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Abstract

In this paper we consider the problem of locating one new facility with
respect to a given set of existing facilities in the plane and in the presence
of convex polyhedral barriers. It is assumed that a barrier is a region where
neither facility location nor travelling are permitted. The resulting non-
convex optimization problem can be reduced to a finite series of convex
subproblems, which can be solved by the Weiszfeld algorithm in case of
the Weber objective function and Euclidean distances. A solution method
is presented that, by iteratively executing a genetic algorithm for the
selection of subproblems, quickly finds a solution of the global problem.
Visibility arguments are used to reduce the number of subproblems that
need to be considered, and numerical examples are presented.

Key words: facility location; barriers; non-convex optimization; genetic algo-
rithm

1 Introduction

Location problems are not only interesting and challenging from a theoretical
point of view, they also have a variety of practical applications. As a typical
example one may think of locating a new warehouse such that the travel costs
to the suppliers and the customers of a company are minimized. In general,
the quality f(X) of a location X € R? for the new facility depends on the
distances d(X, Ex,,), m = 1,..., M, between X and a finite set of existing
facilities Ex = {Ex1,...,Exy} C R?. We will assume that the distance metric
d is induced by a norm in R2. A location X* is called optimal if it minimizes
the objective value f(X*). Throughout this paper, we consider the classical
Weber objective function and hence seek to minimize the sum of the weighted

distances between the new and the existing facilities:
min - f(X) = 30y wnd(X, Eay) 0
s.t. X eR%

The positive weights w,, € Ry, m = 1,..., M, can be interpreted as the demand
of the corresponding existing facilities, such that the objective models, in this



case, the total transportation costs.

In realistic location models, various types of restrictions and constraints
have to be incorporated in order to better represent the geographic reality in its
geometric representation. Location problems with forbidden regions have been
extensively studied and can be considered relatively well-solved (for an overview,
see Hamacher and Nickel [1995]). On the other hand, problems involving phys-
ical barriers or congestions like mountain ranges, rivers or lakes still give rise
to many open questions that are caused by the non-convexity of their objective
functions (see Sarkar et al. [2004] for problems with congestions).

Barrier regions B = vazl B; C R? impose strong restrictions on location
problems since not only the location of facilities is restricted to a feasible region
F =R?\ int(B), but also travelling is prohibited in the interior of the barriers,
resulting in non-convex distance functions. To avoid infeasible cases we assume
that By, ..., By are pairwise disjoint and closed, that F is connected and that
all existing facilities Fx1,..., Exy are in F. If a distance function d induced
by a norm ||-||, in R? is given to model unconstrained distances, the barrier
distance dg(X,Y’) between two points X,Y € F is defined as the length I(P)
(measured with respect to the given norm ||-||;) of a shortest feasible path P
connecting the two points and not intersecting the interior of a barrier:

dg(X,Y) := inf{l(P) : P feasible X-Y path}.

Note that dg is in general not positive homogenous, however, it is positive
semidefinite and symmetric and satisfies the triangle inequality. Therefore, the
barrier distance dg defines a metric on F. In contrast to the classical Weber
problem (1), the Weber problem with barriers

min er\f:lwmdg(X,Exm)
s.t. XekF

(2)

is in general non-convex.

Barriers were first introduced to location modeling by Katz and Cooper
[1981]. The authors considered a Weber problem with the Euclidean metric and
with one circular barrier. A heuristic algorithm was suggested that is based on
a sequential unconstrained minimization technique for nonlinear programming
problems. The problem was further analysed in Klamroth [2004] and it was
shown that in the case of a single circular barrier the feasible set can be sub-
divided into a polynomial number of cells, on every convex subset of which the
Weber objective function is convex.

Most of the work on location problems with barriers concentrates on special
barrier shapes or special distance functions. Assuming that all barrier sets are
polyhedra allows for the construction of a visibility graph of the existing facilities
and the extreme points of the barrier polyhedra. Two nodes u, v of this graph
are connected by an edge of length d(u,v) if the corresponding points (existing
facilities or barrier extreme points) in the plane have distance dg(u, v) = d(u,v).
This visibility graph was used by Aneja and Parlar [1994] and Butt and Cavalier



[1996] for the evaluation of the objective function value at solution points in the
context of heuristic and iterative algorithms. McGarvey and Cavalier [2003] em-
bed the results of Butt and Cavalier [1996] into an application of the Big Square
Small Square method [see Hansen et al., 1985, Plastria, 1992] to approximate
the global optimum. In Klamroth [2001a] and Klamroth [2001b] it was shown
that an optimal solution of the non-convex barrier problem can be found by
solving a finite and, in the case of line barriers, polynomial number of related
unconstrained subproblems, a result which will be used extensively in this pa-
per. A generalization to multicriteria problems was discussed in Klamroth and
Wiecek [2002].

