
by

H (K) = lim indn∈NH∞(Un)
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where Un runs through a basis of complex neighborhoods of K, which may be chosen
as polynomial polyhedra (see [13, Lemma 5.4.1]). For the space A (Rd) of real analytic
functions on Rd we the set

A (Rd) = lim projn∈NH (Kn)

where K1 ⊂ K2 ⊂ · · · ↗ Rd is any compact exhaustion of Rd.

There are other equivalent descriptions of this unique natural locally convex topology
on Rd (see [15]). A sequence (fn)n∈N in A (Rd) converges to f if and only if f and all
fn extend to a common complex neighborhood U of Rd and converge to f in the space
H(U) of holomorphic functions on U equipped with the compact-open topology.

Let now X be a compact real analytic subvariety of Rd. If it is coherent, then it admits
a complexification V which we may assume of the form

V = {z ∈ Cd : |Im z| < r, f1(z) = · · · = fm(z) = 0}

where f1(z), . . . , fm(z) are holomorphic on Ω = {z ∈ Cd : |Im z| < r}.
Since for coherent X the restriction map A (Rd) −→ A (X) is surjective, the quotient
topology of A (Rd) coincides, by means of the open mapping theorem (see e.g. [19,
24.30]) with the topology

A (X) = lim indn∈NH∞(Vn)

where Vn runs through a basis of neighborhoods of X in V .

The continuity of a linear map R : A (X) −→ A (Rd) means that for any neighborhood
U of X in V (or in Cd) and any sequence (fn)n∈N in H(U) converging uniformly to zero
the sequence (Rfn)n∈N extends to a joint neighborhood ω ⊂ Cd of Rd and converges to
zero in H(ω).

In the following sections of the paper we will prove:

Proposition 2.1 Let X ⊂ D = {x ∈ Rd : |x| ≤ R}. Then the following are equiva-
lent:

1. X is coherent and there exists a continuous linear extension operator A (X) −→
H (D).

2. X is of type PL.

From this we derive our main result:
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Theorem 2.2 X is coherent and there exists a continuous linear extension operator
A (X) → A (Rd) if and only if X is of type PL.

Proof: If there is a continuous linear extension operator A (X) → A (Rd) then, in
particular, there is one A (X) → H (D), i.e. ρ and the result follows from Proposition
2.1.

To prove the converse direction we set e.g. Φ(z1, . . . , zd) = (arctan z1, . . . , arctan zd)
defining a biholomorphic map from a complex neighborhood of Rd onto a complex
neighborhood of (−π

2 , +π
2 ) with ΦRd ⊂ Rd. Then ΦX (with ΦV ) has the same proper-

ties as X and we get from Proposition 2.1 the existence of a continuous linear extension
operator E0 : A (ΦX) → H (D) where D = {x ∈ Rd : |x| ≤ π}. We set for f ∈ A (X)

E(f) := (E0(f ◦ Φ−1)) ◦ Φ.

E is an extension operator, as claimed. 2

We may formulate this also in the following way:

Theorem 2.3 X is coherent and its ideal JX ⊂ A (Rd) is complemented if and only
if X is of type PL.

Needless to say that in most cases we will know in advance that X is coherent, so in
these cases an extension operator exists, resp. the ideal is complemented, if and only
if X is of type PL.

3 Compact varieties of type PL

Let now X be a coherent compact real analytic subvariety of Rd. Then it admits a
complexification V which we may assume of the form

V = {z ∈ Cd : |Im z| < r, f1(z) = · · · = fm(z) = 0}

where f1(z), . . . , fm(z) are holomorphic on Ω = {z ∈ Cd : |Im z| < r}.

Lemma 3.1 X is of type PL if and only if there is a constant A such that for every
plurisubharmonic function u on V satisfying (α) and (β) we have (γ), where

(α) u(z) ≤ 1, z ∈ V

(β) u(z) ≤ 0, z ∈ X
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(γ) u(z) ≤ A |Im z|, z ∈ V .

Proof: Let V satisfy PLloc(ξ) for every ξ ∈ X. By an easy compactness argument we
find r > r2 > 0 and A0 so that

u(z) ≤ 1, z ∈ V

u(z) ≤ 0, z ∈ X

implies
u(z) ≤ A0 |Im z|, z ∈ {z ∈ V : |Im z| < r2}.

For z ∈ {z ∈ V : r2 ≤ |Im z| < r} we have

u(z) ≤ 1 ≤ 1
r2
|Im z|.

