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Introduction

In representation theory one investigates a finite group G' by representing it
as a group of matrices. More concretely a linear representation of a group G
is a group homomorphism D : G — GL,;(k) from the group G into the group
of [ x [ invertible matrices over some field k. In the case that the field £ = C
is the complex numbers, the information of a representation is completely
encoded in its character. The character x of the representation D is defined
as its trace function, i.e. as a map x : G — k with

x(g) = tr(D(g)) for g € G.

Any character can be expressed as a linear combination with positive
integer coefficients of the so-called irreducible characters. Hence, in order to
study linear representations over the complex numbers, it suffices to consider
the set of complex irreducible characters of the group G, which we denote by
Irr(G).

Recently, a conjecture by McKay has attracted a lot of attention. Let
us fix a prime number p. Let us write Irr, (G) for the set of irreducible
characters x such that p does not divide x(1), the degree of x. We will refer
to the characters of this set as the p’-characters of G. Then the McKay
conjecture is as follows:

Conjecture 0.1. Let G be a finite group. Let P be a Sylow p-subgroup of
G. Then there exists a bijection between Irry (Ne(P)) and Irry (G).

A more detailed overview of the McKay conjecture and its history can
be found in the introduction of [10]. The McKay conjecture was verified
for many different groups, but until today there is no ”canonical” bijection
known. This means that for different groups bijections were constructed
using distinct methods. However, Navarro suggests that there should exist
a bijection of Irr, (Ng(P)) to Irr,(G) which should commute with certain
Galois automorphisms. Let m be the order of the finite group G. By Brauer’s
Theorem (see [8, Theorem 10.3]) every character x of G' can be afforded by a
representation D with entries in the cyclotomic field @,,, the field obtained
from the rational numbers by adjoining the m-th roots of unity. We may
thus define x“ to be the character afforded by the representation

D? : G — GL;(Qy,) with g — D(g)°.

Consequently, the Galois group Gal(Q,,/Q) acts on the set of irreducible
characters Irr(G) by permutation. If X < Irr(G) is a subset of the set of
irreducible characters of G we denote by X7 the set of characters which are



o-invariant. In his conjecture, Navarro considers the following class of Galois
automorphismes:

Definition 0.2. Let e be a nonnegative integer and p be a prime number.
Then a Galois automorphism o € Gal(Q,,/Q) is called an (e, p)-Galois auto-
morphism if o sends any p'-root of unity ¢ € Q,, to ¢*".

Navarro proposes the following refinement of the McKay Conjecture (see
[16, Conjecture A]).

Conjecture 0.3. Let G be a finite group of order m and p be a prime.
Let P be a Sylow p-subgroup of G. Let o € Gal(Q,,/Q) be an (e, p)-Galois
automorphism for a nonnegative integer e. Then there exists a bijection
between Irr,y (Ng(P))7 and Irry (G)°.

For the original McKay conjecture a reduction theorem was proved by
Isaacs, Malle and Navarro (see |9, Theorem BJ). This theorem implies that
the McKay conjecture is true for all finite groups and the prime p if all
nonabelian simple groups are "good” for the prime p. One important step
to show that a simple group G is good for a prime is the construction of
an automorphism-equivariant bijection for the universal covering group of GG
which respects central characters (see [9, Section 10]). For simple groups of
Lie type in defining characteristic, i.e. in the case where the prime of the
conjecture coincides with the characteristic of the field defining the simple
group of Lie type, this intermediate result was achieved by Maslowski in his
dissertation (see [15, Theorem 1]). Later Spath used Maslowski’s result to
prove that these groups are good for the prime p (see |17, Theorem 1.1]). In
this thesis we use Maslowski’s results in order to prove Conjecture for
most quasi-simple groups of Lie type in defining characteristic.

Let G be a simple algebraic group of simply connected type defined over
an algebraic closure k of F),. Let F': G — G be a Frobenius endomorphism
of the algebraic group G. The finite group G = GI of fixed points of G
under the action of the Frobenius endomorphism F' is called a group of Lie
type. Apart from a few exceptions G is the universal central extension of
the simple group G/Z(G), which is a so-called finite simple group of Lie
type. In order to use our methods, we need to impose some conditions on
the algebraic group G.

Assumption 0.4. Let G be a simple algebraic group of simply connected
type. Suppose that G is not of type D, if n is even and that p is a good
prime for G.

We assume that the root system of G is not of type D, if n is even in
order to avoid too many technical obstacles. In this case the center of G is
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not cyclic which is the reason why we would have to change many definitions
to adapt to this particular case. However, the author is quite convinced that
the assumption can be removed using the construction in [15] for this type
of root system. We also did not consider Suzuki and Ree groups. In order
to include these groups one would first have to generalize the methods of
Maslowski to these groups (see |15, Introduction] and |15, Example 9.5] for
more information).

Maslowski associates a certain regular embedding i : G — G to the
group G such that G has connected center. The character theory of the p'-
characters of G¥' is much simpler to describe than the character theory of G
This is due to the fact that the Deligne—Lusztig theory is remarkably easier
for GF since the center of G is connected. Maslowski defines a labeling
for both the p’-character of BF, the normalizer of the Sylow p-subgroup
U” of GF , and for the p’-characters of GP. He proves that both sets of
labels coincide which implies that this labeling gives rise to a bijection f :
Irr, (BY) — Irry (GF) by mapping a character of B to the unique character
of G¥ with the same label. We show that this bijection is compatible with
the action of the Galois automorphisms from Conjecture [0.3|

Theorem 0.5. Let 0 € Gal(Q,,/Q), where m = |GF|, and o € Gal(Q,,/Q)
be an (e, p)-Galois automorphism for a nonnegative integer e. Suppose that
G satisfies Assumption[0.4) Then the Maslowski bijection

f:Try (BY) — Trry (G
is o-equivariant, i.e. f(w") = f(w)a for any character 1 € Irryy (BF)

If ¢ is a character in Irry (BT) we consider the characters ¢ € Irr(BF)
below %, i.e. irreducible characters which are constituents of ¢gr. We find
necessary and sufficient conditions for the characters 9 to be g-invariant. For
this we use the fact that the TF -conjugates of linear characters of UF are
parametrized by certain characters ¢g € Irr(UY) for S < {1,...,r}. The
exact statement is as follows.

Lemma 0.6. Let 0 € Gal(Q,,/Q), where m = |G|, be any Galois auto-
morphism. Suppose that G satisfies Assumption . Let 9 € Irrp/(EF) and
¥ € Trr(BY) be an irreducible constituent of 1gr. Furthermore, let S be the
unique subset of {1,...,r} such that 1 € Irr(B¥ | ¢g). Then ¥ is o-invariant
if and only if Ygr is o-invariant and there exists an element t € T such that
0% = ¢

The condition of Lemma [0.6]is very explicit. Indeed, with this characteri-
zation of o-invariant characters we are (at least theoretically) able to compute

5



the number of o-invariant p’-characters of Bf'. We explicitly compute this
number if G is of type C,, in Example [3.14 and Example [3.15]

In order to relate the p’-characters of G and G* we use the theory of
Gelfand—Graev characters. This allows us to prove a similar statement as
in the previous lemma for this situation. As a consequence we deduce the
following theorem:

Theorem 0.7. Let o € Gal(Q,,/Q), where m = |GF|, be an (e, p)-Galois
automorphism for a nonnegative integer e. Suppose that G satisfies As-
sumption . Let ¢ € Irrp/(f’)F). Then all wrreducible constituents of Ygr
are o-invariant if and only if all irreducible constituents of f(@Z))GF are o-
wmvariant.

Using a result of Maslowski, namely that the map f : Irr(BF) — Irr(GF)
preserves the underlying central characters, we are able to prove our main
theorem.

Main Theorem 0.8. Let 0 € Gal(Q,,/Q), where m = |G|, be an (e, p)-
Galois automorphism. Suppose that G satisfies Assumption[0.4 Then there
exists a bijection

[ Try (B — Trry (GF)°.

Moreover, for every central character X € Irr(Z(G)F) the map f restricts to
a bz'jectz'on Irrp/ (BF | )\Z(G)F)U - Irrp/(GF | )\Z(G)F)U.

This result shows that Conjecture [0.3 holds for most quasi-simple groups
of Lie type in defining characteristic.



Summary of contents

In Chapter [1] we describe the necessary background material. In Section
we recall the Clifford theory of finite groups. From Section to Section
we describe some of the character theory of finite groups of Lie type. First
we discuss the Deligne-Lusztig theory of G if G has connected center.
In this case we obtain a nice description of the p’-characters of GI" if the
prime p is good for G. This is done using Gelfand-Graev characters and the
duality functor. If the center of G is not connected we consider an extension
i:G—Gof G by a central torus such that G has connected center. Then
we relate the p'-characters of G with the p/-characters of GF'. In Section
we specialize to the case where G is a simple algebraic group of simply
connected tye and discuss the Steinberg presentation of G. In Section
and Section we consider a certain regular embedding i : G — G and
describe the structure of the finite groups G¥ and G¥. In Section we
construct the dual group G* as an extension of G" by a central torus, where
G is the simple algebraic group of simply connected type with root system
dual to the root system of G.

In Chapterwe describe the Maslowski bijection f : Irry (BF) — Irry (GF).
For this we recall in Section Maslowski’s labeling of the p’-characters of
B’ using an explicit description of the linear characters of U¥. In Section
we describe a labeling of the p'-characters of G* as follows: Any p'-
character y € Irr(éF ) lies in a unique Lusztig series which corresponds to a
semisimple F*-stable conjugacy class (§) of G*. The label of the p/-character
X is defined as 7(3), where 7 is a modified Steinberg map as introduced by
Maslowski. We conclude this chapter by stating some properties of the map
f.

We prove our main results in Chapter 3] In Section we show that
f Tty (BF) — Trry (GF) is o-equivariant for an (e, p)-Galois automorphism
o € Gal(Qgr/Q) (see Theorem|0.5). In Section 3.2 we consider the favorable
case that the Galois automorphism o fixes the p-th roots of unity of Q\GF|
In the following sections we then drop this assumption and generalize our
methods. In Section 3.3 we relate the characters of Bf and BF. This can
be done by purely elementary methods using Clifford theory and the explicit
description of the linear characters of U”. We give a sufficient and necessary
criterion for the p/-characters of B to be o-invariant (see Lemma [0.6). We
use this criterion to compute the number of o-invariant p’-characters in the
case that G is of type C,. In Section we relate the p’-characters of GF
and G¥'. We reduce the problem to find a criterion for a p’-character of G¥
to be o-invariant to the evaluation of certain characters of Irr(GF | lgr) at
elements of the torus TF. Using the explicit construction of the map f we
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are able to compute the values of these characters, which allows us to prove
a similar criterion as for the p’-characters of BY. In Section we use the
results of the previous two sections to prove Theorem [0.7} This allows us
to construct a bijection f : Irr,y (BY)” — Irry (G*) which preserves central
characters. This finally proves Theorem [0.8



Chapter 1

Basics

In this chapter we describe the tools needed for this thesis. First we discuss
the representation theory of finite groups of Lie type. In particular we discuss
some results of Deligne-Lusztig theory. Then we recall the Steinberg presen-
tation of a simple algebraic group G of simply connected type, introduced
by Steinberg in [19]. We discuss a certain regular embedding i : G — G
constructed by Maslowski in |15, Section 2].

1.1 Clifford theory

We assume that the reader is familiar with the basic notions of character
theory like restriction and induction of characters, Frobenius reciprocity and
conjugation of characters. A good introduction can be found in [8]. Most of
the material presented in this section can be found in [8, Chapter 5] and |8,
Chapter 6].

In this section we recall some results of Clifford theory which will be
crucial for the remainder of this thesis. The situation is as follows. Let G
be a finite group and N a normal subgroup of G. Let ¢ € Irr(N). We write
Irr(G | ¥) for the set of characters y € Irr(G) for which ¥ is a constituent of
Xn- Moreover, we write Irr(N | x) for the set of characters ¢ € Irr(N) which
are constituents of yy for a fixed character y € Irr(G). In this situation we
say that the character ¥ lies below x or equivalently that the character x lies
above ¥. We denote by (, ) the usual scalar product of characters.

Theorem 1.1 (Clifford’s Theorem). Let N be a normal subgroup of G and
x € Irr(G). Let 9 € Trr(N | x) be a character below x and suppose that
¥ = 91,09, ...,0; are the distinct G-conjugates of ¥. Then xn = 627;:1 9;
with e = (xn, ).

Proof. |8, Theorem 6.2]. O



The following corollary is a simple consequence of Clifford’s Theorem.

Corollary 1.2. Let N be a normal subgroup of a finite group G and x €
Irr(G).  Furthermore, we let o € Gal(Q,,/Q) be a Galois automorphism,
where m = |G|. Let 9 € Irr(N) be a character below x. If ¥ is o-invariant
then all irreducible constituents of xn are o-invariant.

Proof. By Clifford’s Theorem (see Theorem we know that any irreducible
constituent of yy is given by 99 for some g € G. Since ¥ is o-invariant it
follows that

(0(n))” = o(W(gng™")) = (gng™") = ¥*(n),
for all n € N. Hence, the character 99 is o-invariant as well. O

Let N be a normal subgroup of a finite group . For a character v e
Irr(N) we let Io(0) = {g € G | 99 = ¥} be the inertia group of ¥ in G. We
now relate the set Irr(G | ) to the set Irr(I(¢) | 99). This can be done using
the so-called Clifford correspondence.

Theorem 1.3 (Clifford correspondence). Let N be a normal subgroup of a
finite group G and ¥ € Irr(N). Then the map Irr(Ig(9) | ¥) — Irr(G | 9)
with ¥ — Y is a bijection.

Proof. [8, Theorem 6.11]. O
The Clifford correspondence can be refined in the following way.

Lemma 1.4. Let N be a normal subgroup of a finite group G. Let o €
Gal(Q,,/Q), where m = |G|, and ¥ € Irr(N) be a o-invariant character.
Then Clifford correspondence restricts to a bijection

Irr(Ig(9) | 9)° — Irr(G | 9)°.

