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Euler equations

For ideal and incompressible fluid, the Euler equations are
ρDu

Dt = −gradp + ρb (Balance of Momentum)
Dρ
Dt = 0 (Conservation of Mass)
divu = 0 (Incompressibility)

with boundary conditions

u · n = 0 on ∂D

The reason for imposing this type of boundary conditions will
be explained in the end of this lecture.
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Balance of momentum

Recall the integral form for the balance of momentum,

d
dt

∫
Wt

ρudV = S∂Wt +

∫
Wt

ρbdV

Here S∂Wt represents the force exerted on the surface of W .
For a viscous fluid, we should also consider the tangential force
on the surface. This is the difference between the Euler
equation and the Navier-Stokes equations that we will derive in
this lecture.
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Stress tensor

Stress tensor is the force that exerted on the surface of a body,
which can be analyzed for fluid similar to solid. In general,
stress tensor consists of normal stress and tangential stress,
which cause change of volume and change of shape of the fluid
respectively.

Denote by σ the stress tensor, it is a second order tensor
written as a 3× 3 matrix in 3 dimensional flow.

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz


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Normal stress tensor

For a fluid at rest,

σxx = σyy = σzz = −p

Above formula actually gives the definition for pressure p, these
normal components result in a change of volume for the fluid.

For a fluid under deformation, we need to consider tangential
force then the normal tensor becomes

σxx = −p + τxx

σyy = −p + τyy

σzz = −p + τzz

The remaining components of the tensor are given by

σij = τij for i 6= j
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Deviatoric tensor

τ is called the deviatoric tensor and it results in the change of
shape of the fluid. It can also be written as a second order
tensor.

τ =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz


The problem of finding the stress tensor σ now becomes how to
find the deviatoric tensor τ .
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Strain tensor

In Newtonian fluid, the rate of strain is linear to the deviatoric
stress

τij = µεkl , for i , j , k , l = 1,2,3,

where µ is the first viscosity coefficient and ε is the rate of strain
tensor

ε =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


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Strain tensor

After analysis of the deformation, we have

εxx = 2
∂u
∂x
, εyy = 2

∂v
∂y
, εzz = 2

∂w
∂z

and
εxy = εyx = (

∂u
∂y

+
∂v
∂x

)

εyz = εzy = (
∂v
∂z

+
∂w
∂y

)

εxz = εzx = (
∂u
∂z

+
∂w
∂x

)
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Normal direction

If we assume

τxx = µεxx , τyy = µεyy , τzz = µεzz

It only counts in the effect of extension and compression
without change of volume.

In general, for a system undergoing both change of shape and
volume,

τxx = µεxx + λ(εxx + εyy + εzz)→ linear relation between τ and ε

Here λ is the second viscosity coefficient and

1
2
(εxx + εyy + εzz) = divu

is the rate of expansion in volume.
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Thus,

σxx = τxx − p = µεxx + λ(εxx + εyy + εzz)− p

= 2µ
∂u
∂x

+ 2λdivu− p

Similarly, for the other two normal directions,

σyy = τyy − p = 2µ
∂v
∂y

+ 2λdivu− p

σzz = τzz − p = 2µ
∂w
∂z

+ 2λdivu− p
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And for the other directions,

σxy = σyx = τxy = τyx

= µεxy = µεyx = µ(
∂u
∂y

+
∂v
∂x

)

σxz = σzx = µ(
∂u
∂z

+
∂w
∂x

)

σyz = σzy = µ(
∂v
∂z

+
∂w
∂y

)

Written in vector form, we have

σ = 2λdivu · I + µD − pI
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Deformation matrix

Here I is the identity matrix and D is the deformation matrix
defined by

D =
(∇u) + (∇u)T

2
and since 

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z



D =


∂u
∂x

1
2(
∂u
∂y + ∂v

∂x )
1
2(
∂u
∂z + ∂w

∂x )
1
2(
∂v
∂x + ∂u

∂y )
∂v
∂y

1
2(
∂w
∂y + ∂v

∂z )
1
2(
∂u
∂z + ∂w

∂x )
1
2(
∂v
∂z + ∂w

∂y )
∂w
∂z


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Force on the surface

Now let us go back to the balance of momentum

d
dt

∫
Wt

ρudV = S∂Wt +

∫
Wt

ρbdV

Because of viscous property of the fluid,

S∂Wt =

∫
∂Wt

σ · ndA

=

∫
∂Wt

(2λdivu · I + µD − pI) · ndA

= 2λ
∫
∂Wt

(divu)I · ndA + µ

∫
∂Wt

D · ndA−
∫
∂Wt

pI · ndA
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Force on the boundary

By divergence theorem,∫
∂Wt

(divu)I · ndA =

∫
Wt

∇ · ((divu)I)dV

=

∫
Wt

∇(divu)dV

∫
∂Wt

D · ndA =

∫
Wt

∇ · (∇u + (∇u)T

2
)dV

and ∫
∂Wt

pI · ndA =

∫
Wt

∇ · (pI)dV =

∫
Wt

∇pdV
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Formulation of balance of momentum

The second term∫
Wt

∇·(∇u + (∇u)T

2
)dV

=
1
2

∫
Wt

(4u)dV +
1
2

∫
Wt

∇(divu)dV

Using the transport theorem and substitute above terms into
the balance of momentum equation, we have

ρ
Du
Dt

= (2λ+
µ

2
)∇(divu)−∇p +

µ

2
4u + ρb
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The Navier-Stokes equations

After normalizing the density ρ to be 1, the previous equation
reduces to

Du
Dt

= −∇p + (2λ+
µ

2
)(divu) +

µ

2
4u + b

For incompressible fluid, denote ν = µ
2 , we have

Du
Dt

= −∇p + ν4u + b

We end up with the Navier-Stokes equations

∂tu + (u · ∇)u = −∇p + ν4u + b
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Boundary conditions for Euler and N-S equations

We end this lecture with a discussion on the boundary
conditions we should impose for the Euler and Navier-Stokes
equations.

For Euler’s equations for ideal flow we use u · n = 0, that is,
fluid does not cross the boundary but may move tangentially to
the boundary.

For the Navier-Stokes equations, the extra term ν4u raises the
number of derivatives of u. For both experimental and
mathematical reasons, this is accompanied by an increase in
the number of boundary conditions.
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Mathematical reason

For instance, on a solid wall at rest we add the condition that
the tangential velocity also be zero ("no-slip condition"), so the
full boundary condition are simply

u = 0 on solid walls at rest

The mathematical need for extra boundary conditions lies on
their role in proving that the equations are well posed, that is, a
unique solution exists and depends continuously on the initial
data.
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Physical reason

The physical need for the extra boundary conditions comes
from simple experiments involving flow past a solid wall. For
example, if dye is injected into flow down a pipe and is carefully
watched near the boundary, one sees that the velocity
approaches zero at the boundary to a high degree of precision.

The no-slip condition is also reasonable if one contemplates the
physical mechanism responsible for the viscous terms, namely,
molecular diffusion. Our example indicates that molecular
interaction between the solid wall with zero tangential velocity
should impart the same condition to the immediately adjacent
fluid.
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Final remark

Another crucial feature of the boundary condition u = 0 is that it
provides a mechanism by which a boundary can produce
vorticity in the fluid. But we will not talk about rotation and
vorticity of fluid in this lecture.
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