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Abstract

We present a new interactive hybrid approach for solving multicriteria
optimization problems where features of approximation methods and in-
teractive approaches are incorporated. We produce rough approximations
of the nondominated set and let the decision maker indicate with the help
of reference points where to refine the approximation. In this way, (s)he
iteratively directs the search towards the best nondominated solution. Af-
ter the decision maker has identified the most interesting region of the
nondominated set, the final solution can be fine-tuned with existing inter-
active methods. We suggest different ways of updating the reference point
as well as discuss visualizations that can be used in comparing different
nondominated solutions. The new method is computationally relatively
inexpensive and easy to use for the decision maker.

Subject classifications: Programming: Multiple Criteria. Nonlinear. In-
teractive Methods. Reference Point
Area of review: Optimization

1 Introduction

In multicriteria optimization, the problem is to find the best compromise solution
in the presence of several conflicting criteria, see, for example, Ballestero and
Romero (1998), Chankong and Haimes (1983), Cohon (1978), Hwang and Masud
(1979), Miettinen (1999), Sawaragi et al. (1985), Statnikov and Matusov (1995),
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Steuer (1986) and Szidarovszky et al. (1986). In such problems, there is no single
well-defined optimal solution but several mathematically equally good solutions,
so-called nondominated, noninferior or Pareto optimal solutions can be identified.
To be able to find the best among them, that is, the final solution, we need
additional preference information from a human decision maker who knows the
problem domain.

Methods developed for solving multicriteria optimization problems can be
classified according to the role of the decision maker in four classes, see, for ex-
ample, Hwang and Masud (1979) and Miettinen (1999). If there is no decision
maker available, the final solution is some neutral compromise. In a priori meth-
ods, the decision maker first specifies preferences and hopes and after that a
solution satisfying these hopes as well as possible is identified. The drawback
here is that the decision maker may have too optimistic hopes and the final out-
come may be a disappointment or it may be otherwise difficult for the decision
maker to specify hopes in advance. On the other hand, in a posteriori methods a
representation of the set of nondominated solutions is first generated and then the
decision maker is supposed to select the most satisfactory solution. The difficulty
here is how to display the large amount of data to the decision maker and how
to support her/him in finding the best of them. Furthermore, generating a large
set of nondominated solutions may be computationally expensive for complicated
real-life problems. A possibility to overcome the above-mentioned weaknesses is
to use interactive methods, where the decision maker actively takes part in the
iterative solution process and specifies preference information gradually. In this
way, the decision maker can learn about the problem, its possibilities and lim-
itations as well as the interdependencies among the criteria and possibly even
change one’s mind about what is desirable. Because only such nondominated
solutions are generated that are interesting to the decision maker, interactive
methods are generally computationally much less expensive than, for example, a
posteriori methods.

When the decision maker iteratively directs the search for the most satisfac-
tory solution in interactive methods, it may be advisable and helpful to first get
a rough overview of what the nondominated set looks like, in other words, what
kind of solutions are feasible. After that, it is easier to specify preferences and
locate the most preferred solution. An example of such an approach where a vi-
sualization tool based on interactive decision maps (see Lotov et al. (2004)) and
an interactive classification-based NIMBUS method (see Miettinen and Mäkelä
(1999), Miettinen (1999), Miettinen and Mäkelä (2000) and Miettinen and Mäkelä
(2006)) are hybridized is given in Miettinen et al. (2003). However, that kind of
a hybrid approach is best suited for problems with less than five criteria.

In this paper, we present a new general interactive hybrid approach for solv-
ing multicriteria optimization problems where we combine ideas of a posteriori
approximation methods with an interactive method. The motivation is to benefit
from the strengths of these methods and, at the same time, avoid their weaknesses
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discussed above. First we produce a rough approximation of the nondominated
set by generating a relatively small representative subset of nondominated solu-
tions. The accuracy of this approximation can be specified by the decision maker
by bounding, for example, the number of solutions generated or the approxima-
tion error. By studying the approximation, the decision maker can learn about
the problem and then we let her/him indicate where to refine the approximation.
In this way, (s)he iteratively directs the search towards the best nondominated
solution and does not have to compare too many solutions at a time. Piecewise
linear approximations that we use provide a powerful and computationally effi-
cient tool to give an overview of what the set of nondominated solutions looks
like. By specifying least acceptable values for different criteria in the form of a
reference point the decision maker can zoom in or out in the nondominated set
and locate the most satisfactory region. Finally, the solution selected as the most
preferred one can be given as a starting point to some interactive method for
fine-tuning, if desired.

The rest of this paper is organized as follows. In Section 2 we give a problem
formulation and introduce the main concepts and notation used. Piecewise linear
approximations of the nondominated set are briefly introduced in Section 3 and
Section 4 is devoted to the new interactive hybrid approach as well as discussion
related to it. The issue of updating the reference point is considered in Section 5,
and a numerical example is discussed in Section 6. Finally, the paper is concluded
in Section 7.

