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Abstract While travel cost in urban areas is generally best modeled using network distances, continuous
distance measures are mostly used for location problems in rural environments. Combining both is not
only interesting from a modeling perspective, but has also computational advantages since it combines
reduced storage requirements for the network data with a high accuracy of the approximated distances.
In this paper, Weber problems with combined distance measures are discussed. If continuous distances
are measured using block norm distances, the resulting Weber problems can be represented by bilinear
programming formulations. Theoretical properties of this model are discussed, and two possible solution
strategies are suggested.
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1. Introduction

The need for realistic representations of distance measures in location problems is reflected in
the recent literature. Continuous models have been extended by various types of restrictions
and constraints in order to better incorporate the geographic reality into the geometric
representation. Location problems with forbidden regions have been extensively studied
and can be considered relatively well-solved (for an overview, see Hamacher and Nickel
[10]). On the other hand, problems involving physical barriers or congestions still give rise
to many open questions that are caused by the non-convexity of the objective function (see
Klamroth [13] for a detailed survey on location problems with barriers).

If on the other hand a road or transportation network serves as the basis for a (network
or discrete) location model, a balance between the size of the network (and the resulting
computational complexity) and the accuracy of the model has to be found (see, for example
Drezner and Hamacher [6]). Moreover, the topology of the underlying network has a pro-
found impact on the optimal facility locations. Changing this network may turn out to be
more cost-effective than adding more facilities to improve some kind of service.

Very little has been done to include continuities and/or additional modeling parameters
in network location models. Batta and Palekar [2] extended a network location model
by adding so-called mega nodes which can be entered and left only at a finite set of access
points. Erkut [8] added a finite candidate set for new locations outside a given transportation
network. Travel distances are measured partly on the network, but - in order to model
continuous propagations, for example, of polluted air from an industrial plant - continuous
metrics are used in addition to the network metric in the objective function. Blanquero [4]
further extended this model by defining a convex feasible region for new locations replacing



the finite candidate set. A continuous location problem based on the superposition of a
(polyhedral) gauge distance function and a finite set of so-called rapid transit lines modeling,
for example, a high-speed transportation network, is suggested in Carrizosa and Rodriguez-
Chia [5].

In this paper, bilinear programming formulations are derived that can be viewed as a
unifying umbrella under which continuous location models and network location models can
be described. We focus on the case that (continuous) distances in R

2 are measured by a
block norm and exploit the piecewise linear structure of the resulting distance measures.
The implications resulting in the general case of arbitrary norm distances are discussed in
Pfeiffer and Klamroth [15].

2. Weber Problems with Mixed Distances

Given a finite set of existing facilities A = {a1, . . . , an} ⊂ R
2 with positive weights

w1, . . . , wn ∈ R, the classical, continuous Weber problem is to find one new facility x =
(x1, x2)

T ∈ R
2 such that the weighted sum of distances between x and the existing facilities

at a1, . . . , an is minimized:

min f(x) =
n∑

m=1

wmd(x, am)

s.t. x ∈ R
2.

(2.1)

We replace the distance function d in this classical model by a combination of continuous
and network distances by allowing switches between continuous and network travel at a
finite set I := {i1, . . . , ik} ⊂ R

2, ir = (ir1, ir2)
T ∈ R

2, r = 1, . . . , k, of transit points
(also referred to as transshipment points or intermediate points). Defining binary variables
yrm, r = 1, . . . , k, m = 1, . . . , n, as

yrm =

{
1, ir is used as transit point on an x-am-path,
0, ir is not used as transit point on an x-am-path,

r = 1, . . . , k, m = 1, . . . , n,

a Weber problem with mixed distances can be formulated:

min
n∑

m=1

wm

(
k∑

r=1

yrm

(

d(x, ir) + αrm)
))

s.t.
k∑

r=1

yrm = 1, m = 1, . . . , n

x ∈ X
yrm ∈ {0, 1}, r = 1, . . . , k, m = 1, . . . , n.