Proof. 1f ¢ € Trr(Ig(49) | ¥) is o-invariant then the character ¢ is obviously
o-invariant again. Now suppose that x € Irr(G | 9) is o-invariant. We let
Y € Irr(Ig(9) | 9) such that ¢ = x. Then ¢ € Irr(Ig(¥9) | ¥), since ¥ is

o-invariant. Furthermore,
¥) = @97 =x" = x =°,

since Galois automorphisms commute with induction of characters. Hence,
both 1 and 7 are Clifford correspondents of x. This implies ¥ = 97 by
Theorem [L.3] ]
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Theorem 1.5. Let N be a normal subgroup of a finite group G and 9 €
Irr(N) be an irreducible character of N. If ¢ € Trr(Ig(1)) is an extension
of ¥ then Trr(Ig(Y) | 9) = {n | n € Ir(Ig(¥) | 1n)}. Furthermore, the
characters Y are all distinct for distinct n’s.

Proof. [8, Corollary 6.17]. O
We are now able to prove the following important and well-known lemma.

Lemma 1.6. Let N be a normal subgroup of a finite group G such that
the factor group G/N is abelian. Let x € Irr(G) be a character lying above
v € Irr(N). Suppose that O extends to 1g(¥). Then Irr(G | ¥) = {Ax | A €
Irr(G | 1n)}. Furthermore |Irr(G | 9)| = | 1a(¥) : N|.

Proof. By Clifford correspondence (see Theorem induction defines a bi-
jection Irr(Ig(¥9) | ¥) — Irr(G | 9). Let ¥ € Irr(Ig(¥9) | ¥) with ¥ = . Since
¥ extends to its inertia group, it follows that ¢y = ¢ and Trr(Ig(9) | ¥) =
{ny | neIrr(Ig(¥) | 1n)} by Theorem [1.5 Let n € Irr(I¢(¥) | 1n) be arbi-
trary. Since G/N is abelian there exists a character A € Irr(G | 1) such that
Mgy = 1 (see [8, Corollary 5.5]). By [8, Problem 5.3] it follows that (¢n)¢ =
Ax. Hence, it follows easily that Irr(G | ) = {\x | A € Irr(G | 1n)}. Since
Clifford correspondence is a bijection we have |Irr(G | ¥)| = | Irr(Ig(9) | 9)].
By Theorem [L.5]it holds that |Irr(Ig(9) | 9)| = |Ls(9) : N|. O

Suppose that the factor group G/N is cyclic in the situation of the lemma
above. Then every irreducible character ¢ € Irr(N) extends to its inertia
group I(¥9) (see [8, Corollary 11.22]). Thus, the following corollary follows
immediately.

Corollary 1.7. Let N be a normal subgroup of a finite group G such that
G/N s cyclic. Let x € Irr(G) be a character lying above ¥ € Irr(N). Then
Irr(G | 9) = {Ax | Ae Irr(G | 1n)} and |Irr(G | 9)] = | 1(V) : N|.

We often have to consider the action of Galois automorphisms on linear
characters. For convenience, we state the following lemma.

Lemma 1.8. Let G be a finite group of order m and let p be a prime. Let
o € Gal(Q,,/Q) and £ € Q,, be a primitive m-th root of unity. Let k be a
natural number such that o(§) = . Then \° = \* for any linear character
A€ rr(H) of a subgroup H of G.

Proof. The values of linear characters of H are m-th roots of unity. Since
the Galois automorphism o acts on m-th roots of unity by taking them to
the k-th power, the assertion of the lemma follows easily. ]
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1.2 Deligne—Lusztig theory

In this section we summarize some of the main results of Deligne-Lusztig
theory which are needed in this thesis. A more detailed and comprehensive
introduction on this subject can be found in [2] or [5]. We assume that basic
notions from the theory of linear algebraic groups as can be found in [14, Part
1] are known.

We fix the following notations throughout this thesis. Let p be a prime
and ¢ be an integral power of p. We let k be an algebraic closure of IF,,. Let G
be a connected reductive algebraic group defined over I, with corresponding
Frobenius endomorphism F' : G — G. We fix a maximal F-stable torus T
of G which is mazimally split, i.e. there exists an F-stable Borel subgroup B
of G such that T is contained in B (see [14], Definition 21.13]). Let U be the
unipotent radical of B. We denote by ® the root system of G with respect
to the torus T and by A = {ay,...,a,} the set of simple roots of ® with
respect to T < B (see |14, Definition 11.2]). Let ®* be the set of positive
roots, i.e. the subset of the set of roots ® consisting of the roots which can
be written as a linear combination of the simple roots with natural numbers
as coefficients. Furthermore we denote by ®" the set of coroots of . We
will later specify our general setup in Section [I.7]

Let T” be a maximal F-stable torus of G and 6 € Irr(T'F). The pair (T’, )
defines a generalized character RS (0) € ZIrr(GF) as in [5, Definition 11.1].
We call RE(0) a Deligne-Lusztig character. Note that RS, (0") = RS 0)

whenever (T',0") and (T",0") are G¥-conjugate, i.e. if there exists some
g € G such that 9T = T” and 96’ = 0" (see remark below [5, Corollary
11.15)).

With this notation we can now state the following useful character formula
for Deligne-Lusztig characters.

Lemma 1.9. (Character formula for Deligne—Lusztig characters) Let g = su
be the Jordan decomposition of some element g € G¥'. Then

RE(O)(g) = [TT| TG D > Qe w v o(sv),
)F

he{seGF|seh T’} ’UECZT,(S F

where QSOG(S) is the Green function as defined in [5, Definition 12.1].

%/ (s)
Proof. This is [5, Proposition 12.2]. O

With Lemma [1.9] we can prove the following corollary.
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Corollary 1.10. Let 0 € Gal(Q,,/Q) with m = |GF| and o(¢) = &* for a
primitive m-th root of unity & € Q,,. Then RS/(0)° = RS (6%).

Proof. Note that the Green function has values in the integers (see [5, Corol-
lary 10.6]). By Lemma it follows that #7 = 6*. Thus, the claim of the
corollary follows with Lemma [1.9 O]

Let T” be a maximal F-stable torus of G with character group X (T') and
cocharacter group Y (T') (see [14, Definition 3.4]). We recall the following
definition (see [5, Definition 13.10]).

Definition 1.11. Two connected reductive algebraic groups G and G* are
in duality if there exists a maximal torus T’ of G and a maximal torus T'*
of G* together with an isomorphism 6 : Y(T') — X(T"*) which sends the
coroots of T' to the roots of T*. Suppose that G and G* are defined over
F, with respective Frobenius endomorphisms F' and F*. If T’ and T"* are
F- resp. F*-stable tori and if § commutes with the action of F' and F* then
the pair (G, F) is called dual to the pair (G*, F*).

Note that if (X (T"), Y (T'), ®, ®"V) is the root datum of a connected reduc-
tive group G then (Y(T'), X(T’), @Y, ®) is a root datum as well. Therefore,
by Chevalley’s classification of reductive algebraic groups (see [5, Theorem
0.45]) there exists a reductive algebraic group G* with (abstract root datum)
(Y(T"), X(T'),®v, ®), which is a dual group for G. So in particular every
connected reductive group G has a dual group G*. Moreover, if F': G - G
is a Frobenius endomorphism of G then there exists a Frobenius endomor-
phism F* : G* — G* of G* such that (G, F) and (G*, F*) are dual (see
remark below [2, Theorem 4.4.6]).

For the remainder of this section we suppose that (G, F') and (G*, F'*)
are in duality via a duality map ¢ : Y(T) — X(T*), where T is the maximal
F-stable torus of G which we fixed at the beginning of this section and T*
is a maximal F'*-stable torus of G*.

Let us denote by (, ) : X(T) x Y(T) — Z the perfect pairing between
X(T) and Y(T) as in [14 Proposition 3.6]. The duality isomorphism ¢ gives
rise to a dual map as explained in the following remark.

Remark 1.12. The existence of a map ¢ : Y(T) — X (T*) with properties
as above yields the existence of a dual map ¢¥ : X(T) — Y(T*) with similar
properties (see |2, Definition 4.3.1]) defined by the property {6(7),d"(x)) =
{x,7) for all x € X(T) and v € Y(T).

Definition 1.13 (Norm map). Let T’ be a maximal F-stable torus of G.
We let w be the order of the automorphism 7 of X (T) that is induced by the
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Frobenius endomorphism F' as explained in the remark preceding |5, Theorem
w—1

3.17]. Then we define the norm map Npw/p : T' — T' by t — n F'(t).
i=0

Let us now, once and for all, choose an embedding k* — C*. For all
positive integers w let us fix a primitive (¢* — 1)-th root of unity u € k*, i.e.,
a generator of F . as multiplicative group.

Lemma 1.14. The set of GI'-conjugacy classes of pairs (T',0) where T’ is
an F-stable mazimal torus of G and 0 € Trr(T'F) is in bijection with the set
of G*F*—conjugacy classes of pairs (T'*,s) where s € G*™ is a semisimple
element and T™* is an F*-stable mazximal torus with s € T'*.

Proof. A proof of this lemma is given in [5, Proposition 13.13]. We briefly
sketch the idea of the proof since we need the explicit construction later.

Recall that we fixed maximal tori T of G and T* of G* which define
the duality of (G, F') and (G*, F*) via the duality map ¢ : Y(T) — X(T*).
Suppose that (T',#) is a pair as in the statement of the lemma. The G-
conjugacy classes of such pairs (T’,0) are parametrized by the F-conjugacy
classes of the Weyl group W(T) = Ng(T)/Ng(T) of the torus T (see [5,
Application 3.23]). We let g € G such that 9T = T. Let z := g 'F(g)T €
W(T) denote the image of g ' F(g) in W(T). Consider the anti-isomorphism
W(T) — W(T*) mapping x — x* as defined in |2, Proposition 4.2.3]. We let
g* € G* be such that ¢*~ F*(¢*)T* = 2* in W(T*) and define T/* = 9" T*.
Then the map §” : X(T) — Y(T*) gives rise to amap ¢’ : X(T") —» Y(T"*)
defined by &'V (9x) = 976" (x) for x € X(T). Consider the endomorphism
F' := aF of T' and the endomorphism F'* := F*z* of T'*. Then the map
&'V defines a duality of (G, F') and (G*, F'").

By [5, Proposition 13.11] we have an isomorphism Irr(T*") — T'*
which is constructed as follows: Let w be the order of the automorphism 7
of X(T) induced by F. Using the embedding k* — C* we can assume that
0 € Trr(T'"") has values in k*. By [5, Proposition 13.7] we can extend the
character 8 € Irr(T""") to an element 6 € X (T") of the character group of the
torus T’. By applying the duality isomorphism ¢ : X(T’) — Y (T'*) we
have &'V (A) € Y (T'*). Hence, we may define s = Nprw s (6¥(0)(1)), where
€ k* is the (¢ — 1)-th root of unity as chosen before Lemma [1.14 Then
we define the pair corresponding to (T’,0) as (T’%, s). O

F/*

If (T, 6) maps to (T, s) under the bijection of Lemma we say that
(T,0) is in duality with (T",s). Note that everything in the construction
of 8 = Nprwwpx (0¥ (0) (1)) is multiplicative. Thus, we obtain that bijection
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constructed in Lemmall.14]is multiplicative in the following sense. If (T”, 6;)
is in duality with (T’,s1) and (T',0,) is in duality with (T'*,ss) then it
follows that (T’ 6,05) is in duality with (T'*, s152).

In the following, we write RS« (s) for the character RE () if (T',0) is
in duality with (T'*,s). We want to consider the irreducible constituents of
RS« (s). For this we state the following definition.

Definition 1.15 (Lusztig series). Let (s) be the G*F*-Conjugacy class of a
semisimple element s € G**. We write £(GF, (s)) for the set of irreducible
constituents of RS (s), where T is a maximal F*-stable torus of G* with
seT".

Corollary 1.16. Let 0 € Gal(Q,,/Q) with m = |GF| and o(¢) = £ for a
primitive m-th root of unity £ € Q,,. If x € E(GF, (s)) then x7 € E(GF, (s%)).

Proof. Let T'* be a maximal F*-stable torus of G* such that x is a con-
stituent of R (s). Suppose that (T, 0) is in duality with (T’*,s). Then the
character y is a constituent of RS (). By Corollary we conclude that
X7 is a constituent of RS (0%). Since the bijection of Lemma is multi-
plicative (see remark below Lemma we obtain that (T’, 6%) is in duality
with (T"*, s*). This shows that y is a constituent of RS (s*). Consequently,
we have 7 € £(GF, (s%)). O

The following remark is important.

Remark 1.17. £(GT, (s)) is called a rational Lusztig series. In the case that
the center of G is connected it coincides with the geometric Lusztig series
defined in [5, Definition 13.16] (see remark preceding |5, Proposition 14.41]).
This is due to the fact that semisimple F-stable conjugacy classes of G* are

precisely the conjugacy classes of semisimple elements of G* if the center
of G is connected (see [5, Remark 13.15(ii)]). Note that these notions differ
in general if the center of G is not connected.

We will now see that the Deligne-Lusztig series partition the characters
of GF if the center of G is connected.

Lemma 1.18. Let G be a connected reductive algebraic group with connected
center. Then we have a partition

Irr GF US GF

where (s) runs over the G*I™* -conjugacy classes (s) of semisimple elements
se G,
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Proof. This is [5, Proposition 14.41]. O

Moreover, the partition above gives a particularly nice description of the
p'-characters if G is a simple algebraic group and the root system of G is
not of a certain type.

Theorem 1.19. Let G be a simple algebraic group with connected center
and not of type B, C,, Gy or Fy if ¢ = 2, or Gy if ¢ = 3. Then we have
| Trry (GF) N E(GF, (s))] = 1 for any semisimple conjugacy class (s) of G*

Proof. This follows by [13, Theorem 6.8], using |5, Theorem 13.23] together
with [5, Remark 13.24]. O

This result will be crucial for the construction of Maslowski (see Con-
struction [2.10)). We need to describe the p’-characters in more detail. For
this we define as follows:

Definition 1.20. Let (s) be a semisimple conjugacy class of G*"". We define
a classfunction y(s) of the finite group G* by

X(s) = | Car(8)/ Can (8)] ) (R (), R () *cqem R (s),

T/*

where the sum is over the Cgx(s)F"-conjugacy classes of F*-stable maximal
tori T'* of Cgx(s) and eg = (—1)™ "1k & defined as in [2, Section 6.5].

