Algorithm 7.6: Branch and Bound Algorithm to solve the TSP

(Input) G = (N, A) complete (di-)graph; cost coefficients $c_{ij} \ \forall (i, j) \in A$.

(1) Initial solution:

Determine a Hamiltonian tour by some heuristic algorithm; let z^* be its objective value (upper bound).

(2) Initial relaxation:

 $Solve \ the \ relaxed \ problem \ without \ the \ subtour \ elimination \ constraints;$

let \bar{z}_1 be its objective value (lower bound).

If $\bar{z}_1 \geq z^*$ (STOP), the heuristic solution is optimal.

Otherwise, node P_1 of the Branch and Bound tree represents the present problem and is the only live node.

(3) Branch and Bound procedure:

Does any live node exist in the solution tree?

If yes: Choose a live node P_k with the best lower bound, and goto Step (4).

If no: The best known feasible tour is optimal. If no such tour is known, then there exists no feasible tour.

(4) Does the solution represented by node P_k include subtours?

If yes: Goto Step (5).

If no: (STOP), the solution in node P_k is optimal.

(5) Branching:

Let the subtour with the smallest number of arcs not already fixed at 1 be the tour $(1,2,\ldots,r,1)$. Branch from node P_k to nodes $P_{s+1},P_{s+2},\ldots,P_{s+r}$, so that, in addition to the variables fixed earlier, at the node P_{s+1} we set $x_{12} := 0$, and at each node P_{s+j} , $j=2,\ldots,r$, we set $x_{j,j+1} := 0$ (where $x_{r,r+1} = x_{r,1}$) and $x_{i,i+1} := 1 \,\forall i=1,\ldots,j$ (all arcs before the excluded arc will be included in the tour).

(6) Bounding:

For each node P_{s+i} do:

Solve an assignment problem including the variables preset in Step (5).

Let its objective value be denoted by \bar{z}_{s+j} .

If $\bar{z}_{s+j} \geq z^*$, disregard the node P_{s+j} (fathoming).

If $\bar{z}_{s+j} < z^*$ and the solution includes no subtours, set $z^* := \bar{z}_{s+j}$.

If $\bar{z}_{s+j} < z^*$ and the solution includes subtours, the node P_{s+j} is live.

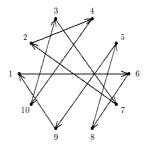
Goto Step (3).

(Output) Optimal TSP tour.

Example 7.7:

Consider the following TSP with n = 10 and distance matrix $C = (c_{ij})$:

One of the solutions of the assignment problem contains the two subtours (6, 8, 5, 9, 1, 6) and (2, 4, 10, 3, 7, 2) and has a total cost of 18:



Branching is done on the first of these subtours and r = 5 subproblems are created from node P_1 , with the following sets of included and excluded arcs:

Node P_2 : $x_{68} = 0$

Node P_3 : $x_{85} = 0$; $x_{68} = 1$

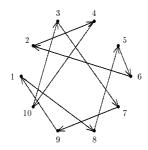
Node P_4 : $x_{59} = 0$; $x_{68} = x_{85} = 1$

Node P_5 : $x_{91} = 0$; $x_{68} = x_{85} = x_{59} = 1$

Node P_6 : $x_{16} = 0$; $x_{68} = x_{85} = x_{59} = x_{91} = 1$.

The solutions of the corresponding assignment problems have objective values of 18, 19, 18, 19 and 19, respectively.

The process continues selecting a live node with the lowest objective value, e.g., node P_2 . The solution generated at node P_2 consists of the two subtours (7,2,7) and (1,6,4,10,3,8,5,9,1). Branching is therefore done on the first of these subtours. The first of the two resulting subproblems with $x_{72} = 0$ (in addition to $x_{68} = 0$) yields the Hamiltonian circuit (1,8,5,6,2,4,10,3,7,9,1) with cost 18. As node P_7 is one of the live nodes with lowest objective value, it is therefore optimal.



The branching tree is shown below:

