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Introduction

In representation theory one investigates a finite group G by representing it
as a group of matrices. More concretely a linear representation of a group G
is a group homomorphism D : GÑ GLlpkq from the group G into the group
of l� l invertible matrices over some field k. In the case that the field k � C
is the complex numbers, the information of a representation is completely
encoded in its character. The character χ of the representation D is defined
as its trace function, i.e. as a map χ : GÑ k with

χpgq � trpDpgqq for g P G.

Any character can be expressed as a linear combination with positive
integer coefficients of the so-called irreducible characters. Hence, in order to
study linear representations over the complex numbers, it suffices to consider
the set of complex irreducible characters of the group G, which we denote by
IrrpGq.

Recently, a conjecture by McKay has attracted a lot of attention. Let
us fix a prime number p. Let us write Irrp1pGq for the set of irreducible
characters χ such that p does not divide χp1q, the degree of χ. We will refer
to the characters of this set as the p1-characters of G. Then the McKay
conjecture is as follows:

Conjecture 0.1. Let G be a finite group. Let P be a Sylow p-subgroup of
G. Then there exists a bijection between Irrp1pNGpP qq and Irrp1pGq.

A more detailed overview of the McKay conjecture and its history can
be found in the introduction of [10]. The McKay conjecture was verified
for many different groups, but until today there is no ”canonical” bijection
known. This means that for different groups bijections were constructed
using distinct methods. However, Navarro suggests that there should exist
a bijection of Irrp1pNGpP qq to Irrp1pGq which should commute with certain
Galois automorphisms. Let m be the order of the finite group G. By Brauer’s
Theorem (see [8, Theorem 10.3]) every character χ of G can be afforded by a
representation D with entries in the cyclotomic field Qm, the field obtained
from the rational numbers by adjoining the m-th roots of unity. We may
thus define χσ to be the character afforded by the representation

Dσ : GÑ GLlpQmq with g ÞÑ Dpgqσ.

Consequently, the Galois group GalpQm{Qq acts on the set of irreducible
characters IrrpGq by permutation. If X � IrrpGq is a subset of the set of
irreducible characters of G we denote by Xσ the set of characters which are
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σ-invariant. In his conjecture, Navarro considers the following class of Galois
automorphisms:

Definition 0.2. Let e be a nonnegative integer and p be a prime number.
Then a Galois automorphism σ P GalpQm{Qq is called an pe, pq-Galois auto-
morphism if σ sends any p1-root of unity ζ P Qm to ζp

e
.

Navarro proposes the following refinement of the McKay Conjecture (see
[16, Conjecture A]).

Conjecture 0.3. Let G be a finite group of order m and p be a prime.
Let P be a Sylow p-subgroup of G. Let σ P GalpQm{Qq be an pe, pq-Galois
automorphism for a nonnegative integer e. Then there exists a bijection
between Irrp1pNGpP qq

σ and Irrp1pGq
σ.

For the original McKay conjecture a reduction theorem was proved by
Isaacs, Malle and Navarro (see [9, Theorem B]). This theorem implies that
the McKay conjecture is true for all finite groups and the prime p if all
nonabelian simple groups are ”good” for the prime p. One important step
to show that a simple group G is good for a prime is the construction of
an automorphism-equivariant bijection for the universal covering group of G
which respects central characters (see [9, Section 10]). For simple groups of
Lie type in defining characteristic, i.e. in the case where the prime of the
conjecture coincides with the characteristic of the field defining the simple
group of Lie type, this intermediate result was achieved by Maslowski in his
dissertation (see [15, Theorem 1]). Later Späth used Maslowski’s result to
prove that these groups are good for the prime p (see [17, Theorem 1.1]). In
this thesis we use Maslowski’s results in order to prove Conjecture 0.3 for
most quasi-simple groups of Lie type in defining characteristic.

Let G be a simple algebraic group of simply connected type defined over
an algebraic closure k of Fp. Let F : G Ñ G be a Frobenius endomorphism
of the algebraic group G. The finite group G � GF of fixed points of G
under the action of the Frobenius endomorphism F is called a group of Lie
type. Apart from a few exceptions G is the universal central extension of
the simple group G{ZpGq, which is a so-called finite simple group of Lie
type. In order to use our methods, we need to impose some conditions on
the algebraic group G.

Assumption 0.4. Let G be a simple algebraic group of simply connected
type. Suppose that G is not of type Dn if n is even and that p is a good
prime for G.

We assume that the root system of G is not of type Dn if n is even in
order to avoid too many technical obstacles. In this case the center of G is
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not cyclic which is the reason why we would have to change many definitions
to adapt to this particular case. However, the author is quite convinced that
the assumption can be removed using the construction in [15] for this type
of root system. We also did not consider Suzuki and Ree groups. In order
to include these groups one would first have to generalize the methods of
Maslowski to these groups (see [15, Introduction] and [15, Example 9.5] for
more information).

Maslowski associates a certain regular embedding i : G ãÑ G̃ to the
group G such that G̃ has connected center. The character theory of the p1-
characters of G̃F is much simpler to describe than the character theory of GF .
This is due to the fact that the Deligne–Lusztig theory is remarkably easier
for G̃F since the center of G̃ is connected. Maslowski defines a labeling
for both the p1-character of B̃F , the normalizer of the Sylow p-subgroup
UF of G̃F , and for the p1-characters of G̃F . He proves that both sets of
labels coincide which implies that this labeling gives rise to a bijection f̃ :
Irrp1pB̃

F q Ñ Irrp1pG̃
F q by mapping a character of B̃F to the unique character

of G̃F with the same label. We show that this bijection is compatible with
the action of the Galois automorphisms from Conjecture 0.3.

Theorem 0.5. Let σ P GalpQm{Qq, where m � |G̃F |, and σ P GalpQm{Qq
be an pe, pq-Galois automorphism for a nonnegative integer e. Suppose that
G satisfies Assumption 0.4. Then the Maslowski bijection

f̃ : Irrp1pB̃
F q Ñ Irrp1pG̃

F q

is σ-equivariant, i.e. f̃pψσq � f̃pψq
σ

for any character ψ P Irrp1pB̃
F q.

If ψ is a character in Irrp1pB̃
F q we consider the characters ϑ P IrrpBF q

below ψ, i.e. irreducible characters which are constituents of ψBF . We find
necessary and sufficient conditions for the characters ϑ to be σ-invariant. For
this we use the fact that the T̃F -conjugates of linear characters of UF are
parametrized by certain characters φS P IrrpUF q for S � t1, . . . , ru. The
exact statement is as follows.

Lemma 0.6. Let σ P GalpQm{Qq, where m � |G̃F |, be any Galois auto-
morphism. Suppose that G satisfies Assumption 0.4. Let ψ P Irrp1pB̃

F q and
ϑ P IrrpBF q be an irreducible constituent of ψBF . Furthermore, let S be the
unique subset of t1, . . . , ru such that ψ P IrrpB̃F | φSq. Then ϑ is σ-invariant
if and only if ψBF is σ-invariant and there exists an element t P T such that
φσS � φtS.

The condition of Lemma 0.6 is very explicit. Indeed, with this characteri-
zation of σ-invariant characters we are (at least theoretically) able to compute
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the number of σ-invariant p1-characters of BF . We explicitly compute this
number if G is of type Cn in Example 3.14 and Example 3.15.

In order to relate the p1-characters of G̃F and GF we use the theory of
Gelfand–Graev characters. This allows us to prove a similar statement as
in the previous lemma for this situation. As a consequence we deduce the
following theorem:

Theorem 0.7. Let σ P GalpQm{Qq, where m � |G̃F |, be an pe, pq-Galois
automorphism for a nonnegative integer e. Suppose that G satisfies As-
sumption 0.4. Let ψ P Irrp1pB̃

F q. Then all irreducible constituents of ψBF

are σ-invariant if and only if all irreducible constituents of f̃pψqGF are σ-
invariant.

Using a result of Maslowski, namely that the map f̃ : IrrpB̃F q Ñ IrrpG̃F q
preserves the underlying central characters, we are able to prove our main
theorem.

Main Theorem 0.8. Let σ P GalpQm{Qq, where m � |GF |, be an pe, pq-
Galois automorphism. Suppose that G satisfies Assumption 0.4. Then there
exists a bijection

f : Irrp1pB
F qσ Ñ Irrp1pG

F qσ.

Moreover, for every central character λ P IrrpZpG̃qF q the map f restricts to
a bijection Irrp1pB

F | λZpGqF q
σ Ñ Irrp1pG

F | λZpGqF q
σ.

This result shows that Conjecture 0.3 holds for most quasi-simple groups
of Lie type in defining characteristic.
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Summary of contents

In Chapter 1 we describe the necessary background material. In Section 1.1
we recall the Clifford theory of finite groups. From Section 1.2 to Section 1.6
we describe some of the character theory of finite groups of Lie type. First
we discuss the Deligne–Lusztig theory of GF if G has connected center.
In this case we obtain a nice description of the p1-characters of GF if the
prime p is good for G. This is done using Gelfand-Graev characters and the
duality functor. If the center of G is not connected we consider an extension
i : G ãÑ G̃ of G by a central torus such that G̃ has connected center. Then
we relate the p1-characters of G̃F with the p1-characters of GF . In Section
1.6 we specialize to the case where G is a simple algebraic group of simply
connected type and discuss the Steinberg presentation of G. In Section 1.8
and Section 1.9 we consider a certain regular embedding i : G ãÑ G̃ and
describe the structure of the finite groups GF and G̃F . In Section 1.10 we
construct the dual group G̃� as an extension of G_ by a central torus, where
G_ is the simple algebraic group of simply connected type with root system
dual to the root system of G.

In Chapter 2 we describe the Maslowski bijection f̃ : Irrp1pB̃
F q Ñ Irrp1pG̃

F q.
For this we recall in Section 2.1 Maslowski’s labeling of the p1-characters of
B̃F , using an explicit description of the linear characters of UF . In Section
2.2 we describe a labeling of the p1-characters of G̃F as follows: Any p1-
character χ P IrrpG̃F q lies in a unique Lusztig series which corresponds to a
semisimple F �-stable conjugacy class ps̃q of G̃�. The label of the p1-character
χ is defined as π̃ps̃q, where π̃ is a modified Steinberg map as introduced by
Maslowski. We conclude this chapter by stating some properties of the map
f̃ .

We prove our main results in Chapter 3. In Section 3.1 we show that
f̃ : Irrp1pB̃

F q Ñ Irrp1pG̃
F q is σ-equivariant for an pe, pq-Galois automorphism

σ P GalpQ|G̃F |{Qq (see Theorem 0.5). In Section 3.2 we consider the favorable
case that the Galois automorphism σ fixes the p-th roots of unity of Q|G̃F |.
In the following sections we then drop this assumption and generalize our
methods. In Section 3.3 we relate the characters of B̃F and BF . This can
be done by purely elementary methods using Clifford theory and the explicit
description of the linear characters of UF . We give a sufficient and necessary
criterion for the p1-characters of BF to be σ-invariant (see Lemma 0.6). We
use this criterion to compute the number of σ-invariant p1-characters in the
case that G is of type Cn. In Section 3.4 we relate the p1-characters of G̃F

and GF . We reduce the problem to find a criterion for a p1-character of GF

to be σ-invariant to the evaluation of certain characters of IrrpG̃F | 1GF q at
elements of the torus T̃F . Using the explicit construction of the map f̃ we
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are able to compute the values of these characters, which allows us to prove
a similar criterion as for the p1-characters of BF . In Section 3.5 we use the
results of the previous two sections to prove Theorem 0.7. This allows us
to construct a bijection f : Irrp1pB

F qσ Ñ Irrp1pG
F qσ which preserves central

characters. This finally proves Theorem 0.8.
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Chapter 1

Basics

In this chapter we describe the tools needed for this thesis. First we discuss
the representation theory of finite groups of Lie type. In particular we discuss
some results of Deligne–Lusztig theory. Then we recall the Steinberg presen-
tation of a simple algebraic group G of simply connected type, introduced
by Steinberg in [19]. We discuss a certain regular embedding i : G ãÑ G̃
constructed by Maslowski in [15, Section 2].

1.1 Clifford theory

We assume that the reader is familiar with the basic notions of character
theory like restriction and induction of characters, Frobenius reciprocity and
conjugation of characters. A good introduction can be found in [8]. Most of
the material presented in this section can be found in [8, Chapter 5] and [8,
Chapter 6].

In this section we recall some results of Clifford theory which will be
crucial for the remainder of this thesis. The situation is as follows. Let G
be a finite group and N a normal subgroup of G. Let ϑ P IrrpNq. We write
IrrpG | ϑq for the set of characters χ P IrrpGq for which ϑ is a constituent of
χN . Moreover, we write IrrpN | χq for the set of characters ϑ P IrrpNq which
are constituents of χN for a fixed character χ P IrrpGq. In this situation we
say that the character ϑ lies below χ or equivalently that the character χ lies
above ϑ. We denote by p , q the usual scalar product of characters.

Theorem 1.1 (Clifford’s Theorem). Let N be a normal subgroup of G and
χ P IrrpGq. Let ϑ P IrrpN | χq be a character below χ and suppose that
ϑ � ϑ1, ϑ2, ..., ϑt are the distinct G-conjugates of ϑ. Then χN � e

°t
i�1 ϑi

with e � pχN , ϑq.

Proof. [8, Theorem 6.2].
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The following corollary is a simple consequence of Clifford’s Theorem.

Corollary 1.2. Let N be a normal subgroup of a finite group G and χ P
IrrpGq. Furthermore, we let σ P GalpQm{Qq be a Galois automorphism,
where m � |G|. Let ϑ P IrrpNq be a character below χ. If ϑ is σ-invariant
then all irreducible constituents of χN are σ-invariant.

Proof. By Clifford’s Theorem (see Theorem 1.1) we know that any irreducible
constituent of χN is given by ϑg for some g P G. Since ϑ is σ-invariant it
follows that

pϑgpnqqσ � σpϑpgng�1qq � ϑpgng�1q � ϑgpnq,

for all n P N . Hence, the character ϑg is σ-invariant as well.

Let N be a normal subgroup of a finite group G. For a character ϑ P
IrrpNq we let IGpϑq � tg P G | ϑg � ϑu be the inertia group of ϑ in G. We
now relate the set IrrpG | ϑq to the set IrrpIGpϑq | ϑq. This can be done using
the so-called Clifford correspondence.

Theorem 1.3 (Clifford correspondence). Let N be a normal subgroup of a
finite group G and ϑ P IrrpNq. Then the map IrrpIGpϑq | ϑq Ñ IrrpG | ϑq
with ψ ÞÑ ψG is a bijection.

Proof. [8, Theorem 6.11].

The Clifford correspondence can be refined in the following way.

Lemma 1.4. Let N be a normal subgroup of a finite group G. Let σ P
GalpQm{Qq, where m � |G|, and ϑ P IrrpNq be a σ-invariant character.
Then Clifford correspondence restricts to a bijection

IrrpIGpϑq | ϑq
σ Ñ IrrpG | ϑqσ.

Proof. If ψ P IrrpIGpϑq | ϑq is σ-invariant then the character ψG is obviously
σ-invariant again. Now suppose that χ P IrrpG | ϑq is σ-invariant. We let
ψ P IrrpIGpϑq | ϑq such that ψG � χ. Then ψσ P IrrpIGpϑq | ϑq, since ϑ is
σ-invariant. Furthermore,

pψσqG � pψGqσ � χσ � χ � ψG,

since Galois automorphisms commute with induction of characters. Hence,
both ψ and ψσ are Clifford correspondents of χ. This implies ψ � ψσ by
Theorem 1.3.
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Theorem 1.5. Let N be a normal subgroup of a finite group G and ϑ P
IrrpNq be an irreducible character of N . If ψ P IrrpIGpϑqq is an extension
of ϑ then IrrpIGpϑq | ϑq � tηψ | η P IrrpIGpϑq | 1Nqu. Furthermore, the
characters ηϑ are all distinct for distinct η’s.

Proof. [8, Corollary 6.17].

