Aufgabe 1

Es seien K ein unendlicher Körper, $n \in \mathbb{N}_0$, sowie $a_0, \ldots, a_n \in K$ paarweise verschiedene **Stützstellen** und $b_0, \ldots, b_n \in K$ **Stützwerte**. Weiter sei $L_i := \prod_{j \neq i} \frac{X - a_j}{a_i - a_j} \in K[X]$, für $i \in \{0, \ldots, n\}$.

- a) Man zeige: Es ist $L := \sum_{i=0}^{n} b_i \cdot L_i \in K[X]$ das eindeutig bestimmte **Interpolationspolynom** mit $L(a_i) = b_i$, für alle $i \in \{0, ..., n\}$, so dass L = 0 oder $Grad(L) \leq n$.
- b) Man zeige: $\{L_0, \ldots, L_n\}$ ist eine K-Basis von $K[X]_{\leq n}$.
- c) Für $K = \mathbb{Q}$ und die Stützstellen $a_0 = 0, a_1 = 1, \dots, a_n = n$ gebe man die Polynome $L_i \in \mathbb{Q}[X]$ explizit an.

Hinweis zu Teil c): Man betrachte einige kleine n, und versuche daraus eine allgemeine Formel zu entwickeln.

Aufgabe 2

Für die folgenden Elemente $a,b\in\mathbb{Z}[i]$ berechne man mit dem erweiterten euklidischen Algorithmus jeweils einen größten gemeinsamen Teiler und die zugehörigen Bézout-Koeffizienten. Man gebe jeweils auch eine Faktorisierung der genannten Elemente in irreduzible Faktoren an:

- a) a := 2, b := 1 + 3i,
- b) a := 5 + 3i, b := 13 + 8i,
- c) a := 23 + 11i, b := 1 21i.