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Abstract

Algorithms generating piecewise linear approximations of the non-
dominated set for general, convex and nonconvex, multicriteria pro-
grams are developed. Polyhedral distance functions are used to con-
struct the approximation and evaluate its quality. The functions auto-
matically adapt to the problem structure and scaling which makes the
approximation process unbiased and self-driven. Decision makers pref-
erences, if available, can be easily incorporated but are not required

by the procedure.
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1 Introduction

Multicriteria optimization problems have countless applications, for exam-
ple, in engineering design, capital budgeting and location and layout plan-
ning. To support the decision making process, approximations of the non-
dominated set are an attractive tool since they visualize the alternatives for
the decision maker and provide valuable trade-off information in a simple

and understandable fashion.
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In this paper, algorithms generating piecewise linear approximations of
the nondominated set for general, convex and nonconvex, multicriteria pro-
grams are developed. Although this type of approximation of the nondomi-
nated set has already been introduced in the literature, the proposed algo-
rithms have some distinct properties that make them different from other
approaches. To justify this statement, we first review the literature and then

discuss the properties of the new algorithms.

The approximation of the nondominated set has been of interest to re-
searchers at least since the nineteen seventies. Most approaches and al-
gorithms discussed in the literature focus on bicriteria problems (see, for
example, Schandl et al., 2001b, for an overview) or multiple criteria convex
problems while comparatively fewer methods are available for general, possi-
bly nonconvex and/or discrete, multicriteria problems on which this review
is focused.

The methods can be classified with respect to different evaluation criteria
and properties. Of particular importance are the following aspects: the
conceptual approach to approximation, the method used for the generation
of nondominated points, the measure used to evaluate the approximation
quality, and the interface to the decision making stage of MCDM.

Convolution-based approximation methods were proposed as early as
1982 by Popov (1982) and then researched by Belov and Shafranskii (1991)
and Smirnov (1996). The methods involve constructing a parametric fam-
ily of problems that produce the approximation of the related multicriteria
problem. Nefedov (1984) studies the approximation by a finite set of ele-
ments using a convolution method and a method of regular points.

In Helbig (1991), a direction method is used to compute a discrete ap-
proximation of the nondominated set for multicriteria optimization problems
with convex cones.

Lemaire (1992) presents results on the approximation of the efficient set
of a limit multicriteria problem by the efficient sets of a sequence of related
multicriteria problems.

An approximation method based on the Tchebycheff approach is devel-



oped in Kaliszewski (1994). Using a modified weighted Tchebycheff norm,
several nondominated points are generated and combined into an approx-
imation by intersecting cones that correspond to the employed norms and
that are pointed at the generated nondominated points.

Kostreva et al. (1995) minimize the weighted Tchebycheff distance to
the utopia point to find points in the nondominated set that are later used
to construct approximating simplices. The method is applicable to prob-
lems with discontinuous criteria and/or disconnected feasible set. Statnikov
and Matusov (1996) and Sobol” and Levitan (1997) develop approximation
methods that are based on the parameter space investigation producing a
discrete representation of the nondominated set.

Benson and Sayin (1997) propose a global shooting procedure to find a
global representation of the nondominated set for problems with compact
sets of feasible criterion vectors. Das (1999) briefly discusses an approach
based on the normal-boundary intersection technique. Using the hyperplane
defined by the individual minimizers of the criteria, the nondominated points
with maximal distance from this hyperplane in some specified directions are
determined and included in a piecewise linear approximation.

A very different approach is offered by Galperin and Wiecek (1999) who
propose the balance set as an approximation tool and demonstrate its deriva-
tion for problems with no more than three criteria.

Recently, approximation algorithms based on metaheuristics, and, in
particular, evolutionary algorithms, have had some success in the effective
generation of well-diversified approximations of the nondominated set for
combinatorial multicriteria problems. For a survey of the application of
evolutionary algorithms we refer to Deb (2001) and Zitzler et al. (2001).
Simulated annealing based algorithms are studied, among others, by Czyzak
and Jaszkiewicz (1998) and Ulungu et al. (1999), and Gandibleux et al.

(1997) propose a metaheuristic based on tabu search.

There are two general conceptual approaches in the methods reviewed
above: the use of a family (series) of auxiliary problems whose solution

sets approximate the nondominated set, and the generation of points in the



nondominated set that become a final discrete approximation or are fitted
into an approximating set (e.g., simplex, polyhedral set).

The approximation algorithms proposed in this paper follow upon an
earlier research effort initiated by Schandl (1999) and continued by Schandl
et al. (2001c). The approximation comes in the form of a polyhedral distance
measure that is being constructed successively during the execution of the
algorithm. The measure is being utilized both to evaluate the quality of
the approximation and to generate additional nondominated solutions. The
authors are not aware of another approximation technique with all these
properties.

For convex problems, the approximating measure is defined as a polyhe-
dral gauge. Although the concept of a gauge cannot be carried over to the
nonconvex case due to lack of convexity, it serves as an inspiration to define
a nonconvex distance function in that case. In effect, the use of these dis-
tance measures guarantees that given an initial approximation in the form
of a distance function, the algorithms automatically construct successive
approximations (functions) emulating the shape of the nondominated set.
In each step, the approximation is independent of scalings of the objective
functions.

The algorithms require that the decision maker provide an initial approx-
imation (a starting "point”), and two termination parameters to be used
jointly or separately. The parameters are related to the desired accuracy
of the approximation and the maximum number of steps to be performed.
Upon the initialization, the algorithms are performed without any interac-
tion with the decision maker. As the resulting approximation is induced by
the problem and adapted to its structure, the approximation itself entirely
controls the algorithmic process. Therefore the process is unbiased and once

started, it is naturally self-driven.