We are now able to prove the following important and well-known lemma.

Lemma 1.6. Let N be a normal subgroup of a finite group G such that
the factor group G{N is abelian. Let χ P IrrpGq be a character lying above
ϑ P IrrpNq. Suppose that ϑ extends to IGpϑq. Then IrrpG | ϑq � tλχ | λ P
IrrpG | 1Nqu. Furthermore | IrrpG | ϑq| � | IGpϑq : N |.

Proof. By Clifford correspondence (see Theorem 1.3) induction defines a bi-
jection IrrpIGpϑq | ϑq Ñ IrrpG | ϑq. Let ψ P IrrpIGpϑq | ϑq with ψG � χ. Since
ϑ extends to its inertia group, it follows that ψN � ϑ and IrrpIGpϑq | ϑq �
tηψ | η P IrrpIGpϑq | 1Nqu by Theorem 1.5. Let η P IrrpIGpϑq | 1Nq be arbi-
trary. Since G{N is abelian there exists a character λ P IrrpG | 1Nq such that
λIGpϑq � η (see [8, Corollary 5.5]). By [8, Problem 5.3] it follows that pψηqG �
λχ. Hence, it follows easily that IrrpG | ϑq � tλχ | λ P IrrpG | 1Nqu. Since
Clifford correspondence is a bijection we have | IrrpG | ϑq| � | IrrpIGpϑq | ϑq|.
By Theorem 1.5 it holds that | IrrpIGpϑq | ϑq| � | IGpϑq : N |.

Suppose that the factor group G{N is cyclic in the situation of the lemma
above. Then every irreducible character ϑ P IrrpNq extends to its inertia
group IGpϑq (see [8, Corollary 11.22]). Thus, the following corollary follows
immediately.

Corollary 1.7. Let N be a normal subgroup of a finite group G such that
G{N is cyclic. Let χ P IrrpGq be a character lying above ϑ P IrrpNq. Then
IrrpG | ϑq � tλχ | λ P IrrpG | 1Nqu and | IrrpG | ϑq| � | IGpϑq : N |.

We often have to consider the action of Galois automorphisms on linear
characters. For convenience, we state the following lemma.

Lemma 1.8. Let G be a finite group of order m and let p be a prime. Let
σ P GalpQm{Qq and ξ P Qm be a primitive m-th root of unity. Let k be a
natural number such that σpξq � ξk. Then λσ � λk for any linear character
λ P IrrpHq of a subgroup H of G.

Proof. The values of linear characters of H are m-th roots of unity. Since
the Galois automorphism σ acts on m-th roots of unity by taking them to
the k-th power, the assertion of the lemma follows easily.

11



1.2 Deligne–Lusztig theory

In this section we summarize some of the main results of Deligne–Lusztig
theory which are needed in this thesis. A more detailed and comprehensive
introduction on this subject can be found in [2] or [5]. We assume that basic
notions from the theory of linear algebraic groups as can be found in [14, Part
1] are known.

We fix the following notations throughout this thesis. Let p be a prime
and q be an integral power of p. We let k be an algebraic closure of Fp. Let G
be a connected reductive algebraic group defined over Fq with corresponding
Frobenius endomorphism F : G Ñ G. We fix a maximal F -stable torus T
of G which is maximally split, i.e. there exists an F -stable Borel subgroup B
of G such that T is contained in B (see [14, Definition 21.13]). Let U be the
unipotent radical of B. We denote by Φ the root system of G with respect
to the torus T and by ∆ � tα1, . . . , αnu the set of simple roots of Φ with
respect to T � B (see [14, Definition 11.2]). Let Φ� be the set of positive
roots, i.e. the subset of the set of roots Φ consisting of the roots which can
be written as a linear combination of the simple roots with natural numbers
as coefficients. Furthermore we denote by Φ_ the set of coroots of Φ. We
will later specify our general setup in Section 1.7.

Let T1 be a maximal F -stable torus of G and θ P IrrpT1F q. The pair pT1, θq
defines a generalized character RG

T1pθq P Z IrrpGF q as in [5, Definition 11.1].
We call RG

T1pθq a Deligne–Lusztig character. Note that RG
T2pθ2q � RG

T1 pθ
1
q

whenever pT1, θ1q and pT
2
, θ

2
q are GF -conjugate, i.e. if there exists some

g P GF such that gT1 � T2 and gθ1 � θ2 (see remark below [5, Corollary
11.15]).

With this notation we can now state the following useful character formula
for Deligne–Lusztig characters.

Lemma 1.9. (Character formula for Deligne–Lusztig characters) Let g � su
be the Jordan decomposition of some element g P GF . Then

RG
T1pθqpgq � |T1F |�1|C�

Gpsq|
�1

¸
hPtsPGF |sPhT1u

¸
vPC�

hT1
psqFu

Q
C�

Gpsq

C�
hT1

psqpu, v
�1qhθpsvq,

where Q
Co

Gpsq

Co
T1

psq is the Green function as defined in [5, Definition 12.1].

Proof. This is [5, Proposition 12.2].

With Lemma 1.9 we can prove the following corollary.
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Corollary 1.10. Let σ P GalpQm{Qq with m � |GF | and σpξq � ξk for a
primitive m-th root of unity ξ P Qm. Then RG

T1pθqσ � RG
T1pθkq.

Proof. Note that the Green function has values in the integers (see [5, Corol-
lary 10.6]). By Lemma 1.8 it follows that θσ � θk. Thus, the claim of the
corollary follows with Lemma 1.9.

Let T1 be a maximal F -stable torus of G with character group XpT1q and
cocharacter group Y pT1q (see [14, Definition 3.4]). We recall the following
definition (see [5, Definition 13.10]).

Definition 1.11. Two connected reductive algebraic groups G and G� are
in duality if there exists a maximal torus T1 of G and a maximal torus T1�

of G� together with an isomorphism δ : Y pT1q Ñ XpT1�q which sends the
coroots of T1 to the roots of T1�. Suppose that G and G� are defined over
Fq with respective Frobenius endomorphisms F and F �. If T1 and T1� are
F - resp. F �-stable tori and if δ commutes with the action of F and F � then
the pair pG, F q is called dual to the pair pG�, F �q.

Note that if pXpT1q, Y pT1q,Φ,Φ_q is the root datum of a connected reduc-
tive group G then pY pT1q, XpT1q,Φ_,Φq is a root datum as well. Therefore,
by Chevalley’s classification of reductive algebraic groups (see [5, Theorem
0.45]) there exists a reductive algebraic group G� with (abstract root datum)
pY pT1q, XpT1q,Φ_,Φq, which is a dual group for G. So in particular every
connected reductive group G has a dual group G�. Moreover, if F : G Ñ G
is a Frobenius endomorphism of G then there exists a Frobenius endomor-
phism F � : G� Ñ G� of G� such that pG, F q and pG�, F �q are dual (see
remark below [2, Theorem 4.4.6]).

For the remainder of this section we suppose that pG, F q and pG�, F �q
are in duality via a duality map δ : Y pTq Ñ XpT�q, where T is the maximal
F -stable torus of G which we fixed at the beginning of this section and T�

is a maximal F �-stable torus of G�.
Let us denote by x , y : XpTq � Y pTq Ñ Z the perfect pairing between

XpTq and Y pTq as in [14, Proposition 3.6]. The duality isomorphism δ gives
rise to a dual map as explained in the following remark.

Remark 1.12. The existence of a map δ : Y pTq Ñ XpT�q with properties
as above yields the existence of a dual map δ_ : XpTq Ñ Y pT�q with similar
properties (see [2, Definition 4.3.1]) defined by the property xδpγq, δ_pχqy �
xχ, γy for all χ P XpTq and γ P Y pTq.

Definition 1.13 (Norm map). Let T1 be a maximal F -stable torus of G.
We let w be the order of the automorphism τ of XpTq that is induced by the
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Frobenius endomorphism F as explained in the remark preceding [5, Theorem

3.17]. Then we define the norm map NFw{F : T1 Ñ T1 by t ÞÑ
w�1¹
i�0

F iptq.

Let us now, once and for all, choose an embedding k� Ñ C�. For all
positive integers w let us fix a primitive pqw�1q-th root of unity µ P k�, i.e.,
a generator of F�

qw as multiplicative group.

Lemma 1.14. The set of GF -conjugacy classes of pairs pT1, θq where T1 is
an F -stable maximal torus of G and θ P IrrpT1F q is in bijection with the set
of G�F�-conjugacy classes of pairs pT1�, sq where s P G�F� is a semisimple
element and T1� is an F �-stable maximal torus with s P T1�.

Proof. A proof of this lemma is given in [5, Proposition 13.13]. We briefly
sketch the idea of the proof since we need the explicit construction later.

Recall that we fixed maximal tori T of G and T� of G� which define
the duality of pG, F q and pG�, F �q via the duality map δ : Y pTq Ñ XpT�q.
Suppose that pT

1
, θq is a pair as in the statement of the lemma. The GF -

conjugacy classes of such pairs pT1, θq are parametrized by the F -conjugacy
classes of the Weyl group WpTq � NGpTq{N�

GpTq of the torus T (see [5,
Application 3.23]). We let g P G such that gT1 � T. Let x :� g�1F pgqT P
WpTq denote the image of g�1F pgq in WpTq. Consider the anti-isomorphism
WpTq Ñ WpT�q mapping x ÞÑ x� as defined in [2, Proposition 4.2.3]. We let
g� P G� be such that g�

�1
F �pg�qT� � x� in WpT�q and define T1� � g�T�.

Then the map δ_ : XpTq Ñ Y pT�q gives rise to a map δ1_ : XpT1q Ñ Y pT1�q
defined by δ1_pgχq � g�δ_pχq for χ P XpTq. Consider the endomorphism
F 1 :� xF of T1 and the endomorphism F 1� :� F �x� of T1�. Then the map
δ1_ defines a duality of pG, F 1q and pG�, F 1�q.

By [5, Proposition 13.11] we have an isomorphism IrrpT1F 1q Ñ T1�
F 1
�

which is constructed as follows: Let w be the order of the automorphism τ
of XpTq induced by F . Using the embedding k� Ñ C� we can assume that
θ P IrrpT1F 1q has values in k�. By [5, Proposition 13.7] we can extend the

character θ P IrrpT1F
1

q to an element θ̂ P XpT1q of the character group of the
torus T1. By applying the duality isomorphism δ1_ : XpT1q Ñ Y pT1�q we
have δ1_pθ̂q P Y pT1�q. Hence, we may define s � NF 1�w{F 1�pδ

_pθ̂qpµqq, where
µ P k� is the pqw � 1q-th root of unity as chosen before Lemma 1.14. Then
we define the pair corresponding to pT1, θq as pT1�, sq.

If pT1, θq maps to pT1�, sq under the bijection of Lemma 1.14 we say that
pT, θq is in duality with pT1�, sq. Note that everything in the construction
of s � NF 1�w{F 1�pδ

_pθ̂qpµqq is multiplicative. Thus, we obtain that bijection
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constructed in Lemma 1.14 is multiplicative in the following sense. If pT1, θ1q
is in duality with pT1, s1q and pT1, θ2q is in duality with pT1�, s2q then it
follows that pT1, θ1θ2q is in duality with pT1�, s1s2q.

In the following, we write RG
T1�psq for the character RG

T1pθq if pT1, θq is
in duality with pT1�, sq. We want to consider the irreducible constituents of
RG

T1�psq. For this we state the following definition.

Definition 1.15 (Lusztig series). Let psq be the G�F
�

-conjugacy class of a
semisimple element s P G�F� . We write EpGF , psqq for the set of irreducible
constituents of RG

T1�psq, where T1� is a maximal F �-stable torus of G� with
s P T1�.

Corollary 1.16. Let σ P GalpQm{Qq with m � |GF | and σpξq � ξk for a
primitive m-th root of unity ξ P Qm. If χ P EpGF , psqq then χσ P EpGF , pskqq.

Proof. Let T1� be a maximal F �-stable torus of G� such that χ is a con-
stituent of RG

T1�psq. Suppose that pT1, θq is in duality with pT1�, sq. Then the
character χ is a constituent of RG

T1pθq. By Corollary 1.10 we conclude that
χσ is a constituent of RG

T1pθkq. Since the bijection of Lemma 1.14 is multi-
plicative (see remark below Lemma 1.14) we obtain that pT1, θkq is in duality
with pT1�, skq. This shows that χ is a constituent of RG

T1�pskq. Consequently,
we have χσ P EpGF , pskqq.

The following remark is important.

Remark 1.17. EpGF , psqq is called a rational Lusztig series. In the case that
the center of G is connected it coincides with the geometric Lusztig series
defined in [5, Definition 13.16] (see remark preceding [5, Proposition 14.41]).
This is due to the fact that semisimple F -stable conjugacy classes of G� are

precisely the conjugacy classes of semisimple elements of G�F
�

if the center
of G is connected (see [5, Remark 13.15(ii)]). Note that these notions differ
in general if the center of G is not connected.

We will now see that the Deligne–Lusztig series partition the characters
of GF if the center of G is connected.

Lemma 1.18. Let G be a connected reductive algebraic group with connected
center. Then we have a partition

IrrpGF q �
¤
psq

EpGF , psqq

where psq runs over the G�F�-conjugacy classes psq of semisimple elements
s P G�F�.
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Proof. This is [5, Proposition 14.41].

Moreover, the partition above gives a particularly nice description of the
p1-characters if G is a simple algebraic group and the root system of G is
not of a certain type.

Theorem 1.19. Let G be a simple algebraic group with connected center
and not of type Bn, Cn, G2 or F4 if q � 2, or G2 if q � 3. Then we have

| Irrp1pG
F qXEpGF , psqq| � 1 for any semisimple conjugacy class psq of G�F

�

.

Proof. This follows by [13, Theorem 6.8], using [5, Theorem 13.23] together
with [5, Remark 13.24].

This result will be crucial for the construction of Maslowski (see Con-
struction 2.10). We need to describe the p1-characters in more detail. For
this we define as follows:

Definition 1.20. Let psq be a semisimple conjugacy class of G�F
�

. We define
a classfunction χpsq of the finite group GF by

χpsq � |CG�psq{C�
G�psq|

¸
T1�

pRG
T1�psq, RG

T1�psqq�2εGεT1�RG
T1�psq,

where the sum is over the CG�psqF
�
-conjugacy classes of F �-stable maximal

tori T1� of CG�psq and εG � p�1qrel. rank G defined as in [2, Section 6.5].

The class function χpsq is indeed a character of GF by [5, Proposition
14.48]. If the center of G is connected then χpsq is even an irreducible char-
acter of GF by [5, Corollary 14.47(a)]. Hence, by definition of χpsq we have
χpsq P EpGF , psqq.

Lemma 1.21. Let G be a connected reductive group with connected center.
Let λ P EpGF , pzqq for some z P ZpG�F�q and suppose that λ is a linear
character. Then χpszq � λχpsq if and only if pszq � psq.

Proof. Suppose that pT1, θq is in duality with pT1�, sq. By Lemma 1.9 it
follows that λRG

T1pθq � RG
T1pλT1F θq. By [5, Proposition 13.30] it follows

that pT1, λT1F q is in duality with pT1�, zq. By the remark below Lemma
1.14 we conclude that pT1, λT1F θq is in duality with pT1�, szq. This shows
λRG

T1psq � RG
T1pszq. From Definition 1.20 it follows that χpszq � λχpsq. Hence,

multiplication with the character λ fixes χpsq if and only if χpszq � χpsq. As
explained above, we have χpszq P EpGF , pszqq and χpsq P EpGF , psqq. Since
the rational Lusztig series form a partition of the irreducible characters of
GF by Lemma 1.18, we have χpszq � λχpsq if and only if pszq � psq.
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1.3 The duality functor

In this section we introduce the notion of the duality functor from [2, Section
8.2]. We need the following definition.