The class function x( is indeed a character of G' by [5, Proposition
14.48]. If the center of G is connected then x( is even an irreducible char-
acter of G by [5, Corollary 14.47(a)]. Hence, by definition of x5 we have

X(s) S g(GF, (S))

Lemma 1.21. Let G be a connected reductive group with connected center.
Let A € E(GF,(2)) for some z € Z(G*™™) and suppose that X is a linear
character. Then X(s») = AX(s) if and only if (sz) = (s).

Proof. Suppose that (T’,0) is in duality with (T’*,s). By Lemma it
follows that ARS (0) = RS (Aprf). By [5, Proposition 13.30] it follows
that (T', Apr) is in duality with (T'*,2). By the remark below Lemma
we conclude that (T, A\pr0) is in duality with (T"*, sz). This shows
MRS, (s) = RS (sz). From Deﬁnitionit follows that x(s.) = Ax(s). Hence,
multiplication with the character A fixes x(y) if and only if x(..) = Xx(s). As
explained above, we have x(s») € E(G, (s2)) and x5 € E(GF,(s)). Since
the rational Lusztig series form a partition of the irreducible characters of
G! by Lemma we have x(s:) = Ax(s) if and only if (sz) = (s). O
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1.3 The duality functor

In this section we introduce the notion of the duality functor from |2, Section
8.2]. We need the following definition.

Definition 1.22. Let GG be a finite group with normal subgroup N. For a
generalized character y € ZIrr(G) we define by

1
— Z x(ng), for g € G,

TG/N(X)(Q) = | |

the truncation Tg/n(x) with respect to N of the generalized character y.
Note that Te/n(x) € ZIrr(G) is again a generalized character of G (see
remark preceding [2, Lemma 8.1.6))

For a subset J < A of the simple roots of the root system ®, we denote by
P, the standard parabolic subgroup of G associated to J and we let L ; be the
standard Levi complement of P; (see |14, Definition 12.3] and [14, Definition
12.7]). In particular, we have a decomposition P; = U; x L;, where U,
denotes the unipotent radical of the parabolic subgroup P .

Definition 1.23 (Duality functor). For a generalized character x € Z Irr(GF)
we define the dual generalized character of x by

Da(x) = Y,(~ D" (Tprur ()

J

where the sum runs over all 7-stable subsets J of A and J' is the set of 7-
orbits on J. The map Dg : ZIrr(GF) — ZIrr(GF) is called duality functor.

This functor has useful properties, which we will study in more detail.

Theorem 1.24. Let ¢, x € ZIrr(GY) be two generalized characters of GE.
Then the following holds.

(a) (DeoDea)(x) = x and

(b) (Da(x),¥) = (x, Da(®)).

Proof. The theory of the duality functor is discussed in [5, Chapter 8]. In

particular, part (a) follows from |5, Corollary 8.14] and part (b) is [5, Propo-
sition 8.10]. O

From Lemma it follows for two generalized characters x, ¢ € ZIrr(GF)
that

(Da(x); Da(¥)) = (x, (D ©De)(¥)) = (x, ¥),

which shows that Dg is an isometry. Thus, the dual Dg(y) of an irreducible
character x € Irr(G!) is again an irreducible character up to a sign £1. We
show now that the duality functor is compatible with Galois automorphisms.
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Lemma 1.25. Let 0 € Gal(Q,,/Q) be a Galois automorphism, where m =
|GF|. Then the character x is o-invariant if and only if Dg(x) is o-invariant,
for any x € ZIrr(GY).

Proof. By definition of the truncation functor in Definition [1.22] we have

F F

TP§/U§(XU)G = (TP§/U§(X)G ).
This clearly implies Dg(x?) = Dg(x)? by Definition [1.23] So if y is o-
invariant then Dg(x) is o-invariant. The converse follows from the fact that
Dg o Dg is the identity (see Theorem [1.24): If Dg(x) is o-invariant then
Dg(Dg(x)) = x is o-invariant as well.
O

1.4 Galois cohomology

In this section we give different interpretations of the first Galois cohomol-
ogy group H'(F,7Z(G)). This cohomology group will become important in
Section since it parametrizes the different Gelfand-Graev characters of
G. The main references for this section and the subsequent section are the
articles [4] and [12]. We remark that the author of [12] assumes that G is a
connected semisimple algebraic group, but all results we use in this thesis are
applied in [4], where the authors only assume that G is a connected reductive
group. Thus, these results still hold in this more general setup.

First, let us recall some well known results of Galois cohomology. Let
H be an algebraic group with Frobenius endomorphism F'. We denote by
H'(F,H) the i-th Galois cohomology group. Recall that H°(F,H) = H"
and that the functor H°(F,—) is left-exact (see [6, Theorem 6.3.1]). This
implies that if K is an F-stable normal subgroup of H we have that the
exact sequence

1 - K-H->H/K-—1
of algebraic groups induces a long exact sequence
1 - H(FK) - H'(F,H) - H'(FH/K) - H'(F,K) - H'(F,H) — ...

of Galois cohomology groups (see Theorem [6, 4.6.1]). We will use these facts
in the subsequent section without further reference. The following lemma is
used in many situations.

Lemma 1.26. Let H be an algebraic group with Frobenius endomorphism F
and let K be a closed connected F'-stable normal subgroup of H. Then the
natural map HY /K — (H/K) is an isomorphism.
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Proof. This is a consequence of the Lang—Steinberg Theorem (see [5, Corol-
lary 3.22]). O

The previous lemma shows that we have an exact sequence
1 - H(FK) - H'(F,H) - H'(F,H/K) — 1,

if the algebraic group K is connected. More generally, it is true that H*(F, K) =
1 if K is a connected algebraic group (see remark preceding [5, Proposition
14.23)).

Let us denote by . : G — G : g — F(g)g~" the Lang map of the
connected reductive group G with Frobenius map F. Since the maximal
torus T of G is F-stable we can consider the restriction Zr : T — T of the
Lang map .Z to the torus T.

Lemma 1.27. There is a natural isomorphism
HYF,72(G)) = £ (Z(G))/ Z(G)T*.
Proof. We have an exact sequence of algebraic groups
1->72(G) > T->T/Z(G) - 1.

Since the torus T is connected it follows that H'(F,T) = 1 by the remark
below Lemma [1.26] Therefore, the long exact sequence of Galois cohomology
becomes

1 — HYF,7Z(G)) - H°(F,T) - H*(F, T/ Z(G)) — H(F,Z(G)) — 1.
Thus, we have the exact sequence
1= Z(G)" > T - (T/LG))" —» H'(F.L(G)) — 1,
which induces an exact sequence
1 - TF/Z(G)F — (T/Z(G))" — H'(F,Z(G)) — 1.

For t € T we have t Z(G) € (T/Z(G))" if and only if £ (t) € Z(G). This
shows that (T/Z(G)) = % (Z(G))/Z(G). So we obtain H'(F,Z(G)) =
LM Z(G))/ Z(G)TF, which shows the result of the lemma. O

We will from now on identify H'(F,Z(G)) and £ ' (Z(G))/ Z(G)TF un-
der the natural isomorphism constructed in the proof of Lemma [1.27

Let us now consider an extension i : G — G of G by a central torus
such that the center of G is connected. An extension with these properties
always exists (see remark preceding |12, Lemma 1.3]). We can give a different
characterization of the first Galois cohomology group H'(F,Z(G)) using such
an extension:
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Lemma 1.28. Leti: G — G be as above. Then there exists an 1somorphism
B:GF/GFZ(G) — £ (Z(G))/ Z(G)TF.

Proof. Let g € GT. Then there exists some z; € Z(G) such that §z; € G.
Hence,

L(Gz5) = F(ZQ)ZTI = ZL(z;) e Gn Z(G) =7Z(QG).

9

Thus, we can define a map GF — Z(G)/Z(Z(G)) by mapping § —
L(25)Z(Z(G)), which yields by [12, Proposition 1.6] an exact sequence

1-GI'z2(G) - G - 2(G)/2(2(G)) — 1.

The Lang map Zr : T — T restricts to a map %y (Z(G)) — Z(G).
By [4, Corollary 1.3’] this map gives an exact sequence

1 - Z(G)TF - L1 Z(G)) — Z(G)/ZL(Z(G)) — 1.

The isomorphisms G¥/GF Z(G)F — Z(G)/Z(Z(G)) and Zp ' (Z(G))/ Z(G)TF —
2(G)/Z(Z(GQ)), coming from the two exact sequences above, yield an iso-
morphism

8: GGG — 231(2(G))/ ZL(G)TT,

as desired. n

We will need the proof of Lemma [1.28 in Remark below.

1.5 Gelfand—Graev characters

As before, we let G be a connected reductive group with Frobenius F' : G —
G. The aim of this section is to introduce the Gelfand-Graev characters of
G. The action of the Frobenius endomorphism F' induces an automorphism
7 on the character group X (T) of the torus T. Since T is maximally split,
it follows by [14, Proposition 22.2] that 7 stabilizes the set of positive roots
®* and the set of simple roots A. Hence, 7 acts naturally on the index set
of A ={ay,...a,}. Thus, we have a partition

{1,....n} =4, 0---UA,

of the index set of A into its 7-orbits. For a € ® we denote by U, the root
subgroup of G (with respect to T') associated to the root o € ®. We denote
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by Ugu,, i =1,...,r, the product in U/[U, U] of the root subgroups U, for
j € A;. By [4, Lemma 2.2] we have

uU’/[u, ul” ]_[UA

By Lemma we conclude that UF/[U,U]" = (U/[U, U])", which
implies that UF/[U, U] is abelian. Apart from a few exceptional cases,
more is known about the structure of U /[U, U]¥ if G is a simple algebraic

group:
Remark 1.29. If G is simple and G is not of type Bs(2), F4(2) or G(3)
then [U, U] is even equal to [UT, U] (see |7, Lemma 7]). This means that
in this case the irreducible characters of U¥/[U, U]* correspond via inflation

precisely to the linear characters of U”. In order to exploit this fact we will
later assume that we are in this situation.

We introduce the notion of regular characters.

Definition 1.30. A linear character ¢ € Irr(UT) is called regular if ¢ is
trivial on [U, U]" and if ¢ is nontrivial on each U% .

In order to define the Gelfand-Graev characters of G we proceed as in
the proof of |4, Theorem 2.4]. For each o € ® we have an isomorphism
zo ¢ (k,+) — U,, which satisfies F(z,(a)) = x,4(a?) for all a € k and all
a € ®. At the beginning of Section [1.7] we will fix such maps z,. These maps
induces an isomorphism z; : (F a,/, +) — Uii given by

|4;]-1

k
= 1_[ kaai(aq )7
k=0

forall i = 1,...,r. Now fix a character ¢ € Irr((F, v, +)), where |4;| divides
N for all i = 1,...,r, such that the restriction of ¢y to (F,, +) is nontrivial.
Then any character ¢; € Irr(U% ) is given by

pi(zi(a)) = ¢o(cia)

for all a € F 4, and some ¢; € Fj4,). Consequently, any irreducible charac-
ter ¢ € Irr((U/[U, U])¥) is of the form ¢ = [],_, ¢ since (U/[U, U)F
isomorphic to [];_, Uii. Thus, we have the following lemma:

Lemma 1.31. The map  : Irr((U/[U, U])") — [T, F a1 given by ¢ =
[I;_, & = (c1,....¢,), where c; € Fay is such that ¢5(xi(a)) = do(cia) for all
a €l ay, is a bijection.
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The regular characters of U are precisely those characters which cor-
respond to tuples with non zero entries under this bijection. Note that the
parametrization x of the irreducible characters of U /[U, U]¥ depends on
the choice of the character ¢y. For the purpose of this thesis we do not have
to specify the choice of ¢y.

By [4, 2.4.5] we have Nt ((U/[U, U])F) = Z; ' (Z(G)). Therefore 5 (Z(G))
acts on the set of characters of (U/[U,U|)! by conjugation. Moreover,
LM (Z(GQ)) acts transitively on the set of regular characters of U (see [4,
2.4.10]).

There exists a unique character ¢, which corresponds to the tuple (1, ..., 1)
under the map « : Irr((U/[U,U])*) — []'_ F 1. More concretely, the
character 1 is given by

1 = [ [ ¢i with ¢(zi(a)) = do(a) for a € Fya,.
=1

For z € HY(F,Z(Q)) = %; " (Z(G))/ Z(G)TF we take a representative ¢, €
LM (Z(G)) and define v, = t1p;. We identify ¢, € Irr(UF/[U, U]¥) with
its inflation vy, € Irr(UT).

Definition 1.32. For z € H'(F,Z(G)) we define the Gelfand-Graev charac-
ter I, by I', = SF

For a fixed element z € H(F,Z(Q)), all ¢, are T -conjugate. Thus, the
definition of the Gelfand-Graev character I', depends only on z and not on
the representative ¢, chosen in the definition of I',. Note that the characters
[, are distinct for distinct z € H'(F,Z(G)) (see [4, Scholium 3.6]). Therefore
we constructed a complete set of representatives of characters of G which
are induced by regular characters of U,

Remark 1.33. By Lemma we have an isomorphism
B:G"/GF Z(G) - £ (2(G))/ Z(G)TT.

We let § € G be an element of G¥ such that the coset of jin G /GF Z(G)T*
is mapped to z € HY(F,Z(G)) = %y (Z(G))/ Z(G)TF via the map 3. Let
us define g, := §. For § € GF we find 25 € 7(G) such that gz; € G,
as in the proof of Lemma [I.28] Moreover, since the torus T is connected,
it follows by [14, Theorem 21.7] that the Lang map Zr : T — T is sur-
jective. Since Z(z;) € Z(G) by the proof of Lemma [1.28 we find some
t. € £ (Z(G)) such that Z(z;) = Z(t.). By the construction of the map
B GF/GF7(G) —» Z:1(Z(G))/Z(G)TF in Lemma it follows that
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$ maps the coset of g, to the coset of t,. Since Z(z3) = Z(t.), we con-
clude that tzzgl e GF. We have tzzglzg =t, € T € G. Thus, it follows

by the definition of the map G — Z(G)/.Z(Z(G)) in the proof of Lemma
[

.28 that tzzg_l and g, = g define the same coset in G''/G Z(G)*. Note

that G¥ Z(G)F < GF acts trivial by conjugation on characters of GF. As a
consequence we conclude that

GF _ ¢ o2zt -
I.=v;7 ="I'1="%TI'1=9%I.