2 Problem Definition and Notation

We consider the following general multicriteria optimization problem (MOP)

max {z1 = z1(x)}
...

max {zn = zn(x)}
s.t. x ∈ X,

(1)

where X ⊆ Rm is the feasible set and z = (z1, . . . , zn)T : X → Rn is the vector
of objective functions with individual real-valued objectives zi(x) : X → R,
i = 1, . . . , n. A solution x̄ ∈ X is called efficient or Pareto optimal if there is no
other solution x ∈ X with z(x) ≥ z(x̄), that is, zi(x) ≥ zi(x̄) for all i = 1, . . . , n
and z(x) 6= z(x̄). Thus, efficient solutions are those solutions that cannot be
improved in all criteria without deterioration in at least one of the criteria. We
denote the set of all efficient solutions by E. The image z(x̄) of an efficient
solution x̄ ∈ X in the objective space Rn is called a nondominated solution or a
nondominated criterion vector. The set of all nondominated solutions is denoted
by N = z(E).
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Unless explicitly stated, we do not make any assumptions on the objective
functions and the constraint set of (1) other than assuming the existence of
efficient solutions and boundedness of the set of nondominated solutions. That
is, we consider convex as well as non-convex and discrete problems, and we do
not restrict the number of criteria.

We define the set of all feasible criterion vectors as Z = {z ∈ Rn : z =
z(x), x ∈ X} = z(X). In order to ensure the existence of efficient solutions (i.e.,
E 6= ∅) we assume that the set Z is Rn

5-closed, that is, the set Z + Rn
5 is closed

and that Z 6= ∅.
The following notation is used throughout the paper. We denote components

of vectors by subscripts and enumerate vectors by superscripts. Let u,w ∈ Rn be
two vectors. The notation u > w means that ui > wi for all i = 1, . . . , n whereas
u ≥ w denotes that ui ≥ wi for all i = 1, . . . , n, but u 6= w. On the other hand,
the notation u = w allows equality. The symbols <,≤,5 are used accordingly.
We denote the non-positive orthant by Rn

5 := {x ∈ Rn : x 5 0}. The set Rn
=

is defined accordingly and the set {u} + Rn
=, where u ∈ Rn, is referred to as a

dominating cone. Similarly, for a set Z ⊂ Rn, we use the notation Z= = Z + Rn
=.

The set of properly nondominated solutions is defined according to Geoffrion
(1968): A point z̄ ∈ N is called properly nondominated, if there exists M > 0
such that for each i = 1, . . . , n and each z ∈ Z satisfying zi > z̄i there exists an
index j 6= i with zj < z̄j and

z̄i − zi

zj − z̄j

≤ M.

Otherwise z̄ ∈ N is called improperly nondominated. Moreover, a point z̄ ∈ Z

is called weakly nondominated if there does not exist z ∈ Z with z < z̄. The
corresponding solutions x̄ ∈ X are called properly efficient, improperly efficient
and weakly efficient, respectively.

The point z̄ with components z̄i = min{zi(x) : x ∈ E}, i = 1, . . . , n, is called
the nadir point. Note that, while this point is easily found for bicriteria problems,
its computation is in general hard if n > 2 (see, for example, Miettinen, 1999).

By a reference point we mean a point in the criterion space Rn. Note that it
does not have to be in Z. Typically, it consists of desirable or acceptable criterion
values for each criterion and is specified by a decision maker, a person who knows
the problem considered well and is able to specify preference information related
to it.

Throughout the paper, we use the following convex bicriteria example problem
taken from Schandl et al. (2001), which was rescaled here to better serve the
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illustrational purpose:

max z1(x) = x1 + x2 − 5
max z2(x) = 1

5
(10x1 − x2

1 + 4x2 − x2
2) − 2.2

s.t. 3x1 + x2 − 12 ≤ 0
2x1 + x2 − 9 ≤ 0
x1 + 2x2 − 12 ≤ 0
x ∈ R2

=.

(2)

3 Approximation of the Nondominated Set

In the interactive hybrid method that we shall describe in more detail in Section 4,
partial approximations of the nondominated set are used to support the decision
maker’s search for the most preferred solution. Iteratively improved piecewise
linear approximations of the nondominated set can be a powerful tool to obtain
an overview of the feasible alternatives available at relatively low computational
cost. Many different approximation approaches could be embedded in such an
interactive procedure, for example, the Estimate Refinement method (see Lotov
et al., 2004) or some of the approximation approaches reviewed in Ruzika and
Wiecek (2005).

For our method, we suggest the application of an adaptive approximation
procedure as described in Klamroth et al. (2002) since it is particularly well-suited
for guided refinements based on variations of the reference point suggested by the
decision maker, and can thus be nicely embedded in interactive algorithms. It
generates piecewise linear approximations in a problem-dependent way, utilizing
polyhedral distance functions to construct the approximation and evaluate its
quality. The functions automatically adapt to the problem structure and scaling,
and thus quickly adapt to the currently investigated region of the nondominated
set. This makes the approximation phase unbiased and self-driven.