Definition 1.22. Let G be a finite group with normal subgroup N . For a
generalized character χ P Z IrrpGq we define by

TG{Npχqpgq �
1

|N |

¸
nPN

χpngq, for g P G,

the truncation TG{Npχq with respect to N of the generalized character χ.
Note that TG{Npχq P Z IrrpGq is again a generalized character of G (see
remark preceding [2, Lemma 8.1.6])

For a subset J � ∆ of the simple roots of the root system Φ, we denote by
PJ the standard parabolic subgroup of G associated to J and we let LJ be the
standard Levi complement of PJ (see [14, Definition 12.3] and [14, Definition
12.7]). In particular, we have a decomposition PJ � UJ � LJ , where UJ

denotes the unipotent radical of the parabolic subgroup PJ .

Definition 1.23 (Duality functor). For a generalized character χ P Z IrrpGF q
we define the dual generalized character of χ by

DGpχq �
¸
J

p�1q|J
1|pTPF

J {U
F
J
pχqqG

F

,

where the sum runs over all τ -stable subsets J of ∆ and J 1 is the set of τ -
orbits on J . The map DG : Z IrrpGF q Ñ Z IrrpGF q is called duality functor.

This functor has useful properties, which we will study in more detail.

Theorem 1.24. Let ψ, χ P Z IrrpGF q be two generalized characters of GF .
Then the following holds.
(a) pDG �DGqpχq � χ and
(b) pDGpχq, ψq � pχ,DGpψqq.

Proof. The theory of the duality functor is discussed in [5, Chapter 8]. In
particular, part (a) follows from [5, Corollary 8.14] and part (b) is [5, Propo-
sition 8.10].

From Lemma 1.24 it follows for two generalized characters χ, ψ P Z IrrpGF q
that

pDGpχq,DGpψqq � pχ, pDG �DGqpψqq � pχ, ψq,

which shows that DG is an isometry. Thus, the dual DGpχq of an irreducible
character χ P IrrpGF q is again an irreducible character up to a sign �1. We
show now that the duality functor is compatible with Galois automorphisms.
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Lemma 1.25. Let σ P GalpQm{Qq be a Galois automorphism, where m �
|GF |. Then the character χ is σ-invariant if and only if DGpχq is σ-invariant,
for any χ P Z IrrpGF q.

Proof. By definition of the truncation functor in Definition 1.22, we have

TPF
J {U

F
J
pχσqG

F

� pTPF
J {U

F
J
pχqG

F

qσ.

This clearly implies DGpχ
σq � DGpχq

σ by Definition 1.23. So if χ is σ-
invariant then DGpχq is σ-invariant. The converse follows from the fact that
DG �DG is the identity (see Theorem 1.24): If DGpχq is σ-invariant then
DGpDGpχqq � χ is σ-invariant as well.

1.4 Galois cohomology

In this section we give different interpretations of the first Galois cohomol-
ogy group H1pF,ZpGqq. This cohomology group will become important in
Section 1.5 since it parametrizes the different Gelfand–Graev characters of
G. The main references for this section and the subsequent section are the
articles [4] and [12]. We remark that the author of [12] assumes that G is a
connected semisimple algebraic group, but all results we use in this thesis are
applied in [4], where the authors only assume that G is a connected reductive
group. Thus, these results still hold in this more general setup.

First, let us recall some well known results of Galois cohomology. Let
H be an algebraic group with Frobenius endomorphism F . We denote by
H ipF,Hq the i-th Galois cohomology group. Recall that H0pF,Hq � HF

and that the functor H0pF,�q is left-exact (see [6, Theorem 6.3.1]). This
implies that if K is an F -stable normal subgroup of H we have that the
exact sequence

1 Ñ K Ñ H Ñ H{K Ñ 1

of algebraic groups induces a long exact sequence

1 Ñ H0pF,Kq Ñ H0pF,Hq Ñ H0pF,H{Kq Ñ H1pF,Kq Ñ H1pF,Hq Ñ . . .

of Galois cohomology groups (see Theorem [6, 4.6.1]). We will use these facts
in the subsequent section without further reference. The following lemma is
used in many situations.

Lemma 1.26. Let H be an algebraic group with Frobenius endomorphism F
and let K be a closed connected F -stable normal subgroup of H. Then the
natural map HF {KF Ñ pH{KqF is an isomorphism.

18



Proof. This is a consequence of the Lang–Steinberg Theorem (see [5, Corol-
lary 3.22]).

The previous lemma shows that we have an exact sequence

1 Ñ H0pF,Kq Ñ H0pF,Hq Ñ H0pF,H{Kq Ñ 1,

if the algebraic group K is connected. More generally, it is true thatH1pF,Kq �
1 if K is a connected algebraic group (see remark preceding [5, Proposition
14.23]).

Let us denote by L : G Ñ G : g ÞÑ F pgqg�1 the Lang map of the
connected reductive group G with Frobenius map F . Since the maximal
torus T of G is F -stable we can consider the restriction LT : T Ñ T of the
Lang map L to the torus T.

Lemma 1.27. There is a natural isomorphism

H1pF,ZpGqq � L �1
T pZpGqq{ZpGqTF .

Proof. We have an exact sequence of algebraic groups

1 Ñ ZpGq Ñ T Ñ T{ZpGq Ñ 1.

Since the torus T is connected it follows that H1pF,Tq � 1 by the remark
below Lemma 1.26. Therefore, the long exact sequence of Galois cohomology
becomes

1 Ñ H0pF,ZpGqq Ñ H0pF,Tq Ñ H0pF,T{ZpGqq Ñ H1pF,ZpGqq Ñ 1.

Thus, we have the exact sequence

1 Ñ ZpGqF Ñ TF Ñ pT{ZpGqqF Ñ H1pF,ZpGqq Ñ 1,

which induces an exact sequence

1 Ñ TF {ZpGqF Ñ pT{ZpGqqF Ñ H1pF,ZpGqq Ñ 1.

For t P T we have tZpGq P pT{ZpGqqF if and only if L ptq P ZpGq. This
shows that pT{ZpGqqF � L �1

T pZpGqq{ZpGq. So we obtain H1pF,ZpGqq �
L �1

T pZpGqq{ZpGqTF , which shows the result of the lemma.

We will from now on identify H1pF,ZpGqq and L �1
T pZpGqq{ZpGqTF un-

der the natural isomorphism constructed in the proof of Lemma 1.27.
Let us now consider an extension i : G ãÑ G̃ of G by a central torus

such that the center of G̃ is connected. An extension with these properties
always exists (see remark preceding [12, Lemma 1.3]). We can give a different
characterization of the first Galois cohomology group H1pF,ZpGqq using such
an extension:
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Lemma 1.28. Let i : G ãÑ G̃ be as above. Then there exists an isomorphism
β : G̃F {GF ZpG̃qF Ñ L �1

T pZpGqq{ZpGqTF .

Proof. Let g̃ P G̃F . Then there exists some zg̃ P ZpG̃q such that g̃zg̃ P G.
Hence,

L pg̃zg̃q � F pzg̃qz
�1
g̃ � L pzg̃q P GX ZpG̃q � ZpGq.

Thus, we can define a map G̃F Ñ ZpGq{L pZpGqq by mapping g̃ ÞÑ
L pzg̃qL pZpGqq, which yields by [12, Proposition 1.6] an exact sequence

1 Ñ GF ZpG̃qF Ñ G̃F Ñ ZpGq{L pZpGqq Ñ 1.

The Lang map LT : T Ñ T restricts to a map L �1
T pZpGqq Ñ ZpGq.

By [4, Corollary 1.3’] this map gives an exact sequence

1 Ñ ZpGqTF Ñ L �1
T pZpGqq Ñ ZpGq{L pZpGqq Ñ 1.

The isomorphisms G̃F {GF ZpG̃qF Ñ ZpGq{L pZpGqq and L �1
T pZpGqq{ZpGqTF Ñ

ZpGq{L pZpGqq, coming from the two exact sequences above, yield an iso-
morphism

β : G̃F {GF ZpG̃qF Ñ L �1
T pZpGqq{ZpGqTF ,

as desired.

We will need the proof of Lemma 1.28 in Remark 1.33 below.

1.5 Gelfand–Graev characters

As before, we let G be a connected reductive group with Frobenius F : G Ñ
G. The aim of this section is to introduce the Gelfand–Graev characters of
G. The action of the Frobenius endomorphism F induces an automorphism
τ on the character group XpTq of the torus T. Since T is maximally split,
it follows by [14, Proposition 22.2] that τ stabilizes the set of positive roots
Φ� and the set of simple roots ∆. Hence, τ acts naturally on the index set
of ∆ � tα1, . . . αnu. Thus, we have a partition

t1, . . . , nu � A1 Y � � � Y Ar

of the index set of ∆ into its τ -orbits. For α P Φ we denote by Uα the root
subgroup of G (with respect to T) associated to the root α P Φ. We denote
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by UAi
, i � 1, . . . , r, the product in U{rU,Us of the root subgroups Uαj

for
j P Ai. By [4, Lemma 2.2] we have

UF {rU,UsF �
r¹
i�1

UF
Ai
.

By Lemma 1.26 we conclude that UF {rU,UsF � pU{rU,UsqF , which
implies that UF {rU,UsF is abelian. Apart from a few exceptional cases,
more is known about the structure of UF {rU,UsF if G is a simple algebraic
group:

Remark 1.29. If G is simple and GF is not of type B2p2q, F4p2q or G2p3q
then rU,UsF is even equal to rUF ,UF s (see [7, Lemma 7]). This means that
in this case the irreducible characters of UF {rU,UsF correspond via inflation
precisely to the linear characters of UF . In order to exploit this fact we will
later assume that we are in this situation.

We introduce the notion of regular characters.

Definition 1.30. A linear character φ P IrrpUF q is called regular if φ is
trivial on rU,UsF and if φ is nontrivial on each UF

Ai
.

In order to define the Gelfand–Graev characters of G we proceed as in
the proof of [4, Theorem 2.4]. For each α P Φ we have an isomorphism
xα : pk,�q Ñ Uα, which satisfies F pxαpaqq � xταpa

qq for all a P k and all
α P Φ. At the beginning of Section 1.7 we will fix such maps xα. These maps
induces an isomorphism xi : pFq|Ai| ,�q Ñ UF

Ai
given by

xipaq �

|Ai|�1¹
k�0

xτkαi
paq

k

q,

for all i � 1, . . . , r. Now fix a character φ0 P IrrppFqN ,�qq, where |Ai| divides
N for all i � 1, . . . , r, such that the restriction of φ0 to pFq,�q is nontrivial.
Then any character φi P IrrpUF

Ai
q is given by

φipxipaqq � φ0pciaq

for all a P Fq|Ai| and some ci P Fq|Ai| . Consequently, any irreducible charac-
ter φ P IrrppU{rU,UsqF q is of the form φ �

±r
i�1 φi since pU{rU,UsqF is

isomorphic to
±r

i�1 UF
Ai

. Thus, we have the following lemma:

Lemma 1.31. The map κ : IrrppU{rU,UsqF q Ñ
±r

i�1 Fq|Ai| given by φ �±r
i�1 φi ÞÑ pc1, ..., crq, where ci P Fq|Ai| is such that φipxipaqq � φ0pciaq for all

a P Fq|Ai|, is a bijection.
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The regular characters of UF are precisely those characters which cor-
respond to tuples with non zero entries under this bijection. Note that the
parametrization κ of the irreducible characters of UF {rU,UsF depends on
the choice of the character φ0. For the purpose of this thesis we do not have
to specify the choice of φ0.

By [4, 2.4.5] we have NTppU{rU,UsqF q � L �1
T pZpGqq. Therefore L �1

T pZpGqq
acts on the set of characters of pU{rU,UsqF by conjugation. Moreover,
L �1

T pZpGqq acts transitively on the set of regular characters of UF (see [4,
2.4.10]).

There exists a unique character ψ1, which corresponds to the tuple p1, ..., 1q
under the map κ : IrrppU{rU,UsqF q Ñ

±r
i�1 Fq|Ai| . More concretely, the

character ψ1 is given by

ψ1 �
r¹
i�1

φi, with φipxipaqq � φ0paq for a P Fq|Ai| .

For z P H1pF,ZpGqq � L �1
T pZpGqq{ZpGqTF we take a representative tz P

L �1
T pZpGqq and define ψtz �

tzψ1. We identify ψtz P IrrpUF {rU,UsF q with
its inflation ψtz P IrrpUF q.

Definition 1.32. For z P H1pF,ZpGqq we define the Gelfand–Graev charac-
ter Γz by Γz � ψGF

tz .

For a fixed element z P H1pF,ZpGqq, all ψtz are TF -conjugate. Thus, the
definition of the Gelfand–Graev character Γz depends only on z and not on
the representative tz chosen in the definition of Γz. Note that the characters
Γz are distinct for distinct z P H1pF,ZpGqq (see [4, Scholium 3.6]). Therefore
we constructed a complete set of representatives of characters of GF which
are induced by regular characters of UF .

Remark 1.33. By Lemma 1.28 we have an isomorphism

β : G̃F {GF ZpG̃qF Ñ L �1
T pZpGqq{ZpGqTF .

We let g̃ P G̃F be an element of G̃F such that the coset of g̃ in G̃F {GF ZpG̃qTF

is mapped to z P H1pF,ZpGqq � L �1
T pZpGqq{ZpGqTF via the map β. Let

us define gz :� g̃. For g̃ P G̃F we find zg̃ P ZpG̃q such that g̃zg̃ P G,
as in the proof of Lemma 1.28. Moreover, since the torus T is connected,
it follows by [14, Theorem 21.7] that the Lang map LT : T Ñ T is sur-
jective. Since L pzg̃q P ZpGq by the proof of Lemma 1.28, we find some
tz P L �1

T pZpGqq such that L pzg̃q � L ptzq. By the construction of the map

β : G̃F {GF ZpG̃qF Ñ L �1
T pZpGqq{ZpGqTF in Lemma 1.28 it follows that
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β maps the coset of gz to the coset of tz. Since L pzg̃q � L ptzq, we con-

clude that tzz
�1
g̃ P G̃F . We have tzz

�1
g̃ zg̃ � tz P T � G. Thus, it follows

by the definition of the map G̃F Ñ ZpGq{L pZpGqq in the proof of Lemma
1.28 that tzz

�1
g̃ and gz � g̃ define the same coset in G̃F {GF ZpG̃qF . Note

that GF ZpG̃qF � G̃F acts trivial by conjugation on characters of G̃F . As a
consequence we conclude that

Γz � ψGF

tz � tzΓ1 �
tzz

�1
g̃ Γ1 �

gzΓ1.

Hence, we can define Gelfand–Graev characters using the isomorphism
β : G̃F {GF ZpG̃qF Ñ L �1

T pZpGqq{ZpGqTF � H1pF,ZpGqq.

1.6 The p1-characters of GF

We want to describe the p1-characters of GF . For this, let us temporarily
assume that the center of the algebraic group G is connected. In this case we
have H1pF,ZpGqq � 1 by the remark below Lemma 1.26. Thus, the group
G has a unique Gelfand–Graev character, which we will denote by Γ.

Moreover, we call a character χ P IrrpGF q semisimple if pχ,DGpΓqq � 0
(see proof of [2, Proposition 8.3.7]). We recall the definition of a good prime
(see remark below [5, Proposition 14.17]).

Definition 1.34. A prime p is called bad (i.e., not good) for G if the root
system of G is of type Bn, Cn or Dn if p � 2, or of type G2, F4, E6, E7 if
p � 2, 3 and of type E8 if p � 2, 3, 5.

The semisimple characters are precisely the p1-characters if the prime p
is good for the algebraic group G.

Theorem 1.35 (Green, Lehrer, Lusztig). Let G be a connected reductive
group with connected center. Let p be a good prime for the group G. Then
the character χ P IrrpGF q is semisimple if and only if it is of p1-degree.

Proof. This is a consequence of [2, Proposition 8.3.4].

Using this theorem, we can prove the following lemma.

Lemma 1.36. Let G be a connected reductive algebraic group with connected
center. Let p be a good prime for the group G. Then χ P IrrpGF q is a p1-
character if and only if χ � εDGpχps̃qq for some semisimple conjugacy class

ps̃q of G�F
�

and some sign ε P t�1u.
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Proof. Since G has connected center, the unique Gelfand–Graev character Γ
of G can be written as

Γ �
¸
psq

χpsq,

where psq runs over the semisimple conjugacy classes of G�F� . This is a
decomposition of the Gelfand–Graev character into distinct irreducible char-
acters (see [5, Corollary 14.47]). By applying the duality map DG, we obtain

DGpΓq �
¸
psq

DGpχpsqq.

Let χ be an irreducible constituent of DGpΓq. Then there exists a semisimple

conjugacy class psq of G�F
�

such that pDGpχpsqq, χq � 0. Since χpsq is irre-
ducible it follows that DGpχpsqq is an irreducible character up to a sign (see
remark below Theorem 1.24). Consequently we must have χ � εDGpχpsqq,
where ε P t�1u. By Theorem 1.35 the irreducible constituents of DGpΓq are
precisely the irreducible p1-characters of GF .

Thus, we have a description for the p1-characters of GF if the center of
G is connected and p is a good prime for G.

Let us now assume that the center of G is not necessarily connected. As
in Section 1.4 we consider an extension i : G ãÑ G̃ of G by a central torus
such that the center of G̃ is connected. The embedding i : G ãÑ G̃ gives rise
to a dual morphism i� : G̃� Ñ G�. The map i� is surjective and has central
kernel (see [1, Section 15.1]). We have a map from semisimple conjugacy

classes of G̃�F
�

to semisimple conjugacy classes of G�F
�

. More concretely, if

ps̃q is a semisimple conjugacy class of G̃�F
�

, it follows that psq is a semisimple

conjugacy class of G�F
�

, where s :� i�ps̃q.
By [4, Proposition 3.10], we have pχpsq,Γzq � 1, for all z P H1pF,ZpGqq.

Thus, there exists a unique common irreducible constituent of Γz and χpsq,
which we will denote by χpsq,z. Moreover, by [4, 3.15.1] we have

pχps̃qqGF � χpsq �
¸
z

χpsq,z,

where the sum is over the distinct characters χpsq,z for z P H1pF,ZpGqq.
An important fact is that the duality functor commutes with restriction of

characters in our situation. For later reference we state this in the following
lemma.

Lemma 1.37. Let G be a connected reductive group and i : G ãÑ G̃ an
extension of G by a central torus such that G̃ has connected center. Then
DG̃pχqGF � DGpχGF q for any χ P Z IrrpG̃F q.
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Proof. This is mentioned at the beginning of page 172 of [4].

We can now prove a similar result as in Lemma 1.36.

Lemma 1.38. Let G be a connected reductive group. Let i : G ãÑ G̃ and
i� : G̃� Ñ G� be as above. Let p be a good prime for G̃ such that any p1-
character χ P Irrp1pG̃

F q is of the form χ � εDG̃pχps̃qq for some semisimple

conjugacy class ps̃q of G̃�F
�

and some sign ε P t�1u. Then the irreducible
constituents of χGF are precisely the characters ψpsq,z :� εDGpχpsq,zq for
s � i�ps̃q and z P H1pF,ZpGqq.

Proof. Recall from the beginning of this section that we have

χps̃qGF � χpsq �
¸
z

χpsq,z,

where the sum is over a complete set of distinct characters χpsq,z, z P H
1pF,ZpGqq.

Since the duality functor commutes with restriction by Lemma 1.37 we have

χGF � pεDG̃pχps̃qqqGF � εDGpχpsqq �
¸
z

εDGpχpsq,zq.

Using the fact that DG is an isometry (see remark below Theorem 1.24) it
follows that this is a decomposition into distinct irreducible characters.

1.7 Steinberg presentation

In the remaining part of Chapter 1 we will introduce the special setup which
we want to consider in Chapter 2 and Chapter 3. Thus, we keep the notations
and definitions introduced in the following sections for the remainder of this
thesis. In this section we describe the Steinberg presentation of a simple
algebraic group of simply connected type as introduced in [19].

Let Φ be an abstract indecomposable root system. Let ∆ � tα1, ..., αnu
be a base of the root system Φ. We denote by Φ� the set of positive roots,
i.e. the subset of the root system Φ which consists of the roots which can
be written as a linear combination of the simple roots with natural numbers
as coefficients. We write Φ_ for the set of coroots of Φ with base given
by ∆_ � tα_1 , ..., α

_
n u. We assume that Φ has at least rank 2 (i.e., Φ is

not of type A1). We consider the group G generated by the set of symbols
txαptq | α P Φ, t P ku subject to the following relations:

1. xαpt1qxαpt2q � xαpt1 � t2q for all t1, t2 P k and α P Φ.
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2. Let α, β P Φ with α � β � 0. Then

rxαpt1q, xβpt2qs �
¹

i,j¡0,iα�jβPΦ

xiα�jβpcijαβt
i
2t
j
1q,

where the product is taken over a fixed order of the roots Φ and
ci,j,α,β P t�1,�2,�3u are as in [19, Lemma 15] (where the ci,j,α,β pos-
sibly depend on the chosen order).

3. hαpt1qhαpt2q � hαpt1t2q for all t1, t2 P k�, where hαptq :� wαptqwαp�1q
and wαptq :� xαptqx�αp�t

�1qxαptq for t P k�.

Steinberg shows that the group G is the universal Chevalley group con-
structed from Φ and k (see [19, Theorem 8]). Furthermore, he shows that G
can be given the structure of a simple algebraic group in a natural way such
that G becomes a linear algebraic group over k of simply connected type
with root system (isomorphic to) Φ (see [19, Theorem 6] and the Existence
Theorem in [19, Chapter 5]). We summarize the structural information for
the algebraic group G in the following lemma.

Lemma 1.39. Let G be defined as above. Then
(a) T � thαptq | α P Φ�, t P k�u is a maximal torus of G.
(b) Uα � txαptq | t P ku for α P Φ are the root subgroups of G (relative

to the T). In particular, we have an isomorphism xα : pk,�q Ñ Uα of
algebraic groups given by t ÞÑ xαptq.

(c) U �
±

αPΦ� Uα is a maximal connected unipotent subgroup of G.
(d) B � TU � NGpUq is a Borel subgroup of G.

Proof. See [15, Section 1].

Furthermore we write (by abuse of notation) Φ � XpTq for the set of
roots with respect to the torus T. Moreover ∆ � tα1, . . . , αnu will denote
the base of Φ with respect to T � B.

1.8 A regular embedding

Fix an indecomposable root system Φ. Let G be the simply connected group
of root system Φ defined over the field k of characteristic p, as in the previous
section. Note that the center of G is a finite subgroup ZpGq �

�n
i�1 kerpαiq

(see [14, Theoren 8.17]). We let dp be the minimal number of generators of
ZpGq. Note that dp � 0 if and only if ZpGq is trivial which is precisely the
case when the center of G is connected (see [14, Proposition 1.13 (c)]). For
a root system Φ we let d be the maximal dp occurring for any prime p. We
list the possible numbers for d in the following remark.
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Remark 1.40. By [14, Proposition 9.15] the center ZpGq of a simple alge-
braic group G of simply connected type with root system Φ is isomorphic to
the p1-part of the fundamental group ΛpΦq. The fundamental group for the
various types of root systems is listed in [14, Table 9.2]. Note that ΛpΦq is
cyclic except in case where the root system Φ is of type Dn and n is even. In
this case the fundamental group of Φ is ΛpΦq � C2 � C2, where C2 denotes
the cyclic group of order 2. Thus, we have d � 2 if the root system of G is
of type Dn and n is even. In the remaining cases we have either d � 1 or
d � 0. Note that d � 0 only occurs in a few exceptional cases.

We will restrict ourselves from now on to the case that d � 1 or d � 0.
This way, we avoid a lot of technical issues later.

Assumption 1.41. We assume from now on that the root system Φ of G is
not of type Dn if n is even.

Let S � pk�qd be a torus of rank d. Let ρ : ZpGq Ñ S be an injective
group homomorphism and define a group G̃ by

G̃ � G�ρ S � pG� Sq{tpz, ρpzq�1q | z P ZpGqu.

We have natural embeddings i : G ãÑ G̃ and j : S ãÑ G̃. As such it
is often convenient to identify G and S with their images in G̃ under these
embeddings. Under this identification G̃ � GS has connected center ZpG̃q �
S. Moreover, G̃ is an extension of G by the central torus S. Again we list
some structural information on the group G̃ in the following lemma.

Lemma 1.42. Let G̃ be defined as above. Then the following statements
hold.

(a) T̃ � TS is a maximal torus of G̃.
(b) U �

±
αPΦ� Uα is a maximal connected unipotent subgroup of G̃.

(c) B̃ � T̃U � NG̃pUq is a Borel subgroup of G̃.

Proof. These facts are mentioned in [15, Section 2]

Note that the construction of G̃ depends on the choice of ρ. This will
become crucial in the next section when we discuss extensions of Frobenius
automorphisms of G to the group G̃. In [15, Section 6] explicit choices are
made which we assume to be taken in this thesis.
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1.9 Frobenius endomorphism

As in [15, Section 3] we want to explicitly construct the Frobenius endo-
morphisms of G. Note that we do not consider twisted Frobenius endomor-
phisms, i.e. endomorphisms of G which are not Frobenius endomorphisms
of G, but whose square or cube is a Frobenius endomorphism. This means
that we will not consider Ree or Suzuki groups in this thesis.

We define Fq : G Ñ G by xαptq ÞÑ xαpt
qq for all α P Φ and t P k.

This defines a homomorphism of algebraic groups which we call the standard
Frobenius map. Let τ be a symmetry of the Dynkin diagram associated to
the base ∆ of the root system Φ. Then τ can be used to realize a graph
automorphism γ : G Ñ G. We can choose γ such that γpxαi

ptqq � xτpαiqptq
for αi P ∆ and t P k. In particular the order of γ coincides with the order
w of the symmetry τ . Any Frobenius endomorphism for the group G with
respect to an Fq-structure is then, up to inner automorphisms of G, given
by a map F : G Ñ G such that F � Fq � γ for a standard Frobenius map Fq
and a graph automorphism γ of G (see [14, Theorem 22.5]). We now state
that G̃ is a regular embedding in the sense of [1, Hypothesis 15.1].

Lemma 1.43. Let i : G ãÑ G̃ be chosen as in [15, Section 6]. Then G is
a regular embedding in the sense of [1, Hypothesis 15.1]. This means G̃ is
a connected algebraic group with connected center and rG̃, G̃s � G and for
every Frobenius morphism F of G there exists a Frobenius morphism of G̃
which is an extension of F .

Definition 1.44. Write g P G̃ as g � xz with x P G and z P S. We define
the determinant map det : G̃ Ñ k� to be the map detpxzq � z|ΛpGq| where
ΛpGq is the fundamental group of G. Note that the map det is a well-defined
homomorphism of algebraic groups (see the remark below [15, Definition
7.2]).

The following lemma illustrates an application of Lemma 1.26.

Lemma 1.45. The map det induces isomorphisms B̃F {BF � G̃F {GF � SF .

Proof. The map det : G̃{G Ñ pk�qd � S is an isomorphism. Moreover, the
restriction of det to B̃ induces an isomorphism det : B̃{B Ñ pk�qd � S as
well (see remark below [15, Proposition 11.3]). The groups B and G are
connected F -stable normal subgroups of B̃ resp. G̃. Thus, it follows by
Lemma 1.26 that these isomorphisms carry over to the fixed points under
the Frobenius endomorphism F .

Note that SF is cyclic as finite subgroup of S � k�. Moreover, the
group SF consists of semisimple elements, which implies that every element
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of SF has order coprime to p (see [5, Proposition 3.18]). This implies that
p - |G̃F : GF | and p - |B̃F : BF | by Lemma 1.45. We list some more
properties of the finite groups GF and G̃F in the following lemma.

Lemma 1.46. (a) UF is a Sylow p-subgroup of GF and G̃F .
(b) BF � NGF pUF q and B̃F � NG̃F pUF q.

Proof. The proof of part (a) is given in [15, Proposition 3.4]. Part (b) follows
by [14, Corollary 24.11].

1.10 The dual group

Let G be a simple algebraic group of simply connected type with root system
Φ. Furthermore, let i : G ãÑ G̃ be the regular embedding of G constructed
in Section 1.8. We give an explicit construction of the dual algebraic group
of G̃, following the construction in [15, Section 7]. Let G_ be the simple
algebraic group of simply connected group with root system Φ_ (see Section
1.7). We denote by T_ the maximal torus of G_ as in Lemma 1.39. Note
that G and G_ are not necessarily dual to each other (the dual algebraic
group of a simply connected group is not simply connected in general). Let
S_ be the torus associated to G_ as in Section 1.8. Then we choose an
injective group homomorphism ρ_ : ZpG_q Ñ S_ as in [15, Section 7]. We
denote by G̃� the resulting linear algebraic group

G̃� � G_ �ρ_ S_ � pG_ � S_q{tpz, ρ_pzq�1q | z P ZpG_qu.

As in Section 1.8 there are embeddings i_ : G_
ãÑ G̃� and j_ : S_

ãÑ G̃�

such that we may write G̃� � G_S_. Let us furthermore denote by T̃� the
maximal torus T̃� � T_S_ of G̃� as constructed in Lemma 1.42. The
notation G̃� is justified in the next lemma.

Lemma 1.47. Let G̃ and G̃� be defined as above. Then there exists a duality
isomorphism δ : Y pT̃q Ñ XpT̃�q. Furthermore, for any Frobenius map F of
G̃ there exists a Frobenius map F � of G̃� such that the pair pG̃, F q is dual
to the pair pG̃�, F �q (via the duality isomorphism δ).

Proof. This is [15, Proposition 7.6].

The proof makes use the so-called fundamental and dual fundamental
weights. We will need this construction later so we will give a brief summary
of how the duality isomorphism δ is constructed. Let us first introduce the
notion of fundamental weights in the following lemma.
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Lemma 1.48. Let G be a simple algebraic group of simply connected type.
Then the coroots ωi P Y pTq defined in [15, Section 1] satisfy xωi, αjy � δij
for all i � 1, ..., n and j � 1, ..., n. The ωi are called the fundamental weights
of G.

Proof. This is discussed in [15, Section 1].

Recall that T̃ � TS. Since S is a central subgroup of G̃ we may define
α̃ P XpT̃q to be the unique extensions of a root α P XpTq which is trivial
on S. Note that the lifts ω̃i of ωi satisfy the equation xω̃i, α̃jy � δij. Let
us furthermore denote the extensions of the fundamental weights of G_ by
ω̃�
i P XpT̃�q.

An important property of the algebraic group G̃ is that it has so-called
dual fundamental weights which we introduce in the following lemma.

Lemma 1.49. Then the coroots τi P Y pT̃q defined in [15, Definition 6.10]
satisfy xα̃i, τjy � δij for all i � 1, . . . , n and j � 1, . . . , n. The elements

τi P Y pT̃q are called dual fundamental weights of G̃.

Proof. The proof is given in [15, Proposition 6.11].

We denote by z : k� Ñ T̃ the map j : S � pk�qd ãÑ G̃ with codomain
T̃. The map z is an element of the cocharacter group Y pT̃q. Recall the
determinant map det : T̃ Ñ k� from Definition 1.44. We denote by det� :
T̃� Ñ k� the corresponding map of the dual group G̃� � G_S_. These
definitions allow us to state the definition of the duality isomorphism δ :
Y pT̃q Ñ XpT̃�q.

Remark 1.50. The duality isomorphism δ : Y pT̃q Ñ XpT̃�q in Lemma 1.47
is given by τi ÞÑ ω̃�

i for i � 1, . . . , n and by z ÞÑ det�.
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Chapter 2

The Maslowski bijection

In this chapter we describe the Maslowski bijection f̃ : Irrp1pB̃
F q Ñ Irrp1pG̃

F q
constructed in [15, Theorem 15.1]. This bijection is given by parameteriz-
ing both sets of p1-characters of G̃F and B̃F by the same set of labels. In
Chapter 3 we use the Maslowski bijection in order to construct a bijection
f : Irrp1pB

F qσ Ñ Irrp1pG
F qσ.