Hence we obtain the result with A = max(A0,
1
r2

).

The proof of the converse implication follows from Lemma 1.2. 2

We set for z ∈ V

ω0(z) = sup{u(z) : u plurisubharmonic on V, u(z) ≤ 0 on X,

u(z) ≤ 1 on V },
ω(z) = ω∗0(x) = lim sup

ζ→z
ω0(ζ).

Then Lemma 3.1 can also be expressed in the following way :

Lemma 3.2 X is of type PL if and only if there is A > 0 so that

ω(z) ≤ A |Im z|, z ∈ V.

We set for 0 < α < r
Vα = {z ∈ V : ω(z) < α}

and obtain, if V satisfies PLloc(ξ) for every ξ ∈ X, that

(1) {z ∈ V : |Im z| < α

A
} ⊂ Vα.

For f ∈ H∞(Vα) we set

|f |α = sup
z∈Vα

|f(z)|, |f |0 = sup
z∈X

|f(z)|.

and obtain the following well-known result (see Zahariuta [28, 30]).
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Lemma 3.3 For 0 ≤ α1 < α2 < α3 ≤ r and f ∈ H∞(Vα3) we have

|f |α3−α1
α2

≤ |f |α3−α2
α1

|f |α2−α1
α3

.

Proof: We give a proof for the sake of completeness. Let f be holomorphic, bounded
and non-constant on Vα3 . We put for α3 − α2 > ε > 0

uε(z) = α1 + (α3 − α1)
log |f(z)| − log |f |α1

log |f |α3 − log |f |α1

− ε.

Then uε is plurisubharmonic on Vα3 , uε ≤ α1 − ε on Vα1 and uε ≤ α3 − ε on Vα3 .
Therefore the function

vε(z) =





ω(z) : z ∈ Vα1

max(uε(z), ω(z)) : z ∈ Vα3 \ Vα1

ω(z) : z ∈ V \ Vα3

is plurisubharmonic on V and vε ≤ 0 on X, vε ≤ 1 on V . Therefore we have vε ≤ ω on
V , hence vε(z) ≤ α2 for z ∈ Vα2 , which implies

|f(z)|α3−α1 ≤ |f |α3−α2−ε
α1

|f |α2+ε−α1
α3

for all z ∈ Vα2 \ Vα1 , hence for all z ∈ Vα2 . With ε −→ 0 we obtain the result. 2

4 Proof of the main theorem: sufficiency of PL

Let now R be chosen large enough so that X ⊂ B(0, R) ∩ Rd and V chosen as in the
previous section. We may assume that r = 1.

We set
Dα = {z ∈ Cd : |Im z| < α, |Re z| < R + α}.

and for F ∈ H∞(Dα)
‖F‖α = sup

z∈Dα

|F (z)|.

The sets Dα are a parametrized family of analytic polyhedra. From a well known result
of Zahariuta [28, 30] (for a proof see also [8]) we obtain:

Lemma 4.1 For 0 < α1 < α2 < α′2 < α3 and η ∈ H∞(Dα1)
′ we have

‖η‖∗α3−α1

α2
≤ C ‖η‖∗α3−α′2

α1
‖η‖∗α′2−α1

α3
.
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Finally, we need the following Lemma which is an immediate consequence of the pseu-
doconvexity of Dα, the Cartan-Oka theory and the closed-graph theorem.

Lemma 4.2 For every 0 < β < α ≤ 1 there is a C > 0 such that for every f ∈
H∞(V ∩Dα) there is F ∈ H∞(Dα)with F |V ∩Dα = f and ‖F‖β ≤ C |f |α.

We set J∞(Dα) := {f ∈ H∞(Dα) : f |V = 0} and obtain by the same arguments as in
Lemma 4.2:

Lemma 4.3 For every 0 < β < α there is a C > 0 such that for every f ∈ J∞(Dα)
there are gj ∈ H∞(Dβ), j = 1, . . . ,m, with f =

∑m
j=1 gj fj on Dβ and supj=1,...,m ‖gj‖β ≤

C |f |α.

We put D = {x ∈ Rd : |x| ≤ R} and set up the following exact sequence

(2) H (D)m σ−−−−→ H (D)
ρ−−−−→ A (X) −−−−→ 0

where ρ is the restriction map and σ(g1, . . . , gm) =
∑m

j=1 gj fj . We consider the
(LB)-space H (D) to be graded by H (D) =

⋃
α H∞(Dα) and A (X) by A (X) =⋃

α H∞(Vα).