Hence, we can define Gelfand-Graev characters using the isomorphism
B:GI/GZ(G)" — Ly (Z(G))/ L(G)TF = HY(F.Z(G)).

1.6 The p'-characters of G’

We want to describe the p'-characters of Gf. For this, let us temporarily
assume that the center of the algebraic group G is connected. In this case we
have H'(F,Z(G)) = 1 by the remark below Lemma Thus, the group
G has a unique Gelfand—Graev character, which we will denote by T'.

Moreover, we call a character x € Irr(GT) semisimple if (x, Dg(T")) # 0
(see proof of |2, Proposition 8.3.7]). We recall the definition of a good prime
(see remark below |5, Proposition 14.17]).

Definition 1.34. A prime p is called bad (i.e., not good) for G if the root
system of G is of type B, C, or D, if p = 2, or of type Go, Fy, Fg, E7 if
p = 2,3 and of type Ey if p = 2,3, 5.

The semisimple characters are precisely the p’-characters if the prime p
is good for the algebraic group G.

Theorem 1.35 (Green, Lehrer, Lusztig). Let G be a connected reductive
group with connected center. Let p be a good prime for the group G. Then
the character x € Irr(GF) is semisimple if and only if it is of p'-degree.

Proof. This is a consequence of |2, Proposition 8.3.4]. ]
Using this theorem, we can prove the following lemma.

Lemma 1.36. Let G be a connected reductive algebraic group with connected
center. Let p be a good prime for the group G. Then x € Irr(GF) is a p'-
character if and only if x = € Da(X(s)) for some semisimple conjugacy class

(5) of G*"" and some sign € € {£1}.
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Proof. Since G has connected center, the unique Gelfand—Graev character I'
of G can be written as
T'=> X

(s)
where (s) runs over the semisimple conjugacy classes of G*¥ *. This is a
decomposition of the Gelfand—Graev character into distinct irreducible char-
acters (see [5, Corollary 14.47]). By applying the duality map Dg, we obtain

Da(T) = > De(x)-
(s)
Let x be an irreducible constituent of Dg(I'). Then there exists a semisimple
conjugacy class (s) of G*"" such that (Da(x(s)), x) # 0. Since x(s) is irre-
ducible it follows that Dg(x(s)) is an irreducible character up to a sign (see
remark below Theorem [I1.24)). Consequently we must have x = € Dg(x(s)),

where € € {+1}. By Theorem the irreducible constituents of Dg(T") are
precisely the irreducible p’-characters of G O

Thus, we have a description for the p’-characters of G if the center of
G is connected and p is a good prime for G.

Let us now assume that the center of G is not necessarily connected. As
in Section we consider an extension i : G < G of G by a central torus
such that the center of G is connected. The embedding i : G — G gives rise
to a dual morphism ¢* : G* > G*. The map ¢* is surjective and has central
kernel (see [1, Section 15.1]). We have a map from semisimple conjugacy
classes of G*" to semisimple conjugacy classes of G*"". More concretely, if
(8) is a semisimple conjugacy class of G , it follows that (s) is a semisimple
conjugacy class of G*F*, where s := i*(3).

By [4 Proposition 3.10], we have (x(),I.) = 1, for all z € H'(F,Z(G)).
Thus, there exists a unique common irreducible constituent of I', and x(),
which we will denote by x(s),.. Moreover, by [4, 3.15.1] we have

(XE)er = X = D, X(s).e

where the sum is over the distinct characters x(s) . for z € H'(F,Z(G)).

An important fact is that the duality functor commutes with restriction of
characters in our situation. For later reference we state this in the following
lemma.

Lemma 1.37. Let G be a connected reductive group and i : G — G an
extension of G by a central torus such that G has connected center. Then

Da(X)er = Dal(xgr) for any x € ZIrr(C‘rF).
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Proof. This is mentioned at the beginning of page 172 of [4]. O
We can now prove a similar result as in Lemma |1.36]

Lemma 1.38. Let G be a connected reductive group. Let i : G — G and
: G* = G* be as above. Let p be a good prime for G such that any p'-
chamcter X € Irry (GF) is of the form x = £ Dg & (X)) for some semisimple

conjugacy class (S) of G*™ and some sign € € {x1}. Then the irreducible
constituents of xgr are precisely the characters V). = €Dga(X(s),) for
s =1*(5) and z € H'(F,Z(G)).

Proof. Recall from the beginning of this section that we have
XGB)gr = X(s) = ZX(S),Z;

where the sum is over a complete set of distinct characters x(s).., z € H'(F, Z(G)).
Since the duality functor commutes with restriction by Lemma we have

Xar = (eDa(x@®))gr = ¢Dalx ZSDG

Using the fact that Dg is an isometry (see remark below Theorem [1.24) it
follows that this is a decomposition into distinct irreducible characters. [

1.7 Steinberg presentation

In the remaining part of Chapter [l we will introduce the special setup which
we want to consider in Chapter[2]and Chapter[3] Thus, we keep the notations
and definitions introduced in the following sections for the remainder of this
thesis. In this section we describe the Steinberg presentation of a simple
algebraic group of simply connected type as introduced in [19].

Let ® be an abstract indecomposable root system. Let A = {aq, ..., a,}
be a base of the root system ®. We denote by ®* the set of positive roots,
i.e. the subset of the root system ® which consists of the roots which can
be written as a linear combination of the simple roots with natural numbers
as coefficients. We write &Y for the set of coroots of ® with base given
by AY = {ay,...,a’}. We assume that ® has at least rank 2 (i.e., ® is
not of type A;). We consider the group G generated by the set of symbols
{z,(t) | @ € ®,t € k} subject to the following relations:

L. x4(t)za(tz) = zo(ty + t2) for all ¢y, t; € k and a € P.
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2. Let o, B € ® with aw + 3 # 0. Then

[Za(t) zs(t)] =[] @iarss(cijaptht]),
i,j>0riatjBed

where the product is taken over a fixed order of the roots ® and
Cijap € {1, £2, £3} are as in |19, Lemma 15] (where the ¢; j o3 pos-
sibly depend on the chosen order).

3. ho(t1)ha(ts) = ho(tits) for all ¢y, ts € k™, where hy(t) := wq(t)ws(—1)
and wy (t) = 2o )z _o(—t ) xa(t) for t € k*.

Steinberg shows that the group G is the universal Chevalley group con-
structed from @ and k (see [19, Theorem 8]). Furthermore, he shows that G
can be given the structure of a simple algebraic group in a natural way such
that G becomes a linear algebraic group over k of simply connected type
with root system (isomorphic to) ® (see [19, Theorem 6] and the Existence
Theorem in [19, Chapter 5]). We summarize the structural information for
the algebraic group G in the following lemma.

Lemma 1.39. Let G be defined as above. Then

(a) T ={ha(t) | « € T, t € k*} is a mazimal torus of G.

(b) U, = {x(t) | t € k} for a € ® are the root subgroups of G (relative
to the T ). In particular, we have an isomorphism x, : (k,+) — U, of
algebraic groups given by t — x,(t).

(¢) U= ]].co+ Ua is a mazimal connected unipotent subgroup of G.

(d) B =TU = Ng(U) is a Borel subgroup of G.

Proof. See [15, Section 1]. O

Furthermore we write (by abuse of notation) ® < X(T) for the set of
roots with respect to the torus T. Moreover A = {ay,...,«a,} will denote
the base of ® with respect to T < B.

1.8 A regular embedding

Fix an indecomposable root system ®. Let G be the simply connected group
of root system ® defined over the field k of characteristic p, as in the previous
section. Note that the center of G is a finite subgroup Z(G) = [, ker(;)
(see |14, Theoren 8.17]). We let d, be the minimal number of generators of
Z(G). Note that d, = 0 if and only if Z(G) is trivial which is precisely the
case when the center of G is connected (see |14, Proposition 1.13 (c)]). For
a root system ® we let d be the maximal d, occurring for any prime p. We
list the possible numbers for d in the following remark.
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Remark 1.40. By [14, Proposition 9.15] the center Z(G) of a simple alge-
braic group G of simply connected type with root system ® is isomorphic to
the p/-part of the fundamental group A(®). The fundamental group for the
various types of root systems is listed in [14, Table 9.2]. Note that A(P) is
cyclic except in case where the root system @ is of type D,, and n is even. In
this case the fundamental group of ® is A(®) = Cy x Cy, where Cy denotes
the cyclic group of order 2. Thus, we have d = 2 if the root system of G is
of type D,, and n is even. In the remaining cases we have either d = 1 or
d = 0. Note that d = 0 only occurs in a few exceptional cases.

We will restrict ourselves from now on to the case that d = 1 or d = 0.
This way, we avoid a lot of technical issues later.

Assumption 1.41. We assume from now on that the root system ® of G is
not of type D,, if n is even.

Let S = (k*)? be a torus of rank d. Let p : Z(G) — S be an injective
group homomorphism and define a group G by

G =G x,S=(Gx8S)/{(zp(x)7") ]z ZG)}.

We have natural embeddings i : G — G and j : S — G. As such it
is often convenient to identify G and S with their images in G under these
embeddings. Under this identification G = GS has connected center Z(G) =
S. Moreover, G is an extension of G by the central torus S. Again we list
some structural information on the group G in the following lemma.

Lemma 1.42. Let G be defined as above. Then the following statements
hold.

(a) T = TS is a mazimal torus of G. _

(b)) U = [],co+ Ua is a mazimal connected unipotent subgroup of G.

(¢) B =TU = Ng(U) is a Borel subgroup of G.

Proof. These facts are mentioned in [15], Section 2] O

Note that the construction of G depends on the choice of p. This will
become crucial in the next section when we discuss extensions of Frobenius
automorphisms of G to the group G. In [15, Section 6] explicit choices are
made which we assume to be taken in this thesis.
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1.9 Frobenius endomorphism

As in |15, Section 3] we want to explicitly construct the Frobenius endo-
morphisms of G. Note that we do not consider twisted Frobenius endomor-
phisms, i.e. endomorphisms of G which are not Frobenius endomorphisms
of G, but whose square or cube is a Frobenius endomorphism. This means
that we will not consider Ree or Suzuki groups in this thesis.

We define F, : G — G by x,(t) — x,(t?) for all a € ® and ¢ € k.
This defines a homomorphism of algebraic groups which we call the standard
Frobenius map. Let 7 be a symmetry of the Dynkin diagram associated to
the base A of the root system ®. Then 7 can be used to realize a graph
automorphism v : G — G. We can choose 7 such that (x4, (t)) = Tr(,)(t)
for ; € A and t € k. In particular the order of v coincides with the order
w of the symmetry 7. Any Frobenius endomorphism for the group G with
respect to an [Fy-structure is then, up to inner automorphisms of G, given
by a map F': G — G such that I’ = I, o~ for a standard Frobenius map £,
and a graph automorphism v of G (see [14, Theorem 22.5]). We now state
that G is a regular embedding in the sense of [1, Hypothesis 15.1].

Lemma 1.43. Let i : G — G be chosen as in [15, Section 6]. Then G is
a reqular embedding in the sense of [1, Hypothesis 15.1]. This means G is
a connected algebraic group with connected center and [é, é] = G and for
every Frobenius morphism F of G there exists a Frobenius morphism of G
which is an extension of F.

Definition 1.44. Write g € G as ¢ = 2z with 2 € G and z € S. We define
the determinant map det : G — k* to be the map det(zz) = 2/*(@) where
A(G) is the fundamental group of G. Note that the map det is a well-defined
homomorphism of algebraic groups (see the remark below [15, Definition

7.2]).
The following lemma illustrates an application of Lemma [1.26]
Lemma 1.45. The map det induces isomorphisms BF /BF =~ GF/GF ~ SF

Proof. The map det : G/G — (k*)? = S is an isomorphism. Moreover, the
restriction of det to B induces an isomorphism det : B/B — (k*)¢ = S as
well (see remark below [15, Proposition 11.3]). The groups B and G are
connected F-stable normal subgroups of B resp. G. Thus, it follows by
Lemma that these isomorphisms carry over to the fixed points under
the Frobenius endomorphism F'. O

Note that S¥ is cyclic as finite subgroup of S = k*. Moreover, the
group S* consists of semisimple elements, which implies that every element
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of S¥ _has order coprime to p (see |5, Proposition 3.18]). This implies that
pt|G" : G| and p { |B" : B| by Lemma 1.450 We list some more
properties of the finite groups G and G in the following lemma.

Lemma 1.46. (a) U" is a Sylow p-subgroup of G* and GF.
(b) BF = Ngr(UF) and BF = N (UF).

Proof. The proof of part (a) is given in |15, Proposition 3.4]. Part (b) follows
by |14}, Corollary 24.11]. O

1.10 The dual group

Let G be a simple algebraic group of simply connected type with root system
®. Furthermore, let i : G — G be the regular embedding of G constructed
in Section [I.8] We give an explicit construction of the dual algebraic group
of G, following the construction in [15, Section 7]. Let GV be the simple
algebraic group of simply connected group with root system ®¥ (see Section
1.7). We denote by TV the maximal torus of G as in Lemma [1.39 Note
that G and GV are not necessarily dual to each other (the dual algebraic
group of a simply connected group is not simply connected in general). Let
SY be the torus associated to GY as in Section [L8 Then we choose an
injective group homomorphism p¥ : Z(GY) — SY as in |15, Section 7]. We
denote by G* the resulting linear algebraic group

G*=GY x,0 8" = (G¥ x $)/{(2,p"(2)7)) | z € Z(G)}.

As in Sectionthere are embeddings ¥ : G¥ < G* and j¥ : S¥ — G*
such that we may write G* = GvS". Let us furthermore denote by T* the
maximal torus T* = TVSY of G* as constructed in Lemma [ﬁ] The
notation G* is justified in the next lemma.

Lemma 1.47. Let G and G* be defined as above. Then there exists a duality
isomorphism & : Y (T) — X(T*). Furthermore, for any Frobenius map F of
G there exists a Frobenius map F* of G* such that the pair (é, F) is dual
to the pair (G*, F*) (via the duality isomorphism §).

Proof. This is |15, Proposition 7.6]. ]

The proof makes use the so-called fundamental and dual fundamental
weights. We will need this construction later so we will give a brief summary
of how the duality isomorphism ¢ is constructed. Let us first introduce the
notion of fundamental weights in the following lemma.