2.1 A labeling for the p1-characters of B̃F

Let us first recall some notation and definitions which we introduced in Sec-
tion 1.7 to Section 1.10. Let G be a simple algebraic group of simply con-
nected type. Let Φ be the root system of G with respect to the torus T
(where T is the maximal torus of G defined in Lemma 1.39). As in Section
1.9 we let F � Fq � γ : G Ñ G be a Frobenius endomorphism of G. The
torus T is F -stable and is contained in the F -stable Borel subgroup B of G,
i.e. the torus T is maximally split. Furthermore, we denote by ∆ the base of
the root system Φ with respect to T � B. Note that U �

±
αPΦ� Uα is the

unipotent radical of B. Suppose that the graph automorphism γ : G Ñ G
comes from the symmetry τ of the Dynkin diagram associated to the base
∆ of the root system Φ. The symmetry τ acts on the set of simple roots
∆ � tα1, . . . , αnu. This action induces a partition

t1, . . . , nu � A1 Y � � � Y Ar

of the index set of ∆. We now recall some results from Section 1.5. We have
an isomorphism

UF {rU,UsF �
r¹
i�1

UF
Ai
,
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where UAi
, i � 1, . . . , r is the product in U{rU,Us of the root subgroups

Uαj
for j P Ai. We assume furthermore that rUF ,UF s � rU,UsF , i.e. we

exclude the groups mentioned in Remark 1.29. Consequently, in this case we
have

UF {rUF ,UF s �
r¹
i�1

UF
Ai
.

Let us briefly recall the construction of the bijection κ as explained before
Lemma 1.31. We fix a character φ0 P IrrppFqN ,�qq, where |Ai| divides N for
all i � 1, . . . , r, such that the restriction of φ0 to pFq,�q is nontrivial. For
α P Φ, recall the isomorphism xα : pk,�q Ñ Uα from Lemma 1.39. These
maps yield isomorphisms xi : pFq|Ai| ,�q Ñ UF

Ai
for all i � 1, . . . , r. For any

character φi P IrrpUF
Ai
q there exists some ci P Fq|Ai| such that φipxipaqq �

φ0pciaq for all a P Fq|Ai| . By Lemma 1.31 we obtain a bijection

κ : IrrpUF {rUF ,UF sq Ñ
r¹
i�1

pFq|Ai| ,�q given by φ �
r¹
i�1

φi ÞÑ pc1, ..., crq.

Let S be a subset of t1, . . . , ru. We denote Sc � t0, 1, . . . , ruzS. Define the
character φS of UF {rUF ,UF s to be the character which corresponds under
κ to the tuple pc1, ..., crq with

ci �

#
0 if i R S,

1 if i P S.

For simplicity let us identify φS P IrrpUF {rUF ,UF sq with its inflation φS P
IrrpUF q. Note that with this notation the character ψ1 introduced before
Definition 1.32 is precisely the character φS for S � t1, . . . , ru.

For each i � 1, . . . , r we choose a fixed representative ai P Ai. Let µ
be the primitive pqw � 1q-th root of unity of k as chosen before Lemma
1.14. Furthermore, recall the notion of dual fundamental weights τi P Y pT̃q
from Lemma 1.49. Exploiting the Steinberg presentation for the group G,
Maslowski gives generators for the torus T̃F :

Lemma 2.1. The elements ti � NFw{F pτaipµqq for i � 1, . . . , r together with

t0 � NFw{F pzpµqq if d � 1, and t0 � 1 if d � 0, generate the torus T̃F .

Proof. The proof is given in [15, Proposition 8.1].

Remark 2.2. If F � Fq then the elements t0, . . . , tn have all order q � 1
(unless t0 � 1 which occurs if and only if d � 0) by [15, Proposition 8.1].
This is not necessarily true if F is not a standard Frobenius. However, by [15,

Remark 10.3] there exist integers ri such that tri0 � tq
|Ai|�1
i for i � 1, . . . r.
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The action of T̃F on the characters of UF can be explicitly described and
one obtains the following result.

Lemma 2.3. The characters tφS P IrrpUF q | S � t1, . . . , ruu form a com-
plete set of representatives for the B̃F -orbits on the linear characters of UF .

Proof. This is [15, Proposition 8.4].

We consider the action of a Galois automorphism on linear characters of
UF .

Lemma 2.4. Let σ P GalpQm{Qq where m is the order of GF . Then φσS � φt̃S
for some t̃ P T̃F .

Proof. By the uniqueness statement of Lemma 2.3 we have φσS � φt̃
S1

for

some S
1
� t1, . . . , ru and some t̃ P T̃F . Recall that the subgroup UF

Ai
are

stabilized by the T̃F -action. Thus, we have

¹
iPS1

φt̃i � φt̃
S1
� φσS �

¹
iPS

φσi .

Since the characters φi P IrrpUF
Ai
q are nontrivial this implies S � S

1
and

φσS � φtS.

The following statement is crucial for the construction of the labeling.

Lemma 2.5. Any character φS P IrrpUF q extends to its inertia group IB̃F pφSq.
In particular every character in the set IrrpIB̃F pφSq | φSq is linear.

Proof. This is [15, Lemma 8.5].

We can now describe the labels for the p1-characters of B̃F .

Construction 2.6. Let ψ P Irrp1pB̃
F q. Since UF is a normal p-subgroup

of B̃F and ψ has p1-degree it follows by Theorem 1.1 that ψ lies above a
linear character of UF . Hence, by Lemma 2.3 there exists a uniquely de-
termined subset S � t1, . . . , ru such that ψ lies above φS P IrrpUF q. By
Clifford correspondence (see Theorem 1.3) there exists a unique character

λ P IrrpIB̃F pφSq | φSq with λB̃
F
� ψ. Note that IB̃F pφSq � xti | i P S

cyUF by
the remark preceding [15, Lemma 8.5]. We define the image of ψ under the
map g : Irrp1pB̃

F q Ñ Cr�1 by

gpψqi �

#
λptiq if i P Sc,

0 if i P S.
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For i P Sc we note that the order of ti P T̃F � T̃Fqw divides pqw � 1q by
Remark 2.2. Thus, for i P Sc the values λptiq of the linear character λ
are pqw � 1q-th roots of unity. Therefore gpψqi is either a pqw � 1q-th root
of unity or gpψqi � 0. Consider the embedding F�

qw Ñ C� chosen before
Lemma 1.14. Thus, we may consider gpψqi as an element of Fqw and we have

a map g : Irrp1pB̃
F q Ñ Fr�1

qw .

Theorem 2.7. Let w be the order of the graph automorphism γ of the Frobe-
nius endomorphism F � Fq �γ. We define A � tpa0, . . . , arq P pF�

qwq
d�Frqw |

aq
|Ai|�1
i � ari0 u, where the integers ri are defined as in Remark 2.2. Then the

map g : Irrp1pB̃
F q Ñ A is a bijection.

Proof. This is [15, Theorem 8.6] in the untwisted case (i.e, w � 1) and [15,
Theorem 10.8] in the twisted case.

If F � Fq, then we may choose ri � 0 for the integers in Remark 2.2.
Thus, in this case we obtain A � pF�

q q
d � Fnq .

2.2 A labeling for the p1-characters of G̃F

In this section we introduce the modified Steinberg map as in [15, Section
14], which separates the semisimple conjugacy of G̃�. We use this map to
define a labeling for the p1-characters of G̃F as introduced by Maslowski
in [15, Section 14]. For this, we first need to recall some definitions from the
representation theory of algebraic groups (see [14, Chapter 15]).

A character λ P XpTq is called a dominant weight if xλ, α_j y ¥ 0 for all
j � 1, . . . , n. Since xωi, α

_
j y � δij it follows that all fundamental weights

ωi P XpTq of G are dominant.
By a theorem of Chevalley (see [14, Theorem 15.17]) there exists a rational

irreducible kG-module V which is a highest weight module of highest weight
λ. This means that there exists a vector v� P V generating V as kG-module
and satisfying t.v� � λptq.v� for all t P T.

Let Ri : G Ñ GLpViq denote the representation associated to a highest
weight module of highest weight ωi P XpTq. We let

πi : G Ñ k with g ÞÑ trpRipgqq

be the trace function of the representation Ri. We define the Steinberg map
π : G Ñ kn by πpgq :� pπ1pgq, . . . , πnpgqq. A fundamental property of the
Steinberg map is that two elements of G are G-conjugate if and only if they
have the same image under the Steinberg map (see [18, Corollary 6.7]).

We need a further property of the Steinberg map which is a slight gener-
alization of [15, Lemma 14.1] and follows the proof given there.
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Lemma 2.8. Let s P G be a semisimple element. Then πips
pq � πipsq

p.

Proof. Let Ri : G Ñ GLpViq be a representation affording the trace function
πi. The semisimple element s P G is contained in a maximal torus of G
by [14, Corollary 6.11]. Since by [14, Corollary 6.5] all maximal tori of G are
G-conjugate, we may assume that s P T. Since RipTq is a set of pairwise
commuting endomorphisms we may diagonalize the set RipTq simultaneously.
Since k is a field of characteristic p, the map k Ñ k with x ÞÑ xp for x P k
is a field automorphism. This implies

πips
pq � trpRips

pqq � trpRipsq
pq � trpRipsqq

p � πipsq
p,

since Ripsq is a diagonal matrix.

The fundamental idea of Maslowski is to consider a modification of the
Steinberg map for the group G̃� � G_S_. Let us denote by π_ : G_ Ñ kn

with π_pxq :� pπ_1 pxq, . . . , π
_
n pxqq for x P G_, the Steinberg map of G_.

We can write any element g P G̃� (not necessary unique) as g � xz with
x P G_ and z P S_. In [15, Section 14] Maslowski defines the map π̃ : G̃� Ñ
pk�qd � kn by

g � xz ÞÑ pdet�pxzq, π_1 pxqω̃
�
1 pzq, . . . , π

_
n pxqω̃

�
npzqq.

Similar to the result of Steinberg mentioned above Maslowski shows in [15,
Proposition 14.2] the following result:

Lemma 2.9. The map π̃ separates semisimple conjugacy classes of G̃�.
Moreover, if F � Fq is the standard Frobenius then the conjugacy classes

pxzq of G̃� with image π̃pxzq in pF�
q q

d � Fnq are precisely the pq � 1qdqn dif-

ferent F �-stable semisimple conjugacy classes of G̃�.

As discussed in Remark 1.17 the F �
q -stable semisimple conjugacy classes

of G̃� are precisely the conjugacy classes of semisimple elements of G̃�F
�
q

.
Therefore we have a bijection between these conjugacy classes and pF�

q q
d�Fnq .

This allows us to make the following construction.

Construction 2.10. We first consider the case that F � Fq is a standard

Frobenius map. Let χ P Irrp1pG̃
F q be a p1-character. Then there exists a

unique F �-stable conjugacy class ps̃q of G̃� such that χ P EpG̃F , ps̃qq (see
Theorem 1.18). We then define the label of χ by π̃ps̃q � pb0, . . . , bnq.

Now suppose that F � Fq � γ. Let w denote the order of γ. As in the
untwisted case, we associate the F �-stable semisimple conjugacy class ps̃q to

the p1-character χ P EpG̃F , ps̃qq. Since G̃�F
�

� G̃�
F�
qw

it is clear that ps̃q is
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a semisimple conjugacy class of G̃� which is F �
qw-stable. In particular ps̃q

has a label π̃ps̃q � pb0, . . . , bnq P F�
qw � Fnqw . We define the label of χ by

pb0, ba1 , . . . , barq, where ai P Ai are the fixed representatives of the orbits of
the τ -action on t1, . . . , nu as chosen before Lemma 2.1.

The possible labels which occur in Construction 2.10 consist precisely of
the elements of A � pF�

qwq
d � Frqw , where A is defined as in Theorem 2.7, as

the following theorem shows.

Theorem 2.11. The map h : Irrp1pG̃
F q Ñ A which maps a character χ P

Irrp1pG̃
F q to its label pb0, ba1 , . . . , barq as in Construction 2.10 is a bijection.

Proof. If F is a standard Frobenius then A � pF�
q q

d � Fnq by the remark
below Theorem 2.7. In this case the theorem is a consequence of Lemma
2.9 together with Theorem 1.19. If F is a twisted Frobenius one has to
observe which labels occur for the various p1-characters. This has been done
in [15, Proposition 14.4] and [15, Proposition 14.5].

The previous theorem together with Theorem 2.7 implies the following
result.

Theorem 2.12. The map f̃ � h�1 � g : Irrp1pB̃
F q Ñ Irrp1pG̃

F q is a bijection.

We will state some properties of f̃ . First we observe that the map f̃ is
compatible with the multiplication by linear characters:

Theorem 2.13. The map f̃ defines by restriction a bijective map IrrpB̃F |
1BF q Ñ IrrpG̃ | 1GF q. Moreover, f̃pηψq � f̃pηqf̃pψq for ψ P Irrp1pB̃

F q and

η P IrrpB̃F | 1BF q.

Proof. This is [15, Theorem 15.3].

As a consequence of Theorem 2.13 we obtain that the bijective map
IrrpB̃F | 1BF q Ñ IrrpG̃ | 1GF q, which we obtained by restricting f̃ , is an
isomorphism of abelian groups. In particular we have f̃p1B̃F q � 1G̃F . The
label of 1G̃F is hp1G̃F q � p1, π_a1p1q, . . . , π

_
arp1qq. Thus, we obtain π_aip1q � 1

for all i � 1, . . . , r, since gp1B̃F q � p1, 1, . . . , 1q.

Lemma 2.14. The following two statements hold.
(a) Let ψ P Irrp1pB̃

F q and ϑ P IrrpBF | ψq. Then IrrpB̃F | ϑq � tχη | η P

IrrpB̃F | 1BF qu.
(b) Let χ P Irrp1pG̃

F q and φ P IrrpGF | χq. Then IrrpG̃F | φq � tχλ | λ P

IrrpG̃F | 1GF qu.
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Moreover, the number of different B̃F -conjugates of ϑ and the number of
different G̃F -conjugates of φ coincide.

Proof. Note that B̃F {BF � G̃F {GF � SF by Lemma 1.45 and SF is cyclic.
Therefore the result follows directly from Corollary 1.7.

The previous lemma is true in more generality.

Remark 2.15. If the root system of G̃ is of type Dn with n even then the
statement of Lemma 2.14 is still true. In this case one has to show that any
p1-character of GF (resp. BF ) extends to its inertia group in G̃F (resp. B̃F )
in order to apply Lemma 1.6. This is proved in [15, Proposition 11.3] for B̃F

and in [1, Theorem 15.11] for G̃F .

In Chapter 3 we use the following corollary for the construction of a
bijection f : Irrp1pB

F qσ Ñ Irrp1pG
F qσ.

Corollary 2.16. Let ψ P Irrp1pB̃
F ) and ϑ P IrrpBF | ψq. Furthermore we

let φ P IrrpGF q be a constituent of f̃pψqGF . Then the map f̃ induces by
restriction a bijection IrrpB̃F | ϑq Ñ IrrpG̃F | φq.

Proof. This follows from Lemma 2.14 and Theorem 2.13.
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Chapter 3

The McKay Conjecture and
Galois automorphisms

In this chapter we prove that the bijection f̃ : Irrp1pB̃
F q Ñ Irrp1 pG̃

F q con-
structed in Chapter 2 is compatible with the action of pe, pq-Galois automor-
phisms. Then we will relate the p1-characters of G̃F (resp. B̃F ) with the
p1-characters of GF (resp. BF ). This, together with the bijection f̃ , allows
us to construct a bijection f : Irrp1pB

F qσ Ñ Irrp1pG
F qσ which is compatible

with central characters.

3.1 Compatibility of the character bijection

with Galois automorphisms

In the previous chapters we had to impose several conditions on pG, F q. In
order to apply all results from the previous chapters we have to make some
assumptions. For the convenience of the reader we will recall them now.

Assumption 3.1. Let G be a simple algebraic group of simply connected
type. We assume from now on that G is not of type Dn if n is even and that
p is a good prime for G.