In the next section the multicriteria program is stated and some general
definitions and notations are given. Section 3 discusses inner as well as outer
approximation algorithms for problems with an RZ - convex set of feasible

criterion vectors along with some convergence results for the bicriteria case.



Algorithms for inner and outer approximation in the nonconvex case are
presented in Section 4. The paper is concluded with a short summary in

Section 5.

2 Problem Formulation

To facilitate further discussions, the following notation is used throughout
the paper.

Let u,w € IR™ be two vectors. We denote components of vectors by
subscripts and enumerate vectors by superscripts. u > w denotes u; > w;
foralli=1,...,n. v > w denotes u; > w; for all i = 1,...,n, but u # w.
u 2 w allows equality. The symbols <, <, < are used accordingly. Let
RZ := {x € R" : ¥ = 0}. The set RY is defined accordingly and the set
u+ RE, where u € R", is referred to as a dominating cone.

We consider the following general multicriteria program

max {z1 = fi(z)}

: 1
max {zn = fn(x)} ( )

s.t. xe€ X,

where X C IR™ is the feasible set and f;(x),i = 1,...,n, are real-valued
functions. We define the set of all feasible criterion vectors Z, the set of
all (globally) nondominated criterion vectors N and the set of all efficient
points E of (1) as follows

Z={zeR": 2= f(z),z € X} = f(X)
N={z€Z:33€Zst. 2>z}
E={reX: f(x)e N},

where f(z) = (fi(z),... ,fn(x))T. We assume that the set Z is IRZ-closed,
Le., the set Z + RZ is closed.

The set of proﬂerly nondominated solutions is defined according to Ge-



offrion (1968): A point z € N is called properly nondominated, if there exists
M > 0 such that for each ¢ = 1,...,n and each z € Z satisfying z; > Z;

there exists a j # ¢ with z; < Z; and

Zi — %

< M.

zZj —Zj
Otherwise z € N is called improperly nondominated. The set of all properly
nondominated points is denoted by N,,.

Moreover, a point z € Z is called weakly nondominated if there does not
exist z € Z with z < Z, and the set of all weakly nondominated points is
denoted by N,.

The point z* € R™ with

zi =max{fi(z) :x € X} + ¢ i=1,...,n

is called the ideal (utopia) criterion wvector, where the components of
€ = (e1,...,€6,) € R"™ are small positive numbers. We assume that we
can find v € R™ such that u + Z C ]RZ and thus an ideal criterion vector
exists. Without loss of generality let z* = 0. For bicriteria problems, the
point z* € R? with

5 =max{fi(2): ;@) =max fi(@).j £ i} i=12

is called the nadir point. Note that this definition cannot be directly gener-

alized to multicriteria problems.

We define polyhedral gauges according to Minkowski (1911):

Definition 2.1 Let B be a polytope in R" containing the origin in its

interior and let z € R™.

(1) The polyhedral gauge v : R™ — R of z is defined as

v(z) :=min{\ >0 : z € AB}.



(2) If B is symmetric with respect to the origin, then ~ is called a block

norm.

(3) The vectors defined by the extreme points of the unit ball B of v are
called fundamental vectors and are denoted by v’. The fundamental
vectors defined by the extreme points of a facet of B span a fundamental

cone.

(4) A block norm « with a unit ball B is called oblique (Schandl et al.,
2001a) if it has the following properties:

(i) ~ is absolute, i.e., y(w) = y(u) Vw € R(u) = {w € R" : |w;| =
”U,Z‘Vl = 1,... ,n},
(ii) (z=RZ)NREINIB = {2z} Vze (IBNRY).
If z is in a fundamental cone C' of a polyhedral gauge v then one needs

to consider only the fundamental vectors generating this cone to calculate

the gauge of z.

Lemma 2.2 (Schandl et al. (2001a)) Let v be a polyhedral gauge with
the unit ball B C R". Let Z € C where C is the fundamental cone generated
by the fundamental vectors v',... v*, k > n. Let z = Zle \iv' be a

representation of Z in terms of v!,...,v*. Then () = Zle i

3 Approximation in the RZ - Convex Case

Let Z € R" be RZ - convex, i.e. Z + RZ is convex, with intZ # (), and
assume without loss of generality that 0 € Z< := Z + RZ.

3.1 Inner Approximation
For a polyhedral gauge -, consider the problem

max y(z)
s.t. zeR3INZ



Theorem 3.1 (Schandl et al. (2001c)) If  is an oblique norm then the
solution of (2) is nondominated. Conversely, for any properly nondominated

solution Z there exists an oblique norm ~ such that z solves (2).

In the following we consider the more general case that - is an arbitrary
polyhedral gauge and discuss alternative formulations of (2) as generaliza-

tions of Theorem 3.1.

Let d', ... ,d* € R™ be the normal vectors of the facets of the unit ball B
of a polyhedral gauge « such that {z 2 0:d'2 < 1,i=1,...,s} = BN RY
and -

{z20:d2<1,i=1,...,s} C Z

Then problem (2) can be formulated as the following disjunctive program-

ming problem:

max A
s.t. Vio, (2" 2 ANz € Z) (3)
A€ R.

Figure 1 shows an example with two facets represented by the normal vectors

d' and d?. The point 2z corresponds to an optimal \ in (3).

A

O . L

Figure 1: Inner approximation

Problem (3) can be reformulated as a linear programming problem in the
case that the set Z has a linear programming representation, i.e., Z = {Cz :
Az £ b,x 2 0,z € R™}, where C is an n X m - matrix with Cz = f(z) and
X ={r e R™: Az < b,z =2 0} is a bounded polyhedron. Then (3) can be



written as

max A
s.t. Viog (A=d'Ca" <ONAz" SbAz' Z0) (4)
A e R.

As shown by Balas (1985), an equivalent linear programming representation

of (4) is given by

max y .. 4\
s.t. N —d'Czt <0 Vi=1,...,s
Ax' < pib Vi=1,...,s (5)

Zf:ﬂ%‘zl
p; > 0, xigo, NER Vi=1,...,s.

From an algorithmic point of view we would like to decompose problem
(2) (or problem (3), respectively) into subproblems whose structure is as
simple as possible. For this purpose, let B be the unit ball of v and denote
by Ci,...,Cs and v',... v’ the fundamental cones and the fundamental
vectors of B N IRY, respectively. If we denote by I; the index set of those
fundamental vectors generating the cone Cj, j = 1,... s, then Lemma 2.2
implies that (2) can be decomposed into s subproblems (R{lner), j=1,...,s,

of the form

(5]' = max Z )\z

icl;
st Y vt <z
iEIj (6)
N >0 Vi € Ij
z € Z.

Note that each subproblem (6) has a very simple linear objective function
and only linear inequality constraints in addition to the problem dependent

constraint z € Z.



We will show in the following that, under some assumptions of non-

degeneracy, each subproblem (6) generates a nondominated solution Z.

Theorem 3.2 Let Z be strictly intIRZ - convex, i.e. Z + intRZ is strictly
convex, and let C; be a fundamental cone of a polyhedral gauge . Then

the optimal solution of problem (6) is properly nondominated.

Proof. Let zZ be an optimal solution of (6). Then there exist optimal dual

multipliers @ > 0 of (6) such that Z solves

max Y A\ —u (Zz‘elj Nt — z)

IS
s.t. ze€Z, N >0 Vi € 1,

(7)

(see, for example, Rockafellar, 1970). We rewrite the objective function of

(7) as

Z)‘i —a(ZAivi —z) = Z)‘i(l — ') + uz.

icl; i€l; i€l;
Since the problem is bounded it follows that (1 — @wv’) < 0 for all i € I;
(otherwise, increasing \; would result in an unbounded objective value).
Hence an optimal solution of (7) satisfies \; = 0 whenever (1 — wv') # 0,
i € I;. Therefore ), I \i(1—@v®) = 0 at optimality, and (7) can be replaced
by

max uz

s.t. zeZ

(8)

with @ > 0. Under the assumption that Z is strictly intlRZ - convex this

implies that z is indeed a properly nondominated solution. O

Note that if Z is not strictly intIRZ - convex, problem (6) may generate
weakly nondominated solutions since the optimal dual multiplier % used in
the proof of Theorem 3.2 may have zero components. However, in the non-
degenerate case that u > 0 the result of Theorem 3.2 applies also to RZ -

convex problems.

10



Corollary 3.3 Under the assumptions of Theorem 3.2, the optimal solution

of (2) (or (3), respectively) is properly nondominated.

Based on the above results, an inner approximation of the nondomi-
nated set can be constructed by iteratively solving a problem (2) (or (3),
respectively). The generated solution (which is nondominated at least in the
strictly intIRZ - convex case) is then added to the current approximation by
including it into the convex hull of the unit ball of the polyhedral gauge ~,
and a new iteration is performed with the updated .

Schandl et al. (2001c) showed that this procedure can be implemented
very efficiently based on the representation (6) of (2): Starting with an ini-
tial approximation as shown in Figure 2(b), problem (6) is solved in the
single cone determined by this approximation. In each of the consecutive
iterations, the optimal solution vector z is added to the convex hull of the
approximation, splitting the corresponding cone into at most O(|[. j|L%J)
subcones, see Edelsbrunner (1987). Note that at most 2 subcones are ob-
tained in the bicriteria case, see Figures 2(c) - 2(f). In each iteration problem
(6) has to be solved only for the newly generated cones since the optimal
values Sj remain optimal in the unmodified cones of the approximation.

Summarizing the discussion above, Figure 3 gives an outline of the in-
ner approximation algorithm for IRZ - convex sets (see also Schandl et al.,
2001c). -

Two different stopping criteria are implemented in the above procedure
that can be either jointly used or that can be specified separately, according
to decision maker’s suggestions. Here, the value of ¢ > 0 specifies a bound
on the required accuracy of the approximation, where the approximation
error is measured as |y(Z) — 1| (z denotes the next point being added in
the current iteration). Thus the error is measured in a problem dependent
way and using the current approximation in the evaluation. Alternatively,
the total number of subproblems (6) solved during the algorithm can be
bounded by specifying the maximum number of cones maxConeNo to be

generated during the algorithm. Note that then maxConeNo is also an upper

11



Figure 2: Inner approximation algorithm

PROCEDURE: INNER APPROXIMATION

Read/generate stopping criteria: ¢ > 0, maxConeNo;
Read/generate an initial inner approximation represented
by a polyhedral gauge v with unit ball B;
Construct cones using the facets of B in RY
for all cones do -
Solve (6) to find Z and (%)
end for
while #cones < maxConeNo and |y(next point)—1| > ¢ do
Add next point using the Beneath-Beyond technique;
Identify new and modified cones
for all new or modified cones do
Solve (6) to find Z and ~(2)
end for
end while
Output inner approximation

Figure 3: Pseudo code of the inner approximation algorithm
for an RZ - convex problem

12



bound on the number of nondominated points generated and added to the
approximation.