If we set Bα the unit ball in H∞(Dα) or in H∞(Vα) , respectively, then the exact
sequence (2) is tame in the following sense:

Lemma 4.4 For every 0 < β < α ≤ A there is C > 0 such that

1
C

σ(Bm
α ) ⊂ Bα ⊂ C σ(Bm

β ) and ρ(Bα) ⊂ Bα ⊂ C ρ(B β
A
).

Proof: The first inclusion is obvious, the second follows from Lemma 4.3. For the last
two inclusions we remark that

V ∩D α
A
⊂ Vα ⊂ V ∩Dα.

This follows from (1) and the fact that, by definition, ω(z) ≥ |Im z|.
Then the third inclusion is again obvious and the fourth follows from Lemma 4.2. 2

We are now in the position to prove the first part of our main result.

Proposition 4.5 The map ρ in the exact sequence (2) has a continuous linear right
inverse.
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Proof: We set K = H (D)m/ kerσ ∼= ker ρ and, by dualization, we obtain an exact
sequence of Fréchet spaces

(3) 0 −−−−→ A (X)′ ρ′−−−−→ H (D)′ σ′−−−−→ K ′ −−−−→ 0.

On A (X)′ we use the fundamental system of seminorms ‖η‖k := |η|∗1
k

and obtain from
Lemma 3.3

‖ ‖∗k ≤ ‖ ‖∗1−ϑk

k−1 ‖ ‖∗ϑk

k+1

with ϑk = k+1
2k .

On K ′ we use the fundamental system of seminorms ‖η‖k := |||σ′(η)|||∗r
k

where

|||(g1, . . . , gm)|||α = max
j=1,...,m

‖gj‖α.

From Lemma 4.1 we get
‖ ‖k ≤ ‖ ‖1−τk

k−1 ‖ ‖τk
k+1

for any τk > k+1
2k . Choosing, for k > 1, k

2(k−1) > τk > k+1
2k we have ϑk > τk+1 for all

k ∈ N.

By [22, Theorem 6.1.] the exact sequence (3) splits and therefore ρ′ has a left inverse.
By dualization and use of reflexivity we obtain that ρ has a right inverse. 2

5 Proof of the main theorem: necessity of PL

We are now going to prove the converse of Proposition 4.5. We are assuming that X
is coherent so we can make the same assumptions on the complexification of X as in
the beginning of Section 3 and use the notation of the previous section. We assume
that there is a continuous linear extension operator A (X) → H (D). In particular the
restriction map H (D) → A (X) is surjective.

We set Wα = V ∩Dα and for f ∈ H∞(Wα) we set ‖f‖α = supz∈Wα
|f(z)| and ‖f‖0 =

supz∈X |f(z)|. In complete analogy to Lemma 4.1 and Lemma 3.3 we obtain:

Lemma 5.1 For 0 < α1 < α2 < α′2 < α3 and η ∈ H∞(Wα1)
′ we have

‖η‖∗α3−α1

α2
≤ C ‖η‖∗α3−α′2

α1
‖η‖∗α′2−α1

α3
.

Lemma 5.2 For 0 < α1 < α2 < α3 and f ∈ H∞(D̃α3) we have

‖f‖α3−α1
α2

≤ ‖f‖α3−α2
α1

‖f‖α2−α1
α3

.
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We have set D̃α = {z : VD(z) < α}, where VD is the pluricomplex Green function of D
(see [13, p. 207]), with corresponding sup-norms. In the following Lemma we denote
by Bα and B̃α the unit balls of H∞(Wα) resp. H∞(D̃α) and obtain:

Lemma 5.3 If ϕ ∈ L(A (X), H (D)) then there is an 0 < ε ≤ 1 and for every 0 <
α ≤ r a Cα > 0 so that ϕ(Bα) ⊂ Cα B̃εα.

Proof: We set for 0 < α ≤ r

τ(α) = sup{β ≤ r : ∃ C > 0 with ϕ(Bα) ⊂ C B̃β}.

From Lemmas 5.1 and 5.2 and from [19, 29.17] we conclude that τ is an increasing and
concave function (0, r] → (0, r]. Therefore we have an ε > 0 with τ(α) > εα for all
0 < α ≤ r which proves the result. 2

Lemma 5.4 If ρ has a continuous linear right inverse then there is ε > 0 so that for
any 0 < α1 < α2 < α3 ≤ r and f ∈ H∞(Wα3) we have

‖f‖εα2 ≤ ‖f‖
α3−α2
α3−α1
α1 ‖f‖

α2−α1
α3−α1
α3 .