29



Lemma 1.48. Let G be a simple algebraic group of simply connected type.
Then the coroots w; € Y(T) defined in (15, Section 1] satisfy {w;, ;) = d;;
foralli=1,...n andj=1,....,n. The w; are called the fundamental weights

of G.
Proof. This is discussed in [15] Section 1]. O

Recall that T = TS. Since S is a central subgroup of G we may define
& € X(T) to be the unique extensions of a root v € X(T) which is trivial
on S. Note that the lifts @; of w; satisfy the equation (@;,d;) = ¢&;;. Let
us furthermore denote the extensions of the fundamental weights of GY by
©F e X(T*).

An important property of the algebraic group G is that it has so-called
dual fundamental weights which we introduce in the following lemma.

Lemma 1.49. Then the coroots 7; € Y (T) defined in (15, Definition 6.10]
satisfy {&;,Tjy = 0;; for alli = 1,....,n and j = 1,...,n. The elements
7, € Y(T) are called dual fundamental weights of G.

Proof. The proof is given in |15, Proposition 6.11]. O

We denote by z : k* — T the map j : S = (k*)? — G with codomain
T. The map z is an element of the cocharacter group Y(’i‘) Recall the
determinant map det : T — k* from Definition . We denote by det” :
T* — k* the corresponding map of the dual group G* = GYSY. These
definitions allow us to state the definition of the duality isomorphism ¢ :

Y(T) — X (T*).

Remark 1.50. The duality isomorphism 6 : Y(T) — X (T*) in Lemma m
is given by 7; — @} for i = 1,...,n and by z — det™.
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Chapter 2

The Maslowski bijection

In this chapter we describe the Maslowski bijection f : Irr,y (BY) — Irr, (GF)
constructed in |15, Theorem 15.1]. This bijection is given by parameteriz-
ing both sets of p'~characters of G and BF by the same set of labels. In
Chapter [3| we use the Maslowski bijection in order to construct a bijection

[ Iy (BF)? — Trry (G

2.1 A labeling for the p’-characters of B

Let us first recall some notation and definitions which we introduced in Sec-
tion [1.7] to Section [I.I0] Let G be a simple algebraic group of simply con-
nected type. Let ® be the root system of G with respect to the torus T
(where T is the maximal torus of G defined in Lemma [I.39). As in Section
we let F' = F, 0oy : G — G be a Frobenius endomorphism of G. The
torus T is F-stable and is contained in the F-stable Borel subgroup B of G,
i.e. the torus T is maximally split. Furthermore, we denote by A the base of
the root system ® with respect to T < B. Note that U = [[ 4+ Uq is the
unipotent radical of B. Suppose that the graph automorphism v: G —» G
comes from the symmetry 7 of the Dynkin diagram associated to the base
A of the root system ®. The symmetry 7 acts on the set of simple roots
= {ay,...,a,}. This action induces a partition

{1,....n} =4, 0---UA,

of the index set of A. We now recall some results from Section [I.Jl We have
an isomorphism

U’/[u,ul” HUA,
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where Uy, i = 1,...,r is the product in U/[U, U] of the root subgroups
U, for j € A;. We assume furthermore that [U", UF] = [U,U]", ie. we
exclude the groups mentioned in Remark [1.29] Consequently, in this case we
have

U"/[UF, U"] = ]_[ Ul

Let us briefly recall the construction of the bijection k as explained before
Lemma [1.31} We fix a character ¢o € Irr((Fyv, +)), where |4;| divides N for
all = 1,...,r, such that the restriction of ¢y to (F,,+) is nontrivial. For
a € @, recall the isomorphism z, : (k,+) — U, from Lemma These
maps yield isomorphisms z; : (F 1,1, 4+) — Uj foralli=1,...,r. For any
character ¢; € Irr(U’}) there exists some ¢; € F 1, such that ¢;(z;(a)) =
¢o(c;a) for all a € Fa,. By Lemma we obtain a bijection

T

x : Irr(UF/[UF, UF]) - H(qu“, +) given by ¢ = H@- — (C1, .y Cr).
i=1

i=1
Let S be a subset of {1,...,r}. We denote S¢ = {0,1,...,7}\S. Define the

character ¢g of U /[U, U’] to be the character which corresponds under
Kk to the tuple (cy, ..., ¢,) with

0 ifigs,
C; =
1 ifie S

For simplicity let us identify ¢g € Irr(U* /[UF, UF]) with its inflation ¢g €
Irr(UT). Note that with this notation the character ¢; introduced before
Definition is precisely the character ¢g for S = {1,...,r}.

For each ¢ = 1,...,r we choose a fixed representative a; € A;. Let u
be the primitive (¢ — 1)-th root of unity of k as chosen before Lemma
1.14, Furthermore, recall the notion of dual fundamental weights 7; € Y (T)
from Lemma Exploiting the Steinberg presentation for the group G,
Maslowski gives generators for the torus TF:

Lemma 2.1. The elements t; = Npw;p(7q,(1)) fori=1,... 7 together with
to = Npw/p(z(p)) if d =1, and ty = 1 if d = 0, generate the torus T*.

Proof. The proof is given in |15, Proposition 8.1]. ]

Remark 2.2. If F' = F|, then the elements to,...,t, have all order ¢ — 1
(unless ¢y = 1 which occurs if and only if d = 0) by [15, Proposition 8.1].
This is not necessarily true if F' is not a standard Frobenius. However, by [15]

Remark 10.3] there exist integers r; such that ¢; = t?‘AiLl fori=1,...r.
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The action of T on the characters of UF can be explicitly described and
one obtains the following result.

Lemma 2.3. The characters {¢g € Irr(UF) | S < {1,...,7}} form a com-
plete set of representatives for the BY -orbits on the linear characters of U,

Proof. This is [15, Proposition 8.4]. O

We consider the action of a Galois automorphism on linear characters of

Ur.

Lemma 2.4. Let 0 € Gal(Q,,/Q) where m is the order of G". Then ¢% = ok
for some t e TF.

Proof. By the uniqueness statement of Lemma [2.3) we have ¢% = qb’;, for
some S < {1,...,r} and some f € TF. Recall that the subgroup Ul are
stabilized by the TF-action. Thus, we have

[Tof =0l =ag=]]er

ies’ €S

Since the characters ¢; € Irr(U% ) are nontrivial this implies S = S and
¢ = -
[

The following statement is crucial for the construction of the labeling.

Lemma 2.5. Any character ¢g € Irr(UT) extends to its inertia group Igr (¢s).
In particular every character in the set Irr(Igr(¢ps) | ¢s) is linear.

Proof. This is [15, Lemma 8.5]. O
We can now describe the labels for the p’-characters of BF.

Construction 2.6. Let ¢ € Irry(B). Since U” is a normal p-subgroup
of BF and 1 has p'-degree it follows by Theorem that 1) lies above a
linear character of U”. Hence, by Lemma there exists a uniquely de-
termined subset S < {1,...,r} such that ¢ lies above ¢g € Irr(U%). By
Clifford correspondence (see Theorem there exists a unique character
X € Irr(Igr (¢s) | ¢s) with AB” = 4. Note that Izr(¢g) = (t; | i € SEYUF by
the remark preceding [15] Lemma 8.5]. We define the image of ¢ under the
map g : Irry, (BF) — €™ by

9(0)i = {0 ifies.
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For i € S° we note that the order of t; € TF < TF divides (¢* — 1) by
Remark Thus, for ¢ € S° the values A(t;) of the linear character A
are (¢ — 1)-th roots of unity. Therefore g(v); is either a (¢* — 1)-th root
of unity or g(+); = 0. Consider the embedding Fj. — C* chosen before
Lemma . Thus, we may consider g(¢); as an element of F,» and we have
amap g : Irr, (BF) — Flit.

Theorem 2.7. Let w be the order of the graph automorphism ~y of the Frobe-
nius endomorphism F = Fyo~. We define A = {(ao, ..., a,) € (Fyu)? xF, |

ghil=1 agy’ }L where the integers r; are defined as in Remark . Then the

map g : Irry (BY) — A is a bijection.
Proof. This is [15, Theorem 8.6] in the untwisted case (i.e, w = 1) and |15,
Theorem 10.8] in the twisted case. O

If F' = F,, then we may choose r; = 0 for the integers in Remark [2.2]
Thus, in this case we obtain A = (F))* x F.

2.2 A labeling for the p/-characters of G

In this section we introduce the modified Steinberg map as in [15, Section
14], which separates the semisimple conjugacy of G*. We use this map to
define a labeling for the p'-characters of GF as introduced by Maslowski
in [15, Section 14]. For this, we first need to recall some definitions from the
representation theory of algebraic groups (see [14, Chapter 15]).

A character A € X(T) is called a dominant weight if (\,a;) = 0 for all
j =1,...,n. Since {w;,af) = §; it follows that all fundamental weights
w; € X(T) of G are dominant.

By a theorem of Chevalley (see |14, Theorem 15.17]) there exists a rational
irreducible kG-module V' which is a highest weight module of highest weight
A. This means that there exists a vector v € V generating V' as kG-module
and satisfying t.vt = A(t).v" for all t € T.

Let R; : G — GL(V;) denote the representation associated to a highest
weight module of highest weight w; € X (T). We let

i G = k with g — tr(R;(g))

be the trace function of the representation R;. We define the Steinberg map
m: G — K" by 7(g) := (m(9),...,m(g9)). A fundamental property of the
Steinberg map is that two elements of G are G-conjugate if and only if they
have the same image under the Steinberg map (see |18, Corollary 6.7]).

We need a further property of the Steinberg map which is a slight gener-
alization of [15, Lemma 14.1] and follows the proof given there.
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Lemma 2.8. Let s € G be a semisimple element. Then m;(sP) = m;(s)P.

Proof. Let R; : G — GL(V}) be a representation affording the trace function
;. The semisimple element s € G is contained in a maximal torus of G
by |14} Corollary 6.11]. Since by [14, Corollary 6.5] all maximal tori of G are
G-conjugate, we may assume that s € T. Since R;(T) is a set of pairwise
commuting endomorphisms we may diagonalize the set R;(T) simultaneously.
Since k is a field of characteristic p, the map k — k with x +— 2P for x € k
is a field automorphism. This implies

() = tr(R;(sP)) = tr(R;(s)P) = tr(R;(s))? = mi(s)P,
since R;(s) is a diagonal matrix. O

The fundamental idea of Maslowski is to consider a modification of the
Steinberg map for the group G* = G¥SY. Let us denote by v : GY — k"
with 7V (z) = (ny(z),...,m)(x)) for x € GV, the Steinberg map of GV.
We can write any element g € G* (not necessary unique) as g = xz with
z€GY and z € SY. In [15, Section 14] Maslowski defines the map 7 : G* —
(k*)4 x k™ by

g = xz — (det*(xzz2), ) ()01 (2), ..., 7, (x)@k(2)).

r0n n

Similar to the result of Steinberg mentioned above Maslowski shows in |15,
Proposition 14.2] the following result:

Lemma 2.9. The map 7 separates semisimple conjugacy classes of G*.
Moreover, if F' = F; is the standard Frobenius then the conjugacy classes
(zz) of G* with image 7(xz) in (F)* x F? are pfecisely the (¢ — 1)4g" dif-
ferent F*-stable semisimple conjugacy classes of G*.

As discussed in Remark the F -stable semisimple conjugacy classes

~ ~ &
of G* are precisely the conjugacy classes of semisimple elements of G+

Therefore we have a bijection between these conjugacy classes and (Iﬁ‘qX )4 x Fy.
This allows us to make the following construction.

Construction 2.10. We first consider the case that [’ = F} is a standard
Frobenius map. Let x € Irry(GF) be a p'-character. Then there exists a
unique F*-stable conjugacy class (5) of G* such that x € &(GF,(3)) (see
Theorem [1.18). We then define the label of x by 7(8) = (by, ..., b,).
Now suppose that F' = F, oy. Let w denote the order of 7. As in the
untwisted case, we associate the F"*-stable semisimple conjugacy class (3) to
&

the p/-character x € £(GF, (5)). Since G+ < G*™ it is clear that (3) is
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a semisimple conjugacy class of G* which is F}.-stable. In particular (3)
has a label 7(5) = (bo,...,b,) € Fju x Fj,. We define the label of x by
(bo, bays - - -, ba,), where a; € A; are the fixed representatives of the orbits of
the T-action on {1,...,n} as chosen before Lemma

The possible labels which occur in Construction [2.10] consist precisely of
the elements of A < (Fyu)? x Fy.., where A is defined as in Theorem as
the following theorem shows.

Theorem 2.11. The map h : Irrp/((}F) — A which maps a character x €
Irr, (G to its label (by, bay, - - -, ba.) as in Construction is a bijection.

Proof. If F' is a standard Frobenius then A = (]qu)d x Fy by the remark

below Theorem [2.7] In this case the theorem is a consequence of Lemma
together with Theorem [I.I9] If F' is a twisted Frobenius one has to
observe which labels occur for the various p’-characters. This has been done
in |15, Proposition 14.4] and |15, Proposition 14.5]. O

The previous theorem together with Theorem implies the following
result.

Theorem 2.12. The map f = h™'og : Irr,y(BF) — Irry (GF) is a bijection.

We will state some properties of f. First we observe that the map f is
compatible with the multiplication by linear characters:

Theorem 2.13. The map f defines by restriction a bijective map Irr(BF |

lgr) — Irr(G | 1gr). Moreover, f(mb) = f(n)f(¥) for ¢ € Trry(BF) and
ne Irr(BY | 1gr).

Proof. This is |15, Theorem 15.3]. O

As a consequence of Theorem we obtain that the bijective map
Irr(BY | 1gr) — Irr(G | 1gr), Wthh we obtained by restricting f, is an
isomorphism of abelian groups In particular we have f (1r) = 1gr. The
label of 1gr is h(lgr) = (1,7, (1),..., 77 (1)). Thus, we obtain 7 (1) = 1

» Nay » a

foralli=1,...,r, since (1) = (1,1,...,1).

Lemma 2.14. The following two statements hold.

(a) Let ¢ € Trry(BF) and 9 € Trr(BY | ). Then Irr(BF | 9) = {xn | n €
Irr(B¥ | 1)}

(b) Let x € Irryy (GF) and ¢ € Irr(GF | x). Then Irr(GF | ¢) = {x\ | A €
Ir(GF | 1gr)}.
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Moreover, the number of different EF—COTLjUgCLtGS of ¥ and the number of
different G -conjugates of ¢ coincide.