The addition of new points to the convex hull of the previous approxima-
tion is implemented using one iteration of the Beneath-Beyond Algorithm
(see Edelsbrunner, 1987). This algorithm is among the most efficient con-
vex hull algorithms (given a set S of k£ points in R", the convex hull of S
is computed in O(klog k + kL("+1)/2)) time) and particularly well-suited for
an incorporation into the above procedure.

Summarizing the discussion above, the complexity of the inner approxi-
mation algorithm can be bounded by O(k log k + kl("*1/2] 4 maxConeNo-T)
where k£ < maxConeNo denotes the total number of nondominated solutions
generating the approximation and O(T') is the complexity of solving (6)
which particularly depends on the structure of the set Z.

3.2 Outer Approximation

Let B be the unit ball of a polyhedral gauge v such that the fundamental

vectors o', ... ,v" of BNIRY satisfy

t t
(ZNRL) C {zgo P2 <) N ) N=1, )\20}
- i=1 i=1

and consider the problem

max A
s.t. Mt < Vi=1,...,t
9)
A>0
sel.

Figure 4 illustrates an example problem with three fundamental vectors

v}, v2 v3 where the point z represents an optimal solution of (9).

Theorem 3.4 Let Z be strictly intlRZ - convex. Then the optimal solution

of (9) is properly nondominated.

13
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0 ,Ug'

Figure 4: Outer approximation

Proof. Suppose that the 5™ constraint of (9), j € {1,...,t}, is binding at
optimality, and let @ > 0 be the related optimal dual multiplier. Then (9)

is equivalent to

max A —ﬂ()\vj — z)

(10)
s.t. A>0, z€e Z

Rewriting the objective function of (10) we obtain

max (1—ﬂvj))\+ﬁz
s.t. A>0, ze 7

(11)

Using the fact that (11) is bounded we can conclude that (1 — wv’) < 0.
Since A > 0 can be selected independently of z € Z in (11), it follows that
(1 — /)X = 0 at optimality and thus the hyperplane H = {z € R" :
uz = uz} supports Z at the optimal z. The assumption that Z is strictly
intRZ - convex together with the fact that @ > 0 implies that z is properly

nondominated. (]

Based on Theorem 3.4 we can develop an outer approximation algorithm
that can be viewed as a dual approach with regard to the inner approxima-
tion algorithm described in Section 3.1:

Starting with an initial approximation as shown in Figure 5(b) we it-
eratively solve a problem of type (9). While we have used the generated
nondominated solution Z to update v during the inner approximation pro-

cedure, we now wish to incorporate an additional facet supporting Z at z

14



into the boundary of the current approximation (i.e., into the unit ball of
the corresponding polyhedral gauge 7). This facet is defined by the optimal
dual multipliers @ and the corresponding optimal solution z of (9), i.e., by

the hyperplane given by

H is incorporated into the approximation by computing the intersection of
all halfspaces defined by the hyperplanes generating the current approxima-
tion (and containing the origin in their interior) and the newly generated
halfspace defined by H, see Figure 5(d). Since the intersection of a set of k
halfspaces in R" is dual to the convex hull of a set of k points in R", gener-
ated by a suitable geometric transform (see Edelsbrunner, 1987, for details
about this duality transform), the intersection of halfspaces can be computed
using the Beneath-Beyond Algorithm as in the convex case, c.f. Section 3.1.

The procedure is then iterated with the new approximation, see Figures
5(e) and 5(f).

Figure 5: Outer approximation algorithm
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Instead of repeatedly solving problems of the type (9) with a growing
number of constraints we may again use a decomposition of the problem

into subproblems (P? . ), j=1,... ,t, of the type

0; = max A
s.t. Ml <z (12)
A>0, z€ Z.

Obviously the optimal solution of (9) can be obtained by minimizing d; over
all the subproblems (P? ), j = 1,... ,t, and (10) is dual to (12) for the
optimal j. Since only a subset of the fundamental vectors v/ changes in each
iteration of the procedure (note that in the bicriteria case at most two new
fundamental vectors are generated in each iteration), problem (12) has to
be solved only for the newly generated fundamental vectors while the values

of §; can be stored and reused for all unchanged vectors v.

Figure 6 outlines the outer approximation algorithm for RZ - convex
problems. -

Note that the stopping criteria used in the above algorithm correspond
exactly to those used in the inner approximation algorithm discussed in
Section 3.1. Moreover, the complexity of the outer approximation algorithm

corresponds exactly to that of the inner approximation algorithm.

3.3 Simultaneous Inner and Outer Approximation

Figure 7 shows the progression of a sandwich approrimation that in each
iteration applies one step of the inner and of the outer approximation algo-
rithm.

Since the nondominated set is enclosed by the two polyhedral unit balls,
this approach not only allows a nice visualization of the achieved approxima-
tion accuracy but also generates a set of nondominated points whose overall
distribution on the nondominated set is in general better than in each of the

two approximations separately.
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PROCEDURE: OUTER APPROXIMATION

Read/generate stopping criteria: ¢ > 0, maxVecNo;
Read/generate an initial outer approximation represented
by a polyhedral gauge v with unit ball B;
Construct fundamental vectors using the extreme points of
B in RY
for all vectors do
Solve (12) to find z and ~(2)
end for
while #vectors < maxVecNo and |y(next point)—1| > e do
Add next facet using a duality transform and the Be-
neath-Beyond technique;
Identify new and modified fundamental vectors
for all new or modified vectors do
Solve (12) to find z and (%)
end for
end while
Output outer approximation

Figure 6: Pseudo code of the outer approximation algorithm
for an RZ - convex problem

(a) (b) (c)

Figure 7: Simultaneous application of the inner and the outer
approximation algorithms

17



3.4 Convergence Rate of the Approximation for Bicriteria
Problems

The problem of generating a piecewise linear approximation of a nondomi-
nated set is closely related to the problem of approximating a convex set by
an inscribed or a circumscribed polyhedron. Since the literature on poly-
hedral approximations of convex sets is relatively rich (see, for example,
Gruber, 1992, for an overview), in this section we use this connection to
derive convergence results for the two algorithms described in Sections 3.1
and 3.2, concentrating on the special case of bicriteria problems (i.e., n = 2).