Proof: Let ϕ be the right inverse. Then, by use of Lemma 5.3, we get ε > 0 and
constants Cα > 0 so that ‖ϕf‖εα ≤ Cα‖f‖α for all 0 < α ≤ r and f ∈ H∞(Wα). Now
we apply Lemma 5.2 to get the following chain of inequalities for 0 < α1 < α2 < α3 ≤ r
and f ∈ H∞(Wα3). We remark that for some ε′ > 0 we have Wε′α ⊂ V ∩ D̃α ⊂ D̃α.

‖f‖ε′εα2 ≤ ‖ϕf‖εα2

≤ ‖ϕf‖
α3−α2
α3−α1
εα1 ‖ϕf‖

α2−α1
α3−α1
εα3

≤ C
α3−α2
α3−α1
α1 C

α2−α1
α3−α1
α3 ‖f‖

α3−α2
α3−α1
α1 ‖f‖

α2−α1
α3−α1
α3 .

By applying this to fn, taking n-th roots and letting n go to infinity we obtain the
result. 2

We obtain:

Proposition 5.5 If ρ has a continuous linear right inverse then there is A > 0 so that
ω(z) ≤ A|Im z| for z ∈ V .
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Proof: For given 0 < α < r we apply Lemma 5.4 to 0 < β < α < γ < r and obtain
for any bounded holomorphic function f on Wγ

‖f‖εα ≤ ‖f‖
γ−α
γ−β

β ‖f‖
α−β
γ−β
γ .

Now we let β tend to 0 and get

(4) ‖f‖εα ≤ ‖f‖
γ−α

γ

0 ‖f‖
α
γ
γ .

Here we used that limβ→0+ ‖f‖β = ‖f‖0. limβ→0+ ‖f‖β ≥ ‖f‖0 is evident. To prove
the converse inequality choose some sequence βn ↓ 0. For every n ∈ N there is xn ∈ Dβn

such that ‖f‖βn = |f(xn)|. The sequence (xn)n has a convergent subsequence xnm →
x ∈ X. Since ‖f‖β is decreasing for β ↓ 0 we have limβ→0+ ‖f‖β = |f(x)| ≤ ‖f‖0.

From (4) we get for any function u(z) = c log |f(z)| where f is holomorphic on V and
c > 0, so that u(z) ≤ 0 on X and u(z) ≤ 1 on Wγ

u(z) ≤ α

γ
, z ∈ Wεα.

The same remains true for u of the form u(z) = maxj=1,...,m cj log |fj(z)|.
Let now u be a plurisubharmonic function on V , u(z) ≤ 0 on X and u(z) ≤ 1 on V .
By [9, Theorem 5.3.1] there is an extension of u to a plurisubharmonic function λ on
an open Stein neighborhood D ⊂ Cd of V .

We fix some Stein open set G ⊂ Cd so that Wγ ⊂⊂ G ⊂⊂ D. By [12, Theorem 2.6.3.]
and Dini’s theorem there is, for given δ > 0 a continuous plurisubharmonic function
µ ≥ λ on G so that µ(z) ≤ δ on X and µ(z) ≤ 1 + δ on Wγ ⊂⊂ G. For µ there are
holomorphic functions f1, . . . , fm on G and positive constants c1, . . . , cm so that

µ(z)− δ ≤ v(z) := max
j=1,...,m

cj log |fj(z)| ≤ µ(z), z ∈ W γ .

Therefore we have v(z) ≤ δ on X and u(z) ≤ 1 + δ on Wγ , hence

v(z) ≤ α

γ
+ δ, z ∈ Wεα.

Finally we get
u(z) ≤ α

γ
+ 2δ, z ∈ Wεα

for every α < γ < r and δ > 0 which implies

u(z) ≤ α

r
, z ∈ Wεα.
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Therefore
sup{ω0(z) : z ∈ V, |Im z| ≤ εα} ≤ α

r
.

