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Preliminary Concepts and Results: Positive Semigroups

A real vector space X is called an ordered vector space if a partial order
” ≤ ” is defined in X such that

x ≤ y in X ⇒ x + z ≤ y + z for all z ∈ X , and
λx ≤ λy for all 0 ≤ λ ∈ R.

Given such a partial order, the positive cone of X is defined by

X+ = {x ∈ X | x ≥ 0}

[X+ is a cone: αx + βy ∈ X+ whenever x , y ∈ X+ and 0 ≤ α, β ∈ R.
X+ ∩ (−X+) = {0}, so X+ is proper]

Conversely, given a proper cone K in X , a partial order in X is
defined by setting x ≤ y whenever y − x ∈ K , and then

(X ,≤) is an ordered vector space with positive cone X+ = K .
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Preliminary Concepts and Results: Positive Semigroups

A real Banach space (X , ‖ · ‖) is called an ordered Banach space if

X is an ordered vector space such that
X+ is norm closed, i.e. closed in the strong topology.

From now on we assume that

X is an ordered Banach space with positive cone X+.
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Preliminary Concepts and Results: Positive Semigroups

A family (T (t))t≥0 in L(X ) is called a C0-semigroup if

T (0) = I , T (t + s) = T (t)T (s), ∀t, s ≥ 0

lim
t→0+

‖ T (t)x − x ‖= 0, ∀x ∈ X

The infinitesimal generator A of a C0-semigroup (T (t))t≥0 is defined by

Ax = lim
t−→0+

T (t)x − x

t

on

D(A) = {x ∈ X | lim
t−→0+

T (t)x − x

t
exists in X}

Definition

(T (t))t≥0 is said to be positive if all the operators T (t), t ≥ 0, are
positive, i.e.

T (t)X+ ⊂ X+ for all t ≥ 0
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Preliminary Concepts and Results: Positive Semigroups

Proposition

A C0-semigroup (T (t))t≥0 is positive if and only if

its resolvent R(λ,A) := (λI − A)−1 is positive for all λ > ω0,

where

ω0 := inf
t>0

log ‖ T (t) ‖
t

= lim
t−→∞

log ‖ T (t) ‖
t

is the growth constant of (T (t))t≥0.
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Preliminary Concepts and Results: Positive Semigroups

Characterization of the positivity of a C0-semigroup
in terms of its generator A :

Definition

A linear operator A : D(A) −→ X is said to have the Positive
Off-Diagonal (POD) property if

〈Au, φ〉 ≥ 0

whenever

0 ≤ u ∈ D(A) and φ ∈ (X ∗)+ with 〈u, φ〉 = 0

where
(X ∗)+ = {φ ∈ X ∗ | 〈x , φ〉 ≥ 0, ∀ x ∈ X+ }
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Preliminary Concepts and Results: Positive Semigroups

Theorem

Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0 in an
ordered Banach space X with int(X+) 6= ∅. The following assertions
are equivalent:

(i) (T (t))t≥0 is a positive C0-semigroup.

(ii) A satisfies the POD property.

Moreover, if one of the two assertions above hold, then

s(A) = inf{λ ∈ R | Au ≤ λu for some u ∈ D(A) ∩ int(X+)}

where
s(A) = sup{Re(λ) | λ ∈ σ(A)}

denotes the spectral bound of A.
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Algebraic Conditions of Positivity: POD Property

Algebraic conditions of positivity for systems defined on a space
whose positive cone has an empty interior ?

Fact

a) The positive cone l2+ of l2 has an empty interior.
b) The positive cone of any infinite-dimensional separable Hilbert space
(e.g. L2) has an empty interior.

Indeed:
every x = (xn) ∈ l2+ −→ 0

=⇒
for any ball B = B(x , ǫ), there exists a sequence y = (yn) which belongs
to B but not to l2+.

In this case, the POD property of the generator is still necessary but
not sufficient for the positivity of the semigroup.
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Algebraic Conditions of Positivity: POD Property

Let Z be an ordered Banach space such that int(Z+) = ∅.
Let {en}n≥1 be a positive Schauder basis of Z , i.e. each element z of Z
has a unique representation of the form

z =

∞
∑

n=1

αnen

such that the linear functional

z 7−→ αn =: 〈z , en〉 is bounded

where αn := the nth coordinate of z with respect to the basis {en}n≥1

and the positive cone is given by

Z+ =

{

z =
∞
∑

n=1

αnen | αn ≥ 0, ∀n

}

.
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Algebraic Conditions of Positivity: POD Property

Consider a closed linear operator A : D(A) ⊂ Z −→ Z .

