Übungsblatt 3 zur Maß- und Integrationstheorie

- 1. Gegeben sei die Augensumme X zweier fairer Würfel.
 - a) Geben Sie die Verteilung μ_X von X an.
 - b) Berechnen Sie die Erwartung der Augensumme Y von drei fairen Würfeln.
 - c) Berechnen Sie $\mathcal{E}[e^X]$
- 2. Finden Sie f so dass $f \in L'(\mathbf{R}, \mathcal{B}, (\mathbf{R}), \mu_{\mathcal{L}})$ und $f \notin L^2(\mathbf{R}, (\mathcal{B}(\mathbf{R}), \mu_{\mathcal{L}})$
- 3. Finden Sie ein Beispiel einer Folge, die in $|| \circ ||_3$ konvergent ist, jedoch nicht in $|| \circ ||_4$ konvergiert.
- 4. Finden Sie ein Beispiel einer Folge, die nach Maß μ_L nach Null konvergiert, jedoch nicht in $|| \circ ||_1$ konvergiert.
- 5. Sei (Ω, J, μ) ein endlicher Maßraum. Beweisen Sie an Hand der Chebyshev Ungleichung, dass die Konvergenz einer Folge in $|| \circ ||_3$ die Konvergenz der gleichen Folge nach Maß μ impliziert.
- 6. Benutzen Sie den Satz der dominierten Konvergenz um zu zeigen, dass falls $f\in L'(\Omega,J,\mu)$ und $\lim_{n\to\infty}\mu(A_n)=0$, dann gilt

$$\lim_{n \to \infty} \int_{A_n} f d\mu = 0$$

7. Beweisen Sie : Sei (Ω, J, μ) ein Maßraum Falls $f: \Omega \mapsto \mathbf{R}$ meßbar und $F: \mathbf{R} \to \mathbf{R}$ meßbar, dann ist $F(f): \Omega \to \mathbf{R}$ meßbar.