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Euler equations

For ideal and incompressible fluid, the Euler equations are

p%‘t' = —gradp + pb (Balance of Momentum)
%’? =0 (Conservation of Mass)

divu =0 (Incompressibility)
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Euler equations

For ideal and incompressible fluid, the Euler equations are

p%‘t' = —gradp + pb (Balance of Momentum)
%’? =0 (Conservation of Mass)

divu =0 (Incompressibility)
with boundary conditions

u-n=0 on 9D
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Euler equations

For ideal and incompressible fluid, the Euler equations are

p%‘t' = —gradp + pb (Balance of Momentum)
%’? =0 (Conservation of Mass)

divu =0 (Incompressibility)
with boundary conditions
u-n=0 on 9D

The reason for imposing this type of boundary conditions will
be explained in the end of this lecture.

Bergische Universitat Wuppertal Math Fluid Dynamics-IlI



Balance of momentum

Recall the integral form for the balance of momentum,

d/ pudV = saw,+/ pbdV
at W; W;
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Balance of momentum

Recall the integral form for the balance of momentum,

d/ pudV = saw,+/ pbdV
at W; W;

Here Sy, represents the force exerted on the surface of W.
For a viscous fluid, we should also consider the tangential force
on the surface. This is the difference between the Euler
equation and the Navier-Stokes equations that we will derive in
this lecture.
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Stress tensor

Stress tensor is the force that exerted on the surface of a body,
which can be analyzed for fluid similar to solid. In general,
stress tensor consists of normal stress and tangential stress,
which cause change of volume and change of shape of the fluid
respectively.
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Stress tensor

Stress tensor is the force that exerted on the surface of a body,
which can be analyzed for fluid similar to solid. In general,
stress tensor consists of normal stress and tangential stress,
which cause change of volume and change of shape of the fluid
respectively.

Denote by o the stress tensor, it is a second order tensor
written as a 3 x 3 matrix in 3 dimensional flow.
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Stress tensor

Stress tensor is the force that exerted on the surface of a body,
which can be analyzed for fluid similar to solid. In general,
stress tensor consists of normal stress and tangential stress,
which cause change of volume and change of shape of the fluid
respectively.

Denote by o the stress tensor, it is a second order tensor
written as a 3 x 3 matrix in 3 dimensional flow.

Oxx Oxy Oxz
g = ny Uyy Uyz
Ozx Ozy Ozz
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Normal stress tensor

For a fluid at rest,
Oxx = Oyy = Ozz = —P

Above formula actually gives the definition for pressure p, these
normal components result in a change of volume for the fluid.
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Normal stress tensor

For a fluid at rest,

Oxx = Oyy = Ozz = —p

Above formula actually gives the definition for pressure p, these
normal components result in a change of volume for the fluid.

For a fluid under deformation, we need to consider tangential
force then the normal tensor becomes
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Normal stress tensor

For a fluid at rest,

Oxx = Oyy = Ozz = —p

Above formula actually gives the definition for pressure p, these
normal components result in a change of volume for the fluid.

For a fluid under deformation, we need to consider tangential
force then the normal tensor becomes

Oxx = —P+ Txx

Oyy = =P+ Tyy

Ozz = —P+ Tz
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Normal stress tensor

For a fluid at rest,
Oxx = Oyy = Ozz = —P

Above formula actually gives the definition for pressure p, these
normal components result in a change of volume for the fluid.

For a fluid under deformation, we need to consider tangential
force then the normal tensor becomes

Oxx = —P+ Txx

Oy = =P+ Ty
Ozz = —P+ Tz

The remaining components of the tensor are given by

Ojj = Tij for I7é_/
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Deviatoric tensor

7 is called the deviatoric tensor and it results in the change of
shape of the fluid. It can also be written as a second order
tensor.
Txx Txy Txz
T=\T» Ty Tyz
Tzx Tzy Tzz
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Deviatoric tensor

7 is called the deviatoric tensor and it results in the change of
shape of the fluid. It can also be written as a second order
tensor.
Txx Txy Txz
T=\T» Ty Tyz
Tzx Tzy Tzz

The problem of finding the stress tensor o now becomes how to
find the deviatoric tensor 7.
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In Newtonian fluid, the rate of strain is linear to the deviatoric
stress
Tj = peg, for i j k,1=1,2,3,
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In Newtonian fluid, the rate of strain is linear to the deviatoric
stress

Tj = peg, for i j k,1=1,2,3,
where p is the first viscosity coefficient and ¢ is the rate of strain

tensor
€Exx €xy €xz

€ = EyX Eyy Eyz
€zx €zy €zz
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After analysis of the deformation, we have

ou ov ow
Exx — 25,6}/}/ = 287}/,622 = 25
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After analysis of the deformation, we have

ou ov ow
Exx = 2a>€yy = 287}/;622 = 25
and
ou ov
Exy = €yx = (@ + 87)
ov  ow
€yz = €zy = (@ + 87y)
ou ow

€Exz = €zx = (E""a)
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Normal direction

If we assume

Txx = Mexx, Tyy = U€yy, Tzz = [€zz
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Normal direction

If we assume

Txx = Mexx, Tyy = U€yy, Tzz = [€zz

It only counts in the effect of extension and compression
without change of volume.
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Normal direction

If we assume
Txx = Mexx, Tyy = U€yy, Tzz = [€zz

It only counts in the effect of extension and compression
without change of volume.

In general, for a system undergoing both change of shape and
volume,

Txx = [exx + A(exx + €yy + €2z) — linear relation between 7 and e
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Normal direction

If we assume
Txx = Mexx, Tyy = U€yy, Tzz = [€zz

It only counts in the effect of extension and compression
without change of volume.

In general, for a system undergoing both change of shape and
volume,

Txx = [exx + A(exx + €yy + €2z) — linear relation between 7 and e

Here )\ is the second viscosity coefficient and

1 .
E(EXX + fyy + sz) — dIVU

is the rate of expansion in volume.
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Thus,
Oxx = Txx — P = féxx + Mexx + €yy +€2z) — P

_2“2 + 2Xdivu — p
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Thus,
Oxx = Txx — P = W€xx + /\(Gxx + €y + 6zz) - p
ou
= 2u— + 2)divu —
Fox + 2Xdivu — p
Similarly, for the other two normal directions,

0 .
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And for the other directions,

Oxy = Oyx = Txy = Tyx

ou ov
= Hexy = Heyx = N(@ + a)

ou ow
Oxz = Ozx = N(E + ﬁ)

ov  ow
72 = =1y + gy

)
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And for the other directions,

Oxy = Oyx = Txy = Tyx

ou ov
= Hexy = Heyx = N(@ + a)

ou ow
Oxz = Ozx = N(E + a)

ov  ow
Oyz = 0Ozy = N(E + @)

Written in vector form, we have

o =2Xdivu- I+ uD — pl
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Deformation matrix

Here [ is the identity matrix and D is the deformation matrix
defined by
(Vu) + (Vu)’

D= 5
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Deformation matrix

Here [ is the identity matrix and D is the deformation matrix

defined by
p_ (Vu)+ (vu)T
2
and since
ou du Iu
ox 9y 0z
v v v
ox ody 0z
ow  ow 9w
ox 0y 0z
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Deformation matrix

Here [ is the identity matrix and D is the deformation matrix

defined by
D (Vu) + (Vu)™
N 2
and since ou ou o
u u
ox Oy 0z
v 9v. Qv
ox ody 0z
ow  ow  ow
ox 0y 0z
d 1(0 d 1.0 9
1 38# 9 é(ai;l;r or) ?(§g+§¥)
|4 u |4 w |4
PE\ER TR o e P )
AR ORICES DN
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Force on the surface

Now let us go back to the balance of momentum

d/ pUdVZSaWI—i-/ pbdV
at Jw, W,
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Force on the surface

Now let us go back to the balance of momentum

d/ pudV = saw,+/ pbdV
at Jy, W

Because of viscous property of the fluid,
S@W, = / o-hdA
oW,
= / (2X\divu - I + puD — pl) - ndA
oW,

_2)\/ (divu)l-ndA+p [ D-ndA— [ pl-ndA
oW, oW, oW,
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Force on the boundary

By divergence theorem,
/ (divu)/-ndA = V - ((divu))dV
8W1 Wt

= [ V(divu)dV
Wi
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Force on the boundary

By divergence theorem,

/ (divu)/-ndA= [ V- ((divu))aV
8W1 Wt
= [ V(divu)dV
Wi
.
D.ndA — v.(m)dv
oW, W, 2
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Force on the boundary

By divergence theorem,

/ (divu)/-ndA= [ V- ((divu))aV
8W1 Wt
= [ V(divu)dV
Wi
.
D.ndA — v.(m)dv
oW, W, 2

and
/ pl-ndA:/ V-(p/)dV:/ VpdV
oW, W, W,
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Formulation of balance of momentum

The second term

)
v.(VU—F(VU) YoV
m 2
; (Au)dVJr 2 ], V@wav
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Formulation of balance of momentum

The second term

;
v.(Vu + (Vu)
m 2
1
2

)av

(Au)dV 41 V(divu)dV

2

Using the transport theorem and substitute above terms into
the balance of momentum equation, we have

Du

ivu) — lad
Ppr = (2>\+2) (divu) Vp+2Au+pb
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The Navier-Stokes equations

After normalizing the density p to be 1, the previous equation
reduces to
Du

= Y di lad
Dt = Vp+(2)\+2)(d|vu)+2Au+b
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The Navier-Stokes equations

After normalizing the density p to be 1, the previous equation
reduces to
Du

= Y di lad
Dt = Vp+(2)\+2)(d|vu)+2Au+b

For incompressible fluid, denote v = 5, we have

Du
E——V,D—&—I/Au—l-b
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The Navier-Stokes equations

After normalizing the density p to be 1, the previous equation
reduces to

Du [N 17
i -Vp+(2X+ E)(dlvu) + 2Au +b

For incompressible fluid, denote v = 5, we have

Du
E——V,D—&—I/Au—l-b

We end up with the Navier-Stokes equations

ou+Uu-Viu=-Vp+vrvAu+b
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Boundary conditions for Euler and N-S equations

We end this lecture with a discussion on the boundary
conditions we should impose for the Euler and Navier-Stokes
equations.
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Boundary conditions for Euler and N-S equations

We end this lecture with a discussion on the boundary
conditions we should impose for the Euler and Navier-Stokes
equations.

For Euler’s equations for ideal flow we use u - n = 0, that is,
fluid does not cross the boundary but may move tangentially to
the boundary.
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Boundary conditions for Euler and N-S equations

We end this lecture with a discussion on the boundary
conditions we should impose for the Euler and Navier-Stokes
equations.

For Euler’s equations for ideal flow we use u - n = 0, that is,
fluid does not cross the boundary but may move tangentially to
the boundary.

For the Navier-Stokes equations, the extra term vAu raises the
number of derivatives of u. For both experimental and
mathematical reasons, this is accompanied by an increase in
the number of boundary conditions.
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Mathematical reason

For instance, on a solid wall at rest we add the condition that
the tangential velocity also be zero ("no-slip condition"), so the
full boundary condition are simply
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Mathematical reason

For instance, on a solid wall at rest we add the condition that
the tangential velocity also be zero ("no-slip condition"), so the
full boundary condition are simply

u =0 on solid walls at rest
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Mathematical reason

For instance, on a solid wall at rest we add the condition that
the tangential velocity also be zero ("no-slip condition"), so the
full boundary condition are simply

u =0 on solid walls at rest

The mathematical need for extra boundary conditions lies on
their role in proving that the equations are well posed, that is, a
unigue solution exists and depends continuously on the initial
data.
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Physical reason

The physical need for the extra boundary conditions comes
from simple experiments involving flow past a solid wall. For
example, if dye is injected into flow down a pipe and is carefully
watched near the boundary, one sees that the velocity
approaches zero at the boundary to a high degree of precision.
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Physical reason

The physical need for the extra boundary conditions comes
from simple experiments involving flow past a solid wall. For
example, if dye is injected into flow down a pipe and is carefully
watched near the boundary, one sees that the velocity
approaches zero at the boundary to a high degree of precision.

The no-slip condition is also reasonable if one contemplates the
physical mechanism responsible for the viscous terms, namely,
molecular diffusion. Our example indicates that molecular
interaction between the solid wall with zero tangential velocity
should impart the same condition to the immediately adjacent
fluid.
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Final remark

Another crucial feature of the boundary condition u = 0 is that it
provides a mechanism by which a boundary can produce
vorticity in the fluid. But we will not talk about rotation and
vorticity of fluid in this lecture.
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