As we have indicated, the outer approximation algorithm is closely re-
lated to the inner approximation algorithm by the concept of geometric
duality, see Edelsbrunner (1987). Consequently, the discussion will mainly
focus on the inner approximation algorithm while transferring results to the

case of the outer approximation algorithm whenever it is convenient.

Wlog let the unit ball B of the current approximating gauge v be given
by the reflection set of B N RY, i.e., B is symmetric with respect to the

origin and satisfies
B=RBNREY):={bcR": |b] = |bi], be (B NRY)}.

Moreover, let Z be the reflection set of Z N RE, ie,

Z=R(ZNRL) :={z € R" : |5] = |5], 26 (ZNRL)}.

Then the Hausdorff distance, dy (B, Z), between the convex set Z and its
polyhedral approximation B is given by

du(B,Z) = sup inf |z~ b],,
beEB 2€Z
where ||z — b, denotes the Euclidean distance between the two points b and
z.
Let C be a circular ball centered at the origin that is completely con-

tained in B and let r be the radius of C, see Figure 8 for an example. If we

18



denote the norm with unit ball C by ||e||~, we obviously have |[ul|, = 7-[|u||~
for all u € R™. Moreover, |lul|, > v(u) for all u € R" since C' C B. Hence,

du(B,Z) = r-sup inf |z —b|~
beB z€Z

> r-sup inf v(z —b)
beB 2€Z

= -z 1],

where Z is an optimal solution of (2) (or (9), respectively). Observe that the
above relations are true for the approximating gauge v and unit ball B at

every iteration of the inner as well as the outer approximation algorithm.

A

Figure 8: Comparing the problem dependent gauge distance to the
Hausdorff distance

Rote (1992) showed that if a so-called sandwich algorithm is applied
to approximate a convex set Z in IR? by an inscribed and a circumscribed
polyhedron Piner and Poyter, having k extreme points each (k > 4), and
using the chord rule or the mazimum error rule to generate the next point
in each iteration of the algorithm, then the Hausdorff distance between the

two approximating polyhedra can be bounded by

8D

d PinneraPouer Sia
#{ ) S gy

where D is the circumference of Z. If k approaches infinity, the value of the
multiplicative constant 8 can be reduced arbitrarily close to 2w, see Rote
(1992).
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Since the chord rule applied in the sandwich algorithm generates the
same points that are also found by solving problem (2), this result can be
immediately transferred to the inner approximation algorithm as described
in Section 3.1. Moreover, the maximum error rule of the sandwich algorithm
applied to convex functions generates the same points as problem (9) in
the outer approximation algorithm if we assume that the boundary of Z is
decomposed into infinitely small curve segments.

If we additionally use the fact that dg(Puners Pouter) = dp(Piner; Z)
(and dg (Pners Pouter) > di(Z, Pouter), Tespectively) and that in our case
an approximation of Z is generated only in the nonnegative orthant of the
coordinate system (the other parts of the approximating polyhedra follow
by symmetry), the approximation error of the inner and the outer approxi-

mation after k iterations can be bounded by

_ 1 =
WD -1 < T -du(B,2)

1 _

- _'dH(]DinnehZ) (13)
T
2D

< — k> 4.

— ’r‘k2’ -_

(Note that the approximation either consists of k + 2 nondominated points
after k iterations, or it is exact.) Since the above bound is inversely pro-
portional to the radius r of the circular ball C' inscribed into the final ap-
proximation, we can try to choose C as large as possible to obtain a sharper
bound. Yet any circular ball inscribed into the initial inner approximation
yields a constant r that can be used in the above inequality and hence the
inner approximation algorithm has a quadratic convergence rate. Note that
any ball C inscribed into the initial inner approximation can be used as a
ball inscribed into the initial outer approximation so that the arguments

and conclusion above are also valid for the outer approximation algorithm.

Theorem 3.5 The approximation error after k iterations of the inner ap-
proximation algorithm or the outer approximation algorithm, respectively,

measured by the approximating gauge -y, decreases by the order of O(k—lg)

20



which is optimal.

Proof. The convergence rate of O(k%) follows directly from (13). That a
quadratic convergence rate is best possible for approximating a convex set
in IR? by inscribed or by circumscribed polyhedra is a well known result
which can be easily verified by considering the example of a circle (see, for
example, Gruber, 1992). O

It may be conjectured that the convergence rate of the two approximation
algorithms if applied to problems in IR, n > 3, is of the order O(m)
which would be also best possible. However, corresponding results for algo-
rithms approximating convex sets in R™ are - to the best knowledge of the
authors - not yet available in the literature, and further research is needed

in this direction.