Assume that: {en}n≥1 ⊂ D(A) ,
A is the infinitesimal generator of a C0-semigroup (TA(t))t≥0.

Definition

1) The operator A is said to be Metzler if ank = 〈Aek , en〉 ≥ 0, ∀n 6= k.
2) The system ż(t) = Az(t) is said to be positive if
Z+ is TA(t)-invariant, i.e.

TA(t)Z+ ⊂ Z+, ∀t ≥ 0

Proposition

If the system ż(t) = Az(t) is positive on Z , then

A satisfies the POD property.
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Algebraic Conditions of Positivity: POD Property

The POD property of the generator of a C0-semigroup guarantees
the positivity of the latter on invariant finite-dimensional subspaces.

Theorem

Assume that

ZN := span{e1, e2, ..., eN} (where N < ∞)

is TA(t)-invariant for all t ≥ 0.

If A is Metzler and ank > 0 for all n 6= k such that 1 ≤ n, k ≤ N,
then the system ż(t) = Az(t) is positive on ZN , i.e.

TA(t)Z+
N

⊂ Z+
N

,∀t ≥ 0

where
Z+

N
= ZN ∩ Z+ := the positive cone of ZN

CDPS (Wuppertal, D) Positive Stabilization of DPS July 2011 12 / 31



Algebraic Conditions of Positivity: POD Property

Theorem

Assume that

A is Metzler

and

ZN is TA(t)-invariant for all t ≥ 0.

Then

the system ż(t) = Az(t) is positive on ZN .

Hint: Consider Aǫ := A + Bǫ where Bǫz :=

∞
∑

k=1

〈z , ek〉Bǫek and

〈Bǫek , en〉 = ǫ > 0 for all n, k ≤ N and
〈Bǫek , en〉 = 0 for all n, k such that n or k > N.
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Algebraic Conditions of Positivity: POD Property

Corollary

Assume that

A has the POD property

and

ZN is TA(t)-invariant for all t ≥ 0.

Then

the system ż(t) = Az(t) is positive on ZN .

Indeed: for all n, z 7−→ 〈z , en〉 is a positive bounded linear functional such
that, for all k 6= n, 〈ek , en〉 = 0 (where 0 ≤ ek ∈ D(A)).

It follows by the POD property that A is a Metzler operator.
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Positive Stabilization: Spectral Decomposition

Consider the infinite dimensional linear system (Σ) described by the
following abstract differential equation

{

ż(t) = Az(t) + Bu(t),
z(0) = z0 ∈ D(A),

where

A is the infinitesimal generator of a C0-semigroup (TA(t))t≥0 on an
ordered Banach space Z with positive cone Z+,
B is a bounded linear operator from U to Z ,
U = {u : R

+ −→ U, continuous} and
U is a control ordered Banach space with a positive cone U+.
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Positive Stabilization: Spectral Decomposition

Definition

The system (Σ), i.e. the pair (A,B), is said to be positive if for every
z0 ∈ Z+ and all inputs u ∈ U+, i .e. ∀u ∈ U such that u(t) ∈ U+, ∀t ≥ 0,
the state trajectories z(t) remain in Z+ for all t ≥ 0.

Definition

The system (Σ), i.e. the pair (A,B), is positively stabilizable if there
exists a state feedback control law K ∈ L(Z ,U) such that the
C0-semigroup generated by A − BK is an exponentially stable positive
semigroup.

Conditions of existence of a state feedback such that the
corresponding closed loop system is exponentially stable and
positive ?
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Positive Stabilization: Spectral Decomposition

Theorem

The system (Σ) is positive ⇐⇒ A is the infinitesimal generator of a
positive C0-semigroup and B is a positive operator.

Consider U = R
m and B the bounded linear operator given by

Bu =

m
∑

i=1

biui ,

where u =
[

u1 · · · um

]t
and bi ∈ ZN for i = 1, ...,m.

