Bergische Universität

M.Sc. Lucas

Aufgabe 1

Wir betrachten das erweiterte lineare Gleichungssystem

$$(A \mid b) = \begin{pmatrix} 1 & 0 & 5 & 37 & 13 \\ 2 & 1 & 2 & 22 & 11 \\ 2 & 0 & 1 & 11 & 8 \end{pmatrix}.$$

Durch elementare Zeilenumformungen erhält man

$$\begin{pmatrix} 1 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 1 & 7 & 2. \end{pmatrix}.$$

Damit sieht man:

- a) rang(A) = 3.
- b) $L_{A,b} = \{(3,1,2,0)^t + \lambda \cdot (2,4,7,-1)^t \mid \lambda \in \mathbb{R}\}$
- c) Es gilt $L_{A,c} \neq \emptyset$ für alle $c \in \mathbb{R}$, da die Matrix A vollen Zeilenrang hat.

Aufgabe 2

- a) Es gilt $U_1 \cap U_2 = \langle (2,4,-1,-2) \rangle$ und $U_1 + U_2 = \langle (1,2,0,0), (2,4,-1,-2), (1,1,-1,-1) \rangle$.
- b) Eine mögliche lineare Abbildung ist $f: \mathbb{R}^4 \to \mathbb{R}^4$ mit $(x_1, x_2, x_3, x_4) \mapsto (2x_1 x_3, 2x_3 x_4, 0, 0)$.

c) Definiere
$$f: \mathbb{R}^4 \to \mathbb{R}^4; x \mapsto A \cdot x \text{ mit } A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 4 & 1 & 2 & 0 \\ -1 & -1 & 1 & 0 \\ -2 & -1 & 0 & 0 \end{pmatrix}$$
.

Bei Teil b) und c) sind Bemerkungen 7.9 und 10.7 aus der Vorlesung hilfreich.

Aufgabe 3

- a) Man rechnet dies leicht nach.
- b) Man berechnet $T_{\mathcal{E},\mathcal{B}} = \frac{1}{3} \cdot \begin{pmatrix} 1 & -2 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$ und $T_{\mathcal{B},\mathcal{D}} = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$.
- c) Es gilt $A = M_{\mathcal{E},\mathcal{E}}(f)$. Außerdem gilt nach der Transformationsformel $M_{\mathcal{E},\mathcal{E}}(f) = T_{\mathcal{D},\mathcal{E}}M_{\mathcal{B},\mathcal{D}}(f)T_{\mathcal{E},\mathcal{B}}$. Damit rechnet man nach, dass $A = \frac{1}{3} \begin{pmatrix} 0 & 6 & 9 \\ 2 & 8 & 19 \\ -1 & 2 & 0 \end{pmatrix}$.

Aufgabe 4

a) Laplace-Entwicklung nach der 4. Zeile ergibt

$$\det(A) = (-1)\det\begin{pmatrix} 1 & 2 & 1 & 2\\ 2 & 3 & 1 & -1\\ 4 & 6 & 2 & -2\\ 1 & 0 & 3 & 4 \end{pmatrix}.$$

Da in dieser Streichungsmatrix die dritte Zeile und die zweite Zeile linear abhängig sind, so gilt $\det A = 0$.

b) Man rechnet nach, dass $\det A_{\lambda} = \lambda \cdot (1 - \lambda)$. Damit ist A_{λ} genau dann invertierbar, wenn $\lambda \notin \{0,1\}$. In diesem Fall ist die Inverse gegeben durch

$$A_{\lambda}^{-1} = \begin{pmatrix} \frac{1}{1-\lambda} & \frac{-\lambda}{1-\lambda} & 1\\ \frac{-1}{\lambda-\lambda^2} & \frac{1}{1-\lambda} & 0\\ \frac{1}{\lambda-\lambda^2} & \frac{-\lambda}{1-\lambda} & 0 \end{pmatrix}.$$

Aufgabe 5

a) Die Aussage ist falsch. Ein mögliches Gegenbeispiel ist $U = (v_1, v_1 + v_2 + v_3)$.

b) Die Aussage ist falsch. Wähle etwa $f: \mathbb{R}^2 \to \mathbb{R}^2; x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ und $g: \mathbb{R}^2 \to \mathbb{R}^2; x \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Es gilt nun $f \circ g = 0$, aber $g \circ f \neq 0$.

c) Die Aussage ist wahr. Man rechnet nach, dass φ linear ist.

d) Die Aussage ist falsch. Wähle beispielsweise
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 und $C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Dann gilt offensichtlich $A+B-C=0$ und somit sind A,B und C linear abhängig.

Aufgabe 6

Lösungsweg 1: Wir wenden folgende Spaltenoperation auf die Matrix A_n an: Ziehe das Doppelte der ersten Spalte von der dritten Spalte ab. Auf die entstehende Matrix \tilde{A}_n können wir nun den Blocksatz für Determinanten anwenden. Es ergibt sich

$$\det A_n = \det \tilde{A}_n = \det \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \cdot \det A_{n-2} = -2 \cdot \det A_{n-2}.$$

Durch Induktion erhält man damit $\det A_n = (-2)^{\frac{n-2}{2}} \det A_2 = (-2)^{\frac{n}{2}}$, falls n gerade ist. Falls n ungerade ist erhält man $\det A_n = (-2)^{\frac{n-1}{2}} \det(A_1) = 0$.

Lösungsweg 2: Zunächst machen wir eine Laplace-Entwicklung nach der ersten Zeile der Matrix A_n . Dann entwickeln wir die so erhaltene Streichungsmatrix \hat{A}_n erneut nach der ersten Zeile. Insgesamt erhält man dadurch

$$\det A_n = -2 \cdot \det \hat{A}_n = -2 \cdot (1 \cdot \det A_{n-2} + (-2) \cdot 0) = -2 \cdot \det A_{n-2}.$$

Fahre nun wie in Lösungsweg 1 fort.