(2.2)

The feasible region for new location X ⊆ R
2, X 6= ∅, is a closed set and we will assume that

X is given by a bounded polyhedron. The constants αrm ∈ R, r = 1 . . . , k, m = 1, . . . , n,
describe, for example, the fixed network or barrier distance from transit point ir to existing
facility am. In the case of networks the transit points ir are chosen from the joint set of
the vertices of the network and the existing facilities. In the case of location problems with
barriers traveling and locating the new facility is prohibited in the interior of a set of given
barrier regions as, for example, lakes, mountain ranges, military zones or national parks.
If the barriers are polyhedral, then the Barrier Touching Property holds: This states that
there always exists a d-shortest path between two given points in the feasible region which
is a piecewise linear path with breaking points only in extreme points of barriers. Therefore



the plane can be decomposed into cells, where for each cell the set of extreme points, that
are d-visible from the cell (i.e., the distance to these points is not lengthened by the barriers)
is constant. From this set of d-visible points the transit points ir in the barrier problem
have to be chosen. So for a point x located in a known cell the distance between x and
an existing facility am decomposes into a continuous part describing the distance between
x and a d-visible extreme point ir plus the distance between this extreme point ir and the
existing facility am. The latter one equals the fixed distance αrm.

Hence, the Weber problem with mixed distances (2.2) includes as special cases, for
example, Weber problems with polyhedral barriers (see Klamroth [12]) and Weber problems
with embedded networks (see Carrizosa and Rodriguez-Chia [5]). Therefore, it can be viewed
as a unified model that combines features from continuous and network location models.

The focus of this paper is on the case that continuous distances are measured by a block
norm ‖ · ‖S whose unit ball S is a polytope with extreme points vg = (vg1, vg2)

T ∈ R
2, g =

1, . . . , s. The class of block norms is a very general one and comprises for example the
l1-norm an the 1-∞-norm (see Figure 1), which is a hybrid version of the rectilinear norm
an the Tchebycheff norm. The Manhattan norm is a very common norm to describe street
distances in cities and the weighted 1-∞-norm is very useful to characterize distances in
actual road networks ( see Ward and Wendell [18]).
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Figure 1: The 1-∞-norm with its unit ball S and its fundamental directions vg, g = 1, . . . , 8,
as an example for a block norm.

Following the definition of Ward and Wendell [19], the block norm ‖ · ‖S is given by

‖v‖S = min

{ s∑

g=1

βg : v =
s∑

g=1

βgvg, βg ≥ 0

}

. (2.3)

This characterization of block norms is one of their great advantages since this is a linear
description which yields a tractable version of the objective function of the Weber problem
with mixed distances (2.2). The corresponding block norm distances can be computed as

d(x, y) = min

{ s∑

g=1

βgr : y − x =
s∑

g=1

βgrvg

}

. (2.4)



Using (2.4) in (2.2) leads to the following bilinear programming formulation for the problem:

min
n∑

m=1

wm

(
k∑

r=1

yrm

s∑

g=1

βgr +
k∑

r=1

yrmαrm

)

s.t.
k∑

r=1

yrm = 1, m = 1, . . . , n

x ∈ X

yrm ∈ {0, 1}, r = 1, . . . , k, m = 1, . . . , n

irp − xp =
s∑

g=1

βgrvgp, r = 1, . . . , k, p = 1, 2

βgr ≥ 0, g = 1, . . . , s, r = 1, . . . , k.

(2.5)

Note that problem (2.5) is a mixed integer programming problem with a bilinear objective
function.

3. Properties of the Model

The main difficulty of the Weber problem with mixed distances (2.2) is the non-convexity of
the objective function. To overcome this difficulty, this section is devoted to the derivation
of general properties of the unified model (2.2) that facilitate the development of solution
methods for both problems.

3.1. Relation to classical Weber problems

Theorem 3.1 Any Weber problem with mixed distances (2.2) can be solved by solving a
finite series of Weber problems (2.1) with a finite set of existing facilities A ⊆ {i1, . . . , ik},
|A| ≤ k, and with the additional constraint that x is restricted to the feasible region for new
location X.

Proof. For any feasible assignment ȳ of binary values to the variables y with
∑m

r=1 ȳrm = 1
∀m = 1, . . . , n, the optimal values of x can be found by solving a Weber problem (2.1)
with existing facilities at ir, r = 1, . . . , k, and weights w̄r :=

∑n

m=1 ȳrmwm, and with the
additional constraint x ∈ X. Since only finitely many feasible assignments for y exist, the
result follows. ¤

Note that w̄r may be zero for some values of r. Then the corresponding existing facilities
ir have no impact on the solution of the related Weber problem (2.1) and can be omitted.