This yields the result with A = 1
εr for |Im z| ≤ εr. For εr ≤ |Im z| ≤ r we proceed as

in the proof of Lemma 3.1. 2

6 Examples

Examples of varieties which satisfy or do not satisfy the local Phragmén-Lindelöf con-
dition and criteria for that can be found in [11, 16, 18, 4, 5] and, in a recent very
comprehensive study, in Braun, Meise and Taylor [6]. We will present some of these
examples and special cases for the sake of completeness. The proofs, given in the spirit
of the present paper, might be of independent interest.

We resume the notation of Section 1. Let Xa be the germ of a real analytic variety, Va

its complexification. Throughout this section we assume Va to be relatively compact.
In particular there is R > 0 so that Va ⊂ Ω = {z : |Im z| < r}. We define for z ∈ Va

ωa(z) = lim sup
ζ→z

sup{u(ζ) : u plurisubharmonic on Va, u ≤ 1, u ≤ 0 on Xa}.

Then ωa defines the germ of an extremal plurisubharmonic function at a. From Lemma
1.2 we conclude:

Lemma 6.1 Let X̃a be a representation of the germ Xa with X̃a ⊂ Xa and a com-
plexification Ṽa ⊂ Va. Let ω̃a be the extremal function of X̃a in Ṽa then there is a
neighborhood U of a in Va ∩ Ṽa and a constant C > 0 so that

1
C

ωa ≤ ω̃a ≤ C ωa

on U .

For two germs ωa and ω̃a we set ωa ∼ ω̃a if there is a constant C > 0 so that

1
C

ωa ≤ ω̃a ≤ C ωa.

in a neighborhood of a in Va ∩ Ṽa and call such germs equivalent. Then we obtain from
Lemma 6.1

Lemma 6.2 Up to equivalence the germ of ωa depends only on the germ of Xa.
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We can then rephrase Definition 1.8 in the following way:

Proposition 6.3 The germ Xa is of type PL if and only if ωa(z) ∼ |Im z|.

We wish now to give an interpretation of ωa in certain cases. We may assume that
a = 0 and omit the suffix. Let Ṽ be an analytic variety, ϕ : Ṽ −→ V a holomorphic
map onto V so that ϕ : Ṽ \ ϕ−1(D) −→ V \ D is a p-sheeted locally biholomorphic
covering map, where D is a thin set which contains V \ Vreg and thin means that it is
contained in the 0-set of a nonconstant holomorphic function.

We set X̃ = ϕ−1(X) and

ω̃(z) = lim sup
ζ→z

sup{u(ζ) : u plurisubharmonic and u ≤ 1 on Ṽ , u ≤ 0 on X̃}.

Then ω̃ is plurisubharmonic on Ṽ and we obtain:

Lemma 6.4 ω̃ = ω ◦ ϕ.

Proof: As ω ◦ ϕ ≤ ω̃ is obvious we have to prove the reverse inequality.

On V \D we set
u(z) = max

z=ϕ(z̃)
ω̃(z̃).

Due to the assumption this is a well defined plurisubharmonic function on V \D. We
extend it by u(z) = lim supζ→z u(ζ) to a plurisubharmonic function on V . Obviously
u ≤ 1 and u ≤ 0 on X ∩ V \D.

We choose a non-zero holomorphic function f on V which vanishes on D. We may
assume that |f(z)| ≤ 1 for all z ∈ V . Let ε > 0. For z ∈ V we set

uε(z) = u(z) + ε log |f(z)|.
Then uε(z) ≤ u(z) ≤ 1 for all z ∈ V and uε(x) ≤ u(x) ≤ 0 on X ∩ V \ D. Since
uε(z) = −∞ on D we have uε(x) ≤ 0 for all x ∈ X. This implies uε(z) ≤ ω(z) for all
z ∈ Va. Letting ε → 0+ we get u(z) ≤ ω(z) for all z ∈ V with f(z) 6= 0 and therefore
for all z ∈ V . This implies ω̃(ζ) ≤ ω(ϕ(ζ))for all ζ ∈ Ṽ \ ϕ−1(D) and therefore the
result. 2

We apply this in a twofold way. First we assume that V is the germ at 0 of a pure
ν-dimensional complex variety in Cd and X = V ∩ Rd, with the following properties:

1. after a real change of variables the projection z 7→ z′ = (z1, . . . , zν) defines a
p-sheeted branched covering map ϕ : V → U where U ⊂ Cν is an open neighbor-
hood of 0,
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2. ϕ−1(U ∩ Rν) = X.

In this case we call X a real analytic cover and Lemma 6.4 says that ω(z) ∼ |Im z′|. So
we have proved

Proposition 6.5 If Xa is a real analytic cover then it is of type PL.