Proof. Note that BF/BF ~ GF/GF =~ S* by Lemma and S is cyclic.
Therefore the result follows directly from Corollary [I.7] O

The previous lemma is true in more generality.

Remark 2.15. If the root system of G is of type D,, with n even then the
statement of Lemma is still true. In this case one has to show that any
p/-character of G (resp. BF) extends to its inertia group in G¥ (resp. B)
in order to apply Lemma This is proved in |15, Proposition 11.3] for BF
and in |1, Theorem 15.11] for G*.

In Chapter 3| we use the following corollary for the construction of a
bijection f : Irr,y (BF)7 — Irr, (GF)7.

Corollary 2.16. Let 1 € Trry(BF) and 9 € Trr(BY | ). Furthermore we
let ¢ € Irr(G") be a constituent of f(1)gr. Then the map f induces by
restriction a bijection ITrr(BY | 9) — Irr(GF | ¢).

Proof. This follows from Lemma and Theorem [2.13] O
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Chapter 3

The McKay Conjecture and
Galois automorphisms

In this chapter we prove that the bijection f : Irry (BF) — Irr, (GF) con-
structed in Chapter I is compatible with the action of (e, p)- Ga101s automor-
phisms. Then we will relate the p/-characters of GF (resp. BF) with the
p/-characters of G (resp. BY). This, together with the bijection f, allows
us to construct a bijection f : Trry (BF ) — Trry (GF)? which is compatible
with central characters.

3.1 Compatibility of the character bijection
with Galois automorphisms

In the previous chapters we had to impose several conditions on (G, F'). In
order to apply all results from the previous chapters we have to make some
assumptions. For the convenience of the reader we will recall them now.

Assumption 3.1. Let G be a simple algebraic group of simply connected
type. We assume from now on that G is not of type D,, if n is even and that
p is a good prime for G.

We will frequently write H = HY for the set of fixed points under the
Frobenius endomorphism F' of an algebraic group H. For example, G=GF,
G = GF and B = B¥, B = BF. Let us recall from Definition [0.2] the notion
of an (e, p)-Galois automorphism.

Definition 3.2. Let ¢ be a nonnegative integer and p be a prime number.
Then a Galois automorphism o € Gal(Q,,/Q) is called an (e, p)-Galois auto-
morphism if o sends any p/-root of unity ¢ € Q,, to ¢¥".
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For a natural number m we write m, for the highest p-power dividing m
and m,y = = for the p’-part of m. We first show some elementary properties
P

of (e, p)-Galois automorphisms:

Lemma 3.3. Let 0 € Gal(Q,,/Q) and k be an integer such that o(§) = &F
for a primitive m-th root of unity £ € Q,),.
(a) Then o is an (e, p)-Galois automorphism if and only if k = p* mod m,,.

(b) Let m be a multiple of m. Then any (e, p)-Galois automorphism o €
Gal(Q,,/Q) extends to an (e, p)-Galois automorphism & € Gal(Qz/Q).

Proof. For the proof of (a) we let ¢ € Q,, be an m,-th root of unity. Then
¢ = & for some natural number u. Thus, o(¢) = o(£%) = £4¢ = ¢* which
implies that ¢(¢) = ¢*° if and only if ¢** = ¢*. Since the order of ( is a
divisor of m, this holds true if £ = p® mod m,. Conversely, if we take
¢ € Q,, as primitive my-th root of unity, the equation ¢?° = ¢* implies that
k=p® mod my.

We now prove part (b). Let o1 € Gal(Qy,,/Q) and o2 € Gal(Qy, ,/Q)
be the restriction of o to Q,,, resp. Qmp,. Choose a Galois automorphism
&1 € Gal(Qy,/Q) extending o1. Define 75 € Gal(Qy,,/Q) by 72(C) = (¥ for
a primitive m,-th root of unity ¢ € (@mp,. Clearly, g9 is an extension of o,.

By [11}, Chapter VI, Theorem 1.14] we find a unique Galois automorphism
7 € Gal(Q/Q) such that & restricts to , and & restricts to 5. We conclude
that ¢ is an extension of 0. Moreover, since ¢ restricts to gy it follows that
7 € Gal(Qz/Q) is an (e, p)-Galois automorphism. O

Note that part (b) of Lemma implies that any (e, p)-Galois auto-
morphism o € Gal(Q|g/Q) extends to an (e, p)-Galois automorphism & €
Gal(Qz/Q). This means that if we want to prove Conjecture for the
finite group G' and an (e, p)-Galois automorphism o € Gal(Q|;)/Q), we may
assume without loss of generality that o € Gal((@@ /Q).

We now show that the bijection f : Irry (B) — Irrp/(é) is o-equivariant
for (e, p)-Galois automorphisms o € Gal(Q‘é‘ /Q).

Theorem 3.4. Let o € Gal(Q,,/Q), with m = |G|, be an (e, p)-Galois auto-
morphism. Then the bijection

f:lry(B) — Irry (G)

is compatible with o, i.e. f(°) = f(¥) for any character ¥ € Irry (B).
Moreover, if we denote the label of 1 by g(1)) = (co, ..., c.) then the label of

Y7 is given by g(7) = (cf ..., k).
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Proof. We proceed in several steps. Let ¢ € Irr,y(B) with label g(¢) =
(coy--.,cr). In a first step we compute the label g(1)7) of the character ¢°.

In a second step we let x = f(1) be the p/-character of G which has

the same label as 1. Then we prove that h(x?) = g(¢?). This implies that
f@7) = x7, since f =h~'oyg,
First step Since the character ¢ € Irr, (B) has p/-degree and U is a normal
p-subgroup of B, any irreducible constituent of ¢ is linear. By Lemma .
there exists a unique S < {1,...,r} such that 1 lies above the character
¢s € Irr(U). By Clifford correspondence (see Theorem there exists a
unique character A € Irr(I5(¢s) | ¢s) such that A\Z = .

Since ¥ lies above ¢g it follows that ¢” lies above the character ¢%. By
Lemma [2.4) we have ¢ = gbt for some ¢ € T. The character \” lies above the
chargmcter P% = qbt Since the factor group B / U = T is abelian the character
(M) is well-defined. Consequently, (A\”)""" lies above the character ¢g and
(A°)F)B = 7. Note that A is a linear character by Lemma [2.5, We let
¢ be a primitive m-th root of unity and we let k£ be an integer such that
o(&) = £*. Then we have A\ = A\* by Lemma . By definition of the map
g in Construction we obtain

g(W7)i = (W) () = (W) (It = A (1)

for every i € S¢. For i € S we get g(¢7); = 0. Consequently, the label of 1)

is given by g(¢7) = (cg, ¢f,- ... ¢})-

By Lemma[3.3]we have k = p® mod my since o € Gal(Q,,/Q) is an (e, p)-
Galois automorphism. By [14, Table 24.1] it follows that (¢* —1) divides my,
which implies that k = p° mod (¢ — 1). Since (co, ..., ¢) € Fii' we have

g(W7) = (c5,-- . c) = (ch ;- ).

Second step: We have y € £(GF,(3)) for some semisimple conju-

gacy class (§) of the dual group G+ By Corollary [1.16| we deduce that
x° € E(GF,(5%)). Note that § € G*" " is semisimple and IGF| = |G*F*|
since (G, F) and (G*, F*) are in duality (see [2, Proposition 4.4.4]). By [5,
Proposition 3.18] it follows that the order of § is a divisor of m,. Since
k = p® mod my by Lemma this shows that 37" = 5*. Hence, we have
X7 € E(GF, (3)).

Let us now first assume that F' = F} is a standard Frobenius map. We

may write § € G* (not necessarily unique) as § = xz where z € GY and
z € S¥. By Construction the label of the character x7 € £(GF, (57%)) is
given by

7() = 7((@2)"") = (det”™((22)"), my (@")@{ (), 7wy (2 )iy (7).
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Note that det* (( 2)P°) = det* (x,z)pe since det* € X(T*). We claim that
7;(87°) = 7;(8)P" for all i = 1,...,n. We obtain

Ti(87) = Ti(a?" ") = m) (2" )wf ()
by definition of the modified Steinberg map in Section 2.2l By Lemma
we have 7Y (zP") = 7wy (z)P". Moreover, we have @w}(z*") = @f(2)?" since

@* e X(T*). Therefore we obtain

Ti(8") = m (@) @F () = (m) (2)w} ()" = 7(8)".

Hence, we obtain 7;(57") = ;(5)"" as claimed above. Since 7(zz) = (co, ..., Cn)
we have 7((zz)? ) ()", ..., ) and therefore the label of x7 is given by
h(x?) = (e ,....c") = g(z/)") and we have f(1)?) = f()?, as desired.

Let us now assume that F' = F, oy. Let w be the order of v and let
#(3) = (bo, .. .,b,) be the image of the Fju-stable conjugacy class (5) of G*
under the modified Steinberg map. Then, as we have shown above, the image
of (3”°) under the modified Steinberg map is given by 7(57°) = (b, ..., b2°).
By construction of the labeling, the label of the character x € E(GF,(3))
is given by h(x) = (bag,.-.,ba,) and the label of x° € E(GF,(5)) is
h(x7) = (b2 ..., b2 (see Construction [2.10). We have g(¢) = (co, - .., ¢,)

ag?

(bag, - - -+ ba,) = h(x) since f(1)) = x. Thus, we conclude that
9(17) = (<

This proves f(1?) = x°, as desired. O

(e

s ) = (D) = h(X7).

ap’?

As an immediate consequence of Theorem [3.4] we have the following corol-
lary:

Corollary 3.5. Under the assumptions of the previous theorem the bijective
map f restricts to a bijection Irry (B)” — Trry (G)7.

In the following example we compute the number of o-invariant p’-characters
of B= B! if F = F, is a standard Frobenius.

Example 3.6. Let F' = [ be a Standard Frobenius map. Then we have
a bijection g : Irry(BF) — A with A = (FX)? x F? (see remark below
Theorem E Let v € Irr,y (B) with label g(1)) = (Co, - - - ¢n). By Theorem
4| the character 1 is o-invariant if and only if (4 ,..., ) = (co,...,cn).

r n

Let q=7p and let s € {1,..., f} be defined as s = ged(e, f). Then 9 is
o-invariant if and only if (co, ..,cn) € (F)5)* x Fl.. Consequently we have

[Ty (B)°| = (p° — 1)p.
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3.2 Relating the characters for a special class
of Galois automorphisms

For this section only we will furthermore assume that o € Gal(Q,,/Q), where
m = |G|, is a Galois automorphism which fixes all p-th roots of unity of Q,,.
We will later drop this assumption. In particular, this assumption implies
that all linear characters of U are o-invariant, as we are about to show.

Lemma 3.7. Under the assumptions as above, any linear character of U is
o-invariant.

Proof. The linear characters of U are precisely the inflation of characters
of U/[U,U]. We have U/[U,U] = [];_, Uk and U} = (F,a,,+) (see
Section . As additive group, the group (F,4,,+) is isomorphic to a
product of cyclic groups of order p. We conclude that the character values of
characters of U/[U, U] are p-th roots of unity. These roots are fixed by the
Galois automorphism ¢ by assumption. Thus, every linear character of U is
o-invariant. O

Lemma 3.8. Let 0 € Gal(Q,/Q), where m is the order of G. Suppose
that o fizes all p-th roots of unity of Q,,. Let x € Irry(G) such that x¢g is
o-invariant. Then ¢ € Irry (G)7 for all ¢ € Irr(G | x).

Proof. By Lemma we have x = eDg(x(s)) for some ¢ € {+1} and
a semisimple conjugacy class (5) of G*" . We let i* : G* — G* be the
dual morphism corresponding to the regular embedding i : G — G as in
Section . The characters 9. = €Dag(x(s).) € Irry(G) for s = i*(5)
and z € H'(F,Z(G)) are by Lemma the irreducible constituents of xg.
Recall that x(y) . is by definition the unique common constituent of x(,) and
[',. The Gelfand-Graev character I', = wg is the induced character of the
linear character v, € Irr(U) (see Definition and Remark [1.29). Thus,
we have I'7 = I', since the Galois automorphism o fixes any linear character
of U by Lemma (3.7

As in the proof of Lemma we see that xo = eDg(x(s)). Since
X¢ is o-invariant we conclude by Lemma that x(s) is o-invariant as

well.  Therefore x7;, , is the unique common constituent of I'; = I'; and
X{sy = X(s). This shows X7 = = X(s),.- Using Lemma m again we deduce
that w?s),z = P(s),2- O

Lemma 3.9. Let 0 € Gal(Q,,/Q), where m is the order of G. Suppose
that o fizes all p-th roots of unity of Qy,. Let ¢ € Irry(B) such that Vg is
o-invariant. Then ¥ € Irry (B)7 for all ¥ € Irr(B | ¢).
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Proof. Since U is a normal p-subgroup of B the p/-character 1 lies above
a linear character of U. By Lemma we know that the character v lies
above a character ¢g for some S < {1,...,r}. By Theorem [1.3] there exists
a character \ € Trr(1 | ¢g), where I = 15(¢g), such that A¥ = 1. By Lemma
m the character ¢g extends to its inertia group I and the linear character
X e Irr(I | ¢g) is an extension of ¢g. Note that A\; € Irr(I | ¢g), where
I = 13(¢s). By Theorem |1.3| we conclude that 9 := (A\;)? is an irreducible
character of B. Moreover, we have

V5, 9) = (W, (A1)P) = (0, ANF) = AF,(A0F) = (A () F)y).

By Mackey’s Theorem (see [8, Problem 5.6]) we can conclude that

A (ADB)7) = A )T = (Ar, Ar) =1 #0.

Combining the two formulas above, we deduce that the character ¥ = (\;)%
is an irreducible character of B which lies below the character .