Corollary

Assume that A is Metzler, ZN is TA(t)-invariant for all t ≥ 0 and B is a
positive operator.
Then for every z0 ∈ Z+

N
and for every u such that Im(u) ⊂ R

m
+,

the corresponding state trajectory z(·) of the controlled system (Σ)
remains in Z+

N
.
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Positive Stabilization: Spectral Decomposition

Assume that the state space Z is an ordered Hilbert space and that:
(H1) ∃ δ > 0 such that the set σ(A) ∩ {s ∈ C | Re(s) > −δ} contains
only a finite number of elements of the spectrum σ(A), and
(H2) A satisfies the spectrum decomposition assumption at δ.
Then the spectrum of A can be decomposed as follows:

σ+
δ

(A) = σ(A) ∩ {λ ∈ C | Re(λ) > −δ},

σ−
δ

(A) = σ(A) ∩ {λ ∈ C | Re(λ) ≤ −δ}.
The spectral projection

Pδz =
1

2πj

∫

Γδ

(λI − A)−1zdλ

induces a decomposition of the state space

Z = Zu ⊕ Zs , Zu := PδZ , Zs := (I − Pδ)Z ,

where Zu := PδZ is finite-dimensional.
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Positive Stabilization: Spectral Decomposition

Using the subscript notations ”u” for unstable and ”s” for stable, one
can write the operators A and B as:

A =

[

Au 0
0 As

]

where Au := A|Zu
, As := A|Zs

,

with σ(Au) := σ+
δ

(A), σ(As) := σ−
δ

(A),

B =

[

Bu

Bs

]

where Bu := PδB and Bs := (I − Pδ)B .
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Positive Stabilization: Spectral Decomposition

The spectrum decomposition assumption is valid for a wide class of
infinite-dimensional systems:
e.g. systems whose generator is a Riesz-spectral operator, parabolic
systems and systems described by delay differential equations.

Au may have some stable eigenvalues.

As is the infinitesimal generator of an exponentially stable C0-semigroup.

Proposition

(A,B) is exponentially stabilizable

⇐⇒
(Au,Bu) is exponentially stabilizable
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Positive Stabilization: Spectral Decomposition

Let
Z+

u = Zu ∩ Z+ and Z+
s = Zs ∩ Z+

Z+
u and Z+

s are proper cones and therefore define an order on Zu and Zs .
Clearly:

Z+
u ⊕ Z+

s ⊂ Z+

Lemma

If A is the infinitesimal generator of a positive C0-semigroup, then Au and
As are infinitesimal generators of positive C0-semigroups.

If, in addition,
Z+

u ⊕ Z+
s = Z+

the converse holds, i.e.

TA(t)Z+ ⊂ Z+,∀t ≥ 0 ⇐⇒
{

TAu
(t)Z+

u ⊂ Z+
u ,∀t ≥ 0

TAs
(t)Z+

s ⊂ Z+
s ,∀t ≥ 0.
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Positive Stabilization: Spectral Decomposition

Theorem

Assume that

A is the infinitesimal generator of a positive C0-semigroup

and (Au,Bu) is positively stabilizable such that there exists a state
feedback Ku ∈ L(Zu,U) such that the operator

−BsKu ∈ L(Zu,Zs) is positive.

Then

(A,B) is positively stabilizable,

i.e. there exists a state feedback K ∈ L(Z ,U) such that
A − BK is the infinitesimal generator of an exponentially stable and
positive C0-semigroup with respect to the cone Z+

u ⊕ Z+
s .
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Example: Heat Diffusion

Heat diffusion model with Neumann boundary conditions:










∂z

∂t
(x , t) =

∂2z

∂x2
(x , t) + b1u(t)

∂z

∂x
(0, t) = 0 =

∂z

∂x
(1, t).

Described on Z = L2(0, 1) by:

ż(t) = Az(t) + Bu(t) , z(0) = z0 ∈ D(A),

where Az =
d2z

dx2
is defined on its domain

D(A) = {z ∈ L2(0, 1) | z ,
dz

dx
are absolutely continuous,

d2z

dx2
∈ L2(0, 1) and

dz

dx
(0) =

dz

dx
(1) = 0},

and B ∈ L(R,L2(0, 1)) is given by

Bu = b1u, where b1 ∈ L2(0, 1)
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Example: Heat Diffusion

A has a pure point spectrum σ(A) which consists of the simple eigenvalues
λn = −n2π2, n ≥ 0, and the corresponding eigenvectors ϕ0 = 1 and
ϕn(x) =

√
2 cos(nπx), n ≥ 1, form an orthonormal basis of L2(0, 1).