Theorem 3.1 relates the Weber problem with mixed distances (2.2) to the classical Weber
problem (2.1) with forbidden regions, see Hamacher and Nickel [10] and Nickel [14]. This
relation will be used in the following sections to transfer properties of problem (2.1) to
problem (2.2).

3.2. Convex hull properties

Particularly if general solution methods are applied to problem (2.5), a reduction of the set
of optimal locations to a smaller subset of R

2 can significantly improve the computational
efficiency.

Theorem 3.2 Let conv(I) ⊆ X and let d be a metric induced by a block norm. Then at
least one optimal solution of problem (2.5) is contained in the convex hull conv(I) of I.

Proof. According to Theorem 3.1, the solution of problem (2.5) can be reduced to the
solution of a finite number of Weber problems (2.1) with the feasible set X and with existing
facilities that form different subsets of the set I. Since the desired property holds for all
of these subproblems (see Juel and Love [11]; Wendell and Hurter [20]), the result follows.

¤



Using the fundamental directions v1, . . . , vs of the given block norm, it is also possible to
characterize the complete set of optimal solutions of problem (2.5). The following theorem
states a corresponding result for a frequently applied block norm, the l1-distance function,
where the description of the bounding set is particularly simple:

Theorem 3.3 Let conv(I) ⊆ X and let d = l1. Then every optimal solution of problem
(2.5) is contained in the rectangular hull of the set I, i.e. in the smallest rectangle with
sides parallel to the coordinate axes containing all facilities in the set I.

Proof. Analogous to Theorem 3.2. ¤

3.3. Integrality of the solution

Besides the non-convexity of the objective function, a further difficulty of problem (2.2) is
imposed by the integrality constraints on the variables yrm, r = 1, . . . , k, m = 1, . . . , n. We
will show in this section that these integrality constraints yrm ∈ {0, 1} can be relaxed to
0 ≤ yrm ≤ 1 for all r = 1, . . . , k, m = 1, . . . , n.

Theorem 3.4 If the set of optimal solutions of the continuous relaxation of (2.2) with
0 ≤ yrm ≤ 1 for all r = 1, . . . , k, m = 1, . . . , n is nonempty, then there exists at least
one optimal solution x∗, y∗ of this continuous relaxation which satisfies y∗rm ∈ {0, 1} ∀r =
1, . . . , k, m = 1, . . . , n.

Proof. Let x∗, y∗ be an optimal solution of the continuous relaxation of (2.2). Suppose that
y∗ is not integer, i.e., there exists t ∈ {1, . . . , n} and j, l ∈ {1, . . . , k} such that 0 < y∗

jt < 1,
0 < y∗lt < 1 and y∗jt + y∗lt ≤ 1. Hence the objective value of x∗, y∗ can be computed as

y∗jtwt (d(x∗, ij) + αjt) + y∗ltwt (d(x∗, il) + αlt)

+
n∑

m=1

m6=t

k∑

r=1

y∗rmwm (d(x∗, ir) + αrm) +
k∑

r=1

r 6=j,l

y∗rtwt (d(x∗, ir) + αrt)

︸ ︷︷ ︸

=:C

Case 1: One of the paths from x∗ to at through the intermediate points ij and il, respectively,
is shorter/cheaper than the other. Wlog suppose that d(x∗, ij) + αjmt

< d(x∗, il) + αlmt
.

Inserting this inequality into the objective function leads to

y∗jtwt (d(x∗, ij) + αjt) + y∗ltwt (d(x∗, il) + αlt) + C > (y∗jt + y∗lt)wt (d(x∗, ij) + αjt) + C.

Since the solution x̄, ȳ with x̄ := x∗, ȳrm := y∗rm ∀(r,m) /∈ {(j, t), (l, t)}, ȳjt := y∗jt + y∗lt and
ȳlt := 0 is feasible for the continuous relaxation of (2.2), this contradicts the optimality of
x∗, y∗.
Case 2: Both paths from x∗ to at through the intermediate points ij and it, respectively,
have the same length, i.e., d(x∗, ij) + αjt = d(x∗, il) + αlt. Define a new solution x̄, ȳ of the
continuous relaxation of (2.2) as x̄ := x∗, ȳrm := y∗rm ∀(r,m) /∈ {(j, t), (l, t)}, ȳjt := y∗jt + y∗lt
and ȳlt := 0. The objective value of x̄, ȳ is the same as of x∗, y∗, and ȳ has at least one
additional integer component. After finitely many iterations either case 1 or an integer
optimal solution is obtained. ¤

According to Theorem 3.4, the binary constraints on y can be omitted such that (2.2)
can be transformed into a bilinear programming problem. Problem (2.2) can therefore be
solved by applying general methods for bilinear programming problems.