From the point of view of special distance functions, rectilinear and, more
general, block norm distances played a central role for the development of dis-
cretization based solution procedures. Larson and Sadiq [1983] identified an
easily determined finite dominating set for rectilinear distances. This result was
generalized by Batta et al. [1989] who also included forbidden regions into the
model, and by Savas et al. [2002] and Wang et al. [2002] who located finite
size facilities acting as barriers themselves. For general block norm distances
and polyhedral gauges, discretization results were developed in Hamacher and
Klamroth [2000], Dearing et al. [2002] and Nandikonda and Nagi [2003] for We-
ber problems and center problems, respectively. Fekete et al. [2005] introduced
Weber problems with continuous demand over some given polyhedral set, possi-
bly with holes acting as barriers to travel, and the Manhattan metric. Kusakari
and Nishizeki [1997], Choi et al. [1998] and Ben-Moshe et al. [2001] focused on
computationally efficient, polynomial solution approaches for specially struc-
tured problems based on rectilinear barrier sets and distance functions. Lower
and upper bounds as well as the relative accuracy of solutions for multi-facility
Weber problems with the Manhattan metric, with and without barriers, were
discussed in Batta and Leifer [1988].

A different approach to handle the non-convexity of the objective function
can be seen in the application of global optimization methods (see Hansen et al.
[1995] for an overview). A comprehensive overview about the state of the art
in continuous location theory incorporating barriers is provided in Klamroth
[2002].

In this paper, we make use of the decomposition approach of Klamroth
[2001a] to replace the non-convex Weber problem with polyhedral barriers by
a finite series of unconstrained subproblems which can be further decomposed
into convex subproblems. It is shown that the number of such candidate prob-
lems can be significantly reduced by using visibility arguments. Although the
method is designed for location problems in the plane R? and with Euclidean
distances d(X,Y) = I2(X,Y) = /(Y1 — X1)? + (Y2 — X»)?, the theoretical re-
sults will be developed for the general case that d is induced by an arbitrary
norm in R2. To reduce the computational burden of solving a large number of
such subproblems, appropriate convex subproblems are selected using a genetic
algorithm and utilizing additional theoretical arguments whenever possible.

The remainder of this paper is organized as follows. In the following section,
the theoretical foundations for our solution method are briefly summarized, re-




ferring to Klamroth [2001a] for most of the technical details. Section 3 discusses
different possibilities of reducing the complexity of the obtained subproblems,
and the general idea of the solution method is outlined in Section 4. The em-
bedded genetic algorithm is described in some detail in Section 5, and numerical
results for well-known as well as newly developed test problems are presented
in Section 6.

2 Theoretical Background

Let {Bj,...,Bx} C R? be a finite set of pairwise disjoint, closed, polyhedral
barriers, let B := Ufil B; and F := R?\ int(B), and let P(B) be the finite set of
barrier extreme points. Two points X, Y € F are called d-visible with respect to
a given distance metric d, Y € visibleg(X) and X € visibleq(Y'), if they satisfy
dg(X,Y) =d(X,Y), i.e., if the shortest feasible path between the two points is
not lengthened by barriers. More formally, the set of all d-visible points from
X € F is given by

visibleg(X) :={Y € F: dg(X,Y) =d(X,Y)},
and the corresponding set of all not d-visible points from X € F by
shadowy(X) :={Y € F: dp(X,Y) > d(X,Y)}.

A useful property that facilitates the actual determination of shortest feasible
paths in the plane R? is the barrier touching property (BTP), that is proven,
for example, in Klamroth [2001a]:

Theorem 2.1 (Barrier Touching Property, BTP). Between any two points
X,Y € F there exists a shortest feasible path P that consists of line segments
with breaking points only in extreme points of barriers.

If there exists a shortest feasible X-Y path P such that the point Ixy €
P(B) Nvisibleg(X) is a breaking point of P, then Ix y is called an intermediate
point. If Y is d-visible from X, we set Ix y := Y. Note that, due to the BTP,
there exists an intermediate point for all pairs of points X,Y € F. The barrier
distance between X and Y can hence be computed as

dB(X, Y) = d()(7 Ix)y) + dB(I)Qy,Y).

The visibility graph of ExUP(B) can be defined as a graph G = (V(G), E(G))
with node set V(G) = Ex UP(B). Two nodes v;,v; € V(G) are connected by
an edge [v;, v;] € E(G) of length I; ; if the corresponding points in the plane are
d-visible and if I; ; = d(v;,v;). Note that the visibility graph does not depend
on the location of the new facility X. The network distances d¢(v;, v;), i.e. the
length of the shortest network paths between two nodes v;, v; € V(G), can thus
be computed before the optimization process is started.



If the intermediate point Ix g, on the shortest feasible path from the new
location X to an existing facility F,, is known, the barrier distance dg(X, Fx,,)
can be computed as

dB(X7 Exm) = d(X, IX,E;Em) + dG(IX,E$m7 Exm)

This observation motivated a subdivision of the Weber problem with barriers
(2) into a finite series of unconstrained subproblems, defined with respect to
different candidate sets for the respective intermediate points, see Klamroth
[2002]. A slightly modified partition of the feasible set into so-called candidate
domains will be used in this paper:

Definition 2.2 (Candidate Set and Candidate Domain). For a given point
X € F, let T := (Ex UP(B)) Nvisibleg(X) be the set of all existing facilities
and barrier extreme points that are d-visible from X. T is called the candidate
set of X. The set

R:={Y e F:(ExUP(B)) Nvisibleg(Y)=Z} £ 0

1s called the candidate domain of X. The set of all candidate domains is denoted
as R.