So A is the Riesz spectral operator given by

Az =

∞
∑

n=0

−(nπ)2〈z , ϕn〉ϕn, for z ∈ D(A)

and is the infinitesimal generator of the C0-semigroup:

TA(t)z0 = 〈z0, 1〉 +

∞
∑

n=1

2e−(nπ)2t〈z0, cos nπ(·)〉 cos nπ(·)
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Example: Heat Diffusion

(TA(t))t≥0 is a positive C0-semigroup, i.e.

TA(t)(L2(0, 1))
+ ⊂ (L2(0, 1))

+, ∀t ≥ 0

where

L2(0, 1))
+ = {h ∈ L2(0, 1) | h ≥ 0 almost everywhere}.

A satisfies the spectrum decomposition assumption, so w.l.g. :

A =

[

Au 0
0 As

]

, where Au = A|Lu
2
(0,1)

,As = A|Ls
2
(0,1)

where
Lu

2(0, 1) = span{ϕ0}={the constant functions}
Ls

2(0, 1) = span{ϕn, n ≥ 1}
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Example: Heat Diffusion

TAu
(t) = 1, t ≥ 0, is a positive unstable C0-semigroup on Lu

2(0, 1) and

TAs
(t) is positive on Ls

2(0, 1).

Indeed: let zs ∈ (Ls
2(0, 1))

+ = Ls
2(0, 1) ∩ (L2(0, 1))

+. Then 〈zs , 1〉 = 0.
It follows that

TAs
(t)zs(·) =

∞
∑

n=1

2e−nπ2t〈zs(.), cos nπ(·)〉 cos nπ(·)

= TA(t)zs(·)
∈ Ls

2(0, 1) ∩ (L2(0, 1))
+ ⊂ (Ls

2(0, 1))
+.

Hence, for all t ≥ 0,

TAs
(t)(Ls

2(0, 1))
+ ⊂ (Ls

2(0, 1))
+
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Example: Heat Diffusion

Let b1 = α be a strictly positive constant function. Then

Buu = αu

is a positive operator from R to Lu

2(0, 1) and Bs = 0. So, ∀ku ∈ R
0
+,

Au −Buku is the infinitesimal generator of the positive exponentially stable
C0-semigroup given by

TAu−Buku
(t)zu = e−αku tzu, ∀zu ∈ Lu

2(0, 1)

Hence (A,B) is positively stabilizable.

CDPS (Wuppertal, D) Positive Stabilization of DPS July 2011 27 / 31



Example: Heat Diffusion

Moreover, for all K =
[

k 0
]

∈ L(L2(0, 1), R), with k ∈ R
0
+,

A − BK =

[

Au − Buk 0
0 As

]

is the infinitesimal generator of a positive

exponentially stable C0-semigroup, or equivalently, the closed loop system











∂z

∂t
(x , t)(t) =

∂2z

∂x2
(x , t) − b1(x)k〈ϕ0, z(·, t)〉

∂z

∂x
(0, t) =

∂z

∂x
(1, t) = 0

(0.1)

is a positive exponentially stable system for all k ∈ R
0
+ with respect to the

cone (Lu
2(0, 1))+ ⊕ (Ls

2(0, 1))
+.
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Example: Heat Diffusion

0 0.5 10 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

0.02

0.04

0.06

0.08

0.1

0.12

t x

z(
x,

t)

Figure: z0(x) = (x(x − 1))2 + 0.05
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Example: Heat Diffusion
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Figure: z0 = characteristic function of [0.4,0.6]
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Concluding Remarks and Perspectives

The Metzler property guarantees the positivity whenever the positive
initial condition is chosen in a specific finite-dimensional subspace.

Necessary and sufficient conditions for the positivity of controlled
systems.

Sufficient conditions for the existence of a stabilizing state feedback
such that the closed loop system remains positive.

Positive stabilization without using spectral decomposition
assumption is currently under investigation.
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