

Bergische Universität Wuppertal Fachbereich Mathematik und Natur Wissenschaft Angewandte Mathematik-Stochastik Univ. Prof. Dr. Barbara Rüdiger-Mastandrea

Dr. Peng Jin

Übungen zu: Maß- und Integrationstheorie (SS 2012)

Blatt 3

Definition(liminf und limsup) Es seien A_1, A_2, \cdots Teilmengen von Ω. Dann heißen

$$\liminf_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \cap_{m=n}^{\infty} A_m$$

und

$$\limsup_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \cup_{m=n}^{\infty} A_m$$

Limes inferior beziehungsweise Limes superior der folge $(A_n)_{n\in\mathbb{N}}$.

Bemerkung: Es gilt

$$\liminf_{n\to\infty} A_n = \left\{\omega \in \Omega : \sharp \left\{n \in \mathbb{N} : \omega \notin A_n\right\} < \infty\right\},\,$$

$$\limsup_{n\to\infty} A_n = \left\{ \boldsymbol{\omega} \in \Omega : \sharp \left\{ n \in \mathbb{N} : \boldsymbol{\omega} \in A_n \right\} = \infty \right\}.$$

Der Limes inferior ist also das Ereignis, dass schließlich alle der A_n eintreten, der Limes superior hingegen das Ereignis, das unendlich viele der A_n eintreten.

Aufgabe 1:

Sei $\Omega = \mathbb{R}$. Setze

$$A_n = (-1/n, 1]$$

wenn *n* ist ein ungerade Zahl, und

$$A_n = (-1, 1/n]$$

wenn n ist ein gerade Zahl. Finden Sie $\limsup_{n\to\infty} A_n$ und $\liminf_{n\to\infty} A_n$.

Aufgabe 2:

Es seien A_1, A_2, \cdots Teilmengen von Ω . Man beweise oder widerlege: $\liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n$, $\limsup_{n \to \infty} A_n \subset \liminf_{n \to \infty} A_n$.

Aufgabe 3:

Es seien A_1, A_2, \cdots Teilmengen von Ω . Die Folge $(A_n)_{n\geq 1}$ heißt **konvergent**, wenn $\limsup_{n\to\infty} A_n = \liminf_{n\to\infty} A_n$. In diesem Fall nennt man $\lim_{n\to\infty} A_n = \liminf_{n\to\infty} A_n$ **Grenzwert** von $(A_n)_{n\geq 1}$. Man verifiziere:

Ist A_n wachsend [bzw. fallend], so konvergiert (A_n) und es gilt $\lim_{n\to\infty} A_n = \bigcup_n A_n$ [bzw. $\lim_{n\to\infty} A_n = \bigcap_n A_n$].