4 Approximation in the ]R% - Nonconvex Case

Let Z C R" be RZ - closed with int(Z) # 0, and assume without loss of
generality that 0 € Z< = Z + RZ.
Since the nondominated set N may be nonconnected in general, a piece-

wise linear approximation should aim at approximating the set
N.:={z€Z<:P2eZ<s.t. 2> 2},

see Figure 9 for an example. Consequently, we will replace the convex unit
ball of a distance measuring gauge (or norm) - by a nonconvex “unit ball”
B containing the origin in its interior and being constructed from the inter-
section or union of dominating cones. This unit ball is then used to define

a new distance measuring function ~ as
(%) == min{\ : z € AB}. (14)

The basic idea for an approximation procedure is - similar to the convex case

- to minimize the maximum ~-distance between a nondominated point in Z

21



0 : >

Figure 9: Nonconvex example with a nonconnected nondominated set N
given by the union of the two bold curve segments. Its connected
extension, the set N, includes the dashed line segments.

and the boundary of B. However, while the concept of using hyperplanes
and their corresponding normal vectors for the generation of nondominated
solutions works well in the convex case, it has to be replaced by a suit-
able alternative in the nonconvex case. Since the approximation itself will
be constructed from dominating cones, it is natural to use variants of the
Tchebycheff method for this purpose which theoretically allows the genera-
tion of the complete nondominated set (Steuer and Choo, 1983; Kaliszewski,
1987).

4.1 Inner Approximation

Let d*,... ,d° € RRY be a nonempty and finite set of vectors generating the
nonnegative orthant, ie., {v € R" : v = > ;_; Aid', A 2 0} = RL. We
additionally assume that the set B defined by

B=c|RL\ |J (@+RY)

i=1,...,s

is bounded, has nonempty interior and that B C (Z< NIRY). Even though
the assumption of boundedness is quite restrictive in gene}al, it will auto-
matically be satisfied during all stages of the approximation algorithm that
will be described at the end of this section.

Note that B could be symmetrically extended to all orthants of the
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coordinate system, yielding a compact set B that contains the origin in its
interior. However, since we only consider points in the nonnegative orthant
of the coordinate system, this extension has no impact on the following

discussion and we omit it for the sake of simplicity.

If we interpret the vectors d',... ,d* as local nadir points, they define
a corresponding set of local utopia points v!,... ,v*. The components vf ,
i=1,...,n of these local utopia points v/, j = 1,... ,s can be found as
vg = max{vi D = din #i, ke{l,... ,n}; v =z, zEZ}

= max{zi D2k :din#i, ke{l,... ,n} ZEZé}.

Each pair (d7,v7), j = 1,... ,s defines an n-dimensional axis-parallel rect-
angular box which can be used to define the weights for a local application
of the Tchebycheff method. Consequently, a point v € N, that is currently
worst approximated with respect to the distance measure v and that is gen-
erated by a variation of a “local Tchebycheff method”, can be determined

using the following disjunctive programming problem:

max y(v)

‘ o o (15)
st Ving (d4+XM0—d)=v A A >0 A vS2 A 2P€Z).

Within a cone &/ + RY, j € {1,... s}, solving (15) is equivalent to the ap-
plication of the lexicographic weighted Tchebycheff method with the utopia

point v/ and with the weights wi‘ = vjidj’ 1=1,...,n, ie., to solving

lex min (ij — zHZ}: ,

vl - ZHl) (16)

s. t. z € J.

The two problems can indeed be viewed as being equivalent since there exist
optimal solutions Z of (16) and , \, 2/ of max{y(v) : d/+A(v/ —d)=v, A\ >
0, v<2z7, 2/ € Z} such that z = /.
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Moreover, problem (15) can be simplified to

max A
s.t. Vi (di—i—)\ . Vq(’;i_)djl <z A ziEZ) (17)
A>0.

In this formulation, the search directions v/ — d’ are normalized by the
. . . J_ 47
expression y(v/) — 1 = vy(v?) —y(d) = min{vid—qdi cie{l,...,n}}. Thus

the distance information between the current af)proximation (given by B)

and a point &/ + X - 7162;)651 is captured in the value of A. In particular,
the optimal solutions v of (15) and A of (17) satisfy v(v) = 1+ A. This is
due to the fact that the optimal ¥ has to be located in some cone d&/ + RE,
j € {1,...,s} (note that the same cone also contains the vector v7) and

satisfies

- (f- sl bt

= 1+

=1

The third equality holds since d and v/ are located in the same fundamental
cone of B and thus y(ad’ +£v7) = ay(d?)+B7v(v?) for all nonnegative scalars
a and (. In fact, the nonnegativity constraint in problem (17) can be relaxed
due to the defintion of the unit ball B. Figure 10 illustrates problem (17)
and its optimal solution.

Note that the disjunctive programming problem (17) has a linear pro-
gramming reformulation if the set Z has a linear programming representa-
tion, c.f. problems (4) and (5) in Section 3.1.

Theorem 4.1 Let A be an optimal solution of (17), let J be the index set
of all the constraints that are satisfied (and binding) at optimality, and let
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Figure 10: Inner approximation in the nonconvex case. The optimal

solution of (17) is attained at z2 where d? + \ - % = z2.

o=+ N %, j € J. Then B’ defined as

B':=[BuU|J@®-RY) | NRL (18)
jeJ B B

satisfies BC B’ C (Z<nN ]Rg)

Proof. The first inclusion is trivial. To verify the second inclusion, suppose
that a j*" constraint, j € {1,...,s} is satisfied at optimality. Hence there
exists z/ € Z such that v/ € (27 — RY), implying the result. O

If the j'" constraint of (17) is satisfied (and thus binding) at optimality,
we can also conclude that (77 4+ intlR%) N Z = (), which immediately yields

the following corollary:

Corollary 4.2 Under the assumptions of Theorem 4.1, if j € J and if
v/ £ 7 € Z, then # is weakly nondominated. Moreover, if Z is strictly

intRZ - convex, the solution #J is properly nondominated.