We need to prove that ¥ = (\;)? is o-invariant. By Lemma [1.4| we know
that (A\;)? is o-invariant if and only if \; is o-invariant. Since v¥p is o-
invariant, we have 0 # (¢5,9) = ((¢¥7)p,9). Therefore 1)° € Irr(B | ¥). By
Lemma there exists a character € Irr(B | 1) such that 1/ = 5. The
character \ lies above ¢g € Irr(U). Now ¢ = ¢ implies that A” lies above
the character ¢g. We conclude that

() = NPy =y = 07 = AP)7 = (A",
This means ()\nf)é — (\9)B = 47 e Irr(B | ¢g). The characters An; and A7

are lying above ¢g which implies An; = A by Theorem . Since n € Irr(B |
15) we have in particular n; = 1;. Hence, we get

Ar = )\1771 = ()\ﬁf)f = ()\U)I = ()‘I)U-

Thus, A is o-invariant which proves that ¢ = (A\)? is o-invariant. Therefore
the character ¥ € Irry(B) is an irreducible o-invariant constituent of the
character ¥5. Thus, by Corollary all irreducible constituents of {5 are
o-invariant. ]

Note that the following lemma is true without the additional assumption
that the Galois automorphism o € Gal(Qg/Q) fixes the p-th roots of unity.

Lemma 3.10. Let 0 € Gal(Q,,/Q), where m = |G|, be an (e,p)-Galois
automorphism. Let ¢ € Irry(B) and x = f(¢). Then the character g is
o-invariant if and only if xg is o-invariant.
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Proof. Suppose that 1p is o-invariant. Then 1° = v¢n for some 7 € Irr(B |
1) by Lemma [2.14] Using Theorem we obtain

FW7) = flem) = f(w)f (),
with f(n) € Irr(G | 1¢). By Theorem , we have f(¥)7 = f(¥?). Therefore

X& = (f()e)” = fW)a = FW)afe = f®)e = xa,

which shows that xg is o-invariant. An analogous argument shows that if
X¢ is o-invariant then ¥ g is o-invariant. This shows that ¢ g is o-invariant
if and only if x¢ is o-invariant. O]

Using the results of this section we can draw the following conclusion.

Corollary 3.11. Let 0 € Gal(Q,,/Q), where m = |G|, be an (e, p)-Galois
automorphism which fixes the p-th roots of unity. Let ¢ € Irrp/(B) and let
X = f(zp) Then all irreducible constituents of Vg are o-invariant if and only
iof all irreducible constituents of xa are o-invariant.

Proof. 1f ¢ has an irreducible o-invariant constituent then all irreducible
constituents of 15 are o-invariant by Corollary[I.2] This implies that ¢ is o-
invariant. The same argument shows that if x¢ has an irreducible o-invariant
constituent then yg is o-invariant. Now the claim of the corollary follows
directly by Lemma [3.10] together with Lemma [3.8) and Lemma [3.9 O

This corollary allows us to define a bijection f : Irry (B)? — Irry (G)? (see
Theorem below). In the subsequent sections we will drop the assumption
that the Galois automorphism o fixes the p-th roots of unity. In order to
show an analogous statement as in Corollary for this more general case
we need to find appropriate generalizations of Lemma [3.8 and Lemma [3.9]

3.3 Relating the p-characters of B and B

In this section we generalize the results of the previous section by allowing
a larger class of Galois automorphisms. In a first step we generalize Lemma
.91

Lemma 3.12. Let 0 € Gal(Q,,/Q) be a Galois automorphism, where m =
IG|. Let e Irrp/(B) and ¥ be an irreducible constituent of 1p. Furthermore,
we let S be the unique subset of {1,...,r} such that 1 € Irr(B | ¢g). Then
¥ 1s o-invariant if and only if V¥p is o-invariant and there exists an element
t € B such that ¢% = ¢.
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Proof. We first assume that 9 is o-invariant. By Corollary all irreducible
constituents of g are o-invariant. This implies that g is o-invariant as well.
The character ¢g is a constituent of some B-conjugate of ¥, such that we
may assume that ¢g is below 9. Since ¥ is o-invariant we conclude that ¢% is
a constituent of ¥y again. By Theorem it follows that ¢¢ is B-conjugate

to ¢5.

Now assume conversely that g is o-invariant and that there exists some
t € B such that ¢% = ¢%. Let I = Ip(pg) and I = I5(ds). We let \ €
Irr(I | ¢g) be the character such that A¥ = ¢ (see Theorem . As in the
proof of Lemma we see that AP is an irreducible constituent of 5. By
Corollary we may assume that ¥ = (A\;)Z. Since p is o-invariant, we
have 0 # (¥,9) = ((17)5, V). Therefore 1° € Irr(B | ¥). By Lemma
there exists a character 1) € Irr(B | 1) such that ¢ = 7. Since X lies above
¢g, it follows that A7 lies above ¢Z = ¢%. Thus, the character (A%)" lies
above ¢g. This implies that

(AP =07 = gm = (gp)”.
By Theorem , we have (A%)""" = An;. Since 5 € Irr(B | 15) this implies
A7 = At This shows that ¥ = (\))Z = (A\])8 = 7. O

Recall that the character ¢, introduced before Definition [1.32]is the char-
acter ¢g for S = {1,...,r} (see remark preceding Lemma [2.1]). Moreover,
by Lemma there exists an element ¢ € T such that P9 = Pt As a
consequence of Lemma we obtain the following corollary.

Corollary 3.13. Let ¢ € Trry(B). Suppose that 1 € Trr(B | ¢g) for S <
{L,....7}. Let 0 € Gal(Q,,,/Q), where m = |G|, be a Galois automorphism.
We let t € T such that g = pt. Then every irreducible constituent of Vg is
o-invariant if and only if Vg is o-invariant and t € 15(¢s)B.

Proof. Since the conjugation action of TF stabilizes the subgroups Ul , we
obtain

Y = 6% x 6% = ¢ x ¢ =1l

This shows that ¢% = gbg By Lemma every irreducible constituent of

Yp is o-invariant if and only if ¢ g is o-invariant and ¢Z = ¢% = ¢l for some
t € B. This is equivalent to saying that tt™r € I3(¢s). The latter statement
is equivalent to t € I5(¢s)B. O

We now show on an example how one can compute the number of o-
invariant characters of Irry(B). For simplicity let F' = F} be a standard
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Frobenius and suppose that d # 0. Let us assume that o € Gal(Q,,/Q) is an
(e, p)-Galois automorphism. Furthermore we let £ be a primitive m-th root
of unity and k be an integer such that o (&) = £*.

We need to compute ¢f. Let (ai,...,a,) € Fy be arbitrary. Then we
obtain

n

Vi(@i(ar), .. wa(an))” = | [ i@i(@)” = [ [ dulwi(@)* = | | dol(kas).
i=1 i=1 i=1
by Lemma 1.8 Let y € k* be the fixed (¢— 1)-th root of unity chosen before
Lemma _ We let ¢ be an integer such that p¢ = k in F; and define
t =TI, t5. Then we obtain

U (z1(ar), . .. ,xn(an))f = H (ﬁi(:z:'i(ai))t~ = 1_[ (x;(pay)) n (ka;),

i=1 i=1

thanks to [15, Proposition 8.1]. This shows 17 = ¢f. We want to find out in
which cases t € 15(¢s)B for a subset S of {1,...,n}.

Note that I5(¢s) = (t; | i € S)U by the remark before |15, Lemma 8.5].
Thus, we have t € 15(¢g)B if and only if there exists some x € (t; | i € S¢)
such that tz=!' € B. The homomorphism det : B — k* gives rise to an
isomorphism det : B/B — Z(G) (see Lemma [1.45). Hence, tz~' € B if and
only if det(t) = det(z). We have det(t;) = t; where the nonnegative integers
e; are defined as in |15, Proposition 11.4]. Writing x = H tfi, we have

eS¢

det(z H tdiei tZ‘ESC % and det(t H te = t(@)Zle .

eS¢

Now the element to € T has order ¢ — 1 since d # 0 (see Remark . Thus,
the equation det(t) = det(z) is equivalent to

Z die; = cznl e; mod (¢ —1).

eS¢ i=1

Example 3.14. We now consider the special case that G is of type C,, and
that ¢ is odd. In this case we have e; = 2 for i < n and e, = 1 (see [15]
Example 11.7]). If n € S¢ the equation Y o die; = ¢ e; mod (¢ — 1)
becomes
Z 2d; +d, =c(2(n—1)+1) mod (¢ —1).
ieSe\{n}
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A solution to this is clearly given by d,, = ¢(2(n — 1) + 1) and d; = 0 for
i€ S\{n}. If n ¢ S° we obtain the equation

Z 2d;=c(2(n—1)+1) mod (¢ —1).

i€S¢

Now this is equivalent to the equation ), ¢ d; = 5(2(n — 1) + 1) mod (‘1;21)
it ¢ = 0 mod 2 and has no solution if ¢ = 1 mod 2. In the first case
do = 5(2(n —1) + 1) and d; = 0 for all 7 € S\{0} is a solution to this
equation. We conclude that ¢t € T if ¢ = 0 mod 2. On the other hand, if
c=1 mod 2 then f € I5(¢s) if and only if n € S°.

For v € Irrp/(f?) we want to give sufficient and necessary conditions for
Yp to be o-invariant. We let (cg,...,c,) be the label of ¥. Suppose that
¢s € Irr(U) is below . By Lemma [2.14 m we conclude that ¢p is o-invariant
if and only if 1)° = ¢n for some n € Irr(B | 15). The labels of characters
n e Irr(B | 1p) are given by (A%, ... A°) for A € Fx by [15, Proposition
11.4]. Recall from Theorem .that the label of 97 is g(w") = (&, ).

Hence, 17 = ¢n if and only if ¢ "=l — )¢ for all 4 € S¢. Thus, we conclude
that ¢p is o-invariant if and only if there exists some A € Fy such that

&1 = X for all i € S°. Let us now continue Example [3.14]

)

Example 3.15. Let us again consider the case that the root system of G is of
type C,, and that g =1 mod 2. Let ¢ = p/ and let s € {1,..., f} be defined
as s = ged(e, f). Note that this definition occurred previously in Example
. Let 1 € Ity (B) and suppose that ¢g is below 9. Let g(1) = (co, ..., cn)
be the label of v. As we have seen above, the character ¢ is o-invariant
if and only if there exists some A € F such that &= Xei for all i e S°.
Thus, by Theorem we need to find all tuples (co,...,c,) € A, where
A= (Fx)* x F?, such that there exists some X € F)* satisfying the system of
equations

&= )% for all i € S¢,

where S = {i | ¢; = 0} and S¢ = {0,...,n}\S.

If ¢, # 0 or equivalently n € S¢ then A := cn satisfies 21 = A2, We
conclude that the label (cy, ..., ¢,) satisfies & ~' = X for all i € S if and
only if ¢; = s;¢2 for all i € S°\{n} and some s; € F,.. Consequently, there are
precisely (¢ — 1)p*™ Y (p* — 1) labels (co, ..., c,) € A with ¢, # 0 satisfying
this system of equations.

If ¢, = 0 we obtain the system of equations ¢ ' = X for all i € S°.

1
Hence, the label (co,...,c,) satisfies this system of equation if and only if
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ci = sico for all i € S\{0} and s; € F);. Thus, in this case we have precisely
(g — D)p*™=Y possible labels.

We are now able to compute the number of o-invariant p’-characters of
B. Let ¢ € Trr(B) below 1 € Trry(B). Suppose that ¢ = 0 mod 2 (where
¢ is defined as in Example . We write M,, = Irr(B | 9) for the set of
characters above ¥ and N, = Irr(B | ¢) for the set of characters below .
For a set of representatives Q € Trr,y(B) of the B-orbits of Irr,y (B) we have
by Clifford theory (see also [15, Section 11]) a partition

Ity (B) = U My

and a corresponding partition

Irry (B) = | ] Ny
PeN

Let us denote by N7 the subset of o-invariant characters of Ny. Furthermore,
we let Q' € Q be the subset of € consisting of the characters ¢ € €2 such that
g is o-invariant. Using Corollary we obtain
Irry (B)” = | ] N
Pe)

Since ¢ =0 mod 2 we have t = [, 5 € T by Example . Since 7 = !
as shown in Example this implies NJ = Ny, for all ¢ € Q' by Corollary
3.13l By [15, Example 11.7] we have |M,| = ¢ — 1, if ¢, = 0, and |My| =
4=, if ¢, # 0. Moreover using [15, Proposition 11.6] we have |Ny| = 1, if
¢, =0, and |Ny| = 2, if ¢, # 0. As we have seen above, Irry (B) consists of
(q—1)p*»=1(p® — 1) characters with label ¢, # 0 and (g—1)p*("~V characters
with label ¢, = 0.

Thus, we conclude that there are precisely ps(”_l)(ps — 1) elements of
Q' with label ¢, # 0 and 2p*™~V elements of € with label ¢, = 0. As a
consequence we conclude that

| Irry (B)7| = ps(n_l)(ps - 1)+ 4p*=) = pon 4 3ps(n=1),
If c=1 mod 2 an analogous computation proves that
| Irr, (B)?| = p"" D (p* — 1).

Note that if ¢ € ' (i.e., ¢p is o-invariant) and |Ny| = 2 it follows that
o permutes the two characters of Ny if c=1 mod 2.

Let us single out a special case. If ¢ = id then s = f and ¢ =0 mod 2.
This implies that |Irry (B)| = p/™ + 3p/~Y = ¢" + 3¢" ! and we recover as
a special case the result obtained by Maslowski in |15, Example 11.7].
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3.4 Relating the p/-characters of G and G

Let 0 € Gal(Q,,/Q), where m = |G|, be any Galois automorphism. Let
x € Trry(G) be an irreducible p/-character of G. In this section we give
sufficient and necessary conditions for the irreducible constituents of x4 to
be o-invariant.

We fix some notation for the remainder of this section. By Lemma [1.36),
we know that x = +Dg(x(s) for some semisimple conjugacy class (5) of

G*"". As in Section we let i* : G* — G* be the dual map corresponding
to the regular embedding i : G < G. We define s := i*(5). By Lemma
1.38| the characters ¢y . = = Da(X(s):), 2 € H'(F,Z(G)), are precisely the
irreducible constituents of x. Note that by Clifford’s Theorem the condition
that y¢ is o-invariant is necessary (see Corollary. So we may assume that
X¢ is o-invariant. We have xg = + Da((x(s))c) since restriction commutes
with the duality functor by Lemma Thus, by Lemma we conclude
that x(s) = (x(s5))¢ is o-invariant. Again by Lemma it follows that the
character 1) . is o-invariant if and only if x() . is o-invariant.