We will frequently write H � HF for the set of fixed points under the
Frobenius endomorphism F of an algebraic group H. For example, G̃ � G̃F ,
G � GF and B̃ � B̃F , B � BF . Let us recall from Definition 0.2 the notion
of an pe, pq-Galois automorphism.

Definition 3.2. Let e be a nonnegative integer and p be a prime number.
Then a Galois automorphism σ P GalpQm{Qq is called an pe, pq-Galois auto-
morphism if σ sends any p1-root of unity ζ P Qm to ζp

e
.
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For a natural number m we write mp for the highest p-power dividing m
and mp1 �

m
mp

for the p1-part of m. We first show some elementary properties

of pe, pq-Galois automorphisms:

Lemma 3.3. Let σ P GalpQm{Qq and k be an integer such that σpξq � ξk

for a primitive m-th root of unity ξ P Qm.
(a) Then σ is an pe, pq-Galois automorphism if and only if k � pe mod mp1.
(b) Let m̃ be a multiple of m. Then any pe, pq-Galois automorphism σ P

GalpQm{Qq extends to an pe, pq-Galois automorphism σ̃ P GalpQm̃{Qq.

Proof. For the proof of (a) we let ζ P Qm be an mp1-th root of unity. Then
ζ � ξu for some natural number u. Thus, σpζq � σpξuq � ξuk � ζk which
implies that σpζq � ζp

e
if and only if ζp

e
� ζk. Since the order of ζ is a

divisor of mp1 this holds true if k � pe mod mp1 . Conversely, if we take
ζ P Qm as primitive mp1-th root of unity, the equation ζp

e
� ζk implies that

k � pe mod mp1 .
We now prove part (b). Let σ1 P GalpQmp{Qq and σ2 P GalpQmp1

{Qq
be the restriction of σ to Qmp resp. Qmp1

. Choose a Galois automorphism

σ̃1 P GalpQm̃p{Qq extending σ1. Define σ̃2 P GalpQm̃p1
{Qq by σ̃2pζq � ζp

e
for

a primitive m̃p1-th root of unity ζ P Qm̃p1
. Clearly, σ̃2 is an extension of σ2.

By [11, Chapter VI, Theorem 1.14] we find a unique Galois automorphism
σ̃ P GalpQm̃{Qq such that σ̃ restricts to σ̃1 and σ̃ restricts to σ̃2. We conclude
that σ̃ is an extension of σ. Moreover, since σ̃ restricts to σ̃2 it follows that
σ̃ P GalpQm̃{Qq is an pe, pq-Galois automorphism.

Note that part (b) of Lemma 3.3 implies that any pe, pq-Galois auto-
morphism σ P GalpQ|G|{Qq extends to an pe, pq-Galois automorphism σ̃ P
GalpQ|G̃|{Qq. This means that if we want to prove Conjecture 0.3 for the
finite group G and an pe, pq-Galois automorphism σ P GalpQ|G|{Qq, we may
assume without loss of generality that σ P GalpQ|G̃|{Qq.

We now show that the bijection f̃ : Irrp1pB̃q Ñ Irrp1pG̃q is σ-equivariant
for pe, pq-Galois automorphisms σ P GalpQ|G̃|{Qq.

Theorem 3.4. Let σ P GalpQm{Qq, with m � |G̃|, be an pe, pq-Galois auto-
morphism. Then the bijection

f̃ : Irrp1pB̃q Ñ Irrp1pG̃q

is compatible with σ, i.e. f̃pψσq � f̃pψq
σ

for any character ψ P Irrp1pB̃q.
Moreover, if we denote the label of ψ by gpψq � pc0, . . . , crq then the label of
ψσ is given by gpψσq � pcp

e

0 , . . . , c
pe

r q.

39



Proof. We proceed in several steps. Let ψ P Irrp1pB̃q with label gpψq �
pc0, . . . , crq. In a first step we compute the label gpψσq of the character ψσ.

In a second step we let χ � f̃pψq be the p1-character of G̃ which has
the same label as ψ. Then we prove that hpχσq � gpψσq. This implies that
f̃pψσq � χσ, since f̃ � h�1 � g.
First step: Since the character ψ P Irrp1pB̃q has p1-degree and U is a normal
p-subgroup of B̃, any irreducible constituent of ψU is linear. By Lemma 2.3
there exists a unique S � t1, . . . , ru such that ψ lies above the character
φS P IrrpUq. By Clifford correspondence (see Theorem 1.3) there exists a

unique character λ P IrrpIB̃pφSq | φSq such that λB̃ � ψ.
Since ψ lies above φS it follows that ψσ lies above the character φσS. By

Lemma 2.4 we have φσS � φt̃S for some t̃ P T̃ . The character λσ lies above the
character φσS � φt̃S. Since the factor group B̃{U � T̃ is abelian the character
pλσqt̃

�1
is well-defined. Consequently, pλσqt̃

�1
lies above the character φS and

ppλσqt̃
�1
qB̃ � ψσ. Note that λ is a linear character by Lemma 2.5. We let

ξ be a primitive m-th root of unity and we let k be an integer such that
σpξq � ξk. Then we have λσ � λk by Lemma 1.8. By definition of the map
g in Construction 2.6 we obtain

gpψσqi � pλkqt̃
�1

ptiq � pλkqpt̃tit̃
�1q � λkptiq

for every i P Sc. For i P S we get gpψσqi � 0. Consequently, the label of ψσ

is given by gpψσq � pck0, c
k
1, . . . , c

k
rq.

By Lemma 3.3 we have k � pe mod mp1 since σ P GalpQm{Qq is an pe, pq-
Galois automorphism. By [14, Table 24.1] it follows that pqw�1q divides mp1 ,
which implies that k � pe mod pqw � 1q. Since pc0, . . . , crq P Fr�1

qw we have

gpψσq � pck0, . . . , c
k
rq � pcp

e

0 , . . . , c
pe

r q.

Second step: We have χ P EpG̃F , ps̃qq for some semisimple conju-

gacy class ps̃q of the dual group G̃�F
�

. By Corollary 1.16 we deduce that

χσ P EpG̃F , ps̃kqq. Note that s̃ P G̃�F
�

is semisimple and |G̃F | � |G̃�F
�

|
since pG̃, F q and pG̃�, F �q are in duality (see [2, Proposition 4.4.4]). By [5,
Proposition 3.18] it follows that the order of s̃ is a divisor of mp1 . Since
k � pe mod mp1 by Lemma 3.3, this shows that s̃p

e
� s̃k. Hence, we have

χσ P EpG̃F , ps̃p
e
qq.

Let us now first assume that F � Fq is a standard Frobenius map. We

may write s̃ P G̃� (not necessarily unique) as s̃ � xz where x P G_ and
z P S_. By Construction 2.10 the label of the character χσ P EpG̃F , ps̃p

e
qq is

given by

π̃ps̃p
e

q � π̃ppxzqp
e

q � pdet�ppxzqp
e

q, π_1 px
peqω̃�

1 pz
peq, . . . , π_n px

peqω̃�
npz

peqq.
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Note that det�ppxzqp
e
q � det�pxzqp

e
since det� P XpT̃�q. We claim that

π̃ips̃
peq � π̃ips̃q

pe for all i � 1, . . . , n. We obtain

π̃ips̃
peq � π̃ipx

pezp
e

q � π_i px
peqω̃�

i pz
peq

by definition of the modified Steinberg map in Section 2.2. By Lemma 2.8
we have π_i px

peq � π_i pxq
pe . Moreover, we have ω̃�

i pz
peq � ω̃�

i pzq
pe since

ω̃�
i P XpT̃�q. Therefore we obtain

π̃ips̃
peq � π_i pxq

peω̃�
i pzq

pe � pπ_i pxqω̃
�
i pzqq

pe � π̃ips̃q
pe .

Hence, we obtain π̃ips̃
peq � π̃ips̃q

pe as claimed above. Since π̃pxzq � pc0, . . . , cnq
we have π̃ppxzqp

e
q � pcp

e

0 , . . . , c
pe

n q and therefore the label of χσ is given by
hpχσq � pcp

e

0 , . . . , c
pe

n q � gpψσq and we have f̃pψσq � f̃pψqσ, as desired.
Let us now assume that F � Fq � γ. Let w be the order of γ and let

π̃ps̃q � pb0, . . . , bnq be the image of the Fqw-stable conjugacy class ps̃q of G̃�

under the modified Steinberg map. Then, as we have shown above, the image
of ps̃p

e
q under the modified Steinberg map is given by π̃ps̃p

e
q � pbp

e

0 , . . . , b
pe

n q.
By construction of the labeling, the label of the character χ P EpG̃F , ps̃qq
is given by hpχq � pba0 , . . . , barq and the label of χσ P EpG̃F , ps̃p

e
qq is

hpχσq � pbp
e

a0
, . . . , bp

e

arq (see Construction 2.10). We have gpψq � pc0, . . . , crq �

pba0 , . . . , barq � hpχq since f̃pψq � χ. Thus, we conclude that

gpψσq � pcp
e

0 , . . . , c
pe

r q � pbp
e

a0
, . . . , bp

e

arq � hpχσq.

This proves f̃pψσq � χσ, as desired.

As an immediate consequence of Theorem 3.4 we have the following corol-
lary:

Corollary 3.5. Under the assumptions of the previous theorem the bijective
map f̃ restricts to a bijection Irrp1pB̃q

σ Ñ Irrp1pG̃q
σ.

In the following example we compute the number of σ-invariant p1-characters
of B̃ � B̃F if F � Fq is a standard Frobenius.

Example 3.6. Let F � Fq be a Standard Frobenius map. Then we have

a bijection g : Irrp1pB̃
F q Ñ A with A � pF�

q q
d � Fnq (see remark below

Theorem 2.7). Let ψ P Irrp1pB̃q with label gpψq � pc0, . . . , cnq. By Theorem
3.4 the character ψ is σ-invariant if and only if pcp

e

0 , . . . , c
pe

n q � pc0, . . . , cnq.
Let q � pf and let s P t1, . . . , fu be defined as s � gcdpe, fq. Then ψ is
σ-invariant if and only if pc0, . . . , cnq P pF�

psq
d � Fnps . Consequently we have

| Irrp1pB̃q
σ| � pps � 1qdpsn.
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3.2 Relating the characters for a special class

of Galois automorphisms

For this section only we will furthermore assume that σ P GalpQm{Qq, where
m � |G̃|, is a Galois automorphism which fixes all p-th roots of unity of Qm.
We will later drop this assumption. In particular, this assumption implies
that all linear characters of U are σ-invariant, as we are about to show.

Lemma 3.7. Under the assumptions as above, any linear character of U is
σ-invariant.

Proof. The linear characters of U are precisely the inflation of characters
of U{rU,U s. We have U{rU,U s �

±r
i�1 UF

Ai
and UF

Ai
� pFq|Ai| ,�q (see

Section 2.1). As additive group, the group pFq|Ai| ,�q is isomorphic to a
product of cyclic groups of order p. We conclude that the character values of
characters of U{rU,U s are p-th roots of unity. These roots are fixed by the
Galois automorphism σ by assumption. Thus, every linear character of U is
σ-invariant.

Lemma 3.8. Let σ P GalpQm{Qq, where m is the order of G̃. Suppose
that σ fixes all p-th roots of unity of Qm. Let χ P Irrp1pG̃q such that χG is
σ-invariant. Then ψ P Irrp1pGq

σ for all ψ P IrrpG | χq.

Proof. By Lemma 1.36 we have χ � εDG̃pχps̃qq for some ε P t�1u and

a semisimple conjugacy class ps̃q of G̃�F
�

. We let i� : G̃� Ñ G� be the
dual morphism corresponding to the regular embedding i : G ãÑ G̃ as in
Section 1.6. The characters ψpsq,z � εDGpχpsq,zq P Irrp1pGq for s � i�ps̃q
and z P H1pF,ZpGqq are by Lemma 1.38 the irreducible constituents of χG.
Recall that χpsq,z is by definition the unique common constituent of χpsq and
Γz. The Gelfand–Graev character Γz � ψGtz is the induced character of the
linear character ψtz P IrrpUq (see Definition 1.32 and Remark 1.29). Thus,
we have Γσz � Γz since the Galois automorphism σ fixes any linear character
of U by Lemma 3.7.

As in the proof of Lemma 1.38 we see that χG � εDGpχpsqq. Since
χG is σ-invariant we conclude by Lemma 1.25 that χpsq is σ-invariant as
well. Therefore χσpsq,z is the unique common constituent of Γσz � Γz and
χσpsq � χpsq. This shows χσpsq,z � χpsq,z. Using Lemma 1.25 again we deduce
that ψσpsq,z � ψpsq,z.

Lemma 3.9. Let σ P GalpQm{Qq, where m is the order of G̃. Suppose
that σ fixes all p-th roots of unity of Qm. Let ψ P Irrp1pB̃q such that ψB is
σ-invariant. Then ϑ P Irrp1pBq

σ for all ϑ P IrrpB | ψq.
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Proof. Since U is a normal p-subgroup of B̃ the p1-character ψ lies above
a linear character of U . By Lemma 2.3 we know that the character ψ lies
above a character φS for some S � t1, . . . , ru. By Theorem 1.3 there exists

a character λ P IrrpĨ | φSq, where Ĩ � IB̃pφSq, such that λB̃ � ψ. By Lemma
2.5 the character φS extends to its inertia group Ĩ and the linear character
λ P IrrpĨ | φSq is an extension of φS. Note that λI P IrrpI | φSq, where
I � IBpφSq. By Theorem 1.3 we conclude that ϑ :� pλIq

B is an irreducible
character of B. Moreover, we have

pψB, ϑq � pψB, pλIq
Bq � pψ, pλIq

B̃q � pλB̃, pλIq
B̃q � pλ, ppλIq

B̃qĨq.

By Mackey’s Theorem (see [8, Problem 5.6]) we can conclude that

pλ, ppλIq
B̃qĨq ¥ pλ, pλIq

Ĩq � pλI , λIq � 1 � 0.

Combining the two formulas above, we deduce that the character ϑ � pλIq
B

is an irreducible character of B which lies below the character ψ.
We need to prove that ϑ � pλIq

B is σ-invariant. By Lemma 1.4 we know
that pλIq

B is σ-invariant if and only if λI is σ-invariant. Since ψB is σ-
invariant, we have 0 � pψB, ϑq � ppψσqB, ϑq. Therefore ψσ P IrrpB̃ | ϑq. By
Lemma 2.14 there exists a character η P IrrpB̃ | 1Bq such that ψσ � ψη. The
character λ lies above φS P IrrpUq. Now φσS � φS implies that λσ lies above
the character φS. We conclude that

pληĨq
B̃ � λB̃η � ψη � ψσ � pλB̃qσ � pλσqB̃.

This means pληĨq
B̃ � pλσqB̃ � ψσ P IrrpB̃ | φSq. The characters ληĨ and λσ

are lying above φS which implies ληĨ � λ by Theorem 1.3. Since η P IrrpB̃ |
1Bq we have in particular ηI � 1I . Hence, we get

λI � λIηI � pληĨqI � pλσqI � pλIq
σ.

Thus, λI is σ-invariant which proves that ϑ � pλIq
B is σ-invariant. Therefore

the character ϑ P Irrp1pBq is an irreducible σ-invariant constituent of the
character ψB. Thus, by Corollary 1.2 all irreducible constituents of ψB are
σ-invariant.

Note that the following lemma is true without the additional assumption
that the Galois automorphism σ P GalpQ|G̃|{Qq fixes the p-th roots of unity.