From an algorithmic point of view we would like to iteratively solve
problem (17) while increasing the size of the set B according to Theorem 4.1.
Similar to the convex case, a repeated solution of (17) with a growing number
of disjunctions is inefficient and will therefore be avoided by decomposing

the problem into subproblems (Pj

inner

), j=1,...,s, that can be formulated
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as

0; = max A
st d N ,Yléij)djl <z (19)
AeR, z€ 7,

and whose optimal \ determines the vector

v — @

0=d + \——-.
)

(20)

Having the solution of all the subproblems (Pj

inner

the optimal solution value of (17) equals the maximum value of ¢; which

), j =1,...,s available,

also yields the related vector v as given above.

Figure 11 illustrates the proposed approximation algorithm that consists
of the preprocessing phase and the main phase. As the result of the pre-
processing phase, an initial feasible approximating unit ball is constructed.
The preprocessing phase is initiated with only one vector d! which makes the

interior of the corresponding set B empty (see Figure 11(a)). Nevertheless,
R A 21
(-1 7

as shown in Figure 11(b). Including the point @ := d' + X - % into the

problem (17) is well defined yielding the optimal solution d* + \-

set B by updating it according to (18) defines the initial feasible approxi-
mation with which the main phase of the algorithm starts, see Figure 11(c).
In the main phase, problem (17) is solved for the currently approximating

1

ball B yielding the optimal solution z' as shown in Figuree 11(d). The

point ¥ :=d' 4+ X - % is included into the current approximation B by
updating the set B according to (18). The new approximation is then used
in the next iteration of the main phase of the algorithm (see Figure 11(e)).
In comparison with the corresponding step in the convex case where the
Beneath-Beyond Algorithm was used to update the current approximation,
the update operation is significantly easier in this case. In particular, the
point @ generates a set d',...,d" of new local nadir points replacing the
point d’ of a box in which the maximum of (17) has been attained. The

*j . . .
components d;, 2 =1,...,n, j =1,... ,n of these points can be computed
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as

& = max{0,{d; : & =v;Vi#j,ie{l,... ,n};d<b, beB}},
d = wm, i#]

In the subsequent iterations, problem (19) has to be solved only in the
newly generated rectangular boxes (defined by the added local nadir and
utopia points) while the remaining values of §; remain unchanged, see Fig-
ures 11(d)-11(f).

Figure 11: Inner approximation algorithm for general nonconvex problems:
(a)-(b) preprocessing phase, (c)-(f) main phase.

As stopping criteria we can use, similar to the convex case, a bound € on
the required approximation accuracy which is again measured in a problem
dependent way, or a bound maxBoxNo on the number of rectangular boxes
that are generated during the algorithm. Figure 12 gives an outline of the
main phase of the inner approximation algorithm for general nonconvex

problems.
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PROCEDURE: INNER APPROXIMATION; NONCONVEX CASE

Read/generate stopping criteria: € > 0, maxBoxNo;
Read/generate an initial inner approximation based on a

set of local nadir points d',... ,d* € RE;
Construct s axis-parallel rectangular boxes by finding the
local utopia points v!,... ,v® corresponding to d', ... ,d*

for all boxes do
Solve (19) to find A and v
end for
while #boxes < maxBoxNo and |y(next point)—1| > € do
Update the approximation B according to (18);
Identify new and modified boxes
for all new or modified boxes do
Solve (19) to find A and v
end for
end while
Output inner approximation

Figure 12: Pseudo code of the main phase of the inner approximation
algorithm for general nonconvex problems

4.2 Outer Approximation

Let B be defined by a nonempty and finite set of fundamental vectors
L ,vtele as
B=Rin (J (v-R2)
=10t B

and let (Z< NIRY) C B. Note that the set B is always closed and bounded.
Moreover,_since B as defined above encloses the unit ball used in the inner
approximation, independently of the choice of the vectors d',... ,d* (inner
approximation) and v!,... , v (outer approximation), the corresponding dis-
tance measure v used in the outer approximation is always a lower bound

on that used in the inner approximation.

Analogously to the inner approximation approach, we can interpret the
vectors v, ... ,v! as local utopia points defining a corresponding set of local

nadir points d',...,d" and thereby the desired Tchebycheff boxes. Even
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though the concept of nadir points is not unique for higher dimensional
problems, we can use the symmetry to the inner approximation approach
J

and compute the components d;, i = 1,... ,n of local nadir points &, j=

1,...,t as

&= max{di:dk:vin;&i,kG{l,...,n};d§z,z€Z}

)

= max{zi D2k :vin;&i, ke{l,... ,nk zeZg}.

Using this definition, each pair (d’,v7), 7 = 1,... ,t again defines an n-
dimensional axis-parallel rectangular box and thus the weights needed for the
Tchebycheff method. Consequently, the disjunctive programming problems
(15) and (17) can also be applied in the case of an outer approximation since
these programs are solely based on pairs of local nadir and utopia points.
However, since the current approximation (given by B) encloses the set
Z<NRZ, the orientation of the search direction as well as its normalization
as used in (17) have to be adapted to the new situation. This leads to the
following variation of (17) in which the nonnegativity constraint for A can

also be relaxed:

min A
st Vo (vi—A. Pt <2 z’EZ) (21)
A€R.

Note that the search within each of the cones d’ +IRY is now initiated at the
point v/, outside the set Z<NRZ, and thus the search is directed “inward”.
The normalization term can be evaluated as 1 — YD) = y(0)) — (&) =
min{% e {l,...,n}}. A similar analysis as in Section 4.1 shows
that the optimal solutions v of (15) and X of (21) satisfy v(v) =1 — X. An
example where problem (21) is applied in the outer approximation approach
is given in Figure 13.