We study the action of the Galois automorphism o on the Gelfand-Graev
characters more closely. Let I', = (*¢);)¢ be the Gelfand—GraeV character
corresponding to z € H'(F,Z(G)). By Lemma 4| we know that ¢ = 4l
for some suitable t € T. As in Remark [1.33 we Con81der the isomorphism
B: GF/GFZ(G)F — L7 (Z(G))/Z(G ) = H'(F,Z(G)). Suppose that
the coset of £ in GF/GF 7(G)F maps to 2/ € H'(F,Z(G)) via the map S.
We define g, = ¢ 1. Recall from Remark that I',; = 9/I';. It follows
that

D7 = ()% = @)% = TL = #T..
Moreover, we have

X(s) = Xs) = X@)e = ' X@)e =T Xs)-

By definition of x() ., we know that the character X{(s),» 18 the unique
common irreducible constituent of I'7 = 9-'T", and X(s) = % X(s . We conclude
that X(s)s = ' X(s . This shows that the irreducible constltuent Y(s),- of xa
is o-invariant if and only if x(s). = %' X(s),.- The subsequent lemma gives a
sufficient and necessary condition for the character x() . to be o-invariant.
Note that we identify characters which correspond to each other under the
inflation map Irr(GF /GF Z(G)F) — Irr(GF | larz@r)-

Lemma 3.16. Let 2’ € HY(F,Z(G)) = GF/G" Z(G)" with representative
g € G Then %' X(5),. = X(s)» if and only if \(z') = 1 for all characters
A€ Irr(GF/GF Z(G)F) with Ax(z) = X(3)-
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Proof. This follows from the proof of [4, Proposition 3.12 (ii)]. Since this
lemma is central for our argumentation we will reproduce the proof. First
note that 9:'x(y . is the unique common constituent of 9I',; = I'.., and
9 X(s) = X(s)- Therefore we have 9= x(y) . = X(s),2r- Let us now define

H(s) = {A e I (GF/GF Z(G)T) | Axes) = x0))
and
K(s) = {z'€ GF/GFZ(G)" | "' X(5).2 = X(5).2}-
Recall from Section that (xi))ar = X = ZX(S)=Z where the sum is

over the distinct characters x(y),. for z € H'(F,Z(G)). Thus, the restriction
of x5 to G* is multiplicity free. Now [12, Proposition 2.1] shows that this
implies

K(s) = {7 € GI'/GF Z(G)F | A(z') = 1 for all A € H(s)}.
But this is precisely the claim of the lemma. O]

This leads to the following corollary which will be of importance.

Coro}lary 3.17. Let t € T such that 17 = w’i. Let x = +Deal(x@)) €

Irry (G). Then all irreducible constituents of xg are o-invariant if and only if
Xc s o-invariant and N(f) = 1 for all A € Irr(G | 1) satisfying Ax(z) = X(5)-

Proof. Recall from the discussion of the beginning of this section that the
condition that xq is o-invariant is necessary for the irreducible constituents
of x¢ to be o-invariant. Moreover, if y¢ is ¢ invariant, then the irreducible
constituents of xg are o-invariant if and only if x(y. = %X, for z €
H'(F,7Z(G)), where g,' = #. Now if A € Trr(G | 1¢) is a character such
AX(5) = X(s) then automatically G*Z(G)" < ker()\) by [12, Proposition 2.4
(iv)]. Thus, the claim of the corollary follows by Lemma [3.16] O

Example 3.18. In the situation of the previous corollary suppose that v,
is o-invariant. This is for example the case if o fixes the p-th roots of unity.
In this case, we obtain 2/ = 1 and A(2') = 1 for all X € Irr(G | 1¢). Thus, it
follows that the irreducible constituents of y¢ are o-invariant if and only if
X¢ is o-invariant. Hence, Corollary is a generalization of Lemma [3.8]

We will now investigate the bijection f : Irr(B | 15) — Irr(G | 1¢) in more
detail in order to determine the values of the linear characters A € Irr(G | 1¢)
at the elements t;.
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For the subsequent lemma recall that if A € Irr(G | 1¢) then A € £(GF, (%))

for some central element Z € Z(G*F*) (see [15, Proposition 13.3]). Moreover
by |5, Proposition 13.30] we see that (T, A7) is in duality with (T*, Z).

Lemma 3.19. Let A € Irr(G | 1¢) lie in the Lusztig series E(GF,(2)). Then
A(to) = det™(2) and \(t;) = @} (2) for alli=1,...,r

Proof. This was shown in [15, Proposition 13.4] for ¢,. We prove the remain-
ing cases by replacing det® and ¢y by @} and ¢; in the proof of |15, Proposition
13.4].

Let 1 € k* be the primitive (¢ —1)-th root of unity chosen before Lemma
- Let 9 — A\ € Irr(T) and 6 € X(T) be the lift of 6 as in the proof of
Lemma As we have indicated above, (T, #) is in duality with (T*, 2).
Let us deﬁne t = 6v(0)(11). Recall from Remark @I that 0(7;) = @ for all
i =1,...,n. Then using Remark we obtain

Qp (8) = @3, (67 (0(n))) = p&80" O = OO = ) Ored = f(r, ().

a;

Since the pair (G, F) is dual to the pair (G*, F*) via the duality isomorphism
J it follows that 0 commutes with the action of F' and F™* (see Definition |1.11]).
Using Remark again we obtain

~

G5 (F(1)) = pEEF" 5 O) = OFera) 3O = O Fore) (P (r, ().

Recall that Z = Npww ps(t) since (T*, %) is in duality with (T,6) (see proof
of Lemma [1.14)). The two equations above imply that

@:Z(g) = @:i(NF*w/F* 1:[ F*l = é(NF“’/F(Tai (:u))) = e(tl)

1=0

As 6 is the restriction of the character A to T we have 6(t;) = A(t;). This
shows A(t;) = @} (Z) as desired. O

Corollary 3.20. Let A € Irr(G | 1¢) lie in the Lusztig series E(GF, (%)).
Then f~1(\) = Ag.

Proof. Using Lemma we see that the character g € Irr(B | 15) has
label

9(Ap) = (det™(2), @7 (%), ..., @5 (2)).
Moreover, the label of the character A is given by

h(A) = (det™(2), mg, (D, (2), - -, 7w, (g, (2))

) a1 ai
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by definition of the labeling in Construction [2.10] By the remark below
Theorem we obtain h(\) = (det®(2), @} (2),...,@; (Z)). By definition
of f in Theorem it follows that the character f~'(\) has the same
label as A. Thus, the labels of f‘l()\) and Aj coincide and we must have

FH) = s 0
Using Corollary we get the following result.

Corollary 3.21. Restriction of characters defines a bijection Irr(G | 1g) —
Irr(B | 1p).

Proof. The map f~' : Irr(G | 1¢) — Irr(B | 1p) defines a bijection by Theo-
rem[2.13. By Corollary this map is given by restriction of characters. [J

For x = +Dg(x(s) with label (b, ...,b,) we define S = {i | b; = 0}.
Note that x = +Dg(x(s) € E(GF, (3)) by [3, Theorem 6]. Thus, we have
S = {i | 7, (5) = 0}. If ¢ € Irry(B) with f(p) = x then ¥ has label
g(¢) = (by,...,b.). Consequently, by Construction it follows that 1) lies
above the character ¢g. Thus, the definition of S for x € Irr, (G) is consistent
with our previous use of S.

Lemma 3.22. Let x = +Dg(x@)) and S be defined as above. Let \ €
Irr(G | 1¢) lie in the Lusztig series E(GF, (2)). Then AX(s) = X(s) if and only
if AM(t;) =1 for allie S°.

Proof. By Lemmawe conclude that A\x(s) = x(s) if and only if (52) = (3).
By Lemma [2.9| this is the case if and only if 7(23) = 7(3).

Let us now write § = xz with x € GY and z € SY. By definition of the
modified Steinberg map we have

T

(25) = Tj(x22) = T/ (a:)(IJ]* (22) = @(5)&;}‘(2)

for all j = 1,...,n and det™(8)det™(Z) = det*(5). Using [15, Proposition
14.4] we conclude that multiplication with A fixes x(s) if and only if &} (2) =1
for all ¢ ¢ S and det*(2) = 1. The claim of the lemma follows by Lemma

3. 191 O]
Recall from Lemma [2.3| that there exists £ € T such that ¢¢ = .

Lemma 3.23. Suppose that x = +Dg(x(s) with label (by, ..., b.). We let

S={i|b =0} Lette T such that 7 = t. Then all constituents of xc
are o-invariant if and only if x¢ is o-invariant and t € 15(¢s)B.
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Proof. By Corollary we know that all constituents of x are o-invariant
if and only if A(f) = 1 for all A € Irr(G | 1¢) satisfying AXG) = X(@5)- By
Lemma we have A\x(;) = x5 if and only if A(t;) = 1 for all ¢ € S°.
Restriction of characters defines a bijection Irr(G | 15) — Irr(B | 15) by
Corollary [3.21] We conclude that all constituents of yg are o-invariant if
and only if A(f) = 1 for all A € Irr(B | 1) satisfying A(t;) = 1. Note that
I:=15(¢s) = {t; | i € S°YU by the remark preceding [15, Lemma 8.5]. So the
characters A € Irr(B | 15) with A(;) = 1 for i € S¢ are precisely the characters
in Irr(B | 157). Now the natural map ~: Irr(B | 1,;) — Irr(B/BI) defines a
bijection of characters. Moreover, since B / BI is an abelian group, it follows
that £ € BI if and only if A(f) = A(f) = 1 for all X\ € Irr(B/BI). We conclude
that all constituents of yg are o-invariant if and only if £ € I5(¢s)B. O

In the next section we will show that the results obtained so far are
sufficient to construct a bijection f : Irry (B)” — Irry, (G)7.

3.5 A character bijection for o-invariant char-
acters

In this section we prove our main results. First, we use the results of the two
previous sections to prove the following theorem.

Theorem 3.24. Let 0 € Gal(Q,,/Q), where m = |G|, be an (e, p)-Galois au-
tomorphism. Let 1) € Irry (B) and let x = f(@b) All irreducible constituents
of W are o-invariant if and only if all irreducible constituents of xg are
o-invariant.

Proof. By Lemma it follows that g is o-invariant if and only if yq is
o-invariant. Now the claim of the theorem follows immediately by Corollary

and Lemma O]

_ Let us write Z = Z(G)F and Z = Z(G)F. Note that Z = Z(G)F = 8F <
]?F by Lemma . Thanks to a result of Maslowski we know that the map
f respects central characters:

Lemma 3.25. If \ € Irr(Z) is the unique character below v € Irry, (B) then
A is the unique character of Z below f(1)).

Proof. See [15, Proposition 15.2]. O

Now we can show our main result.
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Theorem 3.26. Let 0 € Gal(Q,,/Q), where m = |G|, be an (e, p)-Galois
automorphism. Suppose that G satisfies Assumption [3.1. Then there exists
a bijection

f Ity (B)? — Irry (G)7.

Moreover, for every central character \ € Irr(Z) the map f restricts to a
biection Irry (B | Az)” — Trry (G| Az)°.

Proof. Let us first note that by the remark below Lemma we have p {
|G G| and p f |B : B|. In particular, we have by Theorem - 1| that every
p/-character of B resp. G lies below a p/-character of B resp. G. Let 0 €
Irry (B)? and ¢ € Irry(B) such that (¢¥,9) # 0. By Theorem all
irreducible constituents of f(1))¢ are o-invariant.

Let ¢ be an irreducible constituent of f (¢)g. The number of B-conjugates
of 1 is given by |B : I5(¥)] and the number of G—Conjugates of ¢ is given by
|G : T5(¢)|. By Corollary the restriction of f gives a bijection Irr(B |
¥) — Irr(G | ¢). Using Lemma 6| we see that the number of B-conjugates
of ¥ and the number of G- conJugates of ¢ coincide. Thus, we can define a
map f : Trry(B)? — Irr,y(G)? by sending the set of characters {0 | b e B}
bijectively to the set {¢? | § € G}. This is possible since these sets have the
same cardinality by the previous considerations. The choice of a character
¢ € Irr(B | 9) as above, is unique up to multiplication of ¥ by a linear
character in Irr(B | 15). By Theorem [2.13| this implies that the image f(1)
of ¥ is determined by ¥ up to G-conjugation. Therefore, it follows that the
map f is injective.

Let ¢ € Irry (G)? and suppose that y € Irr(G' | ¢). Then by Theoremm
every irreducible constituent of f~!(x)p is o-invariant. By construction of
f:Irry(B)? — Ity (G)? there exists an irreducible constituent v € Irr, (B)
of f~1(x)p such that f(v) = ¢. Thus, the map f : Irry(B)” — Irry (G)7 is
surjective as well.

Now we use Lemma Let A € Irr(Z) be the unique central character
below 1 € Irr,y (B). Since the character ¥ is below 9, it follows that Az is
below ¥. By Lemma it follows that A is the unique central character
below f(1). Since f(19) is below f(1) it follows that A, is below f(¥9). As
a consequence it follows that Az is below f(¢)). This shows that the map f
restricts to a bijective map Irry (B | Az)7 — Irry (G | A2)°.

[

As a special case we obtain the validity of Conjecture for most simple
groups of Lie type in defining characteristic.
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Corollary 3.27. Let 0 € Gal(Q,,/Q), where m = |G|, be an (e,p)-Galois
automorphism. Suppose that G satisfies Assumption |31 Then there exists
a bijection

[Ty (B/Z(G))° — Ity (G Z(G))°.
Proof. Take A = 1; in Theorem [3.26 O

Finally, let us discuss how one could possibly remove some assumptions
from Theorem [3.26] As we already remarked in the introduction of this thesis
the assumption that G is not of type D, if n is even can probably removed
using the construction of Maslowski in [15] for this root system type. Only
minor changes seem to be necessary in order to cover this case as well.

The assumption that p is a good prime for G can be weakened for most
statements occurring in Chapter [3] Usually, we only need to make the weaker
assumption that (G, F') does not occur in [15, Table 13.2] and that G is not
of type D,, if n is even. The assumption that p is a good prime becomes cru-
cial in our description of the p’-characters of G! using Theorem More
concretely, if Lemma holds under these weaker assumptions then it fol-
lows immediately that Theorem holds as well under these assumptions.
However, the author is unaware whether Lemma still holds in this case.
We leave this question open to further research.
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