Lemma 3.10. Let σ P GalpQm{Qq, where m � |G̃|, be an pe, pq-Galois
automorphism. Let ψ P Irrp1pB̃q and χ � f̃pψq. Then the character ψB is
σ-invariant if and only if χG is σ-invariant.
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Proof. Suppose that ψB is σ-invariant. Then ψσ � ψη for some η P IrrpB̃ |
1Bq by Lemma 2.14. Using Theorem 2.13 we obtain

f̃pψσq � f̃pψηq � f̃pψqf̃pηq,

with f̃pηq P IrrpG̃ | 1Gq. By Theorem 3.4, we have f̃pψqσ � f̃pψσq. Therefore

χσG � pf̃pψqGq
σ � f̃pψσqG � f̃pψqGf̃pηqG � f̃pψqG � χG,

which shows that χG is σ-invariant. An analogous argument shows that if
χG is σ-invariant then ψB is σ-invariant. This shows that ψB is σ-invariant
if and only if χG is σ-invariant.

Using the results of this section we can draw the following conclusion.

Corollary 3.11. Let σ P GalpQm{Qq, where m � |G|, be an pe, pq-Galois
automorphism which fixes the p-th roots of unity. Let ψ P Irrp1pB̃q and let
χ � f̃pψq. Then all irreducible constituents of ψB are σ-invariant if and only
if all irreducible constituents of χG are σ-invariant.

Proof. If ψB has an irreducible σ-invariant constituent then all irreducible
constituents of ψB are σ-invariant by Corollary 1.2. This implies that ψB is σ-
invariant. The same argument shows that if χG has an irreducible σ-invariant
constituent then χG is σ-invariant. Now the claim of the corollary follows
directly by Lemma 3.10, together with Lemma 3.8 and Lemma 3.9.

This corollary allows us to define a bijection f : Irrp1pBq
σ Ñ Irrp1pGq

σ (see
Theorem 3.26 below). In the subsequent sections we will drop the assumption
that the Galois automorphism σ fixes the p-th roots of unity. In order to
show an analogous statement as in Corollary 3.11 for this more general case
we need to find appropriate generalizations of Lemma 3.8 and Lemma 3.9.

3.3 Relating the p1-characters of B̃ and B

In this section we generalize the results of the previous section by allowing
a larger class of Galois automorphisms. In a first step we generalize Lemma
3.9.

Lemma 3.12. Let σ P GalpQm{Qq be a Galois automorphism, where m �
|G̃|. Let ψ P Irrp1pB̃q and ϑ be an irreducible constituent of ψB. Furthermore,
we let S be the unique subset of t1, . . . , ru such that ψ P IrrpB̃ | φSq. Then
ϑ is σ-invariant if and only if ψB is σ-invariant and there exists an element
t P B such that φσS � φtS.
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Proof. We first assume that ϑ is σ-invariant. By Corollary 1.2 all irreducible
constituents of ψB are σ-invariant. This implies that ψB is σ-invariant as well.
The character φS is a constituent of some B̃-conjugate of ϑ, such that we
may assume that φS is below ϑ. Since ϑ is σ-invariant we conclude that φσS is
a constituent of ϑU again. By Theorem 1.1 it follows that φσS is B-conjugate
to φS.

Now assume conversely that ψB is σ-invariant and that there exists some
t P B such that φσS � φtS. Let I � IBpφSq and Ĩ � IB̃pφSq. We let λ P

IrrpĨ | φSq be the character such that λB̃ � ψ (see Theorem 1.3). As in the
proof of Lemma 3.9 we see that λBI is an irreducible constituent of ψB. By
Corollary 1.2 we may assume that ϑ � pλIq

B. Since ψB is σ-invariant, we
have 0 � pψB, ϑq � ppψσqB, ϑq. Therefore ψσ P IrrpB̃ | ϑq. By Lemma 2.14
there exists a character η P IrrpB̃ | 1Bq such that ψσ � ψη. Since λ lies above
φS, it follows that λσ lies above φσS � φtS. Thus, the character pλσqt

�1
lies

above φS. This implies that

ppλσqt
�1

qB̃ � ψσ � ψη � pληĨq
B̃.

By Theorem 1.3, we have pλσqt
�1

� ληĨ . Since η P IrrpB̃ | 1Bq this implies
λσI � λtI . This shows that ϑ � pλtIq

B � pλσI q
B � ϑσ.

Recall that the character ψ1 introduced before Definition 1.32 is the char-
acter φS for S � t1, . . . , ru (see remark preceding Lemma 2.1). Moreover,
by Lemma 2.4 there exists an element t̃ P T̃ such that ψσ1 � ψt̃1. As a
consequence of Lemma 3.12 we obtain the following corollary.

Corollary 3.13. Let ψ P Irrp1pB̃q. Suppose that ψ P IrrpB̃ | φSq for S �
t1, . . . , ru. Let σ P GalpQm{Qq, where m � |G̃|, be a Galois automorphism.
We let t̃ P T̃ such that ψσ1 � ψt̃1. Then every irreducible constituent of ψB is
σ-invariant if and only if ψB is σ-invariant and t̃ P IB̃pφSqB.

Proof. Since the conjugation action of T̃F stabilizes the subgroups UF
Ai

, we
obtain

ψσ1 � φσS � φσSc � φt̃S � φt̃Sc � ψt̃1.

This shows that φσS � φt̃S. By Lemma 3.12 every irreducible constituent of
ψB is σ-invariant if and only if ψB is σ-invariant and φσS � φt̃S � φtS for some
t P B. This is equivalent to saying that t̃t�1 P IB̃pφSq. The latter statement
is equivalent to t̃ P IB̃pφSqB.

We now show on an example how one can compute the number of σ-
invariant characters of Irrp1pBq. For simplicity let F � Fq be a standard

45



Frobenius and suppose that d � 0. Let us assume that σ P GalpQm{Qq is an
pe, pq-Galois automorphism. Furthermore we let ξ be a primitive m-th root
of unity and k be an integer such that σpξq � ξk.

We need to compute ψσ1 . Let pa1, . . . , anq P Fnq be arbitrary. Then we
obtain

ψ1px1pa1q, . . . , xnpanqq
σ �

n¹
i�1

φipxipaiqq
σ �

n¹
i�1

φipxipaiqq
k �

n¹
i�1

φ0pkaiq.

by Lemma 1.8. Let µ P k� be the fixed pq�1q-th root of unity chosen before
Lemma 1.14. We let c be an integer such that µc � k in F�

q and define

t̃ �
±n

i�1 t
c
i . Then we obtain

ψ1px1pa1q, . . . , xnpanqq
t̃ �

n¹
i�1

φipxipaiqq
t̃ �

n¹
i�1

φipxipµ
caiqq �

n¹
i�1

φ0pkaiq,

thanks to [15, Proposition 8.1]. This shows ψσ1 � ψt̃1. We want to find out in
which cases t̃ P IB̃pφSqB for a subset S of t1, . . . , nu.

Note that IB̃pφSq � xti | i P S
cyU by the remark before [15, Lemma 8.5].

Thus, we have t̃ P IB̃pφSqB if and only if there exists some x P xti | i P S
cy

such that t̃x�1 P B. The homomorphism det : B̃ Ñ k� gives rise to an
isomorphism det : B̃{B Ñ ZpG̃q (see Lemma 1.45). Hence, t̃x�1 P B if and
only if detpt̃q � detpxq. We have detptiq � tei0 where the nonnegative integers

ei are defined as in [15, Proposition 11.4]. Writing x �
¹
iPSc

tdii , we have

detpxq �
¹
iPSc

tdiei0 � t
°

iPSc diei
0 and detpt̃q �

n¹
i�1

tcei0 � t
c
°n

i�1 ei
0 .

Now the element t0 P T̃ has order q � 1 since d � 0 (see Remark 2.2). Thus,
the equation detpt̃q � detpxq is equivalent to

¸
iPSc

diei � c
ņ

i�1

ei mod pq � 1q.

Example 3.14. We now consider the special case that G is of type Cn and
that q is odd. In this case we have ei � 2 for i   n and en � 1 (see [15,
Example 11.7]). If n P Sc the equation

°
iPSc diei � c

°n
i�1 ei mod pq � 1q

becomes ¸
iPScztnu

2di � dn � cp2pn� 1q � 1q mod pq � 1q.
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A solution to this is clearly given by dn � cp2pn � 1q � 1q and di � 0 for
i P Scztnu. If n R Sc we obtain the equation¸

iPSc

2di � cp2pn� 1q � 1q mod pq � 1q.

Now this is equivalent to the equation
°
iPSc di �

c
2
p2pn� 1q � 1q mod pq�1q

2

if c � 0 mod 2 and has no solution if c � 1 mod 2. In the first case
d0 � c

2
p2pn � 1q � 1q and di � 0 for all i P Sczt0u is a solution to this

equation. We conclude that t̃ P T if c � 0 mod 2. On the other hand, if
c � 1 mod 2 then t̃ P IB̃pφSq if and only if n P Sc.

For ψ P Irrp1pB̃q we want to give sufficient and necessary conditions for
ψB to be σ-invariant. We let pc0, . . . , cnq be the label of ψ. Suppose that
φS P IrrpUq is below ψ. By Lemma 2.14 we conclude that ψB is σ-invariant
if and only if ψσ � ψη for some η P IrrpB̃ | 1Bq. The labels of characters
η P IrrpB̃ | 1Bq are given by pλe0 , . . . , λenq for λ P F�

q by [15, Proposition

11.4]. Recall from Theorem 3.4 that the label of ψσ is gpψσq � pcp
e

0 , . . . , c
pe

n q.
Hence, ψσ � ψη if and only if cp

e�1
i � λei for all i P Sc. Thus, we conclude

that ψB is σ-invariant if and only if there exists some λ P F�
q such that

cp
e�1
i � λei for all i P Sc. Let us now continue Example 3.14.

Example 3.15. Let us again consider the case that the root system of G is of
type Cn and that q � 1 mod 2. Let q � pf and let s P t1, . . . , fu be defined
as s � gcdpe, fq. Note that this definition occurred previously in Example
3.6. Let ψ P Irrp1pB̃q and suppose that φS is below ψ. Let gpψq � pc0, . . . , cnq
be the label of ψ. As we have seen above, the character ψB is σ-invariant
if and only if there exists some λ P F�

q such that cp
e�1
i � λei for all i P Sc.

Thus, by Theorem 2.7 we need to find all tuples pc0, . . . , cnq P A, where
A � pF�

q q
d � Fnq , such that there exists some λ P F�

q satisfying the system of
equations

cp
e�1
i � λei for all i P Sc,

where S � ti | ci � 0u and Sc � t0, . . . , nuzS.

If cn � 0 or equivalently n P Sc then λ :� c
pe�1

2
n satisfies cp

e�1
n � λ2. We

conclude that the label pc0, . . . , cnq satisfies cp
e�1
i � λei for all i P Sc if and

only if ci � sic
2
n for all i P Scztnu and some si P F�

ps . Consequently, there are

precisely pq � 1qpspn�1qpps � 1q labels pc0, . . . , cnq P A with cn � 0 satisfying
this system of equations.

If cn � 0 we obtain the system of equations cp
e�1
i � λ for all i P Sc.

Hence, the label pc0, . . . , cnq satisfies this system of equation if and only if
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ci � sic0 for all i P Sczt0u and si P F�
ps . Thus, in this case we have precisely

pq � 1qpspn�1q possible labels.
We are now able to compute the number of σ-invariant p1-characters of

B. Let ϑ P IrrpBq below ψ P Irrp1pB̃q. Suppose that c � 0 mod 2 (where
c is defined as in Example 3.14). We write Mψ � IrrpB̃ | ϑq for the set of
characters above ϑ and Nψ � IrrpB | ψq for the set of characters below ψ.
For a set of representatives Ω � Irrp1pB̃q of the B̃-orbits of Irrp1pB̃q we have
by Clifford theory (see also [15, Section 11]) a partition

Irrp1pB̃q �
¤
ψPΩ

Mψ

and a corresponding partition

Irrp1pBq �
¤
ψPΩ

Nψ.

Let us denote by Nσ
ψ the subset of σ-invariant characters of Nψ. Furthermore,

we let Ω1 � Ω be the subset of Ω consisting of the characters ψ P Ω such that
ψB is σ-invariant. Using Corollary 3.13 we obtain

Irrp1pBq
σ �

¤
ψPΩ1

Nσ
ψ .

Since c � 0 mod 2 we have t̃ �
±n

i�1 t
c
i P T by Example 3.14. Since ψσ � ψt̃

as shown in Example 3.14 this implies Nσ
ψ � Nψ for all ψ P Ω1 by Corollary

3.13. By [15, Example 11.7] we have |Mψ| � q � 1, if cn � 0, and |Mψ| �
q�1

2
, if cn � 0. Moreover using [15, Proposition 11.6] we have |Nψ| � 1, if

cn � 0, and |Nψ| � 2, if cn � 0. As we have seen above, Irrp1pB̃q consists of
pq�1qpspn�1qpps�1q characters with label cn � 0 and pq�1qpspn�1q characters
with label cn � 0.

Thus, we conclude that there are precisely pspn�1qpps � 1q elements of
Ω1 with label cn � 0 and 2pspn�1q elements of Ω1 with label cn � 0. As a
consequence we conclude that

| Irrp1pBq
σ| � pspn�1qpps � 1q � 4pspn�1q � psn � 3pspn�1q.

If c � 1 mod 2 an analogous computation proves that

| Irrp1pBq
σ| � pspn�1qpps � 1q.

Note that if ψ P Ω1 (i.e., ψB is σ-invariant) and |Nψ| � 2 it follows that
σ permutes the two characters of Nψ if c � 1 mod 2.

Let us single out a special case. If σ � id then s � f and c � 0 mod 2.
This implies that | Irrp1pBq| � pfn � 3pfpn�1q � qn � 3qn�1 and we recover as
a special case the result obtained by Maslowski in [15, Example 11.7].
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3.4 Relating the p1-characters of G̃ and G

Let σ P GalpQm{Qq, where m � |G̃|, be any Galois automorphism. Let
χ P Irrp1pG̃q be an irreducible p1-character of G̃. In this section we give
sufficient and necessary conditions for the irreducible constituents of χG to
be σ-invariant.

We fix some notation for the remainder of this section. By Lemma 1.36,
we know that χ � �DG̃pχps̃qq for some semisimple conjugacy class ps̃q of

G̃�F
�

. As in Section 1.6 we let i� : G̃� Ñ G� be the dual map corresponding
to the regular embedding i : G ãÑ G̃. We define s :� i�ps̃q. By Lemma
1.38 the characters ψpsq,z � �DGpχpsq,zq, z P H

1pF,ZpGqq, are precisely the
irreducible constituents of χG. Note that by Clifford’s Theorem the condition
that χG is σ-invariant is necessary (see Corollary 1.2). So we may assume that
χG is σ-invariant. We have χG � �DGppχps̃qqGq since restriction commutes
with the duality functor by Lemma 1.37. Thus, by Lemma 1.25 we conclude
that χpsq � pχps̃qqG is σ-invariant. Again by Lemma 1.25 it follows that the
character ψpsq,z is σ-invariant if and only if χpsq,z is σ-invariant.

We study the action of the Galois automorphism σ on the Gelfand–Graev
characters more closely. Let Γz � ptzψ1q

G be the Gelfand–Graev character
corresponding to z P H1pF,ZpGqq. By Lemma 2.4 we know that ψσ1 � ψt̃1
for some suitable t̃ P T̃ . As in Remark 1.33 we consider the isomorphism
β : G̃F {GF ZpG̃qF Ñ L �1

T pZpGqq{ZpGqTF � H1pF,ZpGqq. Suppose that

the coset of t̃�1 in G̃F {GF ZpG̃qF maps to z1 P H1pF,ZpGqq via the map β.
We define gz1 � t̃�1. Recall from Remark 1.33 that Γz1 �

gz1Γ1. It follows
that

Γσz � ptzpψσ1 qq
G � pψt̃t

�1
z

1 qG � Γt̃z �
gz1Γz.

Moreover, we have

χσpsq � χpsq � pχps̃qqG � pgz1χps̃qqG � gz1χpsq.

By definition of χpsq,z, we know that the character χσpsq,z is the unique
common irreducible constituent of Γσz �

gz1Γz and χσpsq �
gz1χpsq. We conclude

that χσpsq,z �
gz1χpsq,z. This shows that the irreducible constituent ψpsq,z of χG

is σ-invariant if and only if χpsq,z �
gz1χpsq,z. The subsequent lemma gives a

sufficient and necessary condition for the character χpsq,z to be σ-invariant.
Note that we identify characters which correspond to each other under the
inflation map IrrpG̃F {GF ZpG̃qF q Ñ IrrpG̃F | 1GFZpG̃qF q.