The second way we wish to apply Lemma 6.4 is the following: We assume Ṽ to be a
complex manifold and p=1. This is fulfilled if ϕ : Ṽ −→ V is a desingularization of V .

Let Xa be purely p-dimensional. Let ϕ be a desingularization of the following form:
Ṽ a p-dimensional complex submanifold of a bounded neighborhood U of 0 in Cq,
ϕ : Ṽ → Va a proper holomorphic map onto Va so that ϕ(0) = a, ϕ(Ṽ ∩ Rq) = Xa and
ϕ : ϕ−1(W ) → W bijective where W ⊂ Va,reg and Va \W is contained in the zero set
of a nonzero holomorphic function on Va. Here Va,reg denotes the set of regular points
in Va.

Proposition 6.6 Under these assumptions for any Ṽ0 ⊂⊂ Ṽ there is C > 0 with

1
C
|Im z| ≤ ωa ◦ ϕ(z) ≤ C |Im z|

for all z ∈ Ṽ0.

Proof: This is a consequence of Lemma 6.4 and, since Ṽ is a manifold, of Lemma
1.11 together with a compactness argument as in the proof of Lemma 3.1. 2

As an immediate consequence we have:

Theorem 6.7 Under the above assumptions the germ Xa is of type PL if and only if
there is a constant C > 0 so that |Im w| ≤ C |Im ϕ(w)| for all w on some neighborhood
of 0.

As an example we consider an irreducible purely 1-dimensional germ X0 of type PL.
Then there is a desingularization ϕ(w) = (ϕ1(w), . . . , ϕd(w)), w ∈ Ṽ where Ṽ is a
neighborhood of 0 in C and we conclude from Theorem 6.7 that at least one of the ϕj

has a zero of order 1 in 0. However, then it is locally invertible and we may assume
that ϕj(w) = w which means that X0 is regular. Hence we have proved the following
result of Braun, Meise and Taylor [6]:

Corollary 6.8 ([6], Proposition 3.16.) A purely 1-dimensional irreducible germ is
of type PL if and only if it is regular.
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To have concrete examples we consider the polynomials P1(x, y) = y2 − x2 + x4,
P2(x, y) = y2− x3 + x5 and P3(x, y) = y2− x4 + x6 in two variables. All have compact
zero varieties Xj , j = 1, 2, 3. The varieties X1 (lemniscate) and X3 are of type PL, X2

not. To see this we need only to consider the germ in 0. For X1 and X2 it consists of
two regular branches. X2 has a pinch point at 0 and we can refer to Corollary 6.8 or
use u(x, y) = max(−Rex, 0) and the points (x, y) = (−t, it3/2

√
1− t2) with t > 0 near

0. In consequence, by Theorem 2.3, the principal ideals (P1) and (P3) generated by the
respective polynomials are complemented in A (Rd), the principal ideal (P2) not.

7 Further results and applications

Let E be a complete locally convex space. An E-valued function on Rd is called real
analytic if y ◦ f is real analytic for every y ∈ E′. This means that f can be developed
locally into a power series which converges under every seminorm p, however the domain
of convergence may depend on P . By A (·, E) we denote the respective spaces of E-
valued real analytic functions.

It was not known, even for Fréchet spaces, whether for coherent X every E-valued real
analytic function can be extended to a real analytic function on Rd. For Fréchet spaces
very restrictive sufficient conditions are contained in [2] and [25]. We give, for compact
coherent X, a complete solution. We obtain as an immediate consequence of Theorem
2.2:

Corollary 7.1 The following are equivalent:

1. For every E the restriction map A (Rd, E) −→ A (X,E) is surjective.

2. X is of type PL.

The Corollary is also true if E is restricted to the class of Fréchet spaces. In this case
an extension to non-compact X will be contained in a forthcoming paper. We use
Theorem 2.2 and Corollary 7.1 to discuss the case of a homogeneous variety. Let us
first fix the notation.