Problem (21) again allows a linear programming formulation in the case
that Z has a linear programming representation, c.f. Section 4.1.

Due to the similarities between the inner and outer approximation ap-
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Figure 13: Outer approximation in the nonconvex case. The optimal

solution of (21) is attained at v! — X - % =zl

proaches, Theorem 4.1 and Corollary 4.2 can be easily transferred:

Theorem 4.3 Let A be an optimal solution of (21), let J be the index set
of all the constraints that are satisfied (and binding) at optimality and let

&=l — X fij,y_((éj')v j € J. Then B’ defined as

B':=B\ [J(@ + ntRY) (22)
jeJ

satisfies (Z< NIRY) C B' C B.
Proof. The second inclusion is trivial. To prove the first inclusion, let a j*®

constraint, j € {1,... , ¢} be binding at optimality. Thus (& +intR%)NZ =
(0, and the result follows. O

The proof of Theorem 4.3 immediately implies the following result:

Corollary 4.4 Under the assumptions of Theorem 4.3, if j € J and if
&) < 7 € Z, then 7 is weakly nondominated. If additionally Z is strictly

intRZ - convex, the solution #J is properly nondominated.

The outer approximation algorithm is again based on an iterative solu-
tion of problem (21) which leads to decreasing sizes of the approximating

sets B, c.f. Theorem 4.3. For this purpose, problem (21) is decomposed into
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subproblems (P’

outer

), j=1,...,t, given by

0j = min A
st vl — - 1117,;(2;) <z (23)
AeR, zeZ

The optimal solution of (21) equals to the minimum §; over all the subprob-
lems (P? . ), 7=1,... ¢t

The outer approximation algorithm does not need a preprocessing phase
since the global utopia point of the problem can yield an initial feasible
approximation, as it is shown in Figure 14(a) where the global utopia point

is denoted by v!'. In this example, problem (21) generates the optimal

solution v! — X - % = z!, see Figure 14(b). The corresponding point
d=v"—X\- % is then included into the current approximation by

updating the set B according to (22), see Figure 14(c). In analogy to the
inner approximation algorithm, the point d generates a set o',... , 9" of new

local utopia points replacing the point v7 of that box where the minimum

over all subproblems (23) was attained. Their components 17? ,i=1,...,n,
j=1,...,n are given by
17} = max{vj cwy=d;Vi# g, ie{l,... ,n}; v =D, bGB},

Note that the new local utopia points found according to the formula above
are renamed in Figure 14 in order to simplify the notation. During the
course of the algorithm (see Figures 14(d)-14(f)), problem (23) has to be
solved in all the newly generated rectangular boxes in each iteration while
reusing the unchanged values of ¢;.

Utilizing the same stopping criteria as in the inner approximation algo-

rithm, the outer approximation algorithm is summarized in Figure 15.
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(d) (e) ()

Figure 14: Outer approximation algorithm for general nonconvex problems.

PROCEDURE: OUTER APPROXIMATION; NONCONVEX CASE

Read/generate stopping criteria: ¢ > 0, maxBoxNo;
Read/generate an initial outer approximation based on a
set of local utopia points v, ... ,v* € RZ;
Construct t axis-parallel rectangular boxes by finding the
local nadir points d', ... ,d' corresponding to v',... v’
for all boxes do
Solve (23) to find A and d
end for
while #boxes < maxBoxNo and |y(next point)—1| > € do
Update the approximation B according to (22);
Identify new and modified boxes
for all new or modified boxes do
Solve (23) to find A and d
end for
end while
Output outer approximation

Figure 15: Pseudo code of the outer approximation algorithm
for general nonconvex problems
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4.3 Simultaneous Inner and Outer Approximation in the RZ

- Nonconvex Case

Even though Figures 11 and 14 suggest that the pairs of local nadir and
utopia points generating the approximating boxes in the inner as well as in
the outer approximation approach coincide if both algorithms are initialized
accordingly, this is not true in general for two reasons: On one hand, the
distance measure v and the approximation B differ between the two algo-
rithms and different boxes may contain the optimal solution of (17) and
(21), respectively. On the other hand, the new local nadir and utopia points
computed within one iteration of the procedure may not coincide in higher
dimensional problems, a fact that immediately leads to different approxi-
mations. This indicates that a combination of the two procedures may be

beneficial also for nonconvex problems.

5 Conclusions

In this paper we have developed inner as well as outer approximation algo-
rithms that generate piecewise linear approximations of the nondominated
set of convex and nonconvex multicriteria programs. In all cases, the ap-
proximation itself is used to define a problem dependent distance measure,
leading to unbiased and scale-independent approximations. Moreover, the
approximation is always improved where it is needed most, that is, where the
current approximation error is maximal. This self-correcting property of the
approximation was not present in the algorithms proposed for the nonconvex
problems in Schandl et al. (2001c) and is a significant improvement.

The algorithms limit the involvement of the decision maker only to the
initialization when the starting approximation has to be given. If such an
interaction was desirable while approximation is being constructed, the algo-
rithms could be easily modified. The authors however believe that decision
makers may appreciate an interaction-free approximating technique releas-
ing them from interrogation and queries.

A byproduct of the developed algorithms are the new scalarization tech-
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niques for generating (weakly) nondominated points. These techniques
search the objective space by means of properly defined directions.

While quadratic convergence of the developed algorithms is proven for
convex bicriteria problems, similar results can only be conjectured for the
multicriteria case. Future research should focus, among others, on conver-
gence results under more general assumptions as well as practical studies
and comparisons of the proposed algorithms with other approximation ap-

proaches.
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