Lemma 3.16. Let z1 P H1pF,ZpGqq � G̃F {GF ZpG̃qF with representative
gz1 P G̃F . Then gz1χpsq,z � χpsq,z if and only if λpz1q � 1 for all characters

λ P IrrpG̃F {GF ZpG̃qF q with λχps̃q � χps̃q.
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Proof. This follows from the proof of [4, Proposition 3.12 (ii)]. Since this
lemma is central for our argumentation we will reproduce the proof. First
note that gz1χpsq,z is the unique common constituent of gz1Γz1 � Γz1z and
gz1χpsq � χpsq. Therefore we have gz1χpsq,z � χpsq,zz1 . Let us now define

Hpsq � tλ P IrrpG̃F {GF ZpG̃qF q | λχps̃q � χps̃qu

and

Kpsq � tz1 P G̃F {GF ZpG̃qF | gz1χpsq,z � χpsq,zu.

Recall from Section 1.6 that pχps̃qqGF � χpsq �
¸
z

χpsq,z where the sum is

over the distinct characters χpsq,z for z P H1pF,ZpGqq. Thus, the restriction
of χps̃q to GF is multiplicity free. Now [12, Proposition 2.1] shows that this
implies

Kpsq � tz1 P G̃F {GF ZpG̃qF | λpz1q � 1 for all λ P Hpsqu.

But this is precisely the claim of the lemma.

This leads to the following corollary which will be of importance.

Corollary 3.17. Let t̃ P T̃ such that ψσ1 � ψt̃1. Let χ � �DG̃pχps̃qq P

Irrp1pG̃q. Then all irreducible constituents of χG are σ-invariant if and only if
χG is σ-invariant and λpt̃q � 1 for all λ P IrrpG̃ | 1Gq satisfying λχps̃q � χps̃q.

Proof. Recall from the discussion of the beginning of this section that the
condition that χG is σ-invariant is necessary for the irreducible constituents
of χG to be σ-invariant. Moreover, if χG is σ invariant, then the irreducible
constituents of χG are σ-invariant if and only if χpsq,z � gz1χpsq,z for z P

H1pF,ZpGqq, where g�1
z1 � t̃. Now if λ P IrrpG̃ | 1Gq is a character such

λχps̃q � χps̃q then automatically GFZpG̃qF � kerpλq by [12, Proposition 2.4
(iv)]. Thus, the claim of the corollary follows by Lemma 3.16.

Example 3.18. In the situation of the previous corollary suppose that ψ1

is σ-invariant. This is for example the case if σ fixes the p-th roots of unity.
In this case, we obtain z1 � 1 and λpz1q � 1 for all λ P IrrpG̃ | 1Gq. Thus, it
follows that the irreducible constituents of χG are σ-invariant if and only if
χG is σ-invariant. Hence, Corollary 3.17 is a generalization of Lemma 3.8.

We will now investigate the bijection f̃ : IrrpB̃ | 1Bq Ñ IrrpG̃ | 1Gq in more
detail in order to determine the values of the linear characters λ P IrrpG̃ | 1Gq
at the elements ti.
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For the subsequent lemma recall that if λ P IrrpG̃ | 1Gq then λ P EpG̃F , pz̃qq

for some central element z̃ P ZpG̃�F
�

q (see [15, Proposition 13.3]). Moreover
by [5, Proposition 13.30] we see that pT̃, λT̃ q is in duality with pT̃�, z̃q.

Lemma 3.19. Let λ P IrrpG̃ | 1Gq lie in the Lusztig series EpG̃F , pz̃qq. Then
λpt0q � det�pz̃q and λptiq � ω̃�

ai
pz̃q for all i � 1, . . . , r.

Proof. This was shown in [15, Proposition 13.4] for t0. We prove the remain-
ing cases by replacing det� and t0 by ω̃�

i and ti in the proof of [15, Proposition
13.4].

Let µ P k� be the primitive pqw�1q-th root of unity chosen before Lemma
1.14. Let θ :� λT̃ P IrrpT̃ q and θ̂ P XpT̃q be the lift of θ as in the proof of
Lemma 1.14. As we have indicated above, pT̃, θq is in duality with pT̃�, z̃q.
Let us define t � δ_pθ̂qpµq. Recall from Remark 1.50 that δpτiq � ω̃�

i for all
i � 1, . . . , n. Then using Remark 1.12 we obtain

ω̃�
ai
ptq � ω̃�

ai
pδ_pθ̂pµqqq � µxω̃

�
ai
,δ_pθ̂qy � µxδpτai q,δ

_pθ̂qy � µxθ̂,τaiy � θ̂pτaipµqq.

Since the pair pG̃, F q is dual to the pair pG̃�, F �q via the duality isomorphism
δ it follows that δ commutes with the action of F and F � (see Definition 1.11).
Using Remark 1.12 again we obtain

ω̃�
ai
pF �ptqq � µxω̃

�
ai
�F�,δ_pθ̂qy � µxδpF�τai q,δ

_pθ̂qy � µxθ̂,F�τaiy � θ̂pF pτaipµqqq.

Recall that z̃ � NF�w {F�ptq since pT̃�, z̃q is in duality with pT̃, θq (see proof
of Lemma 1.14). The two equations above imply that

ω̃�
ai
pz̃q � ω̃�

ai
pNF�w {F�ptqq �

w�1¹
i�0

ω̃�
ai
pF �iptqq � θ̂pNFw{F pτaipµqqq � θptiq.

As θ is the restriction of the character λ to T̃ we have θptiq � λptiq. This
shows λptiq � ω̃�

ai
pz̃q as desired.

Corollary 3.20. Let λ P IrrpG̃ | 1Gq lie in the Lusztig series EpG̃F , pz̃qq.
Then f̃�1pλq � λB̃.

Proof. Using Lemma 3.19 we see that the character λB̃ P IrrpB̃ | 1Bq has
label

gpλB̃q � pdet�pz̃q, ω̃�
a1
pz̃q, . . . , ω̃�

arpz̃qq.

Moreover, the label of the character λ is given by

hpλq � pdet�pz̃q, π_a1p1qω̃
�
a1
pz̃q, . . . , π_arp1qω̃

�
arpz̃qq
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by definition of the labeling in Construction 2.10. By the remark below
Theorem 2.13 we obtain hpλq � pdet�pz̃q, ω̃�

a1
pz̃q, . . . , ω̃�

arpz̃qq. By definition

of f̃ in Theorem 2.12, it follows that the character f̃�1pλq has the same
label as λ. Thus, the labels of f̃�1pλq and λB̃ coincide and we must have
f̃�1pλq � λB̃.

Using Corollary 3.20 we get the following result.

Corollary 3.21. Restriction of characters defines a bijection IrrpG̃ | 1Gq Ñ
IrrpB̃ | 1Bq.

Proof. The map f̃�1 : IrrpG̃ | 1Gq Ñ IrrpB̃ | 1Bq defines a bijection by Theo-
rem 2.13. By Corollary 3.20 this map is given by restriction of characters.

For χ � �DG̃pχps̃qq with label pb0, . . . , brq we define S � ti | bi � 0u.

Note that χ � �DG̃pχps̃qq P EpG̃F , ps̃qq by [3, Theorem 6]. Thus, we have

S � ti | π̃aips̃q � 0u. If ψ P Irrp1pB̃q with f̃pψq � χ then ψ has label
gpψq � pb0, . . . , brq. Consequently, by Construction 2.6 it follows that ψ lies
above the character φS. Thus, the definition of S for χ P Irrp1pG̃q is consistent
with our previous use of S.

Lemma 3.22. Let χ � �DG̃pχps̃qq and S be defined as above. Let λ P

IrrpG̃ | 1Gq lie in the Lusztig series EpG̃F , pz̃qq. Then λχps̃q � χps̃q if and only
if λptiq � 1 for all i P Sc.

Proof. By Lemma 1.21 we conclude that λχps̃q � χps̃q if and only if ps̃z̃q � ps̃q.
By Lemma 2.9 this is the case if and only if π̃pz̃s̃q � π̃ps̃q.

Let us now write s̃ � xz with x P G_ and z P S_. By definition of the
modified Steinberg map we have

π̃jpz̃s̃q � π̃jpxzz̃q � π_j pxqω̃
�
j pzz̃q � π̃jps̃qω̃

�
j pz̃q

for all j � 1, . . . , n and det�ps̃q det�pz̃q � det�ps̃q. Using [15, Proposition
14.4] we conclude that multiplication with λ fixes χps̃q if and only if ω̃�

ai
pz̃q � 1

for all i R S and det�pz̃q � 1. The claim of the lemma follows by Lemma
3.19.

Recall from Lemma 2.3 that there exists t̃ P T̃ such that ψσ1 � ψt̃1.

Lemma 3.23. Suppose that χ � �DG̃pχps̃qq with label pb0, . . . , brq. We let

S � ti | bi � 0u. Let t̃ P T̃ such that ψσ1 � ψt̃1. Then all constituents of χG
are σ-invariant if and only if χG is σ-invariant and t̃ P IB̃pφSqB.
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Proof. By Corollary 3.17 we know that all constituents of χG are σ-invariant
if and only if λpt̃q � 1 for all λ P IrrpG̃ | 1Gq satisfying λχps̃q � χps̃q. By
Lemma 3.22 we have λχps̃q � χps̃q if and only if λptiq � 1 for all i P Sc.

Restriction of characters defines a bijection IrrpG̃ | 1Gq Ñ IrrpB̃ | 1Bq by
Corollary 3.21. We conclude that all constituents of χG are σ-invariant if
and only if λpt̃q � 1 for all λ P IrrpB̃ | 1Bq satisfying λptiq � 1. Note that
Ĩ :� IB̃pφSq � xti | i P S

cyU by the remark preceding [15, Lemma 8.5]. So the
characters λ P IrrpB̃ | 1Bq with λptiq � 1 for i P Sc are precisely the characters
in IrrpB̃ | 1BĨq. Now the natural map¯: IrrpB̃ | 1BĨq Ñ IrrpB̃{BĨq defines a
bijection of characters. Moreover, since B̃{BĨ is an abelian group, it follows
that t̃ P BĨ if and only if λpt̃q � λ̄pt̃q � 1 for all λ̄ P IrrpB̃{BĨq. We conclude
that all constituents of χG are σ-invariant if and only if t̃ P IB̃pφSqB.

In the next section we will show that the results obtained so far are
sufficient to construct a bijection f : Irrp1pBq

σ Ñ Irrp1pGq
σ.

3.5 A character bijection for σ-invariant char-

acters

In this section we prove our main results. First, we use the results of the two
previous sections to prove the following theorem.

Theorem 3.24. Let σ P GalpQm{Qq, where m � |G|, be an pe, pq-Galois au-
tomorphism. Let ψ P Irrp1pB̃q and let χ � f̃pψq. All irreducible constituents
of ψB are σ-invariant if and only if all irreducible constituents of χG are
σ-invariant.

Proof. By Lemma 3.10 it follows that ψB is σ-invariant if and only if χG is
σ-invariant. Now the claim of the theorem follows immediately by Corollary
3.13 and Lemma 3.23.

Let us write Z̃ � ZpG̃qF and Z � ZpGqF . Note that Z̃ � ZpG̃qF � SF �
B̃F by Lemma 1.42. Thanks to a result of Maslowski we know that the map
f̃ respects central characters:

Lemma 3.25. If λ P IrrpZ̃q is the unique character below ψ P Irrp1pB̃q then
λ is the unique character of Z̃ below f̃pψq.

Proof. See [15, Proposition 15.2].

Now we can show our main result.
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Theorem 3.26. Let σ P GalpQm{Qq, where m � |G|, be an pe, pq-Galois
automorphism. Suppose that G satisfies Assumption 3.1. Then there exists
a bijection

f : Irrp1pBq
σ Ñ Irrp1pGq

σ.

Moreover, for every central character λ P IrrpZ̃q the map f restricts to a
bijection Irrp1pB | λZq

σ Ñ Irrp1pG | λZq
σ.

Proof. Let us first note that by the remark below Lemma 1.45 we have p -
|G̃ : G| and p - |B̃ : B|. In particular, we have by Theorem 1.1 that every
p1-character of B resp. G lies below a p1-character of B̃ resp. G̃. Let ϑ P
Irrp1pBq

σ and ψ P Irrp1pB̃q such that pψB, ϑq � 0. By Theorem 3.24 all
irreducible constituents of f̃pψqG are σ-invariant.

Let φ be an irreducible constituent of f̃pψqG. The number of B̃-conjugates
of ϑ is given by |B̃ : IB̃pϑq| and the number of G̃-conjugates of φ is given by
|G̃ : IG̃pφq|. By Corollary 2.16 the restriction of f̃ gives a bijection IrrpB̃ |
ϑq Ñ IrrpG̃ | φq. Using Lemma 1.6 we see that the number of B̃-conjugates
of ϑ and the number of G̃-conjugates of φ coincide. Thus, we can define a
map f : Irrp1pBq

σ Ñ Irrp1pGq
σ by sending the set of characters tϑb̃ | b̃ P B̃u

bijectively to the set tφg̃ | g̃ P G̃u. This is possible since these sets have the
same cardinality by the previous considerations. The choice of a character
ψ P IrrpB̃ | ϑq as above, is unique up to multiplication of ψ by a linear
character in IrrpB̃ | 1Bq. By Theorem 2.13 this implies that the image fpϑq
of ϑ is determined by ϑ up to G̃-conjugation. Therefore, it follows that the
map f is injective.

Let ϕ P Irrp1pGq
σ and suppose that χ P IrrpG̃ | ϕq. Then by Theorem 3.24

every irreducible constituent of f̃�1pχqB is σ-invariant. By construction of
f : Irrp1pBq

σ Ñ Irrp1pGq
σ there exists an irreducible constituent ν P Irrp1pBq

of f̃�1pχqB such that fpνq � ϕ. Thus, the map f : Irrp1pBq
σ Ñ Irrp1pGq

σ is
surjective as well.

Now we use Lemma 3.25: Let λ P IrrpZ̃q be the unique central character
below ψ P Irrp1pBq. Since the character ϑ is below ψ, it follows that λZ is
below ϑ. By Lemma 3.25 it follows that λ is the unique central character
below f̃pψq. Since fpϑq is below f̃pψq it follows that λZ is below fpϑq. As
a consequence it follows that λZ is below fpψq. This shows that the map f
restricts to a bijective map Irrp1pB | λZq

σ Ñ Irrp1pG | λZq
σ.

As a special case we obtain the validity of Conjecture 0.3 for most simple
groups of Lie type in defining characteristic.
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Corollary 3.27. Let σ P GalpQm{Qq, where m � |G|, be an pe, pq-Galois
automorphism. Suppose that G satisfies Assumption 3.1. Then there exists
a bijection

f : Irrp1pB{ZpGqqσ Ñ Irrp1pG{ZpGqqσ.

Proof. Take λ � 1Z̃ in Theorem 3.26.

Finally, let us discuss how one could possibly remove some assumptions
from Theorem 3.26. As we already remarked in the introduction of this thesis
the assumption that G is not of type Dn if n is even can probably removed
using the construction of Maslowski in [15] for this root system type. Only
minor changes seem to be necessary in order to cover this case as well.

The assumption that p is a good prime for G can be weakened for most
statements occurring in Chapter 3. Usually, we only need to make the weaker
assumption that pG, F q does not occur in [15, Table 13.2] and that G is not
of type Dn if n is even. The assumption that p is a good prime becomes cru-
cial in our description of the p1-characters of GF using Theorem 1.35. More
concretely, if Lemma 3.23 holds under these weaker assumptions then it fol-
lows immediately that Theorem 3.26 holds as well under these assumptions.
However, the author is unaware whether Lemma 3.23 still holds in this case.
We leave this question open to further research.
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