3.4. Reformulation linearization technique

As shown in Sherali and Adams [17], mixed integer bilinear programming problems can be
transformed into mixed integer linear programming problems using a so-called reformulation
linearization technique (RLT). In this section the application of the RLT to problem (2.5)
will be discussed, implying an exact solution method for (2.5).

A central assumption for the applicability of the RLT is that the continuous variables
are constrained to a feasible set which is given by a bounded polyhedron. According to
the convex hull results in Section 3.2, this assumption does not significantly restrict the
generality of (2.5). We assumed that the feasible set for the new location X is given by
a bounded polyhedron. This implies that the coefficients βgr can be bounded as well by a
sufficiently large constant M ∈ R since they are used to represent finite distances.

In a first step, problem (2.5) has to be rewritten in standard form such that continuous
and binary variables are easily distinguished. For this purpose, suppose that the constraints
x ∈ X are given by a finite set of linear inequalities, and that, wlog, X ⊆ R

2
+. Transforma-

tion into standard form requires the introduction of a finite number l of slack variables. We
define a vector u composed of all continuous variables x and βgr as

u := (x1, x2, x3, . . . , x2+l, β11, . . . , βs1, β12, . . . , βs2, . . . , β1k, . . . , βsk)
T ∈ R

2+l+s·k
+ ,

and a vector y composed of the remaining binary variables

y = (y1, . . . , yk·n)T := (y11, . . . , yk1, y12, . . . , yk2, . . . , y1n, . . . , ykn)T ∈ {0, 1}k·n.

Replacing the original variables in (2.5) by the new variables u and y we obtain

min qT y + uT Qy

s.t.
2+l∑

t=1

aetut = ce, e = 1, . . . , E (∗)

up +
s∑

g=1

u2+l+(r−1)s+g · vgp = irp, r = 1, . . . , k, p = 1, 2

ut ≤ M, t = 2+l+1, . . . , 2+l+sk
u ≥ 0

k∑

h=1

y(m−1)k+h = 1, m = 1, . . . , n

0 ≤ yj ≤ 1, j = 1, . . . , k · n

yj ∈ {0, 1}, j = 1, . . . , k · n,

(3.1)

where Q is a (2 + l + s · k)× (k · n) - matrix containing the weights wm in the appropriate
positions, and q is a vector of length (k · n) given by

q := (w1α11, w1α21, . . . , w1αk1, w2α12, . . . , w2αk2, . . . , wnα1n, . . . , wnαkn)T .

The constraints (∗) are the transformed constraints x ∈ X. Note that (3.1) is indeed a
mixed-integer bilinear programming problem, i.e., for fixed y it reduces to a linear pro-
gramming problem in u, and for fixed u it reduces to a binary linear programming problem
in y.

Using the RLT, problem (3.1) can be transformed into an equivalent mixed-integer linear
programming problem. Therefore slack variables are appended to the continuous vector u
yielding an extended vector u ∈ R

2+l+2sk
+ . The transformation requires the definition of



additional continuous variables ztj := ut · yj, t = 1, . . . , 2 + l + 2 · s · k, j = 1, . . . , k · n, and
corresponding constraints; see Sherali and Adams [17] for the details of the transformation.
The resulting equivalent mixed-integer linear programming problem can be written as

min
kn∑

j=1

qjyj +
2+l+sk∑

t=1

kn∑

j=1

Qtjztj

s.t.
2+l∑

t=1

aetztj = ceyj, e = 1, . . . , E, j = 1, . . . , kn

zpj +
s∑

g=1

z2+l+(r−1)s+g,jvgp = irpyj, r = 1, . . . , k, j = 1, . . . , kn, p = 1, 2

ztj + zt+sk,j = Myj, t = 2+l+1, . . . , 2+l+sk, j = 1, . . . , kn
k∑

h=1

zt,(m−1)k+h = ut, m = 1, . . . , n, t = 1, . . . , 2+l+2sk (i)

ztj ≤ ut, t = 1, . . . , 2+l+2sk, j = 1, . . . , kn (ii)
2+l∑

t=1

aetut = ce, e = 1, . . . , E

up +
s∑

g=1

u2+l+(r−1)s+gvgp = irp, r = 1, . . . , k, p = 1, 2

ut + ut+sk = M, t = 2+l+1, . . . , 2+l+sk
k∑

h=1

y(m−1)k+h = 1, m = 1, . . . , n

0 ≤ yj ≤ 1, j = 1, . . . , kn
yj ∈ {0, 1}, j = 1, . . . , kn
ut ≥ 0, t = 1, . . . , 2+l+2sk
ztj ≥ 0, t = 1, . . . , 2+l+2sk, j = 1, . . . , kn. (iii)