While the approximation approach used is closely related to several other ap-
proximation methods (particularly in the case of convex MOPs), like the NISE
method (Cohon, 1978) and the Estimate Refinement method (Lotov et al., 2004),
its distinguishing feature lies in the fact that the quality of the current approx-
imation is measured based on the approximation itself and not, for example,
by the Hausdorff distance. Consequently, the point that is considered “worst
approximated” by a given approximation and that should be added to the ap-
proximation in the next iteration may differ from the other methods. This leads
in general to different approximation results, even if the individual scalarized sub-
problems used are of the same or of a similar type. The main advantage of using
a problem-dependent distance measure can be seen in the scale-independence
achieved which is particularly important in an interactive procedure where the
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reference point may be moved around more or less freely, and where the decision
maker may put more emphasis on some of the objectives.

Let us next describe the global approximation procedure of Klamroth et al.
(2002) in brief first for convex and then for non-convex problems. For further
details, we refer also to Klamroth and Tind (2006).

We start with the case where Z is Rn
5 -convex, that is, Z +Rn

5 is convex, with

int Z 6= ∅, and suppose that a reference point ẑ0 is given that satisfies ẑ ∈ Z5.
For a polyhedral gauge γ : Rn → R, consider the problem

max γ(z(x) − ẑ0)
s.t. z(x) ∈ ẑ0 + Rn

=

x ∈ X.

(3)

Let γ be defined by a symmetrical unit ball B (i.e., γ(z) := inf{λ ∈ R : z ∈ λB})
centered at the origin (which can be assumed to coincide with the reference
point), that is obtained by symmetrically extending a given piecewise linear inner
approximation of N in the criterion space. Then problem (3) finds a feasible point
z(x̄) ∈ Z that maximizes the problem-dependent γ-distance from the current
approximation in the criterion space (see Figure 1 for an example).

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

ẑ
0

z(x̄)

Figure 1: Illustration of an oblique norm applied to problem (2). For this oblique
norm, x̄ with image z(x̄) is an optimal solution of problem (3).

Schandl et al. (2002a) showed that such norms γ are oblique norms, that
is, they are absolute (in other words, γ(w) = γ(u) for all w ∈ R(u) := {w ∈
Rn : |wi| = |ui| for all i = 1, . . . , n}) and they satisfy (z − Rn

=) ∩ Rn
= ∩ ∂B =

{z} for all z ∈ (∂B)=.
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Moreover, the solution of problem (3) always is nondominated, and if the
reference point additionally satisfies N ⊆ ẑ0 +Rn

=, then in fact any properly non-

dominated solution can be found by solving problems of type (3) with different
oblique norms (see again Schandl et al., 2002a). Note that while the first state-
ment remains true for any reference point ẑ0 ∈ Z5, the second statement must be
weakened in this case. It can be easily derived from Schandl et al. (2002a) that
only those parts of N located in ẑ0 + Rn

= can be generated from a fixed reference

point by varying the unit ball B of the oblique norm γ:

Corollary 1.

(i) If γ is an oblique norm with a reference point ẑ0 ∈ Z5, then every optimal
solution x̄ of (3) is an efficient solution of (1).

(ii) If Z is Rn
5 -convex and if x̄ is a properly efficient solution of (1) in ẑ0 +Rn

=,

then there exists an oblique norm γ with reference point ẑ0 such that x̄ solves
(3).

Problem (3) can be decomposed into multiple subproblems, each of a partic-
ularly simple structure. For this purpose, let B be the unit ball of γ and denote
by C1, . . . , Cs the fundamental cones of B ∩Rn

=. If dj is the normal vector of the

facet of the cone Cj, j = 1, . . . , s, then (3) can be decomposed into s subproblems
(P j), j = 1, . . . , s, of the form

λj = max dj(z(x) − ẑ0) =
∑n

i=1 d
j
i (zi(x) − ẑ0

i )
s.t. x ∈ X

(4)

from which the maximum value of λj, j = 1, . . . , s, must be selected to obtain
an overall optimal solution of (3). Note that each subproblem (4) corresponds to
a weighted-sums scalarization of the multicriteria optimization problem (1) and
contains only the problem dependent constraints x ∈ X.

The approximation algorithm suggested in Klamroth et al. (2002) now itera-
tively solves problem (3) by computing optimal solutions of all newly generated
subproblems of the form (4), starting from an initial approximation that can be
generated, for example, by solving max{zi(x) : x ∈ X} for all i = 1, . . . , n.

In each iteration, the point of worst approximation with respect to the cur-
rent distance measure γ is added to the current approximation by using an ap-
propriate convex hull algorithm (for example the Beneath-Beyond Algorithm, see
Edelsbrunner, 1987), see Schandl et al. (2002b) for further details. This leads to
an adaptive update of the polyhedral gauge γ and thus to the generation of a
new set of active subproblems (4) in the updated cones. Figure 2 illustrates the
procedure for problem (2). Observe that, for example, in iteration 3 (3rd picture
in Figure 2), the added point is not furthest away from the current approximation
with respect to the Hausdorff distance.
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Figure 2: Inner approximation algorithm applied to problem (2)

Note that in the bicriteria case each iteration of the approximation algorithm
involves the solution of only two weighted-sums scalarizations (4) of problem (1).
Even though the number of active subproblems per iteration may theoretically
be larger for n ≥ 3, it can be expected not to have a considerable impact on the
average time needed to find the next iterate. The computational complexity of
solving each of these subproblems depends on the objective functions and con-
straints in question as well as on the single-criteria optimizer used. However, the
solution of weighted-sums scalarizations is in general of the same computational
complexity as the solution of a single-criteria problem of the same type.

The accuracy of the approximation after k iterations can be bounded based on
general convergence results for the approximation of convex bodies with respect to
Hausdorff distances by Rote (1992), Kamenev (1992), Kamenev (1994) and Lotov

et al. (2004). We obtain a convergence rate of O(k−

2

n−1 ) for the approximation
error with respect to adaptive gauge distances, where n ≥ 2 is the number of
criteria in (1) (see Klamroth and Tind, 2006, for further details).

For non-convex and discrete problems, that is, problems where the set Z is
not Rn

5 -convex, the method described above has to be modified with respect

to the approximation constructed and the formulation of appropriate scalarized
subproblems as described in Klamroth et al. (2002) and Klamroth and Tind
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(2006). However, the main idea of using an adaptive distance measure, based on
a reference point and on the current approximation, to asses the approximation
quality is transferred also to this case.

For the choice of the reference point ẑ0 we again have to assume that ẑ0 ∈
Z5 = Z + Rk+1

5
. Since the nondominated set N may now be disconnected, a

piecewise linear approximation can only aim at approximating the set Nc :=
{z ∈ Z5 : @ z̃ ∈ Z5 s.t. z̃ ≥ z}. Similarly, the convex unit ball of a distance
measuring gauge γ is replaced by a non-convex set B that is constructed from
the intersection of dominating cones. The set B is then used as a unit set to
define a distance measuring function γ as γ(z) := inf{λ ∈ R : z ∈ λB}.

The basic idea for an approximation procedure is – similar to the convex case
– to minimize the maximum γ-distance between a nondominated point in Z and
the boundary of B. However, since weighted-sums scalarizations are not suitable
for general non-convex problems (see, for example, Miettinen, 1999), in this case
variants of the Chebyshev method are used for the generation of candidate points
which are iteratively added to the approximation. This ensures that all solutions
generated are nondominated and that any nondominated solution can be found by
varying B appropriately. The candidate that is worst approximated with respect
to the γ-distance is selected for addition and included in the approximating set
B together with all points in the intersection of its domination cone with the
positive orthant.

The computational complexity of this approach again strongly depends on
the complexity of solving one of the scalarized Chebyshev subproblems which in
general can be a more time-consuming task than solving convex problems of the
type (4). Since we do not want to restrict our discussion to some specific class of
problems, we cannot give a general bound on this complexity.

In each iteration, at most n of the single-criteria scalarized Chebyshev prob-
lems have to be solved. As was shown in Klamroth and Tind (2006) the ap-
proximation error, measured with respect to the adaptive distance measure γ,
converges to zero with an increasing number of iterations.

4 Interactive Approach with Reference Points

In this section we introduce our interactive hybrid approach utilizing piecewise
linear approximations of the nondominated set. Approximations provide infor-
mation to the decision maker about the problem and serve as the basis for re-
finements of the decision maker’s preferences, which can then be used to identify
preference regions in which the approximation has to be refined.

In Section 3, we assumed that the reference point ẑ0 ∈ Rn was fixed. But
if we allow the reference point to change, for example, by moving the reference
point closer to a region of interest for the decision maker, the approximation
can be refined in specific areas identified by the decision maker. In this way we
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construct our interactive hybrid procedure. It is important that, when compared
to ordinary approximation methods, we can decrease computational costs because
we do not consider the whole nondominated set with equal emphasis, but the
approximation is made more accurate only in those regions the decision maker
really is interested in.

4.1 The Impact of the Reference Point

By allowing the decision maker to specify the reference point, it can be used to

• capture preference information of the decision maker in the form of minimal
criterion values that should be attained,

• and zoom the approximation in the region of interest to the decision maker.

Since the reference point has an immediate impact on the relative size of the
unit ball of the approximating gauge γ, moving ẑ0 closer to the nondominated
set will lead to a relative increase of the distance of the approximation from the
nondominated set in this area.

In order to obtain meaningful problem formulations (3) (or corresponding ones
in the non-convex case), the choice of the reference point should be restricted to
the set Z5. We can distinguish three different situations, where we denote the
reference point of the current iteration of the decision process by ẑi, and that of
the next iteration by ẑi+1:

• ẑi 5 ẑi+1: In this case the decision maker has identified a region of interest
from the previous approximation and wishes to refine the approximation in
the area defined by (ẑi+1 + Rn

=) ∩ Z5 (zooming in).

• ẑi = ẑi+1: The decision maker wishes to explore a larger region surrounding
the previously approximated part of the nondominated set (zooming out).

• Otherwise, the decision maker prefers to explore a (partially) different re-
gion of the nondominated set without using the information gathered in the
previous iterations.

Because the decision maker can freely study different nondominated solutions
and get to know the problem, it may be useful to save interesting solutions for
later consideration during the search process. This may be particularly useful if
the decision maker wants to learn more about the problem and explore different
regions of the nondominated set as mentioned above in the third item.
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4.2 Interactive Algorithm

Let us denote the set of saved solutions by A. The main steps of the interactive
hybrid algorithm can be given as follows:

1. Set i = 0 and A = ∅. Ask the decision maker to specify the number of
solutions P to be shown to her/him at each iteration.

2. Ask the decision maker to select a reference point ẑi ∈ Z5.

3. Construct a (rough) approximation of (ẑi + Rn
=)∩Z5 consisting of P solu-

tions, that is, criterion vectors.

4. Show the approximation to the decision maker. If the decision maker wishes
to save some of the solutions, add them in A.

5. If some of the points in the approximation or in A is acceptable and desirable
for the decision maker as a final solution, stop. Otherwise, if the decision
maker would like to continue with a reference point or classification based
interactive method in the current neighborhood, take the components of the
current reference point as bounds for the criteria and continue with another
method. Otherwise, go to step (2) and let the decision maker update P if
so desired.

Let us next discuss some details of the algorithm. In the first iteration, it
is possible to use the worst possible criterion values as the components of the
reference point so that the decision maker gets a rough approximation of the whole
nondominated set to start with. For this purpose, the criterion values calculated
as min{zi(x) : x ∈ X}, for all i = 1, . . . , n, (if they exist) can be used as the
first reference point. Alternatively, the nadir point can be used if it is available.
Otherwise, the decision maker can be asked to specify the smallest acceptable
values for each criterion and then these values are used as the components of the
first reference point.

It is up to the decision maker to choose the number P of nondominated
solutions (s)he wants to see in each iteration before updating the reference point.
The more solutions there are, the more accurate the approximation gets but,
on the other hand, the more difficult it is for the decision maker to study them,
and generating the approximation will be computationally more expensive. Since
in an n-criteria problem the individual function maximizers (extremal solutions)
define in general n solutions, the value of P could be reasonably selected as some
positive multiple of n. Alternatively, if the decision maker wants to specify a
desired accuracy of the approximation, the number of solutions to be generated
can be obtained based on the relative approximation error.

Let us emphasize that the value of P does not need to remain fixed throughout
the whole solution process. The decision maker may always change the number
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of solutions to be calculated in the approximation during the solution process
if so desired. An important feature making a difference between ordinary ap-
proximation approaches and our interactive method is that the approximation is
only refined in regions that are specified by the decision maker. For this reason,
comparably few points may be sufficient for the decision maker to get an idea
of the feasible alternatives. Interruptions of the approximation process and later
refinements are also possible.

Different visualization tools can be used to help the decision maker in com-
paring the different solutions in the approximation. Examples of visualizations
for three nondominated solutions involving five criteria are given in Figure 3.
This figure illustrates bars charts, bars in three dimensions, value paths, spider
web charts and petal diagrams (see, for example, Miettinen (1999), Miettinen
(2003) and Trinkaus and Hanne (2005)). By having different options available
the decision maker may choose which types of visualizations (s)he finds most
informative.

Figure 3: Different visualization possibilities

It is also possible to arrange the nondominated criterion vectors in a decreasing
order according to some of the criteria in order to help the decision maker to find
the most interesting ones. When studying the different solutions, the decision
maker can drop uninteresting solutions and filter out some of the solutions by
specifying upper or lower bounds or interesting intervals for criterion values. With
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the same visualization tools the decision maker can also study the set A where
(s)he has saved interesting solutions.

After the decision maker has identified a desirable region in the set of non-
dominated solutions, (s)he can select one of the points in the last approximation
as the final solution. Alternatively, (s)he can start an interactive reference point
or classification based method so that the bounds specified in the components of
the reference point of the last approximation are included as constraints in the
problem. In this case, the decision maker can work with the real problem and
not the approximation to fine-tune the solution by specifying her/his hopes in
the form of a reference point consisting of desirable values for each criterion or
in the form of a classification indicating what kind of changes would make the
current solution even better. Thanks to the extra constraints set on the criterion
values, the consideration now concentrates on the region found interesting in the
preceding phase done with approximations. Note that in this phase, the reference
point can be any point in the criterion space. Examples of reference point based
methods include the reference point method by Wierzbicki (1986) and reference
direction approach by Korhonen and Laakso (1986) whereas classification based
method include the satisficing trade-off method by Nakayama (1995) and the
NIMBUS method by Miettinen (1999) and Miettinen and Mäkelä (2006).

5 Updating the Reference Point

After having studied the current approximation, the decision maker may have in
mind values of the different criteria (s)he wants to use as the components of the
next reference point. If the decision maker wants to zoom in, in other words,
wants to specify a reference point closer to the nondominated set, it is possible
to show the current reference point to the decision maker and then (s)he can
indicate for which criteria and how much higher new values would be acceptable
to form the next reference point. Correspondingly, zooming out can be carried
out by specifying lower values than in the current reference point. Naturally, the
decision maker can specify any criterion values as the components of the next
reference point irrespectively of what the current reference point is. But if the
decision maker wants to zoom in or zoom out in the nondominated set, there are
different possibilities how to support the decision maker in specifying the next
reference point, that is, new minimal acceptable values for the criteria.

5.1 Guiding the Search by Selecting Nondominated Solu-
tions

One possible way to help the decision maker in specifying a new reference point
is to present to her/him a reasonably small set of candidate points as a new
reference point. For this purpose, suppose that the current approximation with
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the reference point ẑi ∈ Z5 is defined by its normal vectors d1, . . . , ds ∈ Rn, and

the approximation consists of the solutions z(x1), . . . , z(xP ) ∈ N . Appropriate
candidates for the next reference point ẑi+1 ∈ Z5 would then, for example, be
the points

z(i+1),j := ẑi + β · (z(xj) − ẑi), j = 1, . . . , P (5)

with a refinement parameter β < 1 that may also be selected by the decision
maker. Note that by setting β to be positive, we move closer to the nondominated
set, that is, zoom in. On the other hand, we can zoom out by using a negative
value.

Let us assume that the decision maker has identified the most satisfactory so-
lution z(xj) among the ones in the current approximation, that is, z(x1), . . . , z(xP )
∈ N . Then, in order to further explore the (variable-size) neighborhood of this so-
lution, the corresponding point z(i+1),j could be selected to serve as the reference
point ẑi+1 for the next iteration of the procedure.

Let us next assume that the decision maker wants to zoom in. Once a cor-
responding new reference point has been chosen, the approximation is filtered
to leave in the approximation only the solutions located in the new approxima-
tion area given by (ẑi+1 + Rn

=) ∩ Z5 such that the respective extremal solutions

(maximizing the individual criteria in the reduced feasible set) become a part of
the approximation. This can be realized, for example, by performing a direction
search according to Pascoletti and Serafini (1984) along the coordinate directions
ej, j = 1, . . . , n, starting at the new reference point ẑi+1:

lexmax (α,

n∑

j=1

qj)

s.t. z(x) = ẑi+1 + αej + q

q ∈ Rn
=

x ∈ X,

(6)

where the lexicographic maximization includes the term
∑n

j=1 qi as a second
function to be optimized to avoid weakly nondominated solutions.

If necessary, that is, if the number of solutions in the resulting approximation
is below the pre-specified number P , the approximation is refined by calculating
a new approximation with reference point ẑi+1. If function evaluations are less
costly, the approximation can be recomputed completely in the specified area.
Otherwise, the solutions of the existing approximation may be included in the
next iteration to save function evaluations. In other words, the old approximation
within the reduced feasible set is augmented in the latter case. Given the next
approximation, the refinement process is continued as described in the interactive
algorithm in Subsection 4.2.

On the other hand, if the decision maker wants to zoom out by specifying a
negative β in (5) and wants to keep the number of solutions in the approximation
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equal to the pre-specified value of P , then (s)he has to delete some of the solutions
in the existing approximation, for example, with the help of the visualization
tools. After that, as many new solutions are added to the approximation with
the new reference point. On the other hand, the decision maker can increase P

and then as many new points are added to the approximation as needed. If so
desired, the solutions maximizing the criteria individually in the new feasible set
can be added in the approximation as in the case of zooming in.

The search may be diversified by storing all candidates for possible reference
points from the previous iterations and allowing the decision maker to select one
of them (at certain stages of the procedure) as the next reference point.

Figure 4 shows an example of the above-described ideas of generating a new
reference point in problem (2). Here, the decision maker decided to zoom in at
each iteration.
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Figure 4: Updating the reference point using candidate reference points

In Figure 4, we set P = 7, in other words, we assume that the approximation is
sufficiently fine as soon as it has seven solutions. Given the initial approximation
of Figure 2 (last picture) obtained with the nadir point ẑ0 used as a reference
point, suppose that the point z(x3) is chosen by the decision maker as the most
preferred solution among the generated nondominated points z(x1), . . . , z(x7) ∈
N . Setting β = 1

2
, the reference point for the next stage of the procedure is
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ẑ1 = ẑ0 + 1
2
(z(x3) − ẑ0), see the 2nd picture in Figure 4. The approximation is

updated and refined in the resulting approximation area (see the 3rd picture in
Figure 4). After having it extended by computing three new points so that again
seven solutions are given in the refinement area (reusing old points whenever
possible), a new reference point is requested from the decision maker. Selecting
the point z(x9) for the next refinement step and setting β = 1

2
leads to the next

reference point ẑ2 = ẑ1 + 1
2
(z(x9) − ẑ1) (see the fourth picture in Figure 4),

from which the approximation is again updated and refined (see the 5th picture
in Figure 4). At this point the decision maker may be satisfied with the given
alternatives and select, for example, the point z(x̄) as the most preferred solution,
see the last picture in Figure 4.

The final approximation obtained in Figure 4 is shown in Figure 5 without
the nondominated set (which actually is unknown in real problems).
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Figure 5: Approximation obtained after two refinement steps

5.2 Guiding the Search by Selecting Lower Bounds

Using bounds to refine the search for the most preferred solutions was already
suggested by Fandel (1972) and will here be embedded into a sequential refine-
ment of approximations as described in Subsection 4.2.

If the decision maker wants to zoom in, as an alternative to the approach
described in the previous subsection, the decision maker could be asked to give
a rank order for the criteria, for example, according to how interesting they are
(which may differ from one iteration to the other). Then the components of the
next reference point are specified in this order.

Let us assume that the ranking corresponds to the numbering of the criteria.
Then the solutions z(x1), . . . , z(xP ) forming the current approximation are pre-
sented to the decision maker, and (s)he selects from these points some solution
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z(xj), j ∈ {1, . . . , P} to fix the lower bound as b1 := z1(x
j) for the first crite-

rion. The next bound (for the second criterion) is selected using a subset of the
solutions in the current approximation. This subset is of the form

{z(xk) : z1(x
k) ≥ b1, k = 1, . . . , P}, (7)

and after having a look at it the decision maker selects the lower bound for the
second criterion. This procedure is repeated until lower bounds bi have been
obtained for all i = 1, . . . , n. Smaller and smaller subsets corresponding to (7)
are shown to the decision maker in order to ensure that the bounds obtained
are feasible in the sense that the resulting vector b = (b1, . . . , bn)T lies in Z5. If
the subset to be shown decreases too fast, the decision maker can take a step
backward and select a looser bound for the previous criterion.

Consequently, the new reference point from which the approximation is recom-
puted and refined (cf. Subsection 5.1) is now given by ẑi+1 := (b1, . . . , bn)T ∈ Z5.
Figure 6 illustrates the selection of a new reference point and consecutive re-
finements of the approximation when the current approximation and its subsets
are used to get bounds for the new reference point for problem (2). The deci-
sion maker may then, for example, select the solution z(x̄) as the most preferred
solution.
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Figure 6: Updating the reference point based on bounds

The approximation obtained (without the nondominated set in the back-
ground) is depicted in Figure 7.

5.3 Guiding the Search Using Classification

One more possibility to support the decision maker in specifying the next refer-
ence point is to use classification. This means that the current reference point is
shown to the decision maker and (s)he is asked to classify the criteria into those
where the current minimal acceptable level should be

• increased from the current one,
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Figure 7: Approximation obtained after one iteration (by selecting bounds)

• decreased from the current one or

• kept the same.

Besides classification, the decision maker is also supposed to set the new lev-
els in the first two classes. In order to avoid infeasibility, this choice should be
constrained such that the new reference point still satisfies ẑi+1 ∈ Z5. For ex-
ample, the desired improvement in the respective criteria could be approximated
by moving a steplength λ towards the corresponding criteria values of a feasible
solution in the current approximation (cf. Subection 5.1). At the same time, the
reference point may be moved away by a step length of λ̄ from another feasible
solution.

The next reference point is then formed using the new as well as the current
values (if the last class is also used) for the appropriate criteria. This resembles
the classification used in interactive methods for directing the search for the
most satisfactory solution, see, for example, Miettinen (1999) and Miettinen and
Mäkelä (2006).

When the new reference point has been found, the current approximation
is once again filtered so that only the solutions in the new approximation area
(ẑi+1 + Rn

=) ∩ Z5 are retained. Using only the first and the last class means

zooming in and using the last two classes means zooming out and in those cases
recomputing and refining the approximation can be done as described in Subsec-
tion 5.1. Otherwise, if the new approximation area does not contain any of the
solutions of the current approximation the whole approximation is to be recom-
puted (with the new reference point). Figures 8 and 9 show an example of the
application of this approach.
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Figure 8: Updating the reference point based on classification

0.2 0.4 0.6 0.8 1 1.2

2.4

2.6

2.8

3

Figure 9: Approximation obtained after one iteration (using classification)

6 Numerical Example

To illustrate how our interactive hybrid method can be applied for problems with
more criteria, the bicriteria example problem (2) was extended by three objective
functions as follows:

max z1(x) = x1 + x2 − 5
max z2(x) = 1

5
(10x1 − x2

1 + 4x2 − x2
2) − 2.2

max z3(x) = (x1 − 5)(x2 − 11)
max z4(x) = −(3x1 + x2 − 12)
max z5(x) = x2

s.t. 3x1 + x2 − 12 ≤ 0
2x1 + x2 − 9 ≤ 0
x1 + 2x2 − 12 ≤ 0
x ∈ R2

=.

(8)
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This problem is nonconvex. Note that objectives 4 and 5 model a situation where
the decision maker wants to maximize functions on which bounds are set in the
constraints as well. This situation frequently occurs in practice when the role
of objective functions and constraints is interchangeable. All numerical results
were obtained using an implementation of the approximation method described
in Section 5 in Matlab 7.0.4 by Raith (2005).

We first consider a problem consisting of the first three objectives given in
problem (8). This allows us to use three dimensional graphical illustrations of the
approximations generated. Starting with an approximation of the nadir point as
the first reference point (that was computed using a pay-off table), and bounding
the number P of points generated during one approximation step by 50, we obtain
the image shown in Figure 10.
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Figure 10: Initial approximation of problem (8) with 50 nondominated points,
considering only the first three objectives

Selecting the first 12(= 3 · 4) solutions of this approximation (sorted with
respect to the first objective) for an illustration using value paths (cf. Figure
3), we obtain the result illustrated in Figure 11. Note that all the value paths
to be shown here have been scaled with the smallest and highest values of the
criteria in the set of points in question. Magnitudes in question are best revealed
by showing numerical values to the decision maker as well. It is also possible
that the decision maker sets a desirable scaling for the objectives. Let us point
out that the decision maker can select any number of solutions to be visualized.
(Because of the way the approximation is generated, using more points means
including points in areas where the approximation is least accurate.)

For the next iteration the decision maker may select, for example, the fifth
solution of Figure 11 (from left) and zoom in as described in Section 5.1, using
a zooming factor of β = 1

2
. The recomputed approximation is illustrated for 50
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Figure 11: The first 12 nondominated points that were generated in Figure 10,
illustrated by value paths

nondominated points in Figure 12. Figure 13 shows value paths for the first 12
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Figure 12: Second approximation of problem (8) with 50 nondominated points,
considering only the first three objectives

solutions generated.

Figure 13: The first 12 nondominated points that were generated in Figure 12,
illustrated by value paths

Now the decision maker may prefer to select lower bounds on the individual
objectives (cf. Section 5.2) so that the bound on the first criterion (-1.4531) is
selected based on solution 4, on the second (-0.7003) based on solution 5, and on
the third (34.0375) based on solution 9 in Figure 13 (from left). Thus, the new
reference point is ẑ2 = (−1.4531,−0.7003, 34.0375)T . The approximation was
again recomputed (see Figure 14) and the first 12 solutions are illustrated using
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ẑ
2

Figure 14: Third approximation of problem (8) with 50 nondominated points,
considering only the first three objectives

Figure 15: The first 12 nondominated points that were generated in Figure 14,
illustrated by value paths

value paths in Figure 15. This information may be sufficient for the decision
maker in order to select, for example, the eighth solution (from left) illustrated
in Figure 15 as the most preferred solution.

Let us next consider problem (8) (with five objective functions) and set P =
15 (= 5 · 3). In other words, we generate 15 nondominated solutions for each
approximation. To aid the decision maker in finding the most preferred solution
in this five criteria case, we illustrate the solutions in each iteration using value
paths. The decision maker may, in addition, select some of these solutions for
further visualizations as shown, for example, in Figure 3.

Starting again with an approximation of the nadir point (obtained using a
pay-off table), the 15 points that were generated in the first approximation are
illustrated in Figure 16. The fourth, eleventh and the last solution (from left)
are further visualized in Figure 3. Having this information available, the decision
maker may, for example, select the fourth solution shown in Figure 16 to zoom
into the approximation with a zooming factor of β = 1

2
as described in Section

5.1. The recomputed approximation is again illustrated using value paths, see
Figure 17.

22



Figure 16: Value paths for the initial approximation of problem (8) with 15
nondominated points, considering all five objectives

Figure 17: Value paths for the second approximation of problem (8) with 15
nondominated points, considering all five objectives

Now the decision maker may wish to zoom in more closely towards the fifth
solution shown in Figure 17, using a zooming factor of β = 2

3
. The recomputed

approximation is visualized in Figure 18, and the decision maker may, for exam-
ple, select the tenth solution (from left) as the most preferred solution. Let us
point out that the visualizations given in Figure 3 could be used for any set of
solutions that the decision maker finds desirable.

Figure 18: Value paths for the third approximation of problem (8) with 15 non-
dominated points, considering all five objectives

7 Conclusions

We have introduced a new interactive hybrid multicriteria optimization method
for both convex and non-convex problems where rough approximations of the non-
dominated set and reference points specified by a decision maker are combined.
In this approach we hybridize ideas of a posteriori and interactive methods. The
advantage of this new interactive learning-oriented method is that the decision
maker gets an impression of the behavior of the problem with the help of ap-
proximations and can learn about the problem without having to consider and
compare too many solutions at a time. Then (s)he can identify the most inter-
esting region of criterion values conveniently in the form of minimal acceptable
criterion values (forming a reference point). The approximation is refined only
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in such specific areas that the decision maker is interested in. The calculations
involved with approximations are fast and computationally efficient. After the
desirable region has been identified, the decision maker can fine-tune the solu-
tion with existing interactive methods that operate with the original multicriteria
optimization problem (and not the approximation) so that consideration is re-
stricted to the interesting region found. In this way, the decision maker can find
any desirable nondominated solution faster.

In the suggested new interactive algorithm, the number of optimization prob-
lems to be solved during the whole solution process can stay relatively small em-
phasizing the computational efficiency of the approach. This is explained both
by the fact that only such parts of the nondominated set that the decision maker
is interested in are studied more closely and because the current approximation
can be utilized in many cases and it is then only augmented by new solutions. In
other words, the approximation does not have to be calculated from scratch but
the existing one can be taken as a part of the new approximation. The usabil-
ity aspect is also important with interactive methods and here the information
given to and asked from the decision maker is easily understandable in the form
of criterion values. In other words, not too much cognitive burden is set on the
decision maker.
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