Let X ⊂ Rd be a coherent homogeneous subvariety and X1 = X ∩ Sd−1. We assume
X 6= {0} and we set Rd∗ = Rd \ {0}, X∗ = Rd∗ ∩X. Since X∗ is, by x −→ (log |x|, x/|x|),
analytically homeomorphic to R ×X1 we see easily that X1 is of type PL if and only
if X∗ is of type PL. Moreover A (X∗) can be identified with A (X1,A (R)) and A (Rd∗)
with A (Sd−1,A (R)). As a consequence of our previous results we obtain:
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Theorem 7.2 Under these assumptions the following are equivalent:

1. X∗ is of type PL (resp. X1 is of type PL).

2. There is a continuous linear extension operator A (X1) −→ A (Sd−1).

3. There is a continuous linear extension operator A (X∗) −→ A (Rd∗).

To prove (1) ⇒ (3) we are using Corollary 7.1 with X1 and E = A (R). In fact, in
some special cases one would also use the same argument with different E, e. g. func-
tions with certain asymptotic behavior, to obtain extension of real analytic functions
preserving such behavior. A more thorough discussion has to be done elsewhere.

Let us specify some cases of interest. Let P be an irreducible homogeneous polynomial
in d variables so that dimRXa = d − 1 in every a ∈ X (strong dimension condition).
We set X = {x ∈ Rd : P (z) = 0}. Hörmander showed in [11] that P (D) : A (Rd) −→
A (Rd) is surjective if and only if X∗ := X \ {0} is of type PL. (Note that without the
dimension condition one would here also have the elliptic ones.) The same condition
describes the P as above for which P (D) has a continuous linear right inverse in C∞(Rd)
(see Meise-Taylor-Vogt [16] and, for corresponding results for systems of equations,
Palamodov [21]). In both cases the PL-condition appears, by means of a technical
proof, as equivalent to a global Phragmén-Lindelöf condition on the complex variety.
Up to now it was not known, what kind of significance it might have for the real variety.
The following result will give an interesting explanation.

By our assumptions X is coherent, JX = P ·A (Rd) and (1) in Theorem 7.2 is equivalent
to X being of type PL (see [18, Theorem 3.13]), which is, by Proposition 1.10, equivalent
to X0 (the germ of X in 0) being of type PL. On the basis of Theorem 7.2 and the
arguments used in Section 4 above one can show the equivalence of (1) and (2) in the
following theorem (see [26]). We obtain from this, [18, Theorem 3.13], [11] and [16].

Theorem 7.3 For P as above the following are equivalent:

1. X is of type PL.

2. The principal ideal of P is complemented in the algebra A (Rd) .

3. P (D) : A (Rd) −→ A (Rd) is surjective.

4. P (D) : C∞(Rd) −→ C∞(Rd) has a continuous linear right inverse.

17



Complemented, of course, here means the existence of a continuous linear projection.
The following considerations will provide an interpretation of (2) in Theorem 7.3.

Finally we will consider the problem of continuous linear division. Let P ∈ R[x1, . . . , xd]
be an irreducible polynomial. We assume that X := {x ∈ Rd : P (x) = 0} be compact,
or P homogeneous, and dimRXa = d−1 for every a ∈ X (strong dimension condition).
Then JX = P ·A (Rd). Moreover f 7→ P · f is an isomorphism A (Rd) → JX .

It follows that JX is complemented in A (Rd) if and only if multiplication with P has
a continuous linear left inverse in A (Rd) or, equivalently, multiplication with P has a
continuous linear right inverse in the space of analytic functionals A (Rd)′ (continuous
linear division operator).

Theorem 7.4 Under our assumptions on P , the existence of a continuous linear di-
vision operator in A (Rd)′ is equivalent to X being of type PL.

This is in sharp contrast to the case of distributions, because the principal ideal P ·
C∞(Rd) is always complemented in C∞(Rd) (see [1]).

Coming back to the examples at the end of Section 6 we see that P1 and P3 admit
a continuous linear division operator in A (R2)′, P2 not, while all three admit such
an operator in the space of distributions, resp. a left inverse Lj for Pj , j = 1, 2, 3 in
C∞(R2). This means, given L2, there will always be functions f ∈ A (R2) so that
L2f ∈ C∞(R2) \A (R2), the critical points of course being in X.
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[23] D. Vogt, Über die Existenz von Ausdehnungsoperatoren für holomorphe Funktio-
nen auf analytischen Mengen in CN , Manuskript 1980.

[24] D. Vogt, On the functor Ext1(E, F ) for Fréchet spaces, Studia Math. 85 (1987),
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155–170.

[26] D. Vogt, A division theorem for homogeneous polynomials, preprint 2006.

[27] V. P. Zahariuta, Spaces of analytic functions on algebraic varieties in Cn. (Russian)
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