(3.2)

Problems (3.1) and (3.2) are equivalent in the following sense: Given any feasible solution
(u, y) of the bilinear problem (3.1), there exists z such that (u, y, z) is a feasible solution of
(3.2) with the same objective value. Conversely, given any feasible solution (u, y, z) of (3.2),
the solution (u, y) is a feasible solution of (3.1) (see Adams and Sherali [1]).

Since the binary constraints on yj, j = 1, . . . , kn, play a central role in the proof of the
equivalence of (3.1) and (3.2), they cannot be omitted in (3.2) even though this was the
case in (3.1), see Theorem 3.4. An example problem where the optimal solution of the
linear programming relaxation of (3.2) has non-integral components is given in Section 3.6.
However, constraints (ii) can be omitted without changing the solution set of the problem:

Lemma 3.5 Constraints (i) and (iii) of (3.2) imply constraints (ii) which can be omitted.

Proof: Let (u, y, z) satisfy (i) and (iii). Wlog let m = 1 and t = 1, and suppose that there
exists an index l ∈ {1, . . . , k} such that z1,l > u1. Then

k∑

h=1

z1,h =
k∑

h=1

h6=l

z1,h + z1,l >
k∑

h=1

h6=l

z1,h + u1

(iii)

≥ u1,

which is a contradiction to (i). Hence, the assumption is false. ¤

According to Lemma 3.5 we can relax constraint (ii) of (3.2). The resulting problem is a
mixed-integer linear programming problem with O(kn) binary variables, O(k2ns) continuous
variables and O(k2ns) linear constraints.



3.5. Discretization results

A well-known property of the unconstrained Weber problem (2.1) with block norms is that
the fundamental directions of ‖ · ‖S rooted at the existing facilities am ∈ A, the so-called
construction lines, define a grid tessalation of the plane such that the set of optimal locations
is a cell, a line connecting two adjacent grid points of a cell or a single grid point (see Durier
and Michelot [7]). If none of these optimal locations is feasible for the constrained Weber
problem with convex forbidden regions and block norms, then Nickel [14] showed that it is
sufficient to consider only the intersection points of construction lines and the boundary ∂X
of the feasible set X. This result is based on the fact that the objective function is convex
and linear in each cell. However, if the grid is extended by construction lines rooted at all
points in I, a slightly weaker result can also be proven for the Weber problem with mixed
distances (2.5):

Theorem 3.6 Let d be a metric induced by a block norm, and let the feasible set for new
location X be convex. Then there exists at least one optimal solution of (2.5) that is an
intersection point of the construction line grid obtained from rooting all fundamental di-
rections at all points in I, or an intersection point of the construction line grid with the
boundary ∂X of the feasible set X.

Proof. According to Theorem 3.1, any problem of type (2.5) can be reduced to a finite
number of Weber problems (2.1) with the feasible set X. Since Nickel [14] showed that for
all of these subproblems at least one optimal solution with the desired property exists, the
result follows. ¤

Theorem 3.6 immediately implies that problem (2.5) can be solved by enumerating the
finite candidate set induced by the construction line grid and evaluating the respective
objective function values. If X = R

2, then the size of the candidate set can be bounded by
O(k2s2).

3.6. Example

We consider a location problem in Japan where five cities are considered as existing facilities,
and their approximate number of inhabitants define the respective demands, see Table 1.
One new location according to the Weber objective has to be found. We assume that travel
is possible by car and by the Shinkansen, a bullet train, which provides an alternative mode
of transportation. The resulting problem can be viewed as a Weber problem with embedded
networks and can therefore be represented by model (2.2).

The Shinkansen network of the example problem shown in Figure 2 consists of the lines
and the main stations (marked by •) of the Shinkansen train with the actual transportation
time as edge lengths (solid lines). Transportation times outside the network are measured
by moving along the fundamental directions of the l1-metric with a speed of 80 km/h.
The resulting mixed distances measure the shortest travel time according to an optimized
combination of network and continuous travel.

To model the problem using formulation (2.5), an extended network is defined by adding
the five existing facilities (marked by ◦) and appropriate edges (dotted lines) representing
shortest travel times. The optimal solution xopt is near the existing facility at Kofu and was
obtained by solving problem (3.2) with XPress-MP 1.2.4., see Figure 2. The dashed lines
represent the optimal paths connecting xopt to the extended network.

A second, modified example problem with seven existing facilities is shown in Figure 3.
This second example illustrates that despite the fact that the binary constraints in the unified
model (2.5) can be relaxed without changing the optimal solution value (see Theorem 3.4),
this is no longer true for the linearized problem (3.2): Suppose that (3.2) is relaxed by
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Figure 2: Example for a Weber problem with mixed distances in Japan.

replacing the binary constraints yj ∈ {0, 1}, j = 1, . . . , kn, by the continuous constraints
0 ≤ yj ≤ 1, j = 1, . . . , kn. The relaxed problem is a linear programming problem which
is again solved with XPress-MP 1.2.4. Its solution is not integer in the y-variables, and its
objective value is smaller which implies that there cannot exist a feasible optimal solution
of the relaxed problem with the same objective value, but with binary values for the y-
variables. The objective value and the assignments to the access nodes are displayed in
Table 1 both for the binary problem (3.2) and for its continuous relaxation.

Tokyo

Kumamoto

Kofu
Tottori

HiroshimaFukuoka

Okayama

Osaka

=Kyoto

Nagoya

Morioka

Niigata
Yamagata

Sendai

Shingu

Nagano

Fukushima

Akita

Hachinohe

Kanazawa Aizu

Takayama

xopt

Figure 3: Modification of the example introduced in Figure 2.

4. Conclusions and Future Research

In this paper we have developed a unified model for Weber problems with distance measures
that combine continuous block norm distances and network distances in a very general way.
Two special generalized Weber problems arising from completely different questions, the



Table 1: Solution of (3.2) and of its continuous relaxation for the example problem intro-
duced in Figure 3. Only those values of y are displayed that are different from 0. The
optimal objective values are 3374.4 for the binary problem and 2821 for the relaxed prob-
lem. Note that in case of the continuous relaxation the solution does not represent feasible
paths.

y binary y continuous

Number of Access Access
City inhabitants in 106 node y node y

Kumamoto 6.5 Kyoto 1 Tokyo 0.116535
Hachinohe 0.292935
Kumamoto 0.59053

Tottori 1.5 Kyoto 1 Tokyo 0.0779037
Tottori 0.922096

Shingu 0.3 Kyoto 1 Hiroshima 0.301218
Shingu 0.698782

Kanazawa 4.4 Kyoto 1 Fukuoka 0.275025
Osaka 0.150257

Kanazawa 0.574717

Takayama 0.7 Kyoto 1 Fukuoka 0.361572
Takayama 0.638428

Kofu 1.9 Kyoto 1 Fukuoka 0.454335
Kofu 0.545665

Aizu 1.2 Kyoto 1 Fukuoka 0.533994
Aizu 0.466006

Tsu 1.6 Used only for the example shown in Figure 2.

Weber problem with polyhedral barriers assigned to the class of continuous problems and
the Weber problem with embedded networks related to network location problems, are
covered by this formulation. Since many practical location problems comprise continuous
aspects and network features, this problem formulation opens up new possibilities for more
realistic and concise model development. We derive theoretical properties of the unified
model and suggest algorithmic approaches.

A challenge of this model consists in the size of the resulting MIPs. The solution meth-
ods presented in this paper are exact solution methods and therefore applicable only to
relatively small problem instances. Future research should focus on heuristic approaches
as, for example, iterative location-allocation heuristics (see Fleischmann [9]), decomposition
methods (see Plastria [16]) or evolutionary algorithms (see Bischoff [3]).

Different transformations of the ideas presented in this paper to objective functions
other than the Weber objective suggest themselves. One example are multi-facility location
problems as discussed in the case of Weber problems with embedded networks in Carrizosa
and Rodriguez-Chia [5]. Other examples include the center objective as well as ordered
Weber functions and multi-criteria models.
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