Lemma 2.3. The set of all candidate domains defines a partition of the feasible
region F, since for R = {Ry,..., Ry}, the following holds:

L. U R=F
2. Ri,RjER,i7éj$Riij:@.

Proof. 1. Let X € F, and let 7 := (ExUP(B))Nvisibleq(X) be the candidate
set of X. Then there exists R € R with X € R, namely

R={Y e F: (Ex UP(B))Nvisibleq(Y) = I}.

2. Let R;, Rj € R, i # j, be two candidate domains, and suppose that there
exists a feasible point X € F with X € R; N R;. Let Z = (Ex UP(B)) N
visible4(X) be the candidate set of X, then

Ri={YeF: (ExUP(B))Nvisibleq(Y) =7} = R;

in contradiction to R; # Rj, thus proving that R; N R; = 0.
O

Consequently, the feasible region F can be partitioned into pairwise disjoint
candidate domains such that the candidate sets Z remain constant within each
of them. Since the number of existing facilities and barrier extreme points is
finite, the number of candidate domains is also finite, and can be bounded by
the cardinality of the power set P(£xUP(B)). Depending on the given distance
function d, this number can be further reduced using similar arguments as in



Klamroth [2002]. This implies that the facility location problem with barriers
can be reduced to a finite series of unconstrained subproblems, each of which is
defined on a candidate domain R € R.

In order to formulate the corresponding subproblems, let X € F and let
R € R be the candidate domain of X and 7 the candidate set of X. Wlog
let T = {hL,..., I}, 0 < k < |ExUP(B)|. We define binary variables yjn,,
m=1,....,.M,i=1,...,k, as

] 1 if I; is assigned to Ex,, as intermediate point Ix gz, ,
Yim 0 otherwise.

Then a subproblem of (2) on the candidate domain R can be formulated as

min M (ZL Yimwim [d(X, 1) + di(L;, Exm)])

s. t. X eR 3)
Zf:lyimzl, mzl,...,M
Yim € {0,1}, m=1,...,M, i=1,... k.

Note that in this formulation, the Weber objective function can be rewritten as
a sum of two terms, the first of which depends on the continuous variables X
and does not contain barrier distances. The second term of the sum remains
constant as long as the selection of intermediate points remains unchanged:

min M S i d(X, L)+ XM S i wmds (L, Exy,)

s. t. XeR 4)
Zf:lyim:]q mzl,...,M
yim €10,1}, m=1,...,.M, i=1,... k.

Observe that the integrality constraints for the binary variables y;,, can be
relaxed to yim € [0,1], m =1,...,M, ¢ =1,... k. This relaxation of problem
(4) is bi-convex in the sense that, for fixed y, the problem is convex in the
location variables X, and for fixed X, the problem is convex in the assignment
variables y. When solving problem (4) for all candidate domains, all local and
consequently all global optimal solutions of the Weber problem with barriers (2)
can be determined since the union of all candidate domains equals the feasible
region.

3 Reduction of Candidate Sets

The main difficulty in solving the subproblems (4) lies in the determination
of the binary assignment variables y;p,, m = 1,..., M, ¢« = 1,...,k, or, in
other words, in the identification of the optimal intermediate points for a given
candidate domain. Solution times can be improved significantly if we succeed in
reducing the number of these assignment variables. In the following, visibility
arguments will be applied to reduce the candidate sets for intermediate points
and thus the solution space of (4).



Definition 3.1 (Projection Point). Let X,Y € F be two feasible points. If
there exists o feasible X-Y path P such that Pxy € F NP(B) is the last point
on P that is d-visible from X, then Pxy is called an X-Y projection point. If
Y is d-visible from X, we set Px;y =Y. The set of all X-Y projection points
is denoted as Px,y.

Theorem 3.2 (Projection Point Property). For two feasible points X, Y € F
there exists a shortest feasible X-Y path P that satisfies the following property:
P satisfies the BTP with a breaking point at a projection point Pxy € Pxy.

Proof. If X and Y are d-visible, then Pxy = Y and the property is shown.
Thus, let Y € shadowy(X). Due to the BTP there exists a shortest feasible X-Y
path P that is piecewise linear and has breaking points only at points I € P(B).
Wilog let the parametrization of the path P be given by p : [0,1] — R? with
p(0) = X and p(1) =Y. Let A := inf{\ € [0,1] : p(JA,1]) C shadowy(X)}.
Then A < 1 since Y € shadow,(X), and

p(A) € visibleg(X) and p(JA,1]) C shadowy(X).

Set Pxy :=p(A) € P(B). It remains to show that Px y is a breaking point of
the path P. For this purpose, let I,, € P(B) U{Y} be the next breaking point
of the path P after Pxy in direction to Y, and let I, € P(B) U {X} be the
previous breaking point of P before Px y. (If there are no breaking points on the
respective subpaths, we set I, :== Y and/or I, := X.) P is piecewise linear and
consequently contains the line segments [I,, Pxy] and [Px y,I,]. Moreover,
I, € visibleq(X) (since P is a shortest feasible path and Pxy € visibleqs(X)),
and hence all points on the halfline h starting at I, and passing through Px y
are d-visible from X (see Klamroth [2001a]), while |Px y,I,] C shadowy(X).
This implies that the segment |Py vy, I,] must have an empty intersection with
h, and hence the path P must have a breaking point at Py y. O

Applying Theorem 3.2 to the subproblems (4) immediately implies the fol-
lowing result:

Theorem 3.3. Let X € F, let Z be the candidate set of X and let R € R
be the candidate domain of X. Then there exists an optimal assignment of
intermediate points to existing facilities such that for all m = 1,..., M the
intermediate point on the shortest feasible path to Ex,, is an X -Ex,, projection
point.

Observe that the set of X — E'z,,, projection points Px, g, remains constant
over the candidate domain of X, i.e., Px, gz,, = PEs,, CZ for all X € R, since
the set of visible barrier extreme points and existing facilities is constant over R.
Hence Theorem 3.3 suggests the consideration of different subsets of candidates
for intermediate points, depending on the existing facility that is to be reached.
Therefore, let Z,, denote the candidate set for intermediate points with respect
to an existing facility Ex,,, m € {1,..., M}, and a given candidate domain R.
An easily applicable consequence of Theorem 3.3 is thus the following corollary:



Corollary 3.4. Let X € F and R € R be the candidate domain of X. Let
Ex,, € Ex be an ezisting facility. If Ex,, € visibleq(X), the candidate set Z,,
can be set to I, = {Exy}. Otherwise the intermediate point to Ex,, can be
chosen out of the reduced candidate set 1,, = Px Ea,,-

Using the following technical lemma, we will show that the candidate sets
Im, defined with respect to an existing facility Ez,, and a candidate domain R,
can be also reduced using simple ordering arguments.

Lemma 3.5. Let X,Y € F be two feasible points, and let I, Iy € visibleg(X)
be two feasible points that are d-visible from X. If there exists a shortest feasible
I,-Y path P such that I € P, then

d(X, L) +dg(11,Y) > d(X, I5) +dg(l2,Y).
Proof.

dg(X, ) +dg(fh,I5)

d(X,I) +dp(I1, I>)

& d(X, 1) +dg(I1, I) + dp(I2,Y)
28P d(X, )+ ds(l,Y)

dg(X, I2)

d(X,I5)

d(X, I2) + dp(l2,Y)
d(X, ) +dg(I2,Y).

I, ,Ix€visibleq(X)
54

VvV IV IV IV

O
We hence obtain for the subproblems (4):

Theorem 3.6. Let X € F and let R € R be the candidate domain of X. Let
Ex,, € Ex be an existing facility. Let I,Is € T, I1 # I3 be two points of
the candidate set with respect to Ex,, and R. If there exists a shortest feasible
Ii-Ex,, path P such that I € P, then the candidate set L, can be replaced by

I \ {11}

Proof. For all X € R we have X € (visibleg(I1) N visibleg(I2)). Thus Lemma
3.5 implies that

d(X, Il) + dB(Il, EIm) Z d(X, IQ) + dB(IQ, E.Im)
for all X € R. Two cases may occur:

1. For all XeR, there is no feasible X-E=z,, path with a breaking point in Iy
that is a shortest feasible X-FEx,, path. Then I; is no candidate for an in-
termediate point in an optimal solution of the corresponding subproblem.

2. There exists X€R and a feasible X-FEx,, path with breaking point I; that
is a shortest feasible X-Fx,, path. Then the path whose subpath from
I; to Ex,, is replaced by the shortest feasible I;-Ex,, path that has a
breaking point in I5 is also a shortest feasible X-Fx,, path. Hence, I> can
be chosen equivalently as assigned intermediate point instead of I;.

In both cases the candidate set Z,, can be replaced by Z,, \ {I1}. O



The solution method presented in the followings section makes use of Corol-
lary 3.4 and of Theorem 3.6 to reduce the candidate sets Z,,, m = 1,..., M,
on a given candidate domain R. While the identification of projection points
generally requires additional computational effort, Theorem 3.6 is easily ap-
plicable since for I € P(B) the network distances dg(I, Exy,), m = 1,..., M,
in the visibility graph are computed using shortest paths algorithms like the
Algorithm of Dijkstra. Consequently, the intermediate nodes (corresponding to
possible breaking points) of the shortest network paths can be determined with
no additional costs. A barrier extreme point I that is d-visible from all points
in a given candidate domain can be deleted from the candidate set Z,, if there
exists at least one other barrier extreme point on the shortest I-Ex,, path that
is d-visible from all points in R.

The numerical experiments that are summarized in Section 6 show, that
the determination of individual candidate sets Z,,, = {Lpr,..., Ly } C T for
each of the existing facilities Fz,, € £x allows in most examples a cons1derable
reduction of the number of binary variables in the subproblems (4), which can
now be written as

min 3,0, E; 1 YimWmd(X, Lim) 4 Yo Z] 1 YimWmdp(lim, Exp)

st. XER (5)
km,
>l ym =1 m=1,....M
Yim € {0,1}, m=1,...,. M, j=1... k.

4 The Solution Method

The solution method for Weber problems with polyhedral barriers and Euclidean
distances presented in this section combines the decomposition into subproblems
of type (5) as described in the previous sections with an iterative solution pro-
cedure similar to the FORBID algorithm presented in Butt and Cavalier [1996].
While FORBID works with a partition of the feasible region into regions of
constant intermediate points, i.e., into regions where the intermediate points on
shortest feasible paths to all existing facilities remain constant, we suggest the
utilization of the (in general much larger) candidate domains where only visibil-
ity properties remain unchanged. Analogous to FORBID, the method allows a
computation across the domains and does not require the explicit computation
of the candidate domains.

Appropriate assignments of intermediate points in the respective candidate
domains are found by solving relaxed versions of the corresponding subproblems
(5): In iteration f, f € N, for a given feasible point X/ the subproblem for the
candidate domain R/ of X/ is solved, where the constraint X € R/ is relaxed
in order to obtain an unconstrained problem. Let the optimal solution of the
subproblem in iteration f be denoted by X/*!. Two cases may occur:

1. X/t € Rf. Then X/*! is a global minimizer of the corresponding sub-
problem and thus at least a local minimizer of the location problem (2).



2.

X7+l ¢ Rf. In this case further subproblems have to be solved.

The overall solution method can be outlined as follows:

Algorithm 4.1.

Input:

Step 0:

Step 1:

Step 2:

Step 3:

Setp 4:
Setp 5:

Output:

Weber problem with polyhedral barriers (2) in R? with distance metric d,
feasible solution X° € F.

Set f:=0.
Compute the barrier distances in the visibility graph G of Ex U P(B).
Compute the subset T/ C Ex UP(B) that is d-visible from X7 .

Determine appropriately reduced candidate sets I,, CIT/, m=1,...,M.
Set k= |Tm| < |Zf|.

Solve the mized-integer optimization problem
. M Eum M Em
min - > > Yimwnd(X, Ii;") 2 me1 2250 yjmwde(Ii;"vExm)

s. t. Z;ﬂzlyjmzl, m=1,...,M, (6)
yim € {01}, m=1,....M, j=1,... kn.

Let the solution be denoted by (X7T1 y/*1).
If X/*! ¢ int(B), B € B, solve the continuous optimization problem
. M km  f
min Em:l Ej:l y]jilwmd(Xv Ii}“)
s.t. X €9(B).
Set X1 to the solution of this problem.

Determine the subset T/ 71 C (£x U P(B)), that is d-visible from X/*1.

IfTIHY £ T set f=f+1 and go to Step 1.
Else set X* := X7+ and terminate.

X™*, a local optimal solution of (2).

In this algorithm, similar to FORBID, comparably few optimization prob-
lems have to be solved. In contrast to FORBID where pure location problems
and pure allocation problems (allocating intermediate points to the existing fa-
cilities) are solved iteratively, location and allocation problems are interwoven
in Algorithm 4.1 in the form of the mixed integer formulations of subproblems
(6). This yields a more global approach, while still using the geometry of the
problem to split the non-convex problem (2) into smaller, easier tractable sub-
problems. The disadvantage of solving mixed integer programming problems
instead of purely continuous and/or convex subproblems can be counteracted
by the reduction of the candidate set, c.f. Section 3.

10



Algorithm 4.1 was implemented for the case of Euclidean distances d = l5. In
this case, the mixed integer programming problems (6) are approximately solved
using a dexterous combination of a genetic algorithm (for the determination of
the assignment variables y) and the Weiszfeld procedure (for the corresponding
determination of the location variables X). More precisely, the two solution
methods are combined to solve the subproblems (6) as follows:

e A genetic algorithm is used to determine appropriate intermediate points
from the candidate sets Z,, to the existing facilities Fx,,, m=1,..., M,

e Three different variations of the Weiszfeld procedure are applied in dif-
ferent stages of the solution method. Firstly, improved locations X are
computed by single Weiszfeld iterations before evaluating the quality of
every considered assignment of intermediate points in each generation step
of the genetic algorithm. Secondly, every run of the genetic algorithm is
followed by one Weiszfeld procedure to optimize the location variables X
with respect to the optimized assignment of intermediate points. Thirdly,
a variation of the Weiszfeld procedure is used if the optimized location
X in Step 3 lies in the interior of a barrier B € . Then the best solu-
tion on J(B) is determined by solving problem (7) on every line segment
b € 9(B), and selecting the best solution found. The optimal location on
a line segment can be found by optimizing only one location variable of
X = (x1,22) and determining the other variable such that X lies on the
line containing the segment b. Since problem (7) is convex on every line,
in case an iterate X lies outside the segment b the corresponding (closest)
end point of b is chosen as optimal solution of this subproblem.

This approach is repeated until the optimal location variables X are located
in the same candidate domain as in the previous iteration, i.e. if no improved
assignment of intermediate points is found. The details of the implemented
genetic algorithm are described in the following section.

Since it can not be guaranteed that Algorithm 4.1 terminates with a global
optimal solution of problem (2), it may be restarted with different starting
solutions in order to improve the quality of the solution.

5 Application of the Genetic Algorithm

Genetic algorithms are inspired by the process of evolution and were first intro-
duced by Holland [1975]. They search the solution space in parallel, working
with whole sets of feasible solutions, the so called population, rather than with
individual solutions. By iterating between consecutive generations, they try
to generate better solutions by combining and/or modifying good solutions, in
order to gradually progress towards the optimal solution.

Genetic algorithms have been only rarely applied to location problems. With
respect to the assignment part, the implementation suggested here has some sim-
ilarity to a recent method presented in Topcuoglu et al. [2005] for the solution of

11



uncapacitated, discrete hub location problems. Different from their approach,
the representation of solutions in our method is exclusively based on an encod-
ing of the assignment information. A corresponding location solution is only
implicitly used for the evaluation of the fitness of the respective assignment.
The genetic algorithm is applied in Step 2 of Algorithm 4.1 for the solution
of the subproblems (6). With the notation used in Algorithm 4.1, the genetic
algorithm solves the following optimization problem in each iteration step:

min  f(Ly,... Lyy) =M (X, 1) + d (L, , Bz, @)
s.t. I, €Zp, m=1,..., M,

Here, the optimization variable I;  denotes the candidate from the set Z,,, that is
chosen as an intermediate point to the existing facility Ez,,, where the candidate
sets Z,,, m = 1,..., M, determined in step 1 of Algorithm 4.1, are reduced
according to the results presented in Section 3. If, for example, Ez,,, m €
{1,..., M}, is d-visible from X, then Z,, = {Ez,,} (c.f. Corollary 3.4). In this
case, the variable I,, is fixed to I,, = Ex,,. If Ex,, is not d-visible from X, the
numerical results obtained by Theorem 3.6 are applied to reduce the candidate
set and obtain subproblems that can be solved efficiently.

Besides the coded assignment solution, every individual additionally consists
of a test point which represents the location variable X € R? in problem (8).
For a constant test point X (that is identical for all individuals) the optimal
solution of this problem identifies the intermediate points from X to the existing
facilities. However, since we seek to find the optimal X*-FEx,, intermediate
points, m = 1,..., M, where X* is an optimal solution of (6) and in general
unknown, the test point has to be chosen and changed in an appropriate way.
For this purpose, the test points of the individuals are varied in each generation
step as follows:

e In the initial population, the test point of every individual Ind is set to
the solution obtained in iteration f of Algorithm 4.1, X4 := X/,

e Before evaluating the fitness of each individual in the beginning of a
generation step of the genetic algorithm, the test point of each individ-
ual Ind is improved separately with respect to its intermediate points
(Liy, -, 1iy, ) ind by executing one single iteration of the Weiszfeld algo-
rithm, i.e., Xjnq := W(Xna). Therefore, improved test points Xp,q are
obtained with little computational expense in each generation.

e But also during the recombination phase the test points are varied. If two
individuals Ind; and Inds are selected for recombination, their test points
Xina, and Xng, are varied by intermediate recombination:

Xind, = px-Xma, + (1—px)  Xind,
Xina, = px-Xing, + (1—px)  Xindis

where px € [0.5,1] is a given input parameter.
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During the other stages of the generation steps of the genetic algorithm, the
test points remain unchanged. Note that they are thus changed in a deter-
ministic way for given assignments of intermediate points. The assignments
of intermediate points, i.e. the actual optimization variables, are processed as
follows:

Initialization: Individuals are initialized with random values I; € Z,,, m =
1,..., M.

Fitness Values:

1. First the function value

S

froa = F(iys s Lo inas Xrna) = > 1o (X, 1) + de (L, , B

m=1

is computed for all individuals Ind by means of their correspond-
ing test points Xrnq. Note that f((Zi,...,1i,, ), X) does in general
not correspond to the objective function value of X in the location
problem (5).

2. We apply a fitness function called linear ranking to map the values
of frnq to the actual fitness values.

Selection: The stochastic universal sampling method as well as the tournament
selection technique have been applied. Since no significant difference was
observed, the computational results presented in Section 6 are based on
stochastic universal sampling.

Recombination: In contrast to the test points, the assignments (I;,, ..., ;,,)
of each pair of selected individuals is recombined using uniform crossover.

Mutation: To make sure that every valid solution can be reached a mutation
operator is applied. With a certain probability every gene, i.e. every inter-
mediate point I;,, € Z,, is changed to a random but valid point I; € Z,.

Reinsertion: Subsequently, the individuals are reinserted in the population.
The user can decide whether the whole population shall be replaced, or
whether the fittest individuals of the previous generation shall survive
(which implies elitist selection), and whether all new individuals shall be
incorporated into the population or only the best.

Termination: One stopping criterion is an upper bound on the number of
generations, the other an upper bound of identical individuals representing
the best known solution.

Once the genetic algorithm terminates, the Weiszfeld algorithm is applied
to the best assignment of intermediate points (I;,, ..., I;,, ) rnd, using the corre-
sponding test point X, as starting solution.
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6 Computational Experience

All of the computations presented in this section have been run on an Intel
Pentium 4, 2.66Ghz, 512MB RAM computer. The solution method was imple-
mented in Matlab. All results were found by one single computation. Since
genetic algorithms have a stochastic component, the results may vary if the
computations are repeated. All problems considered are single facility Weber
problems of type (2) with polyhedral - or polyhedral approximated - barriers
and Euclidean distances.

6.1 The First Example Problem from Katz and Cooper
[1981]

ExZ

12 b

101

-10 -5 0 5 10

Figure 1: The first example problem from Katz and Cooper [1981], the level
curves of the objective function and the computed solution. The circular barrier
was approximated by an 128-sided equilateral polygon from the inside.

Problem data:

e Five existing facilities with weights w; = 1, ¢ = 1,...,5, and coordinates
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(—8.0,-6.0), (—7.0,13.0), (—-1.0,—5.0), (6.6, —0.5), (4.4,10.0).
e One circular barrier with center at (0,0) and radius 2.

As our solution method only works with polyhedral barriers, the circle has been
approximated by an equilateral polygon with up to 512 extreme points, both
from the outside and from the inside. The results are presented in the table
below. In the case of 16 extreme points, the solution is identical to the one
found by Butt and Cavalier [1996]. For the improved approximations with up
to 512 extreme points, the solution found in Klamroth [2001a] for the original
circle could be validated.

| [P(B)] ] X | f(X*) [ # iterations | time (s) ]
approx. from outside:
16 | (-1.201580,2.077647) | 48.281797 2 0.078
32 | (-1.190873,2.067660) | 48.261460 3 0.141
64 | (-1.185968, 2.062756) | 48.256464 5 0.250
128 | (-1.186446, 2.060556) | 48.255225 4 0.250
256 | (-1.186174,2.060530) | 48.254917 5 0.510
512 | (-1.186063,2.060519) | 48.254840 5 0.922
approx. from inside:
512 | (-1.186050, 2.060516) | 48.254802 5 1.031
256 | (-1.185953,2.060508) | 48.254764 5 0.485
128 | (-1.185897,2.060503) | 48.254609 4 0.265
64 | (-1.186927,2.058351) | 48.253988 4 0.203
32 | (-1.181308,2.057875) | 48.251504 3 0.125
16 | (-1.181308,2.057875) | 48.241865 2 0.078

Observe that, particularly for this example problem, a drastic reduction of
the size of the candidate set based on Theorem 3.6 is possible. If an existing
facility Ex,,, m € {1,...,5}, is lo-visible from the currently considered solution
X7/ (and from the corresponding candidate domain R”), then the candidate set
Z,, contains only the existing facility Ez,, itself. If, on the other hand, the
existing facility Ex,, is behind the polyhedral approximation of the circular
barrier (as viewed from X /), then |Z,,| = 2 since it is sufficient to choose the
intermediate point out of those two extreme points of the barrier that are lo-
visible from X/ and located on d(shadow;, (X /)). In both cases, the cardinalities
of the candidate sets are very low, and consequently only a small number of
individuals is needed in the genetic algorithm for an exhaustive search of the
solution space.

The above computation times do not include the preprocessing phase where,
among others, network distances and shortest paths in the visibility graph have
to be computed. Depending on the accuracy of the polyhedral approximation
of the circular barrier, this took between 0.031s (for the approximation with 16
extreme points) and 27.328s (for 512 extreme points).
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Figure 2: The second example problem from Katz and Cooper [1981], level
curves and the computed solution. The circular barrier is approximated by an
128-sided equilateral polygon from the inside.

6.2 The Second Example Problem from Katz and Cooper
[1981]

Problem data:

e Ten existing facilities with weights w; = 1,4 = 1,...,10 and coordinates
(87 8)7 (57 7)7 (674)7 (_37 5)7 (_67 6)7 (_3= _4)= (_57 _6)7 (_87 _8)7 (57 _5)7
(8,—8).

e One circular barrier with center at (0,0) and radius 3.

Katz and Cooper [1981] report eight local minima with function values from
76.558 to 79.225.

To apply the solution method to this location problem, the circular barrier
was approximated by 16- and 128-sided equilateral polygon from the outside and
the inside, respectively. The results are present in the table below. Additionally,
we performed a grid point computation for the example problems with about

16



10 points, i.e. with a distance of less than 0.2 between two adjacent grid points
in this example. When approximating the circle by a 128-sided polygon, the
minimal function values of the grid points were 88.36 when approximating from
the inside and 88.39 when approximating from the outside, respectively. These
values validate the solutions indicated in the table, but contradict the results in
Katz and Cooper [1981].

| [P(B)] ] X f(X™) | # iterations | time (s) |
approx. from outside:
16 (3.324784, -0.085586) | 88.468917 2 0.156
128 (3.307095, -0.067167) | 88.325077 4 0.453
approx. from inside:
128 (3.305932, -0.067746) | 88.321938 4 0.422
16 (3.303454, -0.062217) | 88.249042 1 0.157

6.3 The Numerical Example from Aneja and Parlar [1994)]

14

18

Figure 3: The example problem from Aneja and Parlar [1994] with all barriers,
level curves and the computed solution. Note that the non-convex barriers are
replaced by their convex hulls.

Problem data:
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e 18 existing facilities with weights w; =1,i=1,...,18:

(L2 (28 (3,12) (55 (6, 1) (611
(7,4) (88 (9 1) (95 (910 (10,12)
(14,2)  (14,4) (16, 8) (17,4) (17,10)  (19,13)

e Barriers: Polyhedral sets with (clockwise sorted) extreme points:

Bi :((1,5),(3,5),(4,3),(5,4),(6,2),(2,1))
Bs :((178)7(37 7)7(276))

B3 :((179)7(2711)7(57 10)»(3> 8))

Bi :((4,6),(4,8),(7,11),(8,9))

Bs :((4,11),(4,13), (5,14), (9,14), (10, 13))
Bg :((675)7(67 7)7(77 7)7(7> 5))

By :((7,2),(8,3),(9,2))

Bs :((9,8),(10,10), (13,13), (16, 13), (15, 7), (10, 6), (12,9))
By :((12,2),(12,3),(13,3), (13,2))
Bio:((9,4),(19,8), (19,6))
Bii:((16,1),(16,3),(19,3), (18, 1))
Biz:((18,11),(18,12), (19, 12), (19, 10)).

Aneja and Parlar [1994] solved this location problem (and also similar ones
that are defined by omitting certain barriers in the above example) using simu-
lated annealing. Butt and Cavalier [1996] also examined this example problem
(with all twelve barrier sets), and verified the solution found by Aneja and Par-
lar [1994]. Even though this example problem contains two non-convex barriers
(B; and Bs), solution methods designed for problems with convex barriers can
be applied since, as was already shown in Butt and Cavalier [1996], the two
non-convex barriers By and Bg can be replaced by their convex hulls without
changing the optimal solution.

Due to the size of the problem with comparably many barrier sets, the
candidate sets Z,, that are used during the solution process are much larger
than in the previous example. Consequently, in order to search the solution
space effectively, a larger set of individuals has to be used in this case. Even
though a relatively bad initial solution at X = (0,0) was used analogous to
Aneja and Parlar [1994], Algorithm 4.1 converged to the global optimum within
only a few iterations. The solutions found are identical to those determined in
Aneja and Parlar [1994], at least up to the fourth digit:

barriers X* f(X™) # iterations | time (s)
Bi-Biz | (8.7667, 4.9797) | 119.1387 4 34.485
Bi1-Bio | (8.7667, 4.9797) | 119.1047 4 36.157
B1-Bsg (9.1873, 5.4860) | 116.3976 4 21.219
B1-Bg (9.2658, 6.2527) | 114.5610 4 10.781
B1-By (9.2173, 6.1528) | 113.7656 3 2.547
B1-B» (9.0372, 6.1150) | 111.6889 3 0.938

0 (8.9127, 6.3554) | 110.0068 1 0.282

18



6.4 A new Series of Example Problems

In order to benchmark our implementation, a series of test problems that are
computationally difficult for Algorithm 4.1 was constructed with the following
problem data:

e m existing facilities, uniformly distributed on a circle with center (0,0)
and radius 10, with weights w; = 1,71 =1,...,m.

e Six equilateral polyhedra, each of them having k extreme points and ap-
proximating one of the following circular barriers from the inside:

circle B B, Bs B, Bs Bs
center | (5,-2) | (5,3) | (-5,2) | (-3-4) | (0,6) | (2:-5)
radius 1.0 1.2 1.4 1.6 1.8 2.0

This example problem has been solved for different values of m and k:

e 5 existing facilities and 10-sided barriers:

# individuals | determined solution X* | f(X*) | iterations | time (s)
10 (-0.67627,-0.098415) 50.4206 8 2.187
50 (-0.67627,-0.098415) 50.4206 3 7.312
100 (-0.67627,-0.098415) 50.4206 3 14.609

More iterations are needed if fewer individuals are used. However, the
computation time for the genetic algorithm is considerably smaller in this
case.

e 10 existing facilities and 20-sided barriers:

# individuals | determined solution X* | f(X*) | iterations | time (s)
10 - termination after 100 iterations - 100.235
50 (10.44115,0.49830 ) 101.0068 4 25.547
100 (-0.44642,0.052173) 100.5583 3 49.859

Grid point evaluations over the whole feasible set imply that the problem
has only one global minimum and a smooth and simple structure in its
neighborhood. Nevertheless, Algorithm 4.1 is relatively inefficient in this
example. It even fails completely in the 10 individuals case, due to the
large solution space with many candidates for intermediate points.

e 20 existing facilities and 20-sided barriers:

# individuals | determined solution X* | f(X*) | iterations | time (s)
10 - termination after 100 iterations - 450.547
50 (-0.56934, 0.16814 ) 202.0180 16 493.625
100 (0.17331,-0.061936) 202.1580 3 160.453
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Figure 4: The example problem for m = 5 and k = 10.

As in the previous example, the solution method cannot find a solution
if the genetic algorithm is run with only 10 individuals. It still works
satisfactorily with 100 individuals.

40 existing facilities and 5-sided barriers:

# individuals | determined solution X* | f(X*) | iterations | time (s)
10 - termination after 100 iterations - 1278.766
50 (-0.028532,-0.022809) 402.9187 3 212.1
100 (-0.028532,-0.022809) 402.9187 2 294.6

This example turns out to be easier to solve than the previous ones. The
method needs surprisingly few iterations to find a good solution in this
case. Although each individual has 40 genes, each gene can take on only a
relatively small number of feasible values since the barrier sets have only
a small number of extreme points.
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Figure 5: The example problem for m = 10 and k = 20.

7 Conclusions

We developed a solution method for single-facility Weber problems with poly-
hedral barriers that is based on a partition of the feasible region into candidate
domains which are defined based on visibility properties. This partition al-
lows a reduction of the non-convex problem into a finite series of mixed integer
programming problems that consist of the simultaneous determination of an
optimal location in the selected candidate domain and of an optimal assign-
ment of appropriate intermediate points on the paths to the existing facilities.
Possible ways of reducing the complexity of these subproblems are discussed,
and a genetic algorithm is presented that approximates the optimal solution in
the case of Euclidean distances. Numerical experiments show that the result-
ing algorithm is efficient and achieves a very high solution quality in all of the
considered test problems.

Moreover, further numerical tests showed that the algorithm performed very
well as a subroutine in alternate location and allocation algorithms for multi-
facility location-allocation problems with polyhedral barriers.
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Figure 6: The example problem for m = 20 and k = 20.
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