SDG Prof. Dr. Barbara Rüdiger SS 2018

Übungszettel III

Übung I:

Seien $X,Y\in\mathcal{L}^1(\Omega,\mathcal{F},P)$. Sei $\mathcal{G}\subset\mathcal{F}$ und \mathcal{G} eine σ -Algebra auf Ω . Beweisen Sie·

- i) falls $X \ge 0$ P -f.s., dann auch $E[X/\mathcal{G}] \ge 0$ P- f.s.
- ii) $X \in \mathcal{L}^p(\Omega, \mathcal{F}, P)$ impliziert $E[X/\mathcal{G}] \in \mathcal{L}^p(\Omega, \mathcal{F}, P)$, für 1 .
- iii) falls X stochastisch unabhängig von $\mathcal G$ ist, so gilt, dass $E[X/\mathcal G] = E[X]$ P-f.s..
- iv) E[YX/X] = XE[Y/X] P f.s.

Übung II:

Beweisen Sie den Satz der dominierten Konvergenz für bedingte Erwartungswerte. (Der Satz wurde in der Vorlesung in der 3 Woche Mai ausgesagt)

Übung III:

Sei $\{M_t\}_{t \in \mathbb{R}_+}$ ein Zufallsprozess auf $(\Omega, \{\mathcal{F}_t\}, \mathcal{F}, P)$. Beweisen Sie, dass $\{M_t\}_{t \in [0,T]} \in M_T^2(\Omega, \{\mathcal{F}_t\}, \mathcal{F}, P)$, falls und nur falls $M_T \in \mathcal{L}^2(\Omega, \mathcal{F}_T, P)$ und für jedes $0 \le s < t \le T$, für jede Zufallsvariabel $X \in \mathcal{L}^2(\Omega, \mathcal{F}_s, P)$, die Eigenschaft $E[M_t X] = E[M_s X]$ gilt.

Übung IV:

Sei $\{S_n\}_{n\in\mathbb{N}}$ auf $(\Omega, \mathcal{F}_n, \mathcal{F}, P)$ gegeben, mit $\mathcal{F}_n := \sigma(S_0, ..., S_n)$. Sei $p \in (0, 1)$ fixiert, und S_n sei B(n, p) verteilt. Geben Sie genau die Zufallsvariabel $E[S_3/S_1]$ an.

(Erinnerung: 1. S_n ist Summe von unabhängigen Bernouille Zufallsvariabeln , 2. \mathcal{F}_n ist für jedes n durch endlich viele Ereignisse generiert.)

Übung V:

Finden Sie ein konkretes Beispiel eines W-Raumes (Ω, \mathcal{F}, P) , einer σ -Algebra $\mathcal{G} \subset \mathcal{F}$ auf Ω , so dass die Eigenschaft $\mathcal{N}_{\mathcal{F}} \subset \mathcal{N}_{\mathcal{G}}$ nicht gilt.

Übung VI:

Beweisen Sie folgende Aussage:

Sei $\{X_n\}_{n\in\mathbb{N}}$ eine Folge von stochastisch unabhängigen zentrierten Zufallsvariabeln auf (Ω, \mathcal{F}, P) . Dann ist $\{M_n\}_{n\in\mathbb{N}}$, mit $M_n := \frac{\exp{izS_n}}{\mathbb{E}[\exp{izS_n}]}$, und $S_n := \sum_1^n X_n$, eine Martingale auf $(\Omega, \{\mathcal{F}_n\}_{n\in\mathbb{N}}, \mathcal{F}, P)$, mit $\mathcal{F}_n := \sigma(S_1, ..., S_n)$.

Bemerkung: Im ganzen Übungsblatt wird angenommen, dass die üblichen